
HAL Id: hal-03589820
https://hal.sorbonne-universite.fr/hal-03589820v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

On the design of efficient congestion control for the
Constrained Application Protocol in IoT

Nabil Makarem, Wafaa Bou Diab, Imad Mougharbel, Naceur Malouch

To cite this version:
Nabil Makarem, Wafaa Bou Diab, Imad Mougharbel, Naceur Malouch. On the design of efficient
congestion control for the Constrained Application Protocol in IoT. Computer Networks, 2022, 207,
pp.108824. �10.1016/j.comnet.2022.108824�. �hal-03589820�

https://hal.sorbonne-universite.fr/hal-03589820v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

On the Design of Efficient Congestion Control for the Constrained Application
Protocol in IoT

Nabil Makarema,b, Wafaa Bou Diabb, Imad Mougharbelc, Naceur Maloucha

aLIP6, Sorbonne Université, France
bLebanese University, Lebanon

cÉcole de Technologie Supérieure - GREPCI Lab, Canada

Abstract

The Constrained Application Protocol (CoAP) is one of the main candidates for a lightweight communication protocol for
the Internet-of-Things. CoAP provides a simple congestion control mechanism based on successive retransmissions and
binary exponential timeouts. This simple mechanism can significantly reduce CoAP performance especially in networks
with high packet loss, and thus preventing an efficient deployment of the protocol. Enhanced mechanisms for CoAP
were proposed in the literature. Some considered improving retransmission timeout estimation whereas others focused on
augmenting the retransmission procedure. In this work, we analyze deeply main and recent proposals to highlight their
shortcomings. Then, we propose and implement two congestion control algorithms IDC-CoAP and MBC-CoAP which
improve retransmission timeout estimation for congestion detection, and adopt adequately a rate-based approach for
congestion counteraction, while maintaining simplicity required by constrained devices. The two proposed algorithms are
evaluated by means of pure simulations considering several network scenarios, and also using the realistic environment
Cooja/Contiki. All results show that our algorithms achieve a much better tradeoff between goodput, reliability and
overhead.

Keywords: Internet of Things, CoAP, Congestion Control, Rate Performance, Reliability, Contiki, Simulation, Cooja.

1. Introduction

The internet of Things (IoT) devices have raised new
challenges in protocol design and standards. The Internet
Engineering Task Force (IETF) has been developing new
specifications that are featured for constrained devices in
the IoT field. In particular, the Constrained Application
Protocol (CoAP) [1] was designed for data transmissions
between applications of IoT devices. Other protocols such
as Message Queuing Telemetry Transport (MQTT) and
Advanced Message Queuing Protocol (AMQP) have been
designed also for communications, however, CoAP is be-
coming more and more used for constrained IoT devices
and is suitable for different IoT fields such as healthcare,
smart cities, agriculture and transportation [2, 3, 4, 5].
CoAP is supposed to be more efficient in energy consump-
tion and bandwidth utilization, and it should be appro-
priate for high packet loss networks [6] due to its reduced
overhead. Nevertheless, recent studies demonstrate that it
is still necessary to improve the congestion control mecha-
nism of CoAP to improve further its performance in terms

∗Corresponding author
Email addresses: nabil.makarem@lip6.fr (Nabil Makarem),

wafaa.boudiab@ul.edu.lb (Wafaa Bou Diab),
imad.mougharbel@etsmtl.ca (Imad Mougharbel),
naceur.malouch@lip6.fr (Naceur Malouch)

of reliability and efficiency [7, 8]. Since constrained de-
vices suffer from limited resources and processing capaci-
ties, congestion occurs when the node’s traffic load exceeds
its available capacity, and/or when high traffic is generated
during the communication between large number of nodes.
Other network related reasons are involved when some
mobile networking technologies embrace sudden transmis-
sion delay spikes in addition to classic failures or disasters.
CoAP standard provides a simple congestion control mech-
anism to handle network losses which is based on a simple
send-and-wait protocol with a binary exponential backoff
procedure in case of packet loss, i.e. no acknowledgement
(ACK) is received [1]. Other related works have analyzed
congestion control of CoAP and proposed improvements in
calculating the retransmission timeout and/or the backoff
procedure [9, 10, 11]. In this paper, CoAP and previous
enhanced congestion control algorithms are analyzed to
show their properties and shortcomings. Then, we propose
further substantial improvements to congestion control al-
gorithms for CoAP based on the concept of rate control
in order to overcome previous limitations and enhance the
tradeoff between reliability and rate performance. The re-
sulting protocols, named IDC-CoAP and MBC-CoAP, are
evaluated against protocols from the literature to show
concretely their efficiency. The contributions of this work
are summarized as follows:

• Profound analysis and performance evaluation of

Preprint submitted to Elsevier July 18, 2021

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1389128622000457
Manuscript_d4d5d940c491e2cdc57a63f4ee7d8923

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1389128622000457
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1389128622000457

several previous congestion control algorithms, sup-
ported by the development of an original simulator
dedicated to CoAP testing.

• A new algorithm for retransmission timeout reduction
to enhance congestion detection.

• Integration of two new congestion control rate-based
algorithms in CoAP instead of the less efficient backoff
procedure while keeping the complexity reasonable for
constrained devices.

• Performance evaluation results using both our ad hoc
simulator and the well-known Cooja/Contiki IoT en-
vironment show that our rate-based congestion con-
trol for CoAP achieves a better tradeoff between reli-
ability, transmission overhead and bandwidth utiliza-
tion.

The remainder of the paper is organized as follows. Lit-
erature review is summarized in Section 2. Section 3 de-
scribes CoAP and several previous congestion control al-
gorithms. Then, Section 4 presents our new simulator en-
vironment and exposes the main issues in previous backoff-
based and rate-based algorithms. In Section 5, the design
of our proposed algorithms IDC-CoAP and MBC-CoAP
for congestion control are presented. Performance evalua-
tion results are presented in Section 6 where we compare
our algorithms with previous works. Section 7 concludes
the paper and presents some directions for future work.

2. Related work

Recently, there have been works conducted to evaluate
and improve CoAP performance and particularly its con-
gestion control. In the following, a summary review of
research literature is presented which is relevant to this
paper.

In [12], the authors suggested adjusting CoAP param-
eters to handle high traffic and high loss probability.
They experimentally adjusted the constant value of the re-
transmission timeout (RTO) and the randomization factor
of the initial timeout (ACK RANDOM FACTOR). They
adopted new CoAP congestion control parameters based
on experiments which is not sufficient since experiments
are limited and usually do not cover different network con-
ditions. Also, using smaller static backoff factors leads to
packet losses because the sender will transmit faster during
congestion periods.

The work in [13] proposed a congestion control scheme
based on round trip time (RTT) measurements through a
counter using the option field of the CoAP message. The
sender recognizes the origin of an ACK and calculates the
correct RTT to update the retransmission timeout (RTO)
without smoothing. Therefore, instead of using the default
RTO CoAP parameter (2 sec) for the retransmissions when
ACK is not received, the authors use the new calculated
RTO for the retransmissions.

CoAP Simple Congestion Control Advanced CoCoA [14]
performs RTO calculations based on TCP RTO computa-
tion algorithm where smoothed RTT is used to update
the RTO value automatically using two estimators weak
and strong. They showed that the performance of Co-
CoA is better than CoAP in congested networks but dif-
ferent studies [9, 10] show that it has some limitations
with bursty traffic. Recent works [9] have suggested dif-
ferent modifications in CoCoA RTO estimation in order to
reduce spurious transmissions which refers to packets that
are retransmitted because of incorrect estimation of RTO.

The authors in [15] evaluated another version of CoCoA
named CoCoA-S using only the strong estimator. They
employed alternative algorithms developed for TCP which
are shown to be inadequate for CoAP. CoCoA-S is conser-
vative in lossy networks which results in low throughput.
The main algorithm CoCoA delivers better performance
in comparison to CoCoA-S.

CoCoA+ [10] have adopted the same RTO estimation
mechanism presented in [14] with minor updates on the
weak estimator weights. The authors also introduced a
backoff policy to set the timeout for the retransmissions
named Variable Backoff Factor (VBF) to replace the bi-
nary exponential mechanism used by default in CoAP. In
addition, they added an ageing mechanism to set RTO
values if RTT is not updated for a certain time.

Other research works suggested improvements to Co-
CoA. The work named 4-state [11] differentiates between
four states and each state was given a weight to be used
when a loss is detected. Using small different weights for
the backoff factors will improve the goodput because trans-
mitting will be faster but losses will increase. Besides, the
number of the algorithm parameters increased significantly
and no study was conducted to tune them carefully.

An adaptive mechanism for handling congestion in
CoAP called Fast-Slow RTO (FASOR) is proposed in [16].
RTO computation is composed of fast and slow RTO cal-
culation. Fast RTO is based on TCP retransmission timer
and updated with unambiguous RTT samples (where ACK
messages matches CON messages) while slow RTO is mea-
sured from the original transmission of a packet till the
arrival of its ACK regardless of the required number of
re-transmissions. Fast RTO is used as a sign of link error
(interference) whereas slow RTO is a sign of heavy conges-
tion. The authors evaluated their algorithm among CoAP
and CoCoA+ using Netem [17] as network emulator and
libcoap library [18]. The authors tried to deduce whether
a packet loss is due to link disruption or due to congestion
by examining RTT samples (ambiguous or not), however,
RTT analysis can hardly be used to detect the reasons
behind a packet loss. Also when the network is lossy, the
backoff mechanism will lead to a behavior similar to CoAP
due to the exponential backoff mechanism. They also set
the retransmission counter to 20 instead of 4 which is too
excessive and will cause long packet delays and a very low
throughput which might be useful only when packet deliv-
ery must be guaranteed on the behalf of all other perfor-

2

mance metrics.
The latest version of CoCoA, named pCoCoA, is pro-

posed in [9]. The retransmission timeout calculation is
based on TCP implementation in Linux kernel. The back-
off mechanism is the same as in CoCoA+. Evaluation
showed some improvement of the RTO calculation using
several weights to estimate the round-trip time variance.
However, many instructions are used which increases the
processing overhead in constrained devices. pCoCoA will
be analyzed in detail in Section 3.1.

The previous works mentioned above follow what we
call the backoff-based approach since they act on the re-
transmission timeout and its evolution during the back-
off period. The authors of BDP-CoAP [19] implemented
in CoCoA+ the congestion control of TCP BBR proto-
col [20] which follows a rate-based measurement-based ap-
proach. BDP-CoAP will be analyzed in detail in Section
3.2. In summary, in addition to BBR components, BDP-
CoAP incorporates some modifications in an attempt to
enhance fairness and to adapt to CoAP and CoCoA+
constraints. Not only the resulting protocol is very com-
plex, but we also show that BDP can outperform previous
backoff-based protocols in few cases where the network
conditions are prosperous.

3. CoAP and Previous Congestion Control Algo-
rithms

CoAP [1] is a lightweight protocol designed for con-
strained devices in IoT networks which is based on Rep-
resentational State Transfer (REST) that supports basic
operations like GET, POST, PUT and DELETE. Its sim-
ilarity with HTTP, the protocol of the World Wide Web
of the Internet, eases interoperability and integration of
different objects and systems in the Internet. CoAP is
also suitable for IoT devices with limited hardware ca-
pacities. Compared to other protocols [21] used for con-
strained devices such as Message Queue Telemetry Trans-
port (MQTT) and Advanced Message Queuing Protocol
(AMQP), one major difference is that CoAP relies on UDP
for communication and hence it is immune to all overheads
and problems related to connection management especially
in case of packet loss in wireless networks [6]. Thus, the
complexity, imposed by other transport protocols, is elim-
inated in CoAP. As UDP is inherently not reliable, CoAP
should provide its own reliability mechanism which can
be designed to be very simple. CoAP communications
can be selected to use either confirmable (CON) or non-
confirmable (NON) messages. The standard CoAP [1] uses
a simple mechanism for congestion control based on re-
transmissions with a binary exponential backoff (Fig. 1).

When a packet containing a CON message is lost, the
client re-sends the message at doubled increasing inter-
vals, until an acknowledgement (ACK) is received or the
allowed number of attempts is reached. Two parame-
ters control the retransmission process: An initial timeout
value RTOinit and a retransmission counter r. For each

Figure 1: CoAP Congestion Control. Retransmission counter: r=4,
retransmission timeout: RTOinit=2s, Random factor: f=1.5, Back-
off factor: b=2

new CON message, the first timeout is set to a value be-
tween RTOinit and RTOinit times a randomization factor
f , and the retransmission counter is initialized to 0. If
the sender did not receive an ACK for the CON message,
CON is re-transmitted and the re-transmission counter is
incremented and the timeout value is doubled. The whole
process for each CON is repeated until the counter reaches
its limit or an ACK is received by the sender. In the fol-
lowing, we present the main previous proposals to enhance
congestion control for CoAP. We classify them into two
categories: backoff-based and rate-based.

3.1. Backoff-based Congestion Control

CoCoA (Congestion Control/Advanced) is an enhanced
backoff mechanism for CoAP primitively proposed in [14]
based mainly on changing RTOinit dynamically rather
than the default constant value of 2 seconds. Further var-
ious modifications have been implemented over the past
years to improve CoCoA performance. The improvements
in pCoCoA [9] consist of the following main aspects:

- A mechanism to calculate the initial retransmission
timeout based on the TCP retransimission timeout
algorithm version implemented in Linux kernel [22].

- A variable backoff mechanism to set the RTO for re-
transmissions adopted from CoCoA+ [10]

The RTOinit calculation in pCoCoA follows almost the
same algorithm as the one implemented for TCP in the
Linux Kernel with additional instructions. RTOinit value
is updated according to RTT measurements. RTOinit cal-
culation in pCoCoA tries to handle two problems: First,
when RTT increases suddenly and causes RTOinit overes-
timation. Second, when RTT variance (RTTVAR) drops
to a small value leading to spurious retransmissions. pCo-
CoA algorithm introduces the maximum mean deviation
(mdevmax). The parameters are initialized when the first
corresponding RTT value R is received. When a new value
R is computed, RTOinit is updated for the future trans-
missions. SRTT and RTTVAR are updated using different

3

Algorithm 1 pCoCoA RTO calculation: block 1

SRTT = (1− α)SRTT + αR
if R < (SRTT − RTTVAR) then

RTTVAR = (1− γ)RTTVAR + γ|SRTT −R|
else

if |SRTT −R| > RTTVAR then
RTTVAR = (1− β)RTTVAR + β|SRTT −R|

else
RTTVAR = (1− α)RTTVAR + α|SRTT −R|

end if
end if

weights to slow down the sudden decrease when fluctua-
tions happen (block 1 in Algorithm 1 pCoCoA).

When there is a sudden increase in the network delay,
mdevmax with aging mechanism is introduced to increase
RTO value accordingly (block 2).

Algorithm 1 pCoCoA RTO calculation: block 2

if R > SRTT then
if RTTVAR > mdevmax for 3 consecutive times then
mdevmax = average of the last 3 RTTVAR

else if RTTVAR > mdevmax for 8 consecutive times
then
mdevmax = (1− β)mdevmax + βRTTVAR

end if
end if

If spurious transmission is detected, k is set to 6, other-
wise, it is set to 4 (block 3).

Algorithm 1 pCoCoA RTO calculation: block 3

if (spurious) then
k = 6

else
k = 4

end if

Lastly, RTOinit is updated using another smoothed vari-
able SRTO. SRTO calculation is based on the spurious flag
k in order to limit the minimum SRTO values. Then,
RTOinit is computed using another weighted sum that
combines SRTO and previous RTOinit as per block 4.

The successive retransmission timeouts in the back-
off mechanism of pCoCoA are based on the maintained
RTOinit and also on several values of backoff factors used
to multiply the timeouts instead of 2 (doubling) in case
of successive losses. pCoCoA adopts the same CoCoA+
backoff mechanism, called Variable Backoff Factor (VBF),
for setting retransmission timeout values. The value of
VBF is chosen from a list [1.5, 2, 2.5] according to RTOinit

value. The RTO for the backoff period is defined by:

RTObackoff = RTOinit × V BF, where (1)

Algorithm 1 pCoCoA RTO calculation: block 4

SRTO = SRTT +max(k ∗ RTTVAR,mdevmax)
RTOinit = (1− δ)SRTO + δRTOinit

V BF =

 2.5, RTOinit < 1 sec
2, 1 ≤ RTOinit < 3 sec

1.5, RTOinit > 3 sec
(2)

In 4-state [11], the RTO calculation is very similar to the
one in CoCoA, however a more complex procedure is used
to determine backoff factors. Each transaction is assumed
to be in one of four states depending on the number of
times a packet was retransmitted. Four different variable
backoff factors are used - VBF1, VBF2, VBF3 and VBF4
where each variable factor corresponds to a different state.

3.2. Rate-based Congestion Control

The congestion control mechanism in most algorithms
is backoff-based. However, few works tried to propose an
alternative to backoff-based congestion control. The au-
thors of BDP-CoAP [19] adopted the idea of TCP BBR
protocol [20] in order to control the rate of CoAP transmis-
sions. Instead of using mainly packet loss (three duplicate
ACK reception) to infer the congestion, TCP BBR esti-
mates the Bandwidth-Delay Product and determines the
maximum number of packets in flight to not exceed in or-
der to prevent losses. The Bandwidth-Delay Product is
computed by estimating the round trip propagation de-
lay and the available bandwidth through several measure-
ments. In particular, an available bandwidth measurement
is obtained at the reception of every ACK. A max filter is
used to stabilize the estimated available bandwidth over a
sliding time window.

̂AvaiBw = max (MeasBWt) ∀t ∈ [T −WB , T]

whereWB is a time window

andT is the current time

TCP BBR stops sending packets when the number of
packets in flight, i.e. packets that have not received yet
their acknowledgements, is larger than the Bandwidth-
Delay Product so that the bottleneck queue does not grow
up more and thus buffer overflow is prevented.

The estimated max-filtered bandwidth is also used to
control the sending rate through an eight-phase cycle with
the use of pacing gains. Each phase corresponds to a
packet transmission as shown in Fig. 2. At each phase, the
sending rate is set to the estimated bandwidth multiplied
by the pacing gain. In the first six phases of the cycle,
the pacing gain is equal to 1. Then in the seventh phase
it is set to 5/4 to increase the sending rate and probe for
the available bandwidth. However, if in this phase, some
losses had occurred, then the pacing gain is set to 3/4 to
reduce the sending rate. In the eighth phase, the pacing
gain is set to 3/4 in a preventive approach in case the prob-
ing of the bandwidth is not successful and also to empty

4

any resulting queue. The values 5/4 and 3/4 are chosen
so that the average sending rate during the two probing
and preventive phases does not change from other phases:(
5
4 + 3

4

) /
2 = 8

4

/
2 = 1. According to the authors of TCP

BBR [20], this cycling scheme, allows BBR flows to achieve
high throughput, low queuing delay, and convergence to a
fair share of bandwidth.

Figure 2: The eight-phase cycle scheme in TCP BBR

BDP-CoAP implements all the components proposed by
BBR for TCP congestion avoidance with additional differ-
ences. First, BDP-CoAP computes the pacing gain factor
through a ten-phase cycle instead of eight. Second, the
pacing gain values of the probing phase and the preventive
phase are 1.2 and 0.8 instead of 1.25 and 0.75 respectively.
Other pacing gains are equal to 1 as in TCP BBR. Third,
neither the pacing gain nor the estimated bandwidth are
updated in case of retransmission. Indeed, when an ACK
of a retranssmitted CON is received, the bandwidth mea-
surement that can be done using this ACK is canceled
and the estimation function is not called. Fourth, the filter
used to compute the estimated bandwidth uses, in addition
to the maximum of previous measurements, the minimum
of these previous measurements. The min and the max
are combined together with a weighted sum. Fifth, the
time window used to compute the filtered estimated band-
width is removed. Instead, the filter considers the last 10
measurements done at the last 10 packet sending instants.
Naturally, losses are still detected via RTOinit expiration
but its value is not multiplied by a backoff factor in case
of successive losses. RTOinit is estimated exactly as in
CoCoA+.

4. Analysis and Shortcomings of Previous Conges-
tion Control Algorithms

4.1. Ad hoc Simulation Environment

We developed in Python language a dedicated simulator
to analyze deeply CoAP algorithms in a controlled envi-
ronment. Indeed, the simulator can generate different pat-
terns of Round Trip Times (RTT) or reuse real RTT traces.
It is able to emulate the available bandwidth observed by
a CoAP sender and also emulate loss of packets. Hence,
congestion and its strength and duration are emulated in a
repeatable and supervised manner. The evolution of net-
work conditions over time can be kept exactly the same
from one simulation to another so that comparison be-
tween different algorithms is fair. Besides, compared to

other simulation environments, our Python simulator pro-
duces results much faster. Hence, it is possible to test
quickly many network scenarios and CoAP protocol vari-
ants.

4.2. Analysis and Shortcomings of pCoCoA and Backoff-
based Congestion Control

There are two components in backoff-based Congestion
Control algorithms: RTOinit calculation for the first re-
transmission and a backoff mechanism for the remaining
re-transmissions. For RTO calculation, if RTO is less than
the Round Trip Time RTT, then the packet is falsely re-
transmitted due to incorrect RTO estimation causing a
spurious transmission. If RTO is much larger than RTT,
then the sender will wait unnecessarily causing a degrada-
tion in terms of goodput and delays of packets delivery.

4.2.1. Spurious Transmissions

In pCoCoA, when RTT increases suddenly to a higher
value, RTO increases because of the smoothed RTT
(SRTT) value which is based on the average of the mea-
sured RTTs. However, after few transactions with lower
RTTs, RTO decreases very closely to RTT which leads
to spurious transmissions. In Fig. 3, we simulated such
scenario where we plot the evolution of RTT values and
RTO values over time. When RTT decreases suddenly,
pCoCoA RTO converges quickly and this is risky because
the sudden decrease might be followed by a sudden in-
crease which leads to spurious transmissions as shown in
the figure (bold green x-points at sequence numbers 451
and 452). A better design should handle RTO convergence
gradually when RTT decreases as per the blue plot in the
figure.

4.2.2. Large RTO Estimations

It could be simple to estimate RTO much greater than
RTT to avoid spurious transmissions. However, the larger
RTO, the lower the goodput and the longer the trans-
mission delay. Also, the reaction to congestion may take
more unnecessary time. Ideally, RTO should be as close as
possible to RTT values without triggering spurious trans-
missions. Particularly, when RTT increases suddenly as
simulated in Fig. 3, RTO is calculated by pCoCoA after
the sudden increase of RTT but not fastly enough to avoid
spurious transmissions. In such case, RTO must converge
quickly as per the blue plot to avoid spurious transmissions
but without exceeding that much RTT values as pCoCoA
is behaving. Note that RTT values can increase suddenly
due to severe congestion or other factors such as burst
connection arrivals or handoffs in wireless networks.

4.2.3. Inaccurate Variable Backoff

pCoCoA adopts the same variable backoff mechanism
used in CoCoA+. In this mechanism, the backoff factor
changes depending on the previous value of RTOinit. How-
ever, it should be rather set depending on the congestion

5

Figure 3: pCoCoA RTO Estimation vs Preferable RTO Estimation

state of the network. The retransmission timeout is use-
ful to detect congestion but it is not sufficient to choose a
backoff factor that relates to the congestion level in the
network. For example, if RTOinit value is 1.5 seconds
which might be close to RTT, and the ACK message was
not received, in this case the backoff factor will be 2 ac-
cording to pCoCoA backoff algorithm, then the sender will
unnecessarily wait for 3 seconds. A large RTT, and thus
a large RTO does not signify a congestion. Besides, when
RTT values are less than 1 second in the network, then if
a packet is lost, the backoff factor that will be used is 3!
The waiting time will be a lot increased which affects the
performance in terms of goodput and delay. The negative
impact is even worse if the loss is due to interference or
short congestion state. Actually, all the efforts done to
reduce and optimize RTOinit are vanished when we use
large backoff factors.

4.2.4. Complexity

pCoCoA adopts a congestion control mechanism simi-
lar to the one implemented in Linux TCP [22]. Although
Linux TCP is used by many network applications in the in-
ternet, its complexity makes it not efficient for constrained
devices that are limited in storage and processing capabil-
ities. Especially, our simulations show that the block for
calculating mdevmax in Algorithm 1 pCoCoA block 3 is
being executed up to 70% in each simulation but not be-
ing used in RTOinit final calculation except in few cases
as shown in Fig. 4. We tested 29 different RTT network
scenarios (x-axis) which are detailed later in Table 1 Sec-
tion 6.1. The blue bars show the calculation for mdevmax

if RTTVAR is greater than mdev for 3 consecutive times,

while the red bars present the calculation mdevmax when
RTTVAR is less than mdev for 8 consecutive times. The
yellow bars present the usage of mdevmax when calculat-
ing SRTO. Although it is calculated in all the transactions,
mdevmax is rarely used. This overhead might seem neg-
ligible with normal machines but it increases energy con-
sumption and overhead computation in a constrained IoT
environment for a negligible benefit.

Figure 4: mdevmax usage by pCoCoA

4.3. Shortcomings of Previous Rate-based Algorithms

The congestion avoidance algorithm proposed in TCP
BBR for congestion control follows a measurement-based
strategy to detect congestion and to set the sending rate
adequately, instead of a more classic loss-based strategy.
In this regard, the BBR congestion control can be very
efficient since it aims at equating the sending rate to the
available bandwidth which is somewhat the ultimate ob-
jective of any congestion control. However, it must be

6

judicially adapted to be incorporated in the CoAP proto-
col which has specific properties and is destined to specific
devices and network environments. It turns out that the
adaptations proposed by BDP-CoAP have several short-
comings presented in the following.

4.3.1. Bandwidth Sampling Inaccuracy

BBR is designed for TCP Congestion Avoidance periods
where usually the bandwidth is very high and the number
of packets sent and ACK received, is very high as well,
resulting in a lot of measurement samples to estimate the
available bandwidth quickly and precisely. In CoAP, the
sending rate is 1 message per RTT or lower and hence the
number of bandwidth measurement samples is very low.
As a consequence, in contrast to what is proposed by BDP-
CoAP, each sample must be considered in the estimation
especially those obtained at the reception of an ACK of
a retransmitted CON message. These ACKs reflect also
successful transmissions and bandwidth availability and
must be considered. Besides, after several successive re-
transmissions, which means losses, the first ACK received
will provide an actual measurement on the new decreased
available bandwidth that causes the losses. Ignoring sam-
ples from retransmitted packets will lead to inaccurate or
nonexistent bandwidth estimation if there are losses in the
network. Fig. 5 simulates a case of bandwidth sudden de-
crease showing the inability of BDP-CoAP to decrease its
sending rate due to successive losses despite that many
ACKs are received.

Figure 5: BDP-CoAP inefficiency in case of sudden bandwidth de-
crease.

4.3.2. Inadequacy of the Bandwidth Filter Time Window

For the same reason, sliding the bandwidth measure-
ment window over time is not adequate to filter the mea-
sured samples because after several losses and/or sending
rate reduction, the time window will not be able to cover
enough number of samples and this number can even be
drawn to zero which blocks totally the protocol. BDP-
CoAP uses a window that slides on the instants of sending
attempts instead of time. However, this procedure does

not solve the problem because in case of losses, the at-
tempts continues and makes the window sliding further,
which yet removes past measurements from the filter but
without adding new ones.

4.3.3. Bandwidth Delay Product Inapplicability

Similar to TCP BBR, BDP-CoAP computes the Band-
width Delay Product and uses it to control the number
of CoAP CON messages to send without waiting for their
acknowledgements during an RTT. However, the CoAP
concept is based on sending only one packet per RTT
(NSTART=1 [1]) to keep its operation simple and avoid
using a sending window and all algorithms for its man-
agement as TCP. With this constraint, packets inflight is
either 0 or 1, and the Bandwidth Delay Product is al-
ways between 0 and 1. Even, if we allow NSTART to be
more than one, the Bandwidth Delay Product might still
be small in IoT environments due to low link data rates
and small buffers.

4.3.4. Bandwidth Estimation filter Degradation

Including the minimum of the bandwidth measurement
samples in the estimation filter is not adequate in terms
of goodput maximization especially if the bandwidth is
variable. The minimum was introduced as an attempt to
improve fairness, however, the impact on the goodput is
very harmful. Indeed, the minimum will slow the conver-
gence to the maximum available bandwidth. Furthermore,
in the filter, the minimum is associated with a weight that
is related to the number of retransmissions. The more the
retransmissions, the higher the weight, the slower the con-
vergence. Fig. 6 shows indeed the inability of BDP-COAP
to converge reasonably when the available bandwidth in-
creases suddenly. The wastage of the bandwidth is huge.

Figure 6: BDP-CoAP inefficiency in case of sudden bandwidth in-
crease.

4.3.5. Complexity

Even more than TCP BBR, BDP-CoAP uses many vari-
ables, instructions and function calls in order to perform
bandwidth measurements and processing them. Hence,
the algorithm becomes too complex. As a matter of fact,

7

all simulations done in the BDP-CoAP work [19] have
used a non-constrained type of devices while the employed
simulator was designed especially for constrained devices.
Again, the objective of having a good compromise between
efficiency and complexity can not be ignored in IoT envi-
ronments. This complexity can be reduced by removing
unnecessary components that were designed for TCP and
not really useful for CoAP. Also, one can use a different
approach of congestion control other than a measurement-
based.

5. Proposed algorithms: IDC-CoAP and MBC-
CoAP

In this section, we propose three new mechanisms in or-
der to overcome the previous shortcomings that we have
discussed above and improve the overall performance of
CoAP. First, we design a new algorithm to calculate the
initial retransmission timeout RTOinit more efficiently to
improve congestion detection. Then, we design two algo-
rithms for congestion counteraction that both follow the
rate-based approach. The outcome is two new proposed
protocols called IDC-CoAP and MBC-CoAP. The former
is based on Increasing/Decreasing the sending rate. The
latter uses a Measurement-Based approach to control the
sending rate and it is inspired from the recent BBR con-
gestion control [20]. In both cases, RTOinit is used only
to detect losses and it is never doubled or modified in case
of loss, thus we call it also simply RTO.

5.1. Congestion Detection: RTO Calculation

The challenge in RTO calculation is the fast convergence
during high fluctuations in the network such as sudden in-
crease and sudden decrease of RTT. Precisely, if the CoAP
sender uses a smaller RTO than RTT, it will generate a
spurious transmission and the sending rate will be greater
than 1 packet per RTT which may worsen the situation in
case of congestion. Also, RTO should not be much higher
than RTT because the sender will wait long before detect-
ing the loss and before sending the lost and the next pack-
ets. The sender might also skip some good time intervals
where packets can be successfully delivered. Another chal-
lenge is the limited capacities of some IoT constrained de-
vices where the algorithm must be developed with minimal
instructions so it can reduce the processing overhead and
increase the lifetime of the constrained devices. That is
why also spurious transmissions must be reduced as much
as possible to reduce energy consumption.

Our new algorithm is still based on the concept of ex-
ponentially weighted moving average (EWMA) with sev-
eral modifications from previous works to minimize further
RTO while reducing the number of spurious transmissions,
and in the same time reduce the number of instructions.
The pseudo code is presented in Algorithm 2. SRTT is the
maintained average round trip time and RTTVAR is the
computed variation of RTT. SRTT is updated using the

weight α (line 1). RTTVAR is updated using the weights
α and γ (lines 2 to 6).

Algorithm 2 RTO calculation algorithm

1: SRTT = (1− α)SRTT + αR
2: if R > SRTT then
3: RTTVAR = (1− α)RTTVAR + α|SRTT −R|
4: else
5: RTTVAR = (1− γ)RTTVAR + γ|SRTT −R|
6: end if
7: if spurious is true then
8: K = 7
9: else

10: K = 4
11: end if
12: RTO = SRTT +K ∗ RTTVAR

Once a first RTT value is measured, it is stored in the
variableR. Then, SRTT is initialized toR, andRTTV AR
to R/2. Afterwards, RTO is estimated for each new R
as shown in Algorithm 2. In this algorithm, we update
RTTVAR using a different weight depending on the value
of the measured RTT R compared to the maintained av-
erage SRTT . This condition (R > SRTT) is necessary
to adapt RTO estimation adequately to RTT fluctuations,
on the behalf of some additional complexity. However, this
condition was sufficient to estimate RTO correctly and the
algorithm is still simpler than pCoCoA. The weights are
fixed so that convergence is faster (α > γ) when R in-
creases (R > SRTT) because if convergence is not fast
enough, there is a high risk to have RTO < R causing spu-
rious transmissions which is important to avoid utmost as
we said before. In contrast, convergence is slower when R
decreases (R < SRTT) in a preventive approach in order
to observe first if this reduction is permanent or transient.
Otherwise, if we converge fast, the estimated RTO can flip
down below next R values causing again spurious transmis-
sions. The weights used to compute RTTVAR should be
tuned to find a good compromise between RTO reduction
and spurious reduction as well.

Finally, in the algorithm, RTO for the next transmis-
sion is calculated using the smoothed value of RTT SRTT
to which we add the RTT variance RTTV AR multiplied
by margin factor K (lines 7 to 12). The concept of us-
ing K × RTTV AR is based on Jacobson/Karels algo-
rithm (Timeout = Estimated RTT Average + 4 × Esti-
mated RTT Deviation) [23]. Another challenge though is
choosing the right value for K. K plays an important role
in estimating RTO value. When it is set to 4 for all trans-
missions, performance can be reduced. Indeed, K should
be preferably chosen dynamically according to the spuri-
ous status. If the previous transmission is spurious, then
RTO value must be increased by increasing K to force the
sender to wait for a longer period (lines 7-8). A lower K
value should be used when spurious is not detected (lines
9-11).

8

In order to choose a good combination of values for the
parameters α, γ and K that support our design objectives,
different values in different network scenarios were tested
and analyzed. We show here only results with one of the
most challenging scenarios where RTT is varied continu-
ously according to a uniform distribution between 500ms
and 600ms during 100 times, then a sudden change to a
normal distribution with mean 100ms and a standard de-
viation of 20ms during 100 times, then a sudden return
to the uniform distribution and so on and so forth. Be-
sides, a high increase of RTT to 1 second is generated 5
times every 1000 transmissions. Then, while varying the
weights, we compute both the total number of spurious
transmissions and the Root Mean Square Error (RMSE)
which measures the difference between estimated RTO and
measured R values.

According to the results from the figures 7 and 8, when
we fix the value of α, then a low value of γ reduces both
spurious transmissions and RMSE. In Figure 9, when γ is
fixed to 1/32, a value of 1/8 for α is a good compromise
between spurious and RMSE. Thus we fix α = 1

8 and γ =
1
32 . This result confirm our design rule α > γ.

Regarding the K parameter, in Fig. 10, we fix K to 7 if
there is a spurious transmission and we vary the value of
K in the case when there is no spurious from 2 to 7. We
observe that the higher these K values, the lower RMSE
and number of spurious. However, the value of 4 is a good
compromise since after this value, the improvement is mi-
nor compared to the improvement from the values of 2
to 4. In Fig. 11, we fix K to 4 if there is no spurious
transmission and we vary the value of K in the case when
there is a spurious from 2 to 7. We observe that the value
of 7 reduces both spurious and RMSE. Thus the portion
of the algorithm that computes K is useful to reduce fur-
ther RMSE and the number of spurious transmissions. All
other simulation results, not shown here, has confirmed
this setting.

Figure 7: α = 1
16

Figure 8: α = 1
8

Figure 9: γ = 1
32

Figure 10: K = 7 when there is a spurious

5.2. Congestion Counteraction: Rate-Based Control Algo-
rithms

Most of congestion control algorithms for CoAP follow
the backoff based approach where they try to use a dif-
ferent static backoff factor or use a variable backoff factor
according to some conditions. We claim that the back-
off mechanism is not sufficient to leverage the bandwidth
available to the CoAP sender. It is better to deploy a
“real” congestion control mechanism in order to decide
correctly how long to wait before sending the next packet

9

Figure 11: K = 4 when there is no spurious

and avoid losses. The inter-sending delay should be in-
versely proportional to the available bandwidth, and this
is hard to achieve through the backoff mechanism even
with variable backoff factors.

Evidently, if one wants to maximize the throughput
achieved by the CoAP connection, the sender can send
aggressively at its maximum rate to ensure a maximum
throughput. However this will engender a lot of packet
losses, retransmissions and possibly losses of CoAP mes-
sages at the application layer if many successive packets
are lost. More substantially, it will also waste a lot of
energy due to wasted transmissions. This is a different
constraint from classic congestion control where losses are
not harmful if they are recovered quickly. Here the dam-
age of a packet loss is irreversible and should be avoided.
The challenge is that in order to check if the bandwidth is
available or not, the only way for the CoAP sender to do is
to send a packet, but if this packet is sent while the band-
width is not available then it will be lost. Retransmission
of the lost packet does not reduce the incurred cost related
to energy consumption. As a consequence, when a time-
out expires indicating that the bandwidth is not available,
determining the right time to wait before sending the re-
transmission is crucial. A short time may cause additional
losses and a long time may reduce dramatically the good-
put. It is clear that this time should relate to the available
bandwidth.

Hence, the main idea is to remove entirely the backoff
mechanism from CoAP and integrate a new mechanism
that determines the adequate spacing between successive
transmissions including retransmissions regardless of the
RTO value or the retransmission counter. It is essential
though to keep this algorithm as simple as possible. That
is why our first proposal is based on the simple Additive
Increase Multiplicative Decrease of the transmission rate
even though we apply it to the time spacing between pack-
ets. We call the resulted protocol IDC-CoAP. The second
proposal follows the measurement-based approach devel-
oped in BBR where the transmission rate is determined
based on available bandwidth measurements and periodic

probing of the bandwidth. We call this protocol ver-
sion MBC-CoAP. Different from BDP-CoAP, MBC-CoAP
adapts more adequately BBR to the existing properties of
CoAP and avoids all BDP-CoAP design inaccuracies.

5.2.1. IDC-COAP

In this version of the protocol we aim at keeping the
control algorithm as simple as possible by simply following
the Additive Increase Multiplicative Decrease principle to
control the rate with two differences. The first consists on
working on the spacing between successive packets instead
of the rate. The second consists on adding a phase of fast
rate increase to benefit more from the available bandwidth
in case it opens up. When the CoAP sender transmits a
packet, there are two main network events from its point
of view:

• An ACK is received. It means that the sending rate
≤ residual bandwidth. The current time spacing be-
tween packets can be decreased to increase the rate.

• The RTO expires. It means in case of congestion that
the sending rate > residual bandwidth. The current
time spacing should be increased to decrease the rate.

Algorithm 3 IDC-CoAP pseudo-code

1: Wait for CoAP ACK or RTO expiration
2: if ack is true then
3: if spacing ≥ loss spacing then
4: spacing = spacing − dw ∗ spacing
5: else
6: spacing = spacing − fw ∗ spacing
7: end if
8: else
9: loss spacing = spacing /* Save congestion level */

10: spacing = iw ∗ spacing
11: end if
12: spacing =

max(spacing, current time− last send time)
13: Send next packet (transmission or retransmission) at:

last send time+ spacing

The pseudo code of the control algorithm is presented in
Algorithm 3. When a loss is detected, the sending rate
should be decreased. Therefore, the spacing is increased
by multiplying it by the incremental weight iw (line 10).
When ACK is received, the spacing is reduced gradually
using the decremental weight dw (lines 2 and 4). When
spacing becomes lower than the spacing saved at the loss
event (line 5) which corresponds to the last known avail-
able bandwidth, then spacing is reduced with a higher
decremental factor fw in order to find quickly the new
possible expanded available bandwidth (line 6). The max-
imum function is invoked to make sure that the sender can
not send before the reception of the next ACK or the ex-
piration of RTO (line 12). In the performance evaluation

10

section, we show that a good combination of the algorithm
parameters is: incremental weight iw = 1.5, decremental
weight dw = 0.01 and fast decremental weight fw = 0.5.
These parameters were chosen to achieve a good tradeoff
between goodput and loss ratio. However, they can be
easily tuned when the application requires better goodput
on behalf of losses and energy consumption, or vice versa.

5.2.2. MBC-COAP

In this version of the protocol, we follow the
measurement-based approach implemented in BBR to
compute the spacing between packet sending instants. We
adopt the same concept of the max-filtered estimation of
the available bandwidth and the same values for the prob-
ing and preventive pacing gains, i.e. 1.25 and 0.75 respec-
tively. We also use the same length of the pacing cycle and
the same update procedure. However, in order to overcome
the shortcomings mentioned earlier (Section 4.3), we do
not estimate neither the bandwidth delay product nor the
minimum round trip propagation delay. We also do not
maintain the packets in flight. These components are un-
necessary for CoAP so removing them simplifies the proto-
col. Besides, the window used in the bandwidth estimation
filter slides each time the CoAP sender receives an ACK.
Thus, we compute the sending rate based on the maxi-
mum of the last m measurements, with m being the size
of the sliding window. Which means, instead of using a
time window, we use a space window. This modification is
especially useful in high lossy environments. Importantly,
in contrast to BDP-CoAP, we include each received ACK
in the estimation of the bandwidth including those corre-
sponding to retransmissions so that the number of mea-
surement samples is sufficient to estimate more precisely
the available bandwidth and converge to it rapidly. We
simplified further the algorithm by removing all function
calls as presented in the pseudo-code of Algorithm 4.

In the algorithm, we measure the spacing between suc-
cessive received ACKs as an estimation of the “available
spacing” which is inversely proportional to the available
bandwidth. The last m spacing measurement samples are
maintained to be used for computing the sending spacing
(lines 2-7). After an ACK reception or an expiration of a
timeout, MBC-CoAP sends the next packet according to
the previously computed spacing (line 8). The next spac-
ing for the next sending is computed by calculating first
the next pacing gain (lines 9-20), then calculating the min-
imum of the last m spacing measurements corresponding
to the maximum of bandwidth samples (line 21). Even
though this algorithm is much simpler than the one in
TCP BBR and BDP-CoAP, it is still more complex than
IDC-CoAP due to the need of maintaining measurements.

6. Performance evaluation

In this section, we use our python simulator presented
in section 4.1, to first evaluate the efficiency of our algo-
rithm of RTO calculation, then, to study and compare the

Algorithm 4 MBC-CoAP pseudo-code

1: Wait for CoAP ACK or RTO expiration
2: if ack is true then
3: measurement sample =

current time− last ACK time
4: last ACK time = current time
5: Add measurement sample to Spacings[m]
6: Remove oldest measurement sample from

Spacings[m]
7: end if
8: Send next packet (transmission or retransmission) at:
max(last send time+ spacing, current time)

9: cycle index = (cycle index+ 1) % 8
10: if cycle index = 0 then
11: if retransmission then
12: pg = 0.75
13: else
14: pg = 1.25 /* Probing phase */
15: end if
16: else if cycle index = 1 then
17: pg = 0.75 /* Preventive phase */
18: else
19: pg = 1
20: end if
21: spacing = min(Spacings[m])/pg

performance of the full congestion control algorithms of
IDC-CoAP and MBC-CoAP against other previous con-
gestion control algorithms. Second, we use Cooja/Contiki
[24] to complement the comparison between rate-based
and backoff-based approaches in a more realistic IoT en-
vironment.

6.1. Congestion Detection: RTO Calculation

Our new algorithm of RTO estimation used by both
IDC-CoAP and MBC-CoAP is compared with the one in-
cluded in pCoCoA since it was proven to be better than
other previous RTO calculations [9]. Table 1 shows RTT
network scenarios that will be used in this evaluation.

In most of the scenarios, RTT is varied continuously
according to a Uniform distribution between two values
during 100 times (Period 1), then a sudden change to a
Normal distribution with a given mean and a given stan-
dard deviation during 100 times (Period 2), then a sudden
return to the Uniform distribution and so on and so forth.
The total number of transmissions is 100000 in all scenar-
ios. Fig. 12 shows scenario 6 where we switch from a
high RTT average with a large deviation to a low average
with a low deviation. Besides, to challenge more the algo-
rithms, in some simulations, we can have additional events
corresponding to a high increase of RTT to 10 seconds gen-
erated 5 times every 1000 transmissions. Scenarios 2 and
3 use RTTs from real measurements between two sites.
Scenario 2 is from Paris in France to Auckland in New
Zealand, and scenario 3 is from Paris to Rennes in France.

11

ID Network scenario

Period 1 Period 2 Additional
eventsNumber of

Transmissions
RTT

Distribution
Number of

Transmissions
RTT

Distribution
1 100000 Pareto (4, 1000) N/A N/A No
2 100000 Real trace N/A N/A No
3 100000 Real trace N/A N/A No
4 100 U(100,300) 100 N(3000,100) No
5 100 U(100,1000) 100 N(3000,100) No
6 100 U(100,300) 100 N(3000,1000) No
7 100 U(100,2000) 100 N(3000,100) No
8 100 U(300,3000) 100 N(6000,200) Yes
9 100 U(300,3000) 100 N(4000,200) Yes
10 100 U(200,1000) 100 N(6000,200) Yes
11 100 U(100,2000) 100 N(6000,200) Yes
12 100 U(100,500) 100 N(4000,200) Yes
13 100 U(100,500) 100 N(4000,1000) Yes
14 100 U(100,500) 100 D(1000) Yes
15 100 U(100,500) 100 D(6000) Yes
16 100 N(6000,200) 100 U(200,1000) Yes
17 100 N(6000,200) 100 U(300,3000) Yes
18 100 U(300,3000) 100 N(4000,2000) Yes
19 100 U(100,2000) 100 N(6000,2000) Yes
20 100 U(300,3000) 100 N(6000,200) No
21 100 U(300,3000) 100 N(4000,200) No
22 100 U(200,1000) 100 N(6000,200) No
23 100 U(100,2000) 100 N(6000,200) No
24 100 U(100,500) 100 N(4000,200) No
25 100 U(100,500) 100 D(6000) No
26 100 N(6000,200) 100 U(200,1000) No
27 100 N(6000,200) 100 U(300,3000) No
28 100 U(100,300) 100 N(3000,300) No
29 100 U(100,1000) 100 N(3000,300) No

Table 1: Different simulation scenarios to challenge RTO calculation
algorithms

Fig. 13 shows RTTs over time of the real trace of scenario
2.

Figure 12: Scenario 6: High average/high deviation to low aver-
age/low deviation and vice versa

First, we study the instantaneous behavior of both algo-
rithms using scenarios 4 to 7 mentioned in Table 1. These
scenarios cover all possibilities regarding fluctuations of
RTT average and variance. Figures 14 and 15 show that
when observed RTT increases suddenly in the network,
then RTO in IDC/MBC-CoAP also increases quickly to
avoid spurious transmissions due to underestimations of
RTO. However, pCoCoA RTO increases more than re-
quired which leads to more delay in packet retransmis-
sions. Besides, this increase is not quick enough to avoid
spurious transmissions as shown more clearly in Fig. 22

Figure 13: Network scenario 2: Example of real RTT data set

Figure 14: RTO calculation - Scenario 4

Figure 15: RTO calculation - Scenario 5

that corresponds to the same network scenario as Fig. 14.

Figures 14 and 16 show a better convergence behavior
of IDC/MBC-CoAP RTO than pCoCoA when RTO de-
creases to smaller values with low variations. pCoCoA
decreases faster which is risky because it can cause spuri-
ous transmissions as shown above. Our RTO calculation
converges in a slower manner to be cautious and prevent
spurious transmissions. Figures 15 and 17 show that when
RTO decreases to smaller values but with high variations,
then both RTO calculation algorithms are similar but still
our algorithm reacts better to sudden increase by provid-

12

Figure 16: RTO calculation - Scenario 6

ing less spurious and low delay.

Figure 17: RTO calculation - Scenario 7

Figure 18: RTO calculation - Pareto distribution

We observe the similar better behavior in Fig. 19 where
RTT values in the python network simulator correspond
to real RTT measurements (Scenario 2 - Table 1). Fig. 18
shows the same results with the Pareto distribution for
RTT values. By examining closely these figures, we can
see that our design principle is still applied by converging
fastly but not too high when RTT increases fastly, and
by converging relatively slowly when RTT decreases fastly
to avoid as much as possible spurious transmissions while

trying to minimize RTO values. Indeed, using the python
simulator, we were able to calibrate the different parame-
ters of our RTO calculation to reach this design principle
as mentioned in Section 5.1.

Figure 19: RTO calculation - Real RTTs

Next, the global behavior of both algorithms are eval-
uated using two performance metrics: The Root Mean
Square Error (RMSE) which measures the difference be-
tween RTO and RTT values, and the total number of spu-
rious transmissions observed during the network simula-
tion.

Figure 20: RMSE

Figure 21: Spurious transmissions

Fig. 20 and Fig. 21 show the average of spurious trans-
missions and RMSE values calculated in different scenarios
of Table 1. For instance, simulation ID 1 refers to Pareto

13

distribution, simulation IDs 2-3 refer to real RTT scenar-
ios, simulation IDs 4-7 refer to RTT scenarios analyzed
instantaneously above.

According to Fig. 20 and Fig. 21, our proposed RTO
calculation algorithm provides lower RMSE and lower
number of spurious transmissions in almost all the net-
work scenarios. In the case RMSE of pCoCoA is very
close to IDC/MBC-CoAP (IDs 1,2,3,14), pCoCoA gener-
ates more spurious transmissions. In the case pCoCoA
generates few spurious transmissions less than IDC/MBC-
COAP (IDs 6,18), RMSE of pCoCoA is worse. Thus, our
RTO calculation achieves a better tradeoff between the
two performance metrics.

Figure 22: Spurious transmissions occurrence graph

6.2. Congestion Counteraction: Backoff-based vs. Rate-
based

In this section, the performance of the full congestion
control of IDC-CoAP and MBC-CoAP are analyzed and
compared with several previous algorithms using primarily
the following performance metrics:

- Goodput or success rate: Total amount of successfully
received data in a given time interval

- Loss ratio: Observed losses at the application level

- Overhead: Total amount of lost packets in the net-
work over total amount of packets sent successfully

In particular, the Overhead performance metric measures
the ability of the congestion control to send packets only
when there is no congestion in the network to avoid losses,
and also avoid wasting energy. In other words, Overhead
computes how much effort or energy is spent to send one
packet successfully. This performance metric is very im-
portant especially for IoT devices supplied by batteries.

6.2.1. Simulation Results

Here, the performances of our IDC-CoAP and MBC-
CoAP are analyzed and compared against pCoCoA, Co-
CoA+, 4-state, BDP-CoAP and BEB of the standard
CoAP, using again our original python simulator presented

in Section 4.1. Particularly, the objective is to explore the
ability of the congestion control algorithms to adjust their
sending rate to utilize the available network bandwidth.

Fig. 23 shows the behavior of the instantaneous send-
ing rate achieved by the different congestion control algo-
rithms in presence of a variable residual bandwidth. The
red and green plots show respectively the sending and
success rates of the algorithms, while the blue plot corre-
sponds to the residual bandwidth available in the network
during the simulation period. Simulation parameters for
these figures and the next ones are all summarized in Ta-
ble 2. Regarding the algorithms of previous work, we have
used their default or advised parameters [1, 10, 11, 9, 19].

Parameter Value Description

r 4 Retransmission counter

α 1/8
First weight for
RTO calculation

γ 1/32
Second weight for
RTO calculation

K 4 or 7
Spurious weight for
RTO calculation

Residual
Bandwidth
(packets/sec)

U(0.6, 1)
Instantaneous behaviour
simulations

U(0, 0.2) . . . U(0.9, 1.1) . . . U(2.1, 2.3)
Low variability
simulations

U(0.9, 1.1) . . . U(0.5, 1.5) . . . U(0, 2)
High variability
simulations

RTT (ms) N(500, 10) Round Trip Time
MBC-CoAP specific parameters

m 3 or 10 Number of measurements
pg 1.25, 0.75, 1, 1, 1, 1, 1, 1 Cycle pacing gains

IDC-CoAP specific parameters
iw 1.1, 1.5 Incremental weight
dw 0.01 Decremental weight
fw 0.5 Fast decremental weight

Table 2: Simulation parameters used in evaluating congestion control
algorithms for CoAP

According to Figures 23a, 23c and 23e, pCoCoA, 4-state
and CoCoA+ sending rates are very high compared to the
residual bandwidth because they do not adjust the send-
ing rate according to the available bandwidth but try to
send at the maximum allowable rate as soon as it seems
to be possible. In fact, when a packet is lost, the initial
value of the retransmission timeout RTOinit is multiplied
by the backoff factor and hence the sending rate is de-
creased but without a direct relationship with the residual
bandwidth. Still, after one or several losses and timeout
multiplications, one retransmission goes through the net-
work successfully. When the ACK of this packet is re-
ceived, a new CoAP packet is immediately sent resulting
in a sending rate that moves back again to the maximum
allowable rate of 1/RTT , which will cause again another
loss. The transmission rate after this loss is 1/RTOinit

which will very likely cause also another loss since RTOinit

is optimized and its value is close to RTT . Even when the
retransmission counter is reached and the CoAP packet
is dropped definitively, the algorithms do not change their
congestion counteraction and start sending the next packet
using RTOinit.

In Figures 23a and 23c, the success rates of pCoCoA
and 4-state are able to approach sometimes the residual

14

bandwidth when it increases but the sending rate continues
to be much higher causing unnecessary retransmissions.
In contrast, in Fig. 23e, the success rate of CoCoA+ is
always far from the residual bandwidth despite the fact
that its backoff mechanism is the same as pCoCoA. This
is because CoCoA+ does not minimize the computation
of RTOinit as pCoCoA, and hence the time required to
retransmit lost packets is larger and the convergence to
the residual bandwidth is slower. Once again, this shows
the importance of minimizing RTOinit.

We notice also that in Fig. 23c, the success rate of
4-state is better than pCoCoA because 4-state uses more
tuned backoff factors that allow to retransmit more quickly
which can be seen from the oscillations of the sending rate
plot. Unfortunately, this goodput gain comes with the cost
of increasing retransmissions.

As a first conclusion, these algorithms can be efficient if
the bandwidth is available most of the time and/or losses
occurs sparsely due to other reasons such as interference.
However, if losses occur because many connections are us-
ing the same bottleneck link in the network, i.e. conges-
tion, then the three backoff-based algorithms fail to adjust
the sending rate adequately, justifying the need for a “real”
congestion control for CoAP.

In IDC-CoAP, the available bandwidth is respected in
the calculation of the sending rate to minimize losses dur-
ing congestion periods (Fig. 23b). When the packets are
lost, IDC-CoAP tends to increase the spacing between suc-
cessive transmissions which will reduce the sending rate to
converge back to the available bandwidth and that is why
the ratio of packet losses over successful packets is reduced
as per Fig. 28. When the available bandwidth expands,
IDC-CoAP ends up increasing its sending rate after a rea-
sonable amount of time which can be reduced further by
tuning the spacing decremental factor. As a result, the
sending rate is the same as the success rate most of the
time leading to a small loss ratio. Besides, the success rate
tends to be very close to the available bandwidth when the
latter is somewhat stable.

According to Fig. 23d, MBC-CoAP is also avoiding
losses by trying to equate the sending rate with the suc-
cess rate in order to stay below the residual bandwidth
limit. We can see clearly the eight-phase cycle including
the probing phase using the pacing gain of 1.25 that al-
lows the sending rate to increase and thus converge slowly
but surely to the available bandwidth offered to the CoAP
sender. When the rate decreases suddenly, then MBC-
CoAP takes some time to reduce its sending rate due to the
cycle. However, this is compensated by a closer sending
rate to the available bandwidth when the latter is some-
what stable.

The previous work rate-based BDP shown in Fig. 23f
seems to perform similarly as backoff-based algorithms.
This is because when the available bandwidth is lower than
the initial estimated bandwidth which is the starting point
of all simulated algorithms, successive losses prevent BDP
from converging as we have explained in Section 4.3. Fig.

24 shows the same simulation for BDP when including re-
transmissions in bandwidth measurements. The modified
BDP behaves now similarly to MBC-CoAP but in reality
the convergence to the available bandwidth is still much
slower resulting to less losses but to a much lower goodput.
This is because the bandwidth estimation of BDP includes
in addition to the maximum of previous measurements, the
minimum of these measurements. Fig. 25 shows the send-
ing rate of BDP when we replace the min-max filter by a
max-filter. This second modification approaches now the
behavior and the performance of MBC-CoAP.

From these instantaneous figures, one can conclude that
the rate-based approach if well designed is more appro-
priate than the backoff-based approach. This will be con-
firmed further with next results where averages of Good-
put, Loss ratio and Overhead are computed and compared
in several network scenarios.

Fig. 26 - Fig. 28 represent the average of the 3 per-
formance metrics: Goodput, Application Loss ratio and
Overhead per simulation. The simulation was run up to
5 hours and each simulation was repeated 3 times. The
residual bandwidth has been varied between 0.1 and 2
packets per second.

Fig. 26, shows the average goodput of all algorithms
while varying the average residual bandwidth in each set
of simulations. The variance around the average is fixed
to the same value since the residual bandwidth is varied
uniformly between the average - 0.1 and the average +
0.1. For small residual bandwidth values, IDC-COAP and
MBC-CoAP are slightly better than backoff-based algo-
rithms since there is no enough bandwidth to send packets.
When the available bandwidth increases, our rate-based
algorithms IDC-CoAP and MBC-CoAP show a linear be-
havior, however a step-wise behavior with the presence of
a large plateau is shown by all backoff-based algorithms.
This is caused by the non fine-grained control performed
by the fixed backoff factors that impose few possible values
of the retranssmion timeouts.

In the plateau, the goodput does not increase with the
increase of the residual bandwidth. The value of the
plateau corresponds approximately to

1

RTOinitaverage+RTTaverage

corresponding to a lost transmission followed by a success-
ful retransmission. Thus for the default CoAP the plateau
is at 1

2 1+1.5
2 +0.5

= 1
2×1.25+0.5 = 0.33. Recall that 1.5 is the

randomization factor of the retransmission timeout. For
other backoff-based algorithms that attempt to minimize
RTOinit, the plateau is approximately at 1

0.5×1.25+0.5 =
0.88. Another smaller plateau appears for backoff-based
algorithms around 1

0.5+(0.5+2∗0.5)×1.25 = 0.42. In general,

the plateau values correspond to

1

RTTaverage+
∑j

i=0 b
i × (RTOinitaverage)

,

15

(a) pCoCoA (b) IDC-CoAP

(c) 4-state (d) MBC-CoAP

(e) CoCoA+ (f) BDP-CoAP

Figure 23: Instantaneous behaviour of backoff-based (left) and rate-based (right) congestion control algorithms

16

Figure 24: Correcting BDP-CoAP: Including bandwidth measure-
ment samples from retransmissions

Figure 25: Correcting BDP-CoAP: Removing the samples minimum
from the bandwidth estimation while including bandwidth measure-
ment samples from retransmissions

j = 0, 1, 2, · · · . The variable backoff factors used by the
algorithms are not sufficient to perform a fine-grained con-
trol. Indeed, according to pCoCoA and CoCoA+, the cho-
sen backoff factor for the given RTT is 2.5, thus the plateau
is more precisely at value 1

0.5+(0.5+2.5∗0.5)×1.25 = 0.37. 4-

state uses 1.7 half of the time and 2.5 most of the other
half during the simulation which allow avoiding a clear
first plateau but not the second large one.

On the contrary, the linear behavior of rate-based IDC
and MBC algorithms engenders an additional gain of the
goodput. Ideally, the goodput will be equal to the average
available bandwidth which is not achievable because the
rate control algorithm is operating blindly without prior
knowledge of the network status. If the residual bandwidth
offered to the CoAP sender is not very variable then the ex-
pression of the linear relationship between the goodput and
the average residual bandwidth can be obtained through
a steady state analysis. For MBC-CoAP, the goodput is
computed by assuming that the gain cycling is operating
close to the residual bandwidth and that bandwidth prob-
ing with the pacing gain 1.25 will bypass the available
bandwidth. The goodput can be approximated by

7

6× 1.25 + 1 + 1.25
0.75

ResBW

For IDC-CoAP, we can compute the spacing values
and the number of transmissions in a period comprised
between two successive losses, which means when the
spacing is equal to 1/ResBW . Denote by Si the cur-
rent value of the spacing, then we will have successively
S0 = iw/ResBW,S1 = (1 − dw)iw/ResBW, · · · , Sn =
(1 − dw)niw/ResBW = 1/ResBW . Hence, the total
number of transmitted CoAP packets during this period
is equal to

n = − log(iw)

log(1− dw)

The goodput is then approximated by

n∑n
i=0(1− dw)i iw

ResBW

=
dw

iw

n

1− (1− dw)n+1
ResBW

This formula can be used to tune the incremental and
decremental weights of IDC-CoAP for a given performance
objective. Indeed, an incremental weight iw = 1.1 pro-
vides a better goodput than iw = 1.5 and than MBC-
CoAP when the bandwidth variability is limited.

The last observation is for BDP-CoAP which behaves
almost like backoff-based algorithms when the available
bandwidth is small. Then, when the bandwidth increases
approaching the maximum which is 1 packet/RTT it
provides similar behavior as rate-based algorithms IDC-
COAP and MBC-CoAP in terms of goodput.

Figure 26: Goodput - Low variability residual bandwidth

Observed Loss ratio at the application level is presented
in Fig. 27. When the residual bandwidth is increased,
successive losses are reduced and hence application losses
are reduced and even totally canceled because the re-
transmission counter r is 4. However, when the residual
bandwidth is small, we see clearly that CoAP losses are

17

higher with all backoff-based algorithms including the de-
fault CoAP which means that these algorithms experience
more successive network losses than rate-based algorithms.
These results are confirmed in Fig. 28 where the Over-
head metric is shown. Usually the algorithm that achieves
a much higher goodput, experiences also a much higher
Overhead. Nevertheless, all backoff-based algorithms show
higher Overhead despite of having lower goodput as seen
before. Thus they consume more energy and reduce bat-
tery life. It is difficult though to achieve a good tradeoff
between Overhead and goodput. Tuning the parameters
of IDC/MBC-CoAP helps improving this tradeoff. For
IDC-CoAP, increasing the incremental weight iw and/or
decreasing the decremental weight dw, decreases the good-
put and reduces the Overhead. As a matter of fact, IDC-
CoAP with iw = 1.5 achieves almost no overhead when the
average residual bandwidth is greater than 0.3 packets/s.
As for MBC-CoAP, decreasing the measurement window
m, decreases the goodput and reduces the Overhead as we
will see in next simulations.

Figure 27: Application Loss ratio - Low variability residual band-
width

Figure 28: Overhead - Low variability residual bandwidth

Figure 29: Goodput - High variability residual bandwidth

Figure 30: Application Loss ratio - High variability residual band-
width

Figure 31: Overhead - High variability residual bandwidth

Finally, we test the robustness of the algorithms in front
of a more dynamic network environment. In Fig. 29, 30
and 31, we fix the average residual bandwidth to 1 pack-

18

ets/s and we increase the standard deviation of the uni-
form distribution of the residual bandwidth by increasing
the maximum and the minimum values from [0.9, 1.1] to
[0, 2]. Recall that 2 packets/s is the maximum possible rate
which corresponds to 1/RTTaverage. The residual band-
width changes every 5 seconds. Here again, all backoff-
based congestion control algorithms fail to reach an ac-
ceptable tradeoff between goodput and losses. Fig. 31
shows that the overhead of these algorithms are extremely
high more than 100% and up to 140% indicating that any
packet must be transmitted at least twice in order to be re-
ceived successfully. The Overhead of IDC/MBC-CoAP is
much lower while they still achieve a reasonable goodput in
Fig. 29 even when the residual bandwidth is very variable.
The overhead of IDC with iw = 1.5 is even around 10%.
IDC with iw = 1.5 can be considered as a good tradeoff
between goodput and Overhead especially when the resid-
ual bandwidth variability is medium. If the performance
objective is a high goodput in a highly dynamic environ-
ment regardless of the Overhead and processing complex-
ity, then MBC-CoAP with m = 10 is the choice because its
goodput shows more stability thanks to the bandwidth es-
timation procedure and the gain cycling. In the contrary,
the goodput of BDP-CoAP decreases dramatically with
the increase of bandwidth variability. This is because the
bandwidth is varying quickly between low and high values,
thus the min operator used in the estimation of the resid-
ual bandwidth is not adequate at all. Besides, BDP uses
the last ten attempts as measurement points instead of
the last ten measurements, i.e. the measurement window
slides at every transmission attempt. Unfortunately, this
generates a similar behavior to a time window which is not
adequate for CoAP because the number of sent packets per
RTT is small especially when there are losses.

Finally, it is worth noticing that we have also performed
same set of simulations with lower RTT values down to
50ms and higher values of the residual bandwidth up to
20 packets/s and we observed similar results including the
step-wise behavior of backoff-based algorithms and the sat-
isfactory performance of IDC-CoAP and MBC-CoAP in
both low and high network bandwidth variability.

6.2.2. Implementation in Contiki OS and Cooja Simula-
tions

In order to validate our study in a realistic environment,
we have implemented IDC-CoAP in the Contiki Operat-
ing System [25]. Contiki OS is used for IoT devices and
especially tiny ones such as the TelosB/SkyMote family
and Zolertia Z1 mote [26]. Then, we use the real hard-
ware emulator MSPSim [27, 28] to load Contiki OS on it,
and we use Cooja simulator [24] to create several network
scenarios composed of motes playing the role of a CoAP
receiver and CoAP senders.

One of MSPSIM and Cooja features is the ability of em-
ulating constrained real devices while reflecting their hard-
ware specifications and processing capacities. The motes
implement IEEE 802.15.4 at the physical and MAC lay-

Zolertia Z1 mote specifications
RAM 8KB
ROM 92KB
Micro-Controller MSP430F2617
CPU Clock speed 16MHz
RF standard CC2420 2.4GHz / 250Kbps data rate
Wismote mote specifications
RAM 16KB
ROM 256KB
Micro-Controller MSP430F5
CPU Clock speed 25MHz
RF standard CC2520 2.4GHz / 250Kbps data rate
Simulation Parameters
Physical protocol IEEE 802.15.4
RDC On (Contikimac driver)
MAC CSMA driver
Transmission (TX) ratio 90% or 95% or 100%
Routing protocol RPL
Network protocol 6LoWPAN/IPv6
UIP buffer size 256
CoAP frame size 80 bytes

Table 3: Cooja/Conitki parameters and hardware specifications of
Z1 and Wismote motes

ers. Distinguished from previous works, the radio duty
cycle (RDC) feature of the MAC layer is kept enabled
in all our experiments. Two types of motes are used for
CoAP senders and receivers which are Z1 and wismote.
Table 3 shows the hardware specifications of these motes
and the settings in the Contiki OS loaded in the motes.
The RPL router uses the more constrained sky mote since
it implements neither transport nor application layers.

Six network topologies with different number of nodes
are defined for the performance analysis. These topolo-
gies are: a grid of 30 nodes, a U-shape with 15 nodes, a
Square-shape with 18 nodes, a ring and a chain with 12
nodes, and a dumbbell with 7 or 10 or 15 nodes. The
Square-shape and the U-shape are obtained by shutting
down some nodes in the grid topology. In the first one
only border nodes communicate with the CoAP receiver
and in the second one only the border nodes forming a
U-shape communicate with the receiver. Fig. 32 illus-
trates these 6 topologies with 1 RPL border router (green
color), CoAP receiver (yellow color) and CoAP senders
(pink color). The distance between the unit squares is
10m. Choosing various network topologies determines how
many direct neighbors each node has. Also, it determines
how many nodes compete for the radio channel and the
available bandwidth. These topologies create a diversity
of available links, bandwidth and number of CoAP con-
nections in the network.

Destination Oriented Directed Acyclic Graph (DODAG)
is initiated by the RPL border router which stores the
routing information for all the nodes. The RPL border
router serves as a relay for CoAP messages, it does not
send or receive any CoAP message. An initialization phase
around 100 seconds for each simulation is allowed since
the RPL border router needs an amount of time to build

19

the DODAG across the network. No results are collected
during this phase. Once the network is initialized, CoAP
senders generate messages which are directed towards the
CoAP receiver. NSTART is set to 1 as per CoAP default
specification. The simulations of the different scenarios
have a 15 min duration. These simulations are repeated 5
times for each scenario. On one hand, as shown in the pre-
vious sections, IDC-CoAP with iw = 1.5 is a good tradeoff
between goodput, Overhead and code simplicity then we
can choose it as a representative of rate-based congestion
control algorithms in this study with Contiki/Cooja. On
the other hand, we have obtained the last version of the
implementation of CoCoA+ from its authors, which will
serve as a representative of backoff-based approach for con-
gestion control. In the previous section we showed that the
performance of CoCoA+ is indeed very close to pCoCoA
and 4-state. Besides, we will compare with the existing
CoAP implementation in Contiki that follows the current
standard using the simple binary exponential backoff [1].

Fig. 33 shows the three measured performance metrics:
Goodput, Loss ratio and Overhead for the three protocols:
IDC-CoAP, CoCoA+ and CoAP for each of the four net-
work topologies: Ring, Chain, Dumbbell and Grid. As a
first observation, it is clear that IDC-CoAP is always bet-
ter than CoCoA+, and that CoAP is evidently not efficient
enough in all cases.

More closely, Fig. 33a shows that the Goodput of IDC-
CoAP is higher than CoCoA+ even when the transmission
ratio TX is 100%, i.e. no loss simulation by Cooja. In the
ring topology, most of the motes send directly to the CoAP
receiver and thus the network is somewhat stable with less
congestion events. To challenge more the algorithms, we
decrease the transmission ratio to 95% and 90%. Still
CoCoA+ and CoAP achieve lower Goodput than IDC-
CoAP. They also experience more application losses (Fig.
33b) and overhead (Fig. 33c). Even when transmission
losses are high (TX=90%), IDC-CoAP is able to reduce
the Overhead compared to other algorithms as shown in
Fig. 33c. This is because transmission losses are perceived
as a residual bandwidth reduction from the sender and
thus IDC-CoAP which applies the rate-based congestion
control reacts better to these losses.

In the chain topology, we varied the number of nodes
in the chain to study the impact on the Goodput, Loss
ratio and Overhead. Naturally, the overall performance
degrades when the number of nodes in the chain increases
because the nodes near to the receiver becomes more con-
gested. In Fig. 33d, IDC-CoAP algorithm results in a
better goodput than CoCoA+ and CoAP in all number of
nodes. It also achieves zero loss ratio and lower overhead
when the number of nodes varies as per Fig. 33e and Fig.
33f. Hence, IDC-CoAP preformance is still robust when
we have more congested nodes in the network.

Similar to chain and ring topologies, IDC-CoAP attains
better performance results in dumbbell topology and this
is illustrated in Fig. 33g to Fig. 33i. The creation of
a congested link between the RPL router and the CoAP

receiver does not impact the relative performance of IDC-
CoAP compared to the others. Here also we varied the
number of nodes with similar results as in the chain topol-
ogy.

The results of the grid topology and its sub-topologies
Square-shape and U-shape are shown in Fig. 33j to Fig.
33l. Here, the position of congestion in the network topol-
ogy becomes more variable and the residual bandwidth as
perceived by senders can be more dynamic, especially in
the full grid topology. Even in this case, IDC-CoAP is
still showing a higher goodput, a lower application loss
ratio and also a lower overhead. This reinforce the neces-
sity of rate-based congestion control for CoAP rather than
current backoff-based ones.

7. Conclusion and Future Work

Since the design of the Constrained Application Proto-
col (CoAP), several research works have tried to improve
further its performance so that it becomes more promising
and improve significantly its widespread usage in different
IoT fields. Particularly, congestion control algorithms in
this protocol play an important role in its efficiency in
terms of reliability, energy consumption and rate perfor-
mance. Most previous works have followed the backoff-
based approach for congestion control while in this pa-
per we proved that a rate-based approach is much better
in most network scenarios. Indeed, the non fine-grained
nature of the backoff procedure does not allow a precise
control even when several backoff factors and weights are
used. To be concretely efficient, the rate-based control
must be at the same time simple and well adapted to
IoT networks and devices that employ the CoAP proto-
col. Our two rate-based protocols IDC-CoAP and MBC-
CoAP are able to leverage the available bandwidth in the
network and thus reduce message losses and unnecessary
retransmissions which are very harmful to IoT devices.
Our results, obtained from pure simulation and from the
Cooja/Contiki environment, show that the more the avail-
able bandwidth or the network dynamics, the more the
gain in all performance metrics. Besides, we provided a
simpler and better algorithm for retransmission timeout
reduction which improves congestion detection, an essen-
tial component for congestion control.

Depending on the application, our congestion control
protocols can be tuned to optimize further the perfor-
mance. For instance, in IoT health monitoring applica-
tions, some information should be delivered with high re-
liability such as the body temperature or the heart rate. In
this case, the CoAP sending rate can be reduced conserva-
tively to avoid losses. In a weather sensing application for
example, a packet lost is less damaging because the next
packet has an updated data of the weather. Besides, if sen-
sors are using wired power supplies, increasing the sending
rate allows more data to be collected. Finally, since CoAP
can be used also for file transfer, incorporating an effective
rate-based control in it is beneficial.

20

(a) Grid Topology (b) Ring Topology (c) Dumbbell Topology

(d) Chain Topology

Figure 32: Network topologies for CoAP congestion control performance evaluation with Cooja/Contiki OS environment

In [29], we have developed a model that brings up the
importance of reducing the retransmission timeout and the
inadequacy of the backoff procedure in CoAP. It would be
interesting to develop similar models for IDC-CoAP and
MBC-CoAP to complete analytically their study. More-
over, since our results show that the measurement-based
congestion control MBC-CoAP has robust stability and
convergence properties, we aim to explore how to reduce
further its complexity so that it can be incorporated in
very tiny IoT devices. Naturally, we would also compare
our new CoAP protocols with other protocols that use
TCP as a transport protocol such as MQTT.

Acknowledgement

We would like to thank Prof. Neal Cardwell, BBR au-
thor, for the fruitful discussion and his prompt feedback
during MBC-CoAP implementation in our simulator. We
also thank Prof. August Betzler, CoCoA+ author, for
providing the latest version of CoCoA+ and his precious
guidance for setting CoCoA+ in Cooja/Contiki.

References

[1] Z. Shelby, K. Hartke, C. Bormann, The Constrained
Application Protocol (CoAP), RFC 7252, https://rfc-
editor.org/rfc/rfc7252.txt (Jun. 2014).

[2] J. Joshi, D. Kurian, S. Bhasin, S. Mukherjee, P. Awasthi,
S. Sharma, S. Mittal, Health monitoring using wearable sen-
sor and cloud computing, in: 2016 International Conference on
Cybernetics, Robotics and Control (CRC), 2016, pp. 104–108.

[3] O. Bergmann, K. T. Hillmann, S. Gerdes, A CoAP-gateway
for smart homes, 2012 International Conference on Computing,
Networking and Communications (ICNC) (2012) 446–450.

[4] I. Shin, D. Eom, B. Song, The CoAP-based m2m gateway for
distribution automation system using DNP3.0 in smart grid en-
vironment, in: 2015 IEEE International Conference on Smart
Grid Communications (SmartGridComm), 2015, pp. 713–718.

[5] J. Krimmling, S. Peter, Integration and evaluation of intrusion
detection for CoAP in smart city applications, 2014 IEEE Con-
ference on Communications and Network Security (2014) 73–78.

[6] D. Thangavel, X. Ma, A. Valera, H. X. Tan, C. K. Y. Tan,
Performance evaluation of MQTT and CoAP via a common
middleware, in: 2014 IEEE Ninth International Conference on
Intelligent Sensors, Sensor Networks and Information Process-
ing (ISSNIP), 2014, pp. 1–6.

[7] I. Järvinen, I. Raitahila, Z. Cao, M. Kojo, Is CoAP conges-
tion safe?, in: Proceedings of the Applied Networking Research
Workshop, ANRW ’18, Association for Computing Machinery,
New York, NY, USA, 2018, p. 4349.

[8] A. Maheshwari, R. K. Yadav, Analysis of congestion control
mechanism for IoT, in: 2020 10th International Conference
on Cloud Computing, Data Science Engineering (Confluence),
2020, pp. 288–293.

[9] S. Bolettieri, G. Tanganelli, C. Vallati, E. Mingozzi, pCoCoA: A
precise congestion control algorithm for coap, Ad Hoc Networks
80 (2018) 116 – 129.

[10] A. Betzler, C. Gomez, I. Demirkol, J. Paradells, CoCoA+: An
advanced congestion control mechanism for CoAP, Ad Hoc Net-
works 33 (2015) 126 – 139.

[11] R. Bhalerao, S. S. Subramanian, J. Pasquale, An analysis and
improvement of congestion control in the CoAP Internet-of-
Things protocol, in: 2016 13th IEEE Annual Consumer Com-
munications Networking Conference (CCNC), 2016, pp. 889–
894.

[12] M. Collina, M. Bartolucci, A. Vanelli-Coralli, G. E. Corazza,
Internet of things application layer protocol analysis over error
and delay prone links, in: 2014 7th Advanced Satellite Mul-

21

(a) Goodput - Ring Topology (b) Application Loss Ratio - Ring (c) Overhead - Ring

(d) Goodput - Chain (e) Application Loss Ratio - Chain (f) Overhead - Chain

(g) Goodput - Dumbbell (h) Application Loss Ratio - Dumbbell (i) Overhead - Dumbbell

(j) Goodput - Grid (k) Application Loss Ratio - Grid (l) Overhead - Grid

Figure 33: Performance evaluation results of IDC-CoAP (rate-based) vs. CoCoA+ and CoAP (backoff-based) using Cooja/Contiki

22

timedia Systems Conference and the 13th Signal Processing
for Space Communications Workshop (ASMS/SPSC), 2014, pp.
398–404.

[13] J. J. Lee, S. M. Chung, B. Lee, K. T. Kim, H. Y. Youn, Round
trip time based adaptive congestion control with CoAP for sen-
sor network, in: 2016 International Conference on Distributed
Computing in Sensor Systems (DCOSS), 2016, pp. 113–115.

[14] A. Betzler, C. Gomez, I. Demirkol, J. Paradells, CoAP conges-
tion control for the internet of things, IEEE Communications
Magazine 54 (7) (2016) 154–160.

[15] A. Betzler, C. Gomez, I. Demirkol, J. Paradells, CoAP conges-
tion control for the internet of things, IEEE Communications
Magazine 54 (7) (2016) 154–160.

[16] I. Jarvinen, I. Raitahila, Z. Cao, M. Kojo, FASOR Retransmis-
sion Timeout and Congestion Control Mechanism for CoAP,
in: 2018 IEEE Global Communications Conference (GLOBE-
COM), 2018, pp. 1–7.

[17] S. Hemminger, NetEm - Network Emulator,
http://manpages.ubuntu.com/manpages/cosmic/en/man8/tc-
netem.8.html, last checked: 01.03.2020.

[18] O. Bergmann, libcoap: C-implementation of CoAP,
https://libcoap.net/, last checked: 01.03.2020.

[19] E. Ancillotti, R. Bruno, BDP-CoAP: Leveraging Bandwidth-
Delay Product for Congestion Control in CoAP, in: 2019 IEEE
5th World Forum on Internet of Things (WF-IoT), 2019, pp.
656–661.

[20] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, V. Jacobson,
BBR: Congestion-Based Congestion Control, ACM Queue 14,
September-October (2016) 20 – 53.

[21] V. Karagiannis, P. Chatzimisios, F. Vázquez-Gallego, J. Alonso-
Zarate, A Survey on Application Layer Protocols for the In-
ternet of Things, Transaction on IoT and Cloud Computing
(TICC), 2015 1 (1).

[22] P. Sarolahti, A. Kuznetsov, Congestion Control in Linux TCP,
in: Proceedings of the FREENIX Track: 2002 USENIX An-
nual Technical Conference, USENIX Association, Berkeley, CA,
USA, 2002, pp. 49–62.

[23] V. Jacobson, Congestion Avoidance and Control, SIGCOMM
Comput. Commun. Rev. 18 (4) (1988) 314–329.

[24] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, T. Voigt, Cross-
Level Sensor Network Simulation with COOJA, in: Proceed-
ings. 2006 31st IEEE Conference on Local Computer Networks,
2006, pp. 641–648.

[25] A. Dunkels, B. Gronvall, T. Voigt, Contiki - a lightweight and
flexible operating system for tiny networked sensors, in: 29th
Annual IEEE International Conference on Local Computer Net-
works, 2004, pp. 455–462.

[26] Zolertia Z1, Low-power Wireless Sensor Network Platform,
https://github.com/Zolertia/Resources/wiki/The-Z1-mote,
last checked: 01.10.2020.

[27] MSPSim, Emulator of the MSP430 series,
https://github.com/contiki-ng/mspsim, last checked:
01.10.2020.

[28] M. Alonso-Arce, J. Aorga, S. Arrizabalaga, P. Bustamante, A
wireless sensor network PBL lab for the master in telecommuni-
cations engineering, in: 2016 Technologies Applied to Electron-
ics Teaching (TAEE), 2016, pp. 1–8.

[29] N. Makarem, W. Bou Diab, I. Mougharbel, N. Malouch, Per-
formance study of the constrained application protocol in lossy
networks, in: 2019 IFIP Networking Conference (IFIP Network-
ing), 2019, pp. 1–2.

23

