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On uniform controllability of 1D transport equations in the

vanishing viscosity limit

Camille Laurent∗and Matthieu Léautaud†

Abstract

We consider a one dimensional transport equation with varying vector field and a small viscosity
coefficient, controlled by one endpoint of the interval. We give upper and lower bounds on the minimal
time needed to control to zero, uniformly in the vanishing viscosity limit.

We assume that the vector field varies on the whole interval except at one point. The upper/lower
estimates we obtain depend on geometric quantities such as an Agmon distance and the spectral gap of
an associated semiclassical Schrödinger operator. They improve, in this particular situation, the results
obtained in the companion paper [LL21].

The proofs rely on a reformulation of the problem as a uniform observability question for the semi-
classical heat equation together with a fine analysis of localization of eigenfunctions both in the semiclas-
sically allowed and forbidden regions [LL22b], together with estimates on the spectral gap [HS84, All98].
Along the proofs, we provide with a construction of biorthogonal families with fine explicit bounds,
which we believe is of independent interest.
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1 Introduction and main results

We consider the one dimensional diffusive-transport equation, controlled from the left endpoint of the inter-
val: 




(∂t + a∂x + b− ε∂2x)y = 0, (t, x) ∈ (0, T )× (0, L),
y(t, 0) = h(t), y(t, L) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L).
(1.1)

Here L > 0 is the length of the spatial domain, T > 0 the time horizon, and ε > 0 a viscosity parameter. The
functions a, b : [0, L]→ R are real-valued and sufficiently regular. We shall later on rewrite this equation as

(∂t + f′∂x + f′′ − q − ε∂2x)y = 0,

that is to say write a = f′ and b = f′′ − q for simplicity of the dual equation and consistency with the
companion article [LL21].

For an initial datum y0 ∈ L2(0, L) and a control function h ∈ L2(0, T ), it is known that (1.1) has a unique
solution in C0(0, T ;L2(0, L)) in the sense of transposition (see [FR71] or [CG05]). The usual question of
null-controllability is whether, the parameters T, L, ε being fixed, one can drive any initial datum y0 to rest
(i.e. the null function) in time T by means of the action on the equation through the function h(t).

Definition 1.1 (Controllability and cost). Given (ε, T ), we say that (1.1) is null-controllable if for any
y0 ∈ L2(0, L), there is h = h(T, ε, y0) ∈ L2(0, T ) such that the associated solution to (1.1) satisfies y(T ) = 0.
We define for y0 ∈ L2(0, L) the (possibly empty, closed convex) set U(y0) of all such controls h ∈ L2(0, T ),
and the cost function

C0(T, ε) := sup
y0∈L2(0,L),‖y0‖L2(0,L)≤1

{
inf

h∈U(y0)
‖h‖L2(0,T )

}
∈ [0,+∞].

We have C0(T, ε) < +∞ if (1.1) is null-controllable, and C0(T, ε) = +∞ if not.

It is known (see [FR71], or [FI96, LR95, Léa10] in higher dimension) that for fixed ε > 0, the equa-
tion (1.1) is null-controllable in any positive time T > 0. That is to say, T, ε > 0 =⇒ C0(T, ε) < +∞.
This is linked to the infinite speed of propagation for the heat dissipation. Here, we address the question of
uniform controllability in the vanishing viscosity limit ε → 0+, that is: how does C0(T, ε) behave for fixed
T > 0 in the limit ε → 0+? This question has first been addressed by Coron and Guerrero [CG05] in the
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case a(x) = M (that is to say f(x) = Mx) and b = 0, for M ∈ R∗, and different behaviors are observed,
depending on the sign of M . In that paper, the authors make a conjecture on the minimal time needed to
achieve uniform controllability, i.e.

Tunif({0}) := min{T > 0, there is K > 0 such that C0(T, ε) ≤ K for all ε ∈ (0, 1)}.

Then, the estimates on this minimal time have been improved in [Gla10, Lis12, Lis14, Lis15, DE19, AM19b,
AM19a] with different methods. The result of [CG05] was also generalized in several space dimensions and
for non-constant transport speed in [GL07]. In that paper however, no estimates on the minimal time are
given. The first estimates on the minimal time needed for having C0(T, ε) uniformly bounded as ε→ 0+ are
proved in [LL21], in a setting close to that of the present article. In particular, we exhibited in [LL21] higher
dimensional situations in which Tunif

Tf′
can be as large as desired, where Tf′ denotes the minimal time for the

controllability of the limit transport equation obtained by formally taking ε = 0 in (1.1) (see Proposition 2.6
below for a more precise definition in our 1D context).

Such uniform control properties in singular limits are also addressed for vanishing dispersion in [GG08]
and for vanishing dispersion and viscosity in [GG09]. Controllability problems for nonlinear conservation
laws with vanishing viscosity have also been studied in [GG07] and [Léa12]. Motivation for studying the
vanishing viscosity limit comes from different fields of mathematics:

• conservation laws, for which the vanishing viscosity criterium is a selection principle for the physical
(called entropy) solution, see [Kru70] or [Daf00, Chapter 6].

• control theory, where the study of singular limits sometimes allows to prove controllability properties
for the perturbated system itself. See e.g. the papers [Cor96, CF96, Cha09, CMS20], where the authors
investigate the Navier-Stokes system with Navier slip boundary conditions, relying on results for the
Euler equation.

• theoretical physics and differential topology, through the Witten-Helffer-Sjöstrand theory [Wit82,
HS85].

• molecular dynamics and statistical physics, via the study of the so-called overdamped Langevin pro-
cess [Cha43, SM79].

We refer to [LL21, Section 1.2] for more details on motivation. Our main results in the present article (namely
Theorems 1.5, 1.6 and 1.7 below) formulate as explicit (in geometric terms, under some assumptions on the
parameters) lower and upper bounds on the cost function C0(T, ε) and the minimal time Tunif of uniform
controllability. We now give a list of geometric assumptions and related definitions in order to state our
main results.

1.1 Definitions and assumptions

All along the paper, we make intensive use of the effective potential

V (x) =
a(x)2

4
=
|f′(x)|2

4
.

In the results presented below, we make (at least part of) the following assumptions, essentially saying that
V forms a single non-degenerate well and does not vanish. This assumption is illustrated in Figure 1.

Assumption 1.2. With V (x) = a(x)2

4 = |f′(x)|2
4 for x ∈ [0, L],

1. V > 0 on [0, L];

2. the only x ∈ [0, L] such that V ′(x) = 0 is x = x0 ∈ (0, L) and V (x0) = min[0,L] V ;

3. V (L) 6= V (0) ;

4. V ′′(x0) > 0.

Assumption 1.2, formulated for simplicity on the potential V = a(x)2

4 = |f′(x)|2
4 can be formulated

equivalently as (the equivalence is not one to one; however 1-i above is equivalent to 1-i below, for all
i ∈ {1, · · · , 4}):
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1. a(x) 6= 0 on [0, L] (resp. f′ 6= 0 on [0, L]);

2. the only x ∈ [0, L] such that a′(x) = 0 is x = x0 ∈ (0, L) and |a(x0)| = min[0,L] |a|
(resp. the only x ∈ [0, L] such that f′′(x) = 0 is x = x0 ∈ (0, L) and |f′(x0)| = min[0,L] |f′|);

3. a(0) 6= a(L) (resp. f′(L) 6= f′(0));

4. a′′(x0) 6= 0.

x

0 L

V (x) = a(x)2

4 = |f′(x)|2
4

E0 = V (x0)

x0

Figure 1: Geometric setting of Assumption 1.2

Remark 1.3. Notice that Assumption 1.2 does not cover the classical constant speed case, which is largely
considered in the literature, see e.g. [CG05, Gla10, Lis12, Lis14, Lis15, DE19, AM19b, AM19a]. The latter

corresponds to f(x) = ±Mx and thus to the “flat potential” V = M2

4 . However, a formal asymptotics will
be considered in Section 4.4, starting with a family of potentials satisfying Assumption 1.2 converging to
the flat potential. This allows to compare our situation to the “flat” one and shows that our results formally
recover (sometimes with slightly less accurate constants) the previously known results for this example. Our
purpose in the present paper (together with [LL21]) is not to revisit or consider a perturbation of the usual
“flat” setting, but rather to reveal effects that are not present in the “flat” case.

Indeed, the class of vector fields (or functions f) presented here (see Section 4 for more concrete examples
and calculations) will allow to stress the fact that the convexity is responsible for a concentration of some
eigenfunctions close to the minimum, which is not the case for the more studied case f(x) = ±Mx.

Note finally that the result of Guerrero-Lebeau applies in our context, as soon as f′ does not vanish on
[0, L], and implies that Tunif({0}) < +∞. The goal of the present article is to give a more precise estimate
on the quantity Tunif({0}) (under the additional Assumption 1.2 on f′).

We also denote by E0 the ground state energy, that is to say

E0 = min
x∈[0,L]

(V (x)) = V (x0) =
a(x0)

2

4
=
|f′(x0)|2

4
. (1.2)

Let us finally describe geometric and spectral quantities appearing in the statements below. The classically
allowed region at energy E for the potential V is defined by:

KE = {x ∈ [0, L], V (x) ≤ E}.

We may then define the Agmon distance (see e.g. [Hel88, Chapter 3]) to the set KE at the energy level E
by

dA,E(x) = inf
y∈KE

∣∣∣∣
∫ x

y

√
(V (s)− E)+ds

∣∣∣∣ ,
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that is, the distance to the setKE for the (pseudo-)metric (V −E)+ where (V (x) − E)+ = max (V (x)− E, 0).
Note that dA,E vanishes identically on KE (and only on this set). Under Assumption 1.2 Item 2, we have
for E ≥ E0

dA,E(x) =

∣∣∣∣
∫ x

y

√
(V (s)− E)+ds

∣∣∣∣ , (1.3)

where y is any point in KE . Another important function in the estimates below is given by

WE(x) = dA,E(x) +
f(x)

2
. (1.4)

The following classical quantities of the Hamiltonian

p(x, ξ) = ξ2 + V (x) = ξ2 +
|f′(x)|2

4
. (1.5)

enter into play in the spectral analysis of the operators involved (and are defined assuming Item 2 in
Assumption 1.2):

Φ(E) :=

∫ x+(E)

x−(E)

√
E − V (s)ds, for E ∈ [min

[0,L]
V,+∞) (1.6)

T1 := sup
E≥V (x0)

T (E), with T (E) := 2

∫ x+(E)

x−(E)

√
E√

E − V (s)
ds. (1.7)

In these expressions, for E ≥ E0, the points x±(E) are such that KE = [x−(E), x+(E)]. Namely, x−(E)
denotes the solution to V (x−(E)) = E which is ≤ x0 for E ≤ V (0), and x−(E) = 0 for E ≥ V (0). Similarly,
x+(E) is the solution to V (x+(E)) = E which is ≥ x0 for E ≤ V (L), and x+(E) = L for E ≥ V (L) (with
x0 = x−(E0) = x+(E0) if E = E0). The geometric content of these quantities, as well as links between
them are discussed in Section 1.3.4 below (in particular, T1 is not homogeneous to a time, but we keep this
notation issued from [All98]).

1.2 Results

In the statements below, we recall that a = f′ or that f(x) =
∫ x

0 a(s)ds (all results stated with the function
f are invariant by f 7→ f + c for c ∈ R). Also, we have b = f′′ − q or equivalently q = a′ − b. A first lower
bound is as follows. Recall that the control cost C0(T, ε) is introduced in Definition 1.1.

Proposition 1.4. Assuming a ∈ C1([0, L]) (resp. f ∈ C2([0, L])) and setting Ta :=
∫ L

0
ds

|a(s)| =
∫ L

0
ds

|f′(s)| ∈
(0,+∞], we have

T < Ta =⇒ lim inf
ε→0+

C0(T, ε) = +∞.

This result is a direct consequence of the weak convergence of solutions to (1.1) to those of a limit
problem with ε = 0 (proof of this weak convergence follows [Cor07, Proposition 2.94] and the limit equation
is studied in Section 2.3 below)1.

It simply translates the fact that if the “limit transport equation” with ε = 0 is non-controllable, then
there is no hope to obtain uniform controllability as ε→ 0+.

After this simple non-constructive result, we now provide with two explicit lower bounds on C0(T, ε) and
an upper bound under stronger assumptions on f (namely parts of Assumption 1.2). These three results are
commented and compared in Section 1.3 below.

Our first explicit lower bound on the control cost C0(T, ε) is as follows.

1Indeed, assuming C0(T, εn) ≤ C0 with εn → 0, then, for any y0 ∈ L2(0, L), we can extract a sequence of controls un

converging in in R and of solutions yn converging weakly in L2((0, T ) × (0, L)). By [Cor07, Proposition 2.94], the weak limit
of yn is a solution of the transport equation studied in Section 2.3 below, controlled to zero in time T . Since this holds for any
y0, we necessarily deduce T ≥ Ta (see Lemma 2.6).
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Theorem 1.5. Assume that a ∈ C1([0, L]) (i.e. f ∈ C2([0, L])), and that Item 2 in Assumption 1.2 is
satisfied. Then, for all E ∈ V ([0, L]) and all δ > 0, there is ε0 > 0 such that we have for all ε < ε0

C0(T, ε) ≥ exp
1

ε

(
WE(0)−min

[0,L]
WE − ET − δ

)
, WE =

f

2
+ dA,E .

In particular, we have

Tunif({0}) ≥ sup
E∈V ([0,L])

1

E

[
WE(0)−min

[0,L]
WE

]
.

Theorem 1.5 states a result based on single energy levels (called E in the statement). Our next result
provides with a lower bound containing a nonlocal quantity defined on the “limit spectrum”, namely TE,B

in (1.8) defined on [V (x0),+∞). As shown by the proof, this term may be interpreted as an interaction
term between the different energy levels. Recall that Φ is defined in (1.6) and set

W̃E(s) =
f(s)

2
− dA,E(s), for s ∈ [0, L]

(which is to be compared with WE defined in (1.4)).

Theorem 1.6. Assume that a ∈ C∞([0, L]) (i.e. f ∈ C∞([0, L])), that Items 1–4 in Assumption 1.2 are

satisfied, and that b = a′

2 (i.e. q = f′′

2 ). For any δ > 0, E ∈ V ([0, L]), B ≥ 0, C > 0 and for 0 < ε < ε0(δ, B)
and 0 < T < C, we have

C0(T, ε) ≥ exp
1

ε

(
WE(0)− sup

[0,L]

W̃E − (E +B)T + TE,B − δ
)

with

TE,B =
1

π

∫ +∞

V (x0)

log

∣∣∣∣
x+ E + 2B

x− E

∣∣∣∣Φ
′(x)dx. (1.8)

In particular, we have

Tunif({0}) ≥ sup
E∈V ([0,L]),B≥0

1

E +B

(
WE(0)− sup

[0,L]

W̃E + TE,B

)
.

A few remarks are in order

• We prove in Section 1.3.4 that Φ is globally Lipschitz-continuous, and (1.8) makes sense;

• Note that TE,B increases if B increases while −BT decrease, so there might be an optimal choice of
B (hard to determine in general; see Section 4 for explicit computations on specific examples).

Finally, our last result provides with an upper bound on C0(T, ε). Recall that T1 is defined in (1.7) and
E0 in (1.2).

Theorem 1.7. Assume that a ∈ C∞([0, L]) (i.e. f ∈ C∞([0, L])), that Items 1–4 in Assumption 1.2 are

satisfied, and that b = a′

2 (i.e. q = f′′

2 ). For all T, δ > 0, m ∈ (0, 1), there is ε0 = ε0(T, δ,m) > 0 such that
the control cost for the control problem (1.1) satisfies for 0 < ε < ε0

C0(T, ε) ≤ exp
1

ε
(G(T,m, δ) + δ) , (1.9)

with

G(T,m, δ) =
2T 2

1

(1−m)T
+ sup

E∈V ([0,L])

[
WE(0)−min

[0,L]
WE −m(1 − δ)ET

]
.
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Moreover, if

T > 2
√
2
T1√
E0

+
1

E0
sup

E∈V ([0,L])

[
WE(0)−min

[0,L]
WE

]
, (1.10)

then we have minm∈[0,1) G(T,m, δ) < 0 for δ sufficiently small. In particular, we have

Tunif({0}) ≤
1

E0

(
sup

E∈V ([0,L])

[
WE(0)−min

[0,L]
WE

]
+ 2
√
2
√
E0T1

)
. (1.11)

Notice that (1.11) is a consequence of (1.10), and that, in case (1.10) holds, the optimal control converges
exponentially to zero.

Note that it may seem surprising that the sign of the vector field a = f′ does not appear explicitly in the
statements of Theorems 1.5–1.6–1.7. It does play a role (as stressed by Lemma 1.12 below) and some of the
quantities involved in the statements above actually simplify in case a > 0 or a < 0.

Corollary 1.8. Under the assumptions of Theorems 1.5–1.6–1.7, we have

• either a > 0 (f is increasing) on [0, L], and

Tunif({0}) ≥ sup
E∈V ([0,L]),B≥0

1

E +B

(
dA,E(0) + dA,E(L) +

f(0)− f(L)

2︸ ︷︷ ︸
≤0

+TE,B

)
,

Tunif({0}) ≤
4
√
2

a(x0)
T1,

• or a < 0 (f is decreasing) on [0, L], and

Tunif({0}) ≥ sup
E∈V ([0,L])

1

E
[WE(0)−WE(L)] ,

Tunif({0}) ≥ sup
E∈V ([0,L]),B≥0

1

E +B
(2dA,E(0) + TE,B) ,

Tunif({0}) ≤
1

E0

(
sup

E∈V ([0,L])

[WE(0)−WE(L)] + 2
√
2
√
E0T1

)
.

This result is a direct consequence of Theorems 1.5–1.6–1.7 combined with Lemma 1.12 below. We
remark on the one hand that in case a > 0 (in which the limit equation is a proper control problem), then
the lower bound of Theorem 1.5 is trivial and the upper bound in Theorem 1.7 only involves the spectral
gap quantity T1. On the other hand, we notice that if a < 0 (in which case the limit equation is not a proper
control problem), geometric quantities involving the Agmon distance enter into play. As already remarked
in [LL21] this allows, in this situation, to have Tunif very large compared to the minimal flushing time of the
limit problem ε = 0. See also Section 4 below for explicit computations on an example. This is consistent
with the results in [CG05], in which the sign of the vector field is of key importance.

1.3 Remarks and comments

1.3.1 Remarks about the proofs

The first step of our proofs consists in conjugating in Section 2.2 the control/observation equations by

the weight e
f
2ε . Taking advantage of the fact that, in dimension one, every vector field is a gradient, this

reformulates the (seemingly non-selfadjoint) transport equation with vanishing viscosity as a semiclassical
heat equation ε∂tw − Pεw = 0, involving the following semiclassical Schrödinger operator

Pε := −ε2∂2x +
|f′|2
4

+ εqf = −ε2∂2x + V + εqf. (1.12)

see (2.4). All results of the article then rely on fine spectral properties of the operator Pε, that is to say
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• a precise knowledge of the spatial localization of eigenfunctions of Pε; this is the object of the companion
paper [LL22b] (see also Section 3.1 where the results are recalled). Roughly speaking, we use that a

solution to Pεψ = Eψ behaves like |ψ(x)| ∼ e−
dA,E(x)

ε (up to some loss e
δ
ε ) in the sense of L2 density.

Here dA,E is the Agmon distance for the potential V at energy E defined in (1.3).

• a precise knowledge of the distribution of eigenvalues of Pε; and in particular the gap between (square
roots of) two successive eigenvalues in the limit ε→ 0+. We extract the results we need from the article
of Allibert [All98] (itself relying on [HS84]) which provides with a precise asymptotics (as ε→ 0+, as
a function of the energy level E) of the distribution and the gap, see Appendix A.

Note that properties of the classical Hamiltonian p defined in (1.5) (which is the principal symbol of Pε)
naturally arise in the description of spectral properties of the quantum Hamiltonian Pε the semiclassical
limit ε→ 0+. This is why the functions Φ and T defined in (1.6)–(1.7) enter into play (see also Section 1.3.4).

The proof of Theorem 1.5 is rather direct once the results of localization of eigenfunctions are obtained
in Section 3.1. Indeed, we only test the observability estimate on solutions of the semiclassical heat equation
issued from eigenfunctions of Pε.

The proof of Theorem 1.6 follows the spirit of Coron-Guerrero [CG05] and thus uses interactions between
eigenfunctions. It seems more precise than the lower bound of Theorem 1.5 which only considers a single
eigenfunction. Indeed, the final estimate contains one part of harmonic analysis related to the spectrum and
one part more geometric related to the concentration of eigenfunctions. Unfortunately, the geometric part
related to the concentration of eigenfunctions seems less precise than that in Theorem 1.5. This is why we
have chosen to keep both results. Here, we use the spectral gap estimates of Allibert [All98], which require
qf = constant.

The proof of Theorem 1.7 uses the moment method which is classical for 1D control problems. Yet, in
this context, we need precise information about the localization of both the spectrum and the eigenfunctions.
We thus rely on both items above. Moreover, in order to obtain estimates uniform in ε, we need to have
a “quantitative” moment method, that is with explicit constants, at least uniform in ε. This is obtained in
Proposition B.1 that provides a result of moment for heat type equation with an assumption on the spectral
gap. The main advantage of this construction, which is of independent interest, is that we can follow (almost)
explicitly the constants with respect to the parameters, which will be crucial to have estimates uniform in
ε. The proof relies on Ingham estimates and a transmutation method of [EZ11a].

1.3.2 Reformulation of the problem with a constant vectorfield

We here notice that the control problem (1.1) can be reformulated as a problem with a constant vectorfield
±∂x, but with a varying viscosity. This uses Item 1 of Assumption (1.2), stating that the vectorfield is
nondegenerate. To straighten the vectorfield f′(x)∂x, we introduce its flow Yx(s) defined by

∂sYs0(s) = f′(Ys0(s)), Ys0(0) = s0.

We also introduce its inverse Jx(y) =
∫ y

x
ds

f′(s) , so that we have

Jx(Yx(s)) = s.

Denoting v(x) = u(Y0(x)), we have ∂xv(x) = f′(Y0(x))(∂yu)(Y0(x)). Equivalently, we have v(J0(y)) = u(y)
and thus

∂yu(y) = J ′
0(y)(∂xv)(J0(y)) = J ′

0(Y0(x))(∂xv)(x) =
1

f′(Y0(x))
(∂xv)(x), x = J0(y).

As a consequence, if u satisfies the equation

(∂t + f′(y)∂y + f′′(y)− q(y)− ε∂2y)u(t, y) = 0,

then v(x) = u(Y0(x)) satisfies the equation

(
∂t + ∂x + f′′(Y0(x))− q(Y0(x)) − ε

1

f′(Y0(x))
∂x

1

f′(Y0(x))
∂x

)
v(t, x) = 0.
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The latter is a linear transport equation by the constant coefficient vector field ∂x with a variable coefficient
viscous perturbation operator ε 1

f′(Y0(x))
∂x

1
f′(Y0(x))

∂x. Theorems 1.5–1.6–1.7 can all be translated as estimates

on the minimal time of uniform null-controllability in this context.
Note that the fact that, given a fixed vectorfield, the choice of the viscous perturbation changes the

minimal uniform control time Tunif was already observed in [LL21].

1.3.3 Remarks about the assumptions

The assumptions we make on the vector field a (resp. on f or on V ) are issued from the analysis of the
limit problem and from the two tools we use here as a black box in the analysis (namely localization of
eigenfunctions [LL22b], and spectral gap estimates [All98]).

Item 1 of Assumption 1.2 is necessary for the transport equation with ε = 0 to be controlable (see Section
2.3) and is therefore quite natural.

Then, the essential assumption in both references [LL22b, All98] is Assumption 1.2 Item 2, namely that
the potential forms a single well. Removing this would be an interesting problem, but would require a careful
study of the interaction between the different wells and the tunneling effect, see [HS84]. This is however
beyond the scope of the present article.

The remaining assumptions: f ∈ C∞([0, L]), Items 3 and 4 in Assumption 1.2 and b = a′

2 (i.e. q = f′′

2 ,

which amounts to qf = 0 in (1.12)) come from the paper of Allibert [All98]. The assumption b = a′

2 (i.e.

q = f′′

2 is technical and we believe that it can be removed (this would however require to reprove most
of the spectral gap estimates in [All98] with an additional lower order term). Item 4 of Assumption 1.2
concerns the non degeneracy of the minimum of the potential. It could probably be weakened (as long as
the potential is not too ”flat” at the minimum), at the cost of several complications in the proofs (because
of the associated degeneracy of the spectral gap near the potential minimum).

1.3.4 Interpretation of the spectral quantities

Here, we provide with some comments on the classical/spectral quantities Φ(E) and T (E) (defined in (1.6)
and (1.7) respectively) entering into play in the above results, under Assumption 1.2 Item 2. They are
linked with properties of the classical Hamiltonian p defined in (1.5). First notice that Φ(E) is related to
the following phase-space volume of the set {p ≤ E}, that is

Φ(E) = Vol
({

(x, ξ) ∈ [0, L]× R, V (x) ≤ E and 0 ≤ ξ ≤
√
E − V (x)

})

=
1

2
Vol ({(x, ξ) ∈ [0, L]× R, p(x, ξ) ≤ E}) .

As such, it is linked via the Weyl law to the asymptotic number of eigenvalues of Pε = −ε2∂2x+V (x)+O(ε)
in the semiclassical limit ε→ 0+ as

♯{λεk ∈ Sp(Pε), λ
ε
k ≤ E} =

1

2πε
(Vol({p ≤ E}) + oE(1)) =

1

πε
(Φ(E) + oE(1))

(see e.g. [DS99] in the boundaryless case or Theorem A.1 in the present setting). Notice also that, for

E ≥ maxV = max{V (0), V (L)}, we have Φ(E) =
∫ L

0

√
E − V (s)ds and in particular Φ(E) ∼ L

√
E as

E → +∞. We use a more precise version of this formula (due to [HR84, All98]) stating that

λεk ≈ Φ−1(επk), uniformly in both ε→ 0+, k ∈ N, (1.13)

where the meaning of ≈ is made precise in Theorem A.1.

Concerning the quantity T (E) in (1.7), we now explain how it is linked to the period of trajectories of the
Hamiltonian vector fieldHp associated to the Hamiltonian p (defined in (1.5)), in the energy level p(x, ξ) = E.

More precisely, the Hamiltonian flow of p(x, ξ) = ξ2 + V (x) is defined by ẋ(s) = 2ξ(s), ξ̇(s) = −V ′(x(s)),
and the Hamiltonian p(x, ξ) is preserved by the flow. Hence, under Assumption 1.2 Items 1–2, if a curves
has p = E, then in any time interval such that ξ(t) > 0 and x−(E) ≤ x(0) ≤ x(T ) ≤ x+(E), we have

T =

∫ T

0

dt =

∫ x(T )

x(0)

dx

2ξ(x)
=

∫ x(T )

x(0)

dx

2
√
E − V (x)

.

9



Hence, in the energy level {p = E}, the Hamiltonian flow of p (consists in two different trajectories and) is
periodic with period

T (E) = 2

∫ x+(E)

x−(E)

dx

2
√
E − V (x)

=

∫ x+(E)

x−(E)

dx√
E − V (x)

.

As a consequence, we deduce that the quantity T (E) (defined in (1.7)) verifies

T (E) = 2
√
ET (E). (1.14)

Note that for large energies, T (E) ∼E→+∞
L√
E

and T (E) ∼E→+∞ 2L.

Lemma 1.9. The quantities Φ(E) and T (E) defined in (1.6) and (1.7) are linked by the following: Φ ∈
W 1,∞([E0,∞)) and

Φ′(E) =
1

4
√
E
T (E) =

1

2
T (E), i.e.

(
Φ(E2)

)′
=

1

2
T (E2).

This lemma is proved in Appendix C.

We now give a spectral interpretation of T (E) and T (E), explaining how these classical quantities enter
into the description of spectral properties of Pε. Precise statements and proofs are provided in Appendix A,
based on results obtained by Allibert in [All98] (themselves relying on [HS84, HR84]).

Denoting N(β) := Φ(β2), we have according to (1.13) that Φ(λεk) ≈ επk. Writing βε
k =

√
λεk for the

square root of the eigenvalues, we thus have επk ≈ Φ(λεk) = Φ((βε
k)

2) = N(βε
k). Hence, denoting by

Gε
k := βk+1 − βk =

√
λεk+1 −

√
λεk

the local spectral gap for the square roots of eigenvalues (spacing of square roots of eigenvalues), we obtain

επ(k + 1)− επk ≈ N(βε
k+1)−N(βε

k) ≈ Gε
kN

′(βε
k).

We finally obtain

Gε
k ≈

επ

N ′(βε
k)

=
2επ

T (λεk)
.

As a consequence, the quantity T (E) measures the local spectral gap for the square roots of eigenvalues at
energy E, and hence T1 = supE≥E0

T (E) yields a uniform lower bound for the spectral gap for the square
roots of eigenvalues. This is actually stronger than a uniform lower bound for the spectral gap of eigenvalues
themselves, for

λεk+1 − λεk = (βε
k+1 + βε

k)(β
ε
k+1 − βε

k) ≈ 2βε
kG

ε
k ≈ 2επ

2
√
λεk

T (λεk)
=

2επ

T (λεk)
,

where we have used (1.14) in the last equality.

1.3.5 Comparing the minimal times appearing in Theorems 1.5, 1.6, and 1.7

In the estimates we obtain on Tunif (we write Tunif = Tunif({0}) in this section for short) in Theorems 1.5, 1.6
and 1.7, two parameters enter into play:

• first a “Spectral” parameter, related to the localization of the spectrum, or, more precisely, to the size
of the spectral gap at energy E;

• and second a “Geometrical” parameter, related to the localization of the eigenfunctions at energy E.

In order to compare these parameters, we are led to define the following spectral/geometric constants (the
index of the constant refers to the theorem where it appears)

S1.5 = 0, G1.5,E =WE(0)−min[0,L]WE ,

S1.6,E,B = TE,B, G1.6,E =WE(0)− sup[0,L] W̃E ,

S1.7 = 2
√
2
√
E0T1, G1.7,E =WE(0)−min[0,L]WE = G1.5,E ,

(1.15)
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where, recall, E0 = V (x0) = |f′(x0)|2
4 = min[0,L] V > 0. With these definitions in hand, the critical times

appearing in Theorems 1.5, 1.6 and 1.7 respectively are

T1.5 = sup
E∈V ([0,L])

1

E

(
G1.5,E + S1.5

)
= sup

E∈V ([0,L])

1

E
G1.5,E , (1.16)

T1.6 = sup
E∈V ([0,L]),B≥0

1

E +B

(
G1.6,E + S1.6,E,B

)
, (1.17)

T1.7 =
1

E0

(
sup

E∈V ([0,L])

G1.7,E + S1.7

)
= sup

E∈V ([0,L])

1

E0

(
G1.7,E + S1.7

)
,

and the associated result formulates (sometimes assuming q = f′′

2 ) as

T1.5 ≤ Tunif , T1.6 ≤ Tunif , Tunif ≤ T1.7.

We now try to compare the different quantities involved in (1.15). We first need to compare TE,B and T1.

Lemma 1.10. The quantities TE,B and T1 are linked by

TE,B ≤ T1
√
E0

2π
Γ0

(√
E + 2B

E0
,

√
E

E0

)
,

where, for α ≥ 1, β > 1,

Γ0(α, β) =

∫ +∞

1

log

∣∣∣∣
y2 + α2

y2 − β2

∣∣∣∣ dy

= πα − log(1 + α2)− 2α arctan

(
1

α

)
+ log(β2 − 1) + β log

(
β + 1

β − 1

)
,

extends as a continuous function on {(α, β) ∈ R2, 1 ≤ β ≤ α}.
This lemma is proved in Appendix C

Lemma 1.11. The above quantities are linked by

for all E ≥ E0, G1.5,E = G1.7,E ≥ G1.6,E , (1.18)

for all E ≥ E0, B ≥ 0,
1

E0
G1.7,E ≥

1

E
G1.5,E ≥

1

E +B
G1.6,E ,

and for all E ≥ E0, B ≥ 0,

0 = S1.5 ≤
S1.6,E,B

E +B
≤ κ0

S1.7
E0

, with κ0 =
1

2π
√
2

max
α≥β≥1

Γ0(α, β)

α2 + β2
< +∞. (1.19)

This lemma is proved in Appendix C. From this lemma, we draw the following conclusions:

• The geometric quantity G1.7,E = G1.5,E = WE(0) − min[0,L]WE seems to be the appropriate one
to describe the localization of eigenfunctions. In this particular 1D situation, we indeed know very
precisely where eigenfunctions are localized, see Section 3.1 below or [LL22b]. Theorems 1.7 and 1.5
are thus accurate in this respect, whereas Theorem 1.6 is not. Note that the quantity 1

E0
G1.7,E instead

of 1
EG1.7,E makes however Theorem 1.7 less accurate than Theorem 1.5. This can be summarized as

Theorem 1.5≫ Theorem 1.7≫ Theorem 1.6,

where ≫ stands for “more accurate as far as the geometric quantity is involved”. Note however that if
one rather compares

sup
E∈V ([0,L]),B≥0

1

E +B
G1.6,E = sup

E∈V ([0,L])

1

E
G1.6,E , with

1

E0
sup

E∈V ([0,L])

G1.7,E ,

then Theorems 1.7 and Theorem 1.6 are no longer comparable.
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• Now, as far as the spectral quantity is concerned, Theorem 1.5 does not say anything, Theorem 1.6
yields a seemingly fine lower bound (comparable to that obtained in [CG05]), whereas Theorem 1.7
seems to provide with a relatively rough upper bound. This can be summarized as

Theorem 1.6≫ Theorem 1.7≫ Theorem 1.5,

where ≫ stands for “more accurate as far as the spectral quantity is involved”.

In particular, the lower bound of Theorem 1.5 is better than the one of Theorem 1.6 from the geometrical
point of view, while the latter is better from the spectral point of view.

The following lemma allows to better understand the importance of the direction of the vector field f′,
i.e. to distinguish properties of f′ > 0 from f′ < 0 (recall that the asymmetry comes from the fact that the
control acts only on left boundary).

Lemma 1.12. Assume that Items 1 and 2 in Assumption 1.2 are satisfied. Then one of the following two
statements hold:

• either f is increasing: then for any E ≥ E0, the functions x 7→WE(x) and W̃E(x) are increasing, and
the constants defined in (1.15) satisfy

G1.5,E = 0, and

G1.6,E = dA,E(0) + dA,E(L) +
f(0)− f(L)

2
≤ 0;

• or f is decreasing: then for any E ≥ E0, the functions x 7→WE(x) and W̃E(x) are decreasing, and the
constants defined in (1.15) satisfy

G1.5,E =WE(0)−WE(L) ≥ 0,

G1.6,E =2dA,E(0) ≥ 0.

In both cases, E 7→ G1.6,E is a nonincreasing function.
If we assume additionally that f is an odd function with respect to x0 = L/2, that is to say, f(L/2+x) =

−f(L/2− x) for all x ∈ [0, L/2], then we have the following simplifications: if f is increasing, then

G1.5,E = 0, and G1.6,E = 2dA,E(L)− f(L) = 2dA,E(0) + f(0),

while if f is decreasing, we have

G1.5,E = f(0) = −f(L), and G1.6,E = 2dA,E(L) = 2dA,E(0).

In particular, G1.5,E is independent on E in both cases.

This lemma is proved in Appendix C. It is also very useful to compute the value of the different constants
on explicit examples.

Our results lead us to conjecture that, under Assumption 1.2 Items 1–2 and 4, there is a distribution
kernel K(x,E) such that

Tunif = sup
E∈[E0,+∞)

1

E

(
G1.5,E + SE

)
, with SE =

∫ ∞

E0

K(x,E)Φ′(x)dx =
1

2

∫ ∞

E0

K(x,E)T (x)dx.

However, we do not have a precise idea of what the kernel K should be, but K(x,E) = log
∣∣∣x+E+2B

x−E

∣∣∣ would

look to be a good candidate for some B.
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1.3.6 Explicit computations on an example

In section 4 below, we compute explicitly and further compare all upper/lower bounds for the functions

f±M,a(x) = ±
∫ x

0

√
a2s2 +M2ds, that is to say a±(x) = (f±M,a)

′(x) = ±
√
a2x2 +M2,

defined on the shifted interval (−L/2, L/2) (instead of (0, L)). The latter are associated to the harmonic

potential V (x) =
|f±

′
M,a

(x)|2
4 = a2x2+M2

4 , and our results apply for M > 0 and a > 0. For a = 0 (to which our
results do not apply), the vector fields correspond to the case studied in [CG05, Gla10, Lis12, Lis14, Lis15,
DE19, AM19b, AM19a]. For large values of a, the potential is very convex and far from the situation a = 0.
We draw in particular the following consequences:

• in case − (that is, for f−M,a), then T
f
−′
M,a

({−L/2}) −→
a→+∞

0+ (the flushing time associated to the limit

equation ε = 0, see Section 2.3) whereas Tunif({−L/2}) −→
a→+∞

+∞. In particular, we recover [LL21,

Section 3.3], stating that Tunif ({−L/2})
T
f
′−
M,a

({−L/2}) −→a→+∞
+∞. We obtain actually the stronger statement that if

a→ 0+, the limit problem is controllable in a time T
f
±′
M,a

({−L/2})→ 0 whereas uniform controllability

holds for a time Tunif({−L/2})→ +∞. This is a refinement of [LL21, Section 3.3]. See Section 4.3.

• In the formal limit a→ 0+, we obtain the lower bounds

lim inf
a→0+

Tunif,a ≥ lim inf
a→0+

T1.6,a ≥
L

M
, (Case +), (1.20)

lim inf
a→0+

Tunif,a ≥ lim inf
a→0+

T1.6,a ≥
2
√
2L

M
, (Case −). (1.21)

As a consequence, the formal limit a → 0+ coincides with the known lower bounds for the Coron-
Guerrero problem a = 0, appearing in the literature. The first one was obtained by Coron-Guerrero [CG05]
while the second was obtained by Lissy [Lis15, Theorem 1.3] (using a variant of method of [CG05]).
See Section 4.4.

• In the formal limit a → 0+, the upper bound of Theorem 1.7 degenerates since T1 →
a→0+

+∞. This

suggest that the quantity T1 is not the appropriate one (at least in this regime). A variation of our
approach however applies to the case a = 0, but yields slightly less accurate constants than those
available in the literature [CG05, Gla10, Lis12, Lis14, Lis15, DE19], see Section 4.4 for a discussion.

1.3.7 Comparison with the results in [LL21]

The result in Theorem 1.5 is a one-dimensional refinement of [LL21, Theorems 1.5 and 3.1], which instead
states (in a much more general setting of a compact manifold with boundary, with essentially no assumptions
on f or V )

C0(T, ε) ≥ exp
1

ε

(
WE(0)−max

KE

WE − ET − δ
)
, for all E ∈ V ([0, L]), δ > 0.

and in particular

Tunif({0}) ≥ sup
E∈V ([0,L])

1

E

(
WE(0)−max

KE

WE

)
=

1

E0

(
WE0(0)−

f(x0)

2

)
, E0 = min

[0,L]
V = V (x0).

This last equality is explained in [LL21, remark following Theorem 3.1]. In Theorem 1.5, we are able to
replace −maxKE

WE by −min[0,L]WE . This improvement comes from two additional knowledge we have on
the eigenfunctions of a conjugated operator Pε (see (2.4) below) in this very particular 1D single well problem
(see Section 3.1 below o [LL22b]): an eigenfunction ψε associated to an eigenvalue Eε of Pε, converging to
E as ε→ 0+:

• spreads over the whole classically allowed region KE (propagation estimates);
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• vanishes at most like e−
1
ε
dA,E in the classically forbidden region (Allibert estimates).

In higher dimension, the first result is false (and the issue of understanding the asymptotic distribution of
the distribution |ψε|2dx is extremely intricate, even for a given energy E) in general; and to our knowledge,
the second result does not seem to be well-understood.

Along the proof of the present paper, we could state an analogue of Theorem 1.5 for the internal uniform
controllability/observability question by an open set ω ⊂ [0, L]. The latter problem is not considered in the
main part of the paper but is the main focus in [LL21].

1.3.8 Uniform controllability of the semiclassical heat equation

As already mentioned, all results proved in Theorems 1.5, 1.6 and 1.7 may be reformulated in terms of
uniform (resp. non-) observability/controllability results for the semiclassical heat equation





(
ε∂t − ε2∂2x + V (x)

)
v = 0, (t, x) ∈ (0, T )× (0, L),

v(t, 0) = h(t), v(t, L) = 0, t ∈ (0, T ),
v(0, x) = v0(x), x ∈ (0, L),

(1.22)

in the semiclassical limit ε → 0+ and in weighted L2-spaces of type e
f
2εL2(0, L) = L2((0, L), e−

f
ε dx). Note

that in that setting, we do not need that f and V be linked one to the other (and then have to change the

definitions of W, W̃ accordingly). We do not state these results for the sake of brevity.

Remark 1.13. The semiclassical heat equation (1.22) can be rewritten as

(
ε−1∂t − ∂2x + ε−2V (x)

)
v = 0

on a fixed time interval [0, T ]. Rescaling in time, this amounts to study

(
∂t − ∂2x + ε−2V (x)

)
v = 0, (1.23)

on a time interval [0, εT ], that is, the heat equation with a large potential in small time. If we are interested
in the controllability of the same equation (1.23) in fixed time (independent of ε), the techniques described
in the present paper (see in particular Section 3.4) allow to obtain uniform estimates as well, and recover
for instance the results of [BDE20, Proposition 1.5.] (proved by different techniques, namely Carleman
estimates). In that reference, it is used to control the Grushin equation. More precisely, the techniques
above imply the following Proposition (analogue of [BDE20, Proposition 1.5.]).

Proposition 1.14. Let V ∈ C∞([0, L]) satisfy Items 1–4 in Assumption 1.2. Let T > 0 and fix δ > 0.
Then, there exists ε0 and C > 0 so that for any 0 < ε < ε0 and v0 ∈ L2(0, L), there exists a control
h ∈ L2(0, T ) to zero of





(
∂t − ∂2x + 1

ε2 V (x)
)
v = 0, (t, x) ∈ (0, τ)× (0, L),

v(t, 0) = h(t), v(t, L) = 0, t ∈ (0, τ),
v(0, x) = v0(x), x ∈ (0, L).

with the control cost

‖h‖2L2(0,T ) ≤ Ce
dA(0)+δ

ε ‖v0‖2L2 . (1.24)

Note that the equation can also be rewritten as (ε2∂t + Pε)v = 0 (compare with the semiclassical heat
equation (1.22) where we have ε∂t).

2 General facts about transport equation and vanishing viscosity

limit

2.1 Duality between boundary control and observation problems

In the present one dimensional setting recall the control problem under consideration is (1.1) (and is written
in a “gradient field” way, which is always possible in dimension one). The associated (forward in time)
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observation problem is




(∂t − f′∂x − q − ε∂2x)u = 0, (t, x) ∈ (0, T )× (0, L),
u(t, 0) = u(t, L) = 0, t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, L),
(2.1)

with f = f(x) and q = q(x). The solution y of the controlled equation (1.1) and the solution u of free
equation (2.1) are linked by the following duality equation:

(u(T ), y0)L2(0,L) − (u0, y(T ))L2(0,L) +

∫ T

0

ε∂xu(t, 0)h(T − t)dt = 0. (2.2)

The boundary observability problem for (2.1) can be formulated as follows. Does there exist a constant
C > 0 such that

C2

∫ T

0

|ε∂xu(t, 0)|2dt ≥ ‖u(T )‖2L2(0,L), for all u0 ∈ L2(0, L) and u solution of (2.1). (2.3)

We define accordingly
C0(T, ε) := inf{C ∈ R

+ such that (2.3) holds}.
Classical duality arguments (see [DR77] or [Cor07, Chapter 2.3]) yield the following statement.

Lemma 2.1 (Observability constant = control cost). Given (ε, T ), Equation (1.1) is null-controllable if
and only if the observability inequality (2.3) holds. Moreover, we then have C0(T, ε) = C0(T, ε).

As usual, this allows us to mainly focus on the observability inequality (2.3).

2.2 Gradient flows, conjugation and reformulation

As in [LL21], we first proceed with the following conjugation:

e−
f
2ε ∂2xe

f
2ε = ∂2x +

1

ε
f′∂x +

|f′|2
4ε2

+
f′′

2ε
.

We denote by 1
ε2Pε := −∂2x + |f′|2

4ε2 + f′′

2ε −
q
ε , that is to say

Pε := −ε2∂2x +
|f′|2
4

+ εqf, with qf =
f′′

2
− q. (2.4)

The above computation implies that

e−
f
2ε

( 1
ε2
Pε

)
e

f
2ε = −∂2x −

1

ε
f′∂x −

q

ε
, (2.5)

the last operator being that appearing in the observation/free evolution problem (2.1) multiplied by ε. The
operator Pε is selfadjoint in L2(0, L) endowed with domainD(Pε) = H2(0, L)∩H1

0 (0, L). Hence, the operator

−∂2x− 1
ε f

′∂x − q
ε is also formally selfadjoint, but in the weighted space L2((0, L), e

f
ε dx). We reformulate the

uniform observability problem (2.1) in terms of the heat equation involving the operator Pε defined in (2.4)
(see [LL21, Lemma 2.9]).

Lemma 2.2 (Observation problem: equivalent reformulation). Given T,C0, ε > 0, the following statements
are equivalent.

1. The function u solves
{
(∂t − f′∂xu− q − ε∂2x)u = 0, (t, x) ∈ (0, T )× (0, L),

u(t, 0) = u(t, L) = 0, t ∈ (0, T ),
(2.6)

resp. ‖u(T )‖2L2(0,L) ≤ C2
0

∫ T

0

|ε∂xu(t, 0)|2dt. (2.7)
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2. The function ζ(t, x) = ef(x)/2εu(t, x) solves

{
ε∂tζ + Pεζ = 0, (t, x) ∈ (0, T )× (0, L),

ζ(t, 0) = ζ(t, L) = 0, t ∈ (0, T ),
(2.8)

resp.
∥∥∥e−

f
2ε ζ(T )

∥∥∥
2

L2(0,L)
≤ C2

0

∫ T

0

∣∣∣e−
f(0)
2ε ε∂xζ(t, 0)

∣∣∣
2

dt. (2.9)

A similar conjugation result also holds in the controllability side, using conjugation with the opposite
sign. More precisely, still with Pε defined in (2.4), we now have (instead of (2.5))

e
f
2ε

( 1
ε2
Pε

)
e−

f
2ε = −∂2x +

1

ε
f′∂x −

q

ε
+

f′′

ε
.

This time, the conjugation of Pε, which is selfadjoint on L2((0, L), dx) with domain H1
0 ∩H2(0, L), yields the

operator −∂2x + 1
ε f

′∂x − q
ε +

f′′

ε (which thus becomes formally selfadjoint in L2((0, L), e−
f
ε dx) with Dirichlet

boundary conditions). We can then obtain a similar version of Lemma 2.2 from the control point of view to
relate the control problem (1.1) to a control problem with Pε.

Lemma 2.3 (Control problem: equivalent reformulation). Given T, ε > 0, the following statements are
equivalent.

1. The function y(t, x) solves the control problem (1.1) (with initial datum y0(x) and control h(t))

2. The function v(t, x) = e−f(x)/2εy(t, x) solves





ε∂tv + Pεv = 0, (t, x) ∈ (0, T )× (0, L),
v(t, 0) = e−f(0)/2εh(t), v(t, L) = 0, t ∈ (0, T ),

v(0, x) = e−f(x)/2εy0(x), x ∈ (0, L).
(2.10)

Note that in this lemma, “solving” the equation is meant in the classical sense for regular solutions but
has to be taken in the transposition sense for “rough solutions”. The conjugation works the same way in this
weak sense according to the duality (2.2). The latter now rewrites

(ζ(T ), v(0))L2(0,L) − (ζ(0), v(T ))L2(0,L) +

∫ T

0

ε∂xζ(t, 0)v(T − t, 0)dt = 0, that is to say,

(
ζ(T ), e−f/2εy0

)
L2(0,L)

−
(
ef/2εu0, v(T )

)
L2(0,L)

+

∫ T

0

ε∂xζ(t, 0)e
−f(0)/2εh(T − t)dt = 0. (2.11)

with v solving (2.10) and ζ solving (2.8).

2.3 Controllability of the limit equation ε = 0

In this section, we consider the observability question for the formal control problem obtained from (1.1) in
the limit ε = 0. It is a transport equation of hyperbolic type and the number of boundary conditions to be
imposed for well-posedness is different from its parabolic counterpart. The limit equation that we expect
on the control side is the following

{
(∂t + f′∂x + f′′ − q)y = 0, (t, x) ∈ (0, T )× (0, L),

y(0, x) = y0(x), x ∈ (0, L),
(2.12)

where, again, the transport equation can be written equivalently as (∂t+a∂x+b)y = 0. We assume f′(0) 6= 0
and f′(L) 6= 0 for simplicity. The expected boundary conditions actually depend on the sign of f′(0) and
f′(L). Namely, the expected relevant boundary conditions in view of the parabolic control problem (1.1) for
ε > 0 are, for t ∈ (0, T ),

1. y(t, 0) = h(t) and y(t, L) = 0, if f′(0) > 0 and f′(L) < 0,
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2. y(t, 0) = h(t), if f′(0) > 0 and f′(L) > 0,

3. y(t, L) = 0, if f′(0) < 0 and f′(L) < 0,

4. no boundary conditions to be imposed, if f′(0) < 0 and f′(L) > 0.

Note that in most of the article, we actually assume that the vector field f′ = a is C1 and does not vanish
on the interval [0, L]; the only two relevant boundary conditions are then 2 in case f′ > 0 and 3 in case
f′ < 0. If we denote Ω = (0, L), ∂Ω = {0, L} and ∂ν the outgoing normal unit field to the boundary (i.e.
∂ν |x=L = ∂x and ∂ν |x=0 = −∂x), we can write the previous boundary conditions in a more concise (but
maybe more complicated) way by y|∂Ω∩{∂ν f<0} = H(t, x)|∂Ω∩{∂ν f<0} where H(t, x) is defined on (0, T )× ∂Ω
by H(t, 0) = h(t) and H(t, L) = 0.

Note that only Cases 1 and 2 define a control problem. In Cases 3 and 4, the only relevant question is
whether or not the solutions do vanish at time T .

Solutions to (2.12) are meant in the weak sense i.e. in the sense of transposition, see e.g. [Cor07,
Section 2.1.1]. We say that y is a solution (2.12) (with appropriate boundary conditions) in the sense of
transposition if for all τ ∈ [0, T ],

0 = −
∫ τ

0

∫ L

0

y(∂tφ+ f′(x)∂xφ+ qφ) dtdx − f′(0)

∫ τ

0

h(t)φ(t, 0) dt

+

∫ L

0

y(τ, x)φ(τ, x) dx−
∫ L

0

y0(x)φ(0, x) dx

for every φ ∈ C1([0, τ ]× [0, L]) satisfying φ(x, t) = 0 for all t ∈ [0, τ ] and every x ∈ {0, L} so that ∂ν f(x) > 0,
that is

1. no assumption if f′(0) > 0 and f′(L) < 0,

2. φ(t, L) = 0, ∀t ∈ [0, τ ] , if f′(0) > 0 and f′(L) > 0,

3. φ(t, 0) = 0, ∀t ∈ [0, τ ] , if f′(0) < 0 and f′(L) < 0,

4. φ(t, 0) = 0 and φ(t, L) = 0, ∀t ∈ [0, τ ], if f′(0) < 0 and f′(L) > 0.

The arguments of [CG05, Proposition 1] can be adapted here to prove that the weak limit of solutions of
system (1.1) are solutions to (2.12) with the boundary conditions given in Items 1–4. In particular, this
allows to prove Proposition 1.4.

For the observation problem, we expect the following limit system
{

(∂t − f′(x)∂x − q)u = 0, (t, x) ∈ (0, T )× (0, L),
u(0, x) = u0(x), x ∈ (0, L).

(2.13)

The boundary conditions are then the same as for φ, namely:

1. no boundary conditions to be imposed, if f′(0) > 0, f′(L) < 0,

2. u(t, L) = 0, t ∈ (0, T ), if f′(0) > 0, f′(L) > 0,

3. u(t, 0) = 0, t ∈ (0, T ), if f′(0) < 0, f′(L) < 0,

4. u(t, 0) = 0, u(t, L) = 0, t ∈ (0, T ), if f′(0) < 0, f′(L) > 0.

Following closely [Cor07, Section 2.1], it is possible to prove the following two lemmata.

Lemma 2.4. For any u0 ∈ L2(0, L), the Cauchy problem (2.13) with above boundary conditions has a
unique solution u ∈ C((0, T ), L2(0, L)).

Moreover, for any y0 ∈ L2(0, L), h ∈ L2(0, T ), the Cauchy problem (2.12) with above boundary conditions
has a unique solution y ∈ C((0, T ), L2(0, L)) in the sense of transposition.

Lemma 2.5. We have the duality relation

〈y(T ), u0〉L2(0,L) − 〈y0, u(T )〉L2(0,L) = D,

with
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1. D = f′(0)
∫ T

0
u(t, 0)h(t− T )dt, if f′(0) > 0 and f′(L) < 0,

2. D = f′(0)
∫ T

0
u(t, 0)h(t− T )dt, if f′(0) > 0 and f′(L) > 0,

3. D = 0 if f′(0) < 0 and f′(L) < 0,

4. D = 0, if f′(0) < 0 and f′(L) > 0.

Moreover, null-controllability (or the problem of having y(T ) = 0) holds true if and only if, for all u solution
of (2.13) with above boundary conditions, we have

1.
∫ T

0 |u(t, 0)|2dt ≥ C ‖u(T )‖
2
L2(0,L), if f′(0) > 0 and f′(L) < 0,

2.
∫ T

0 |u(t, 0)|2dt ≥ C ‖u(T )‖
2
L2(0,L), if f′(0) > 0 and f′(L) > 0,

3. u(T ) = 0 if f′(0) < 0 and f′(L) < 0,

4. u(T ) = 0, if f′(0) < 0, f′(L) > 0.

The next Proposition simply says that null-controllability (or the problem of having y(T ) = 0) holds if
and only if all the trajectories exit the interval.

Proposition 2.6. The conditions in the previous Lemma hold if and only if f′ 6= 0 in [0, L] and T ≥ Tf′ =∫ L

0
ds

|f′(s)| .

Note that the system considered is not the same depending on the sign of f′.

Proof. First, we can check that if there is one point x0 ∈ (0, L) (it cannot be on the boundary with the
assumptions) such that f′(x0) = 0, then the conditions are not fulfilled. Indeed, we can construct some non
zero solutions localized arbitrary close to x0 that remain zero close to the boundary. Note also that since f

is sufficiently regular and f′(x0) = 0, then
∫ L

0
ds

f′(s) is not convergent.

In the other case, we can write explicitly the solution. We first consider the second case f′(0) > 0,
f′(L) > 0.

For any x ∈ [0, L], denote Jx(x0) =
∫ x0

x
ds

f′(s) . It is an increasing function from [x, L] to [0, Tr,f′(x)] with

0 ≤ Tr,f′(x) :=
∫ L

x
ds

f′(s) ≤ Tf′ the exit time on the right starting from x. Denote t 7→ Yx(t) its inverse from

[0, Tr,f′(x)] to [x, L]. Deriving with respect to t the equation Jx(Yx(t)) = t, we see that ∂tYx(t) = f′(Yx(t))

while deriving with respect to x gives ∂xYx(t) =
f′(Yx(t))
f′(x) . Moreover, we have Yx(0) = x and Yx(Tr,f′(x)) = L.

We define for x ∈ [0, L] and t ≥ 0,

u(t, x) = e
∫

t

0
q(Yx(τ))dτu0(Yx(t)), (t, x) ∈ R+ × [0, L] and 0 ≤ t ≤ Tr,f′(x),

u(t, x) = 0, (t, x) ∈ R+ × [0, L] and t > Tr,f′(x).

Note first that it is well defined since 0 ≤ τ ≤ t ≤ Tr,f′(x) implies that Yx(τ) and Yx(t) are well defined.
We also notice that if u0 is C1 with u0(L) = 0, then u is solution of (2.13) in the classical sense with the
appropriate boundary conditions u(t, L) = 0.

We first check that u is continuous and it is therefore sufficient to verify the equation in each zone. We
compute for 0 ≤ t ≤ Tr,f′(x),

∂tu(t, x) = q(Yx(t))e
∫

t

0
q(Yx(τ))dτu0(Yx(t)) + e

∫
t

0
q(Yx(τ))dτ f′(Yx(t))u

′
0(Yx(t))

∂xu(t, x) =

(∫ t

0

f′(Yx(τ))

f′(x)
q′(Yx(τ))dτ

)
e
∫

t

0
q(Yx(τ))dτu0(Yx(t)) + e

∫
t

0
q(Yx(τ))dτ

f′(Yx(t))

f′(x)
u′0(Yx(t))

We conclude by remarking that
∫ t

0
f′(Yx(τ))q′(Yx(τ))dτ =

∫ t

0
∂
∂t (q(Yx(τ))) dτ = q(Yx(t)) − q(x). Note that

the computations only make sense if u and q are regular enough, but we obtain the same result in general
by approximation. For the boundary conditions, Tr,f′(L) = 0 so that we always have t > Tr,f′(L) = 0 and
u(t, L) = 0. Also, the assumption u0(L) = 0 ensures that at time t = Tr,f′(x), Yx(Tr,f′(x)) = L, so that
u(Tr,f′(x), x) = 0 and the function u is continuous. The formula extends to L2 functions and therefore
defines the flow map described in Lemma 2.4.
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Now, we have to check if the defined formula fulfills or not the observability estimate. For x = 0, we
have Tr,f′(0) = Tf′ and we have seen that Y0(t) is an increasing bijection from [0, Tf′ ] to [0, L]. We can then
compute for 0 ≤ T ≤ Tf′ .

∫ T

0

|u(t, 0)|2dt ≈
∫ T

0

|u0(Y0(t))|2dt =
∫ Y0(T )

0

|u0(y)|2
dy

f′(y)
≈
∫ Y0(T )

0

|u0(y)|2dy,

where we have made the substitution y = Y0(t), that is t = J0(y). The symbol a ≈ b means that there
exists one constant C depending on T , f, L and q so that C−1a ≤ b ≤ Ca. For T ∈ [0, Tr,f′(x)] ∂xYx(T ) =
f′(Yx(T ))

f′(x) > 0, so that x 7→ φT (x) := Yx(T ) is a diffeomorphism from [0, xT ] to [Y0(T ), L] where xT ∈ [0, L]

is so that YxT
(T ) = L (which implies Tr,f′(xT ) = T since Yx(Tr,f′(x)) = L by definition).

In particular, for 0 ≤ T ≤ Tf′ , we have 0 ≤ T ≤ Tr,f′(x)⇔ xT ≤ x ≤ L and therefore

‖u(T )‖2L2(0,L) =

∫ L

0

|u(T, x)|2dx ≈
∫ L

xT

|u0(Yx(T ))|2dx ≈
∫ L

Y0(T )

|u0(y)|2dy.

In particular, the observability inequality holds if and only if Y0(T ) = L, that is T = Tf′ . For T ≥ Tf′ , we
have u(T ) = 0 so that the observability is trivial. This ends the result in the case f′(0) > 0 and f′(L) > 0.
For the other case f′(0) < 0 and f′(L) < 0, the change of variable x ↔ L − x reduces to the same case as
before. The only difference now is that we want the solution to be zero instead of the observability. The
condition is actually the same.

3 Proofs of the main results

3.1 Localization of Schrödinger eigenfunctions in a one dimensional well

In this section, we recall results proved in the companion paper [LL22b] in which we study localization
properties for eigenfunctions of the Schrödinger operator Pε defined in (2.4). We now state these two results,
which take the form of uniform (in terms of both ε and E) upper and lower bounds on eigenfunctions.

Theorem 3.1 (Upper bounds for eigenfunctions: [LL22b] Theorem 1.3). Assume that V ∈ C1([0, L]) (f ∈
C2([0, L])), and that Item 2 in Assumption 1.2 is satisfied. Then, for all δ > 0 there exist ε0 = ε0(δ) ∈ (0, 1]
such that for all E,ψ solution to

Pεψ = Eψ, ψ ∈ H2(0, L) ∩H1
0 (0, L), ‖ψ‖L2([0,L]) = 1, (3.1)

we have for all ε < ε0
∥∥∥∥∥e

dA,E
ε

ε√
|E|+ 1

ψ′

∥∥∥∥∥
L2

+

∥∥∥∥e
dA,E

ε ψ

∥∥∥∥
L2

≤ e δ
ε . (3.2)

ε√
|E|+ 1

|ψ′(0)| ≤ e−
dA,E(0)−δ

ε ,
ε√
|E|+ 1

|ψ′(L)| ≤ e−
dA,E(L)−δ

ε . (3.3)

Only continuity of the potential V (i.e. f ∈ C1([0, L])) is assumed in [LL22b], but this refinement is not
relevant here since V ∈ C1([0, L]) (i.e. f ∈ C2([0, L])) is needed to use Theorem 3.2.

Theorem 3.2 (Lower bounds for eigenfunctions: [LL22b] Theorem 1.4). Assume that V ∈ C1([0, L])
(f ∈ C2([0, L])), and that Item 2 in Assumption 1.2 is satisfied. Then, for any y0 ∈ [0, L], ν > 0 and any
δ > 0, there is ε0 > 0 such that for all E,ψ satisfying (3.1), we have for all ε < ε0,

‖ψ‖L2(U) ≥ e−
1
ε
(dA,E(U)+δ), dA,E(U) = inf

x∈U
dA,E(x), U = (y0 − ν,y0 + ν) ∩ [0, L],

ε√
|E|+ 1

|ψ′(0)| ≥ e− 1
ε
(dA,E(0)+δ),

ε√
|E|+ 1

|ψ′(L)| ≥ e− 1
ε
(dA,E(L)+δ). (3.4)

Note that this improved lower bound is as precise as the upper bound (3.2) (except for the δ loss) and
thus essentially optimal. Uniformity with respect to the energy level E is necessary for the proof of the cost
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of controllability in Theorem 1.7. The latter indeed involves all the spectrum of Pε since we are studying
all solutions.

Remark that Theorems 3.2 and 3.1 are counterparts one to the other. They state essentially that,
in this very particular one dimensional setting, an eigenfunction ψ associated to the energy E satisfies

|ψ(x)| ∼ e−
dA,E(x)

ε (and that this is uniform in E, x, ε). The symbol ∼ is slightly abusive in our setting

since we only have equivalence up to multiplicative terms of the form e
δ
ε , which can be very large. Yet,

in the present context where only exponentially small quantities are compared, this kind of estimates is
sufficient for our purposes and provides with the correct asymptotics. See e.g. [LL22b, end of Section 1] for
a discussion on possible refinements.

3.2 Proof of Theorem 1.5 from Theorems 3.2 and 3.1

In this section, we give a proof of Theorem 1.5. The latter relies on consequences of Theorems 3.2 and 3.1
that are not using the uniformity in E and could be deduced from softer versions of these two results.

Proposition 3.3. Under the assumptions of Theorem 3.2, we have

∥∥∥e−
f
2εψε

∥∥∥
L2([0,L])

≥ e− 1
ε
(min[0,L] WE+δ).

Proof of Proposition 3.3 from Theorem 3.2. We take xm ∈ [0, L] such that WE(xm) = min[0,L]WE . Then,
by continuity, there is ρ > 0 such that for all x ∈ (xm − ρ, xm + ρ), we have f(x) < f(xm) + δ and
dA,E(x) < dA,E(xm) + δ. We then estimate

∥∥∥e−
f
2εψε

∥∥∥
L2([0,L])

≥
∥∥∥e−

f
2εψε

∥∥∥
L2(xm−ρ,xm+ρ)

≥ e− 1
2ε (f(xm)+δ) ‖ψε‖L2(xm−ρ,xm+ρ)

≥ e− 1
2ε (f(xm)+δ)e−

1
ε
(dA,E((xm−ρ,xm+ρ))+δ),

after having used Theorem 3.2 in the last inequality for ε < ε0(δ), and with dA,E((xm − ρ, xm + ρ)) =
infx∈(xm−ρ,xm+ρ) dA,E(x) < dA,E(xm) + δ. As a consequence, we obtain

∥∥∥e−
f
2εψε

∥∥∥
L2([0,L])

≥ e− 1
ε
( f
2
(xm)+ δ

2
)e−

1
ε
(dA,E(xm)+2δ)

≥ e− 1
ε
(WE(xm)+3δ) = e−

1
ε
(min[0,L] WE+3δ),

where we have used the definition of xm in the last inequality.

We conclude this section with a proof of Theorem 1.5, which relies on both Theorems 3.2 (under the
statement of Proposition 3.3) and 3.1.

Proof of Theorem 1.5 from Theorem 3.1 and Proposition 3.3. We follow the proof of [LL21, Theorem 3.1].
We first use Lemma 2.2 and Lemma 2.1 to see that we have (2.9) for all solutions to (2.8), with C0 =
C0(T, ε) = C0(T, ε). Second, given E ∈ V ([0, L]) and ε ∈ (0, 1], there is Eε = E + O

(
ε2/3

)
and ψε ∈

H2([0, L]) ∩ H1
0 ([0, L]) such that Pεψε = Eεψε (see Lemma 3.4 below). We then test (2.9) with ζ(t) =

e−tEε/εψε, solution to (2.8) with ζ(0, x) = ψε(x). This reads

e−
2TEε

ε

∥∥∥e−
f
2εψε

∥∥∥
2

L2(0,L)
=
∥∥∥e−

f
2ε ζ(T )

∥∥∥
2

L2(0,L)
≤ C2

0

∫ T

0

∣∣∣e−
f(0)
2ε ε∂xζ(t, 0)

∣∣∣
2

dt ≤ C2
0Te

− f(0)
ε |εψ′

ε(0)|
2
. (3.5)

Using Proposition 3.3, we have e−
2TEε

ε

∥∥∥e− f
2εψε

∥∥∥
2

L2([0,L])
≥ e− 2T (E+δ)

ε e−
2
ε
(min[0,L] WE+δ) for all 0 < ε < ε0(δ)

and using (3.3) in Theorem 3.1 we have ε|ψ′
ε(0)| ≤ e−

dA,E(0)−δ

ε (recall that E is fixed). Combining together
with (3.5), these two inequalities yield, for 0 < ε < ε0(δ, T ),

e−
2T (E+δ)

ε e−
2
ε
(min[0,L] WE+δ) ≤ C2

0e
− f(0)

ε e−2
dA,E(0)−δ

ε = C2
0e

−2
WE(0)−δ

ε ,

which is the first statement of the theorem when recalling C0 = C0(T, ε) and changing the notation for δ.
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In the course of the proof, we have used the following Lemma, taken from [LL21], proving the existence
of eigenvalues at any allowed energy level. It can also be deduced from the much more precise Theorem A.1
adapted from [All98].

Lemma 3.4. [LL21, Lemma 3.2] Assume V ∈ W 1,∞([0, L]) and qf ∈ L∞([0, L]) are both real valued.
For all E ∈ V ([0, L]) = [min[0,L] V,max[0,L] V ] and all ε ∈ (0, 1], there is Eε = E + O

(
ε2/3

)
and ψε ∈

H2([0, L]) ∩H1
0 ([0, L]) such that Pεψε = Eεψε.

3.3 Coron-Guerrero type lower bound: proof of Theorem 1.6

Proof of Theorem 1.6. Recall the simpler way of writting the control problem (1.1), the observation problem
(2.1) and the duality statement (2.2). Let (ϕε

k)k∈N denote the sequence of eigenfunctions of the selfadjoint
operator Pε, associated with eigenvalues λεk sorted in increasing order.

Now, we fix E ∈ V ([0, L]). As a consequence of [LL21, Lemma 3.2], there exists a sequence of eigenvalues
Eε of Pε with Eε → E as ε→ 0. That is to say, there is ψε ∈ H2(0, L) ∩H1

0 (0, L) such that Pεψε = Eεψε.
Denote n = n(E, ε) ∈ N the index (in the non-decreasing sequence of eigenvalues of Pε) such that λεn = Eε

and ψε = ϕε
n. We choose for initial datum for (1.1) the function

y0 = yn = e
f
2εψε = e

f
2εϕε

n.

We denote by hn any control driving the initial datum yn to zero and produce lower bounds for its norm.
According to the Agmon estimate (3.2), we have

‖yn‖L2(0,L) =
∥∥∥e

f
2εψε

∥∥∥
L2(0,L)

=

∥∥∥∥e
1
ε
( f
2−dA,E)e

dA,E
ε ψε

∥∥∥∥
L2(0,L)

≤ e
DE+δ

ε , (3.6)

with

DE = sup
[0,L]

W̃E , W̃E(x) :=
f

2
(x)− dA,E(x). (3.7)

We remark that the function (t, x) 7→ e−
λε
k
t

ε ϕε
k(x) is a solution of (2.8). As a consequence of Lemma 2.2,

the function uk(t, x) = e−
f(x)
2ε ϕε

k(x)e
−λε

k
ε

t is solution to (2.6), that is of (2.1) with u0(x) = e−
f(x)
2ε ϕε

k(x).
Since we assume hn is a null-control, we have yn(T ) = 0 and the duality formula (2.2) taken for u = uk
implies

(uk(T ), yn)L2(0,L) +

∫ T

0

ε∂xuk(t, 0)hn(T − t)dt = 0. (3.8)

Since uk(t, 0) = 0 (Dirichlet boundary conditions), we have ∂xuk(t, 0) = e−
f(0)
2ε e−

λε
k
t

ε (ϕε
k)

′(0). Moreover, we
have

(uk(T ), yn)L2(0,L) = (e−
f(x)
2ε ϕε

k(x)e
−λε

k
ε

T , e
f
2εϕε

n)L2(0,L) = e−
λε
k
ε

T δk,n.

These two identities together with (3.8) (and the change T − t← t in the integral) imply

∫ T

0

hn(t)e
λε
k
ε

tdt = − e
f(0)
2ε

ε(ϕε
k)

′(0)
δk,n, for all k ∈ N, (3.9)

We next set for n ∈ N

vn(s) := F(hn1[0,T ])(s) =

∫ T

0

hn(t)e
−istdt, s ∈ C,

which defines an entire function vn : C→ C. Identity (3.9) reformulates as

vn

(
i
λεk
ε

)
= − e

f(0)
2ε

ε(ϕε
n)

′(0)
δk,n.

21



Moreover, writing f(s)+ = max{f(s), 0}, we have for all T ≥ 0

|vn(s)| ≤ eT Im(s)+

∫ T

0

|hn(t)|dt ≤ T 1/2eT Im(s)+‖hn‖L2(0,T ), for all s ∈ C.

We now introduce the parameter B ≥ 0. We define the entire function

gn : C→ C, gn(s) := vn

(
s− iB
ε

)
.

From the above properties of vn we obtain

gn(ibk) = −
e

f(0)
2ε

ε(ϕε
n)

′(0)
δk,n, bk = λεk +B, (3.10)

together with the general bound

|gn(s)| ≤ T 1/2e
T
ε
(Im(s)−B)+‖hn‖L2(0,T ), for all s ∈ C. (3.11)

Now, we want to apply the complex analysis Lemma 3.5 below with the following parameters:

• x := E +B > 0, and xε := λεn +B → x as ε→ 0+,

• g := gn,

• σ = lim supy→+∞
log |gn(iy)|

y ≤ T
ε according to (3.11),

• log |g(τ)| ≤ CR := log(T 1/2‖hn‖L2(0,T )) for all τ ∈ R, according to (3.11) (using that B ≥ 0),

• bk = λεk + B and bk := bk for k < n and bk := bk+1 for k ≥ n (that is to say {bk, k ∈ N} =
{bk, k ∈ N, k 6= n}). According to (3.10) applied with k 6= n, the sequence (bk)k∈N satisfies g(ibk) = 0.
Moreover, the assumption (3.15) is satisfied with Z(s) := Φ−1(πs) +B according to estimate (A.1) in

Theorem A.1. Note that this uses q = f′′

2 , that is to say qf = 0. We also recall that the function Φ is
defined in (1.6).

Application of Lemma 3.5 implies

log |gn(i(λεn +B))| ≤ 1

ε
(−TE,B + δ) +

T

ε
(E +B) + log(T 1/2‖hn‖L2(0,T )),

where we have set

TE,B := I(E +B) =
1

π

∫ +∞

0

log

∣∣∣∣
Φ−1(y) + E + 2B

Φ−1(y)− E

∣∣∣∣ dy =
1

π

∫ +∞

V (x0)

log

∣∣∣∣
x+ E + 2B

x− E

∣∣∣∣Φ
′(x)dx,

and, in the last expression used the definition of Φ and the properties of V to write Φ−1(0) = V (x0) = minV .
According to (3.10) applied with k = n, we also have

log

∣∣∣∣∣
e

f(0)
2ε

ε(ϕε
n)

′(0)

∣∣∣∣∣ = log |gn(ibn)| = log |gn(i(λεn +B))|.

Combining these two lines, we obtain,

log

∣∣∣∣∣
e

f(0)
2ε

ε(ϕε
n)

′(0)

∣∣∣∣∣ ≤
1

ε
(−TE,B + T (E +B) + δ) + log(T 1/2‖hn‖L2(0,T )). (3.12)

Moreover, thanks to the Agmon estimate (3.3), we have, for ε ∈ (0, ε0), |ε(ϕε
n)

′(0)| ≤ e
−dA,E(0)+δ

ε . As a
consequence, we have

log

∣∣∣∣∣
e

f(0)
2ε

ε(ϕε
n)

′(0)

∣∣∣∣∣ ≥
f(0)
2 + dA,E(0)− δ

ε
=
WE(0)− δ

ε
. (3.13)
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Combining (3.13) together with (3.12), we finally obtain

log(T 1/2‖hn‖L2(0,T )) ≥
1

ε
(WE(0) + TE,B − T (E +B)− 2δ) . (3.14)

Finally, assuming observability/controllability, Lemma 2.1 implies that the control cost (observability con-
stant) necessarily satisfies

C0(T, ε) ≥
‖hn‖L2(0,T )

‖yn‖L2(0,L)

, that is, logC0(T, ε) ≥ log ‖hn‖L2(0,T ) − log ‖yn‖L2(0,L) .

Recalling (3.6)-(3.7) together with (3.14), we have now obtained, for ε ∈ (0, ε0) small enough

logC0(T, ε) ≥
1

ε
(WE(0) + TE,B − T (E +B)− 3δ −DE − δ) ,

which concludes the proof of the theorem.

The proof of the above result relied on the following complex analysis lemma.

Lemma 3.5. Let Z : R+ 7→ R+ be a continuous strictly increasing function such that Z−1 is locally Lipschitz
continuous on [Z(0),+∞) and 1

Z ∈ L1([1,+∞[), and set

I : R→ R, I(x) :=

∫ +∞

0

log

∣∣∣∣
Z(y) + x

Z(y)− x

∣∣∣∣ dy,

(which, under the above assumptions, is well-defined and continuous on R
+). Let R : R+ → R

+ be an
increasing function tending to zero at zero. Then, for any x > 0, δ > 0 D > 0, and any family (xε)ε ∈(0,ε0)

such that xε → x as ε→ 0+, there exists ε0 so that for any holomorphic function g on C+ satisfying

1. g is of exponential type on C
+; we write σ := lim supy→+∞

log |g(iy)|
y < +∞,

2. τ 7→ log |g(τ)| is bounded above on R+; we write CR := supτ∈R log |g(τ)| < +∞,

3. g(ibk) = 0 for any k ∈ N∗ where bk = bk(ε) > 0 is a sequence such that

Z(εk −Dε)−R(ε) ≤ bk ≤ Z(εk +Dε) +R(ε), for all k ≥ D, ε ∈ (0, ε0), (3.15)

we have

log |g(ixε)| ≤
−I(x) + δ

ε
+ σxε + CR, for all ε ∈ (0, ε0). (3.16)

We first prove the following lemma, proving in particular that I(x) is well-defined and continuous.

Lemma 3.6. Given Z : R+ 7→ R+ a continuous strictly increasing function such that Z−1 is locally Lipschitz
continuous on R+ and 1

Z ∈ L1([1,+∞[), the functions

F (a, b, c, d) =

∫ d

c

log

∣∣∣∣
Z(y) + b

Z(y)− a

∣∣∣∣ dy, F∞(a, b, c) =

∫ +∞

c

log

∣∣∣∣
Z(y) + b

Z(y)− a

∣∣∣∣ dy,

are well-defined and continuous in (a, b, c, d) ∈ R4, resp. (a, b, c) ∈ R3.

Proof. Concerning first the function F , it suffices by linearity to check that
∫ d

c log |Z(y)− a| dy is well-
defined and continuous in (a, c, d). The change of variable formula for Lipschitz map (Z−1 is locally Lipschitz
continuous) yields

I(a, c, d) :=
∫ d

c

log |Z(y)− a| dy =

∫ Z(d)

Z(c)

log |x− a| (Z−1)′(x)dx,

and that the left hand-side is well-defined/continuous if and only if so is the right hand-side. But the right
hand-side is well defined since (Z−1)′ is bounded (a.e.) on every compact interval and log |x| is integrable
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on compact sets. Let us now prove by hand that the right hand-side is continuous. Fix (a, c, d) ∈ R3 and
let ε = (ε1, ε2, ε3)→ 0. We write

|I(a+ ε1, c+ ε2, d+ ε3)− I(a, c, d)|

=

∣∣∣∣∣

∫ Z(d+ε3)

Z(c+ε2)

log |x− a− ε1| (Z−1)′(x)dx −
∫ Z(d)

Z(c)

log |x− a| (Z−1)′(x)dx

∣∣∣∣∣ ≤ I1(ε) + I2(ε) + I3(ε) (3.17)

with

I1(ε) =

∣∣∣∣∣

∫ Z(c+ε2)

Z(c)

log |x− a| (Z−1)′(x)dx

∣∣∣∣∣ , I2(ε) =

∣∣∣∣∣

∫ Z(d+ε3)

Z(d)

log |x− a| (Z−1)′(x)dx

∣∣∣∣∣

I3(ε) =

∣∣∣∣∣

∫ Z(c+ε2)

Z(d+ε3)

log

∣∣∣∣
x− a− ε1
x− a

∣∣∣∣ (Z−1)′(x)dx

∣∣∣∣∣ .

We have I1(ε) + I2(ε) → 0 as ε → 0 by dominated convergence, and it only remains to study I3(ε). Using
that (Z−1)′ ∈ L∞

loc(R) and choosing D1, D2 ∈ R such that a, Z(d + ε3), Z(c + ε2) ∈ (D1, D2) for all ε
sufficiently small, we have

I3(ε) ≤ C
∫ D2

D1

∣∣∣∣log
∣∣∣∣
x− a− ε1
x− a

∣∣∣∣
∣∣∣∣ dx = C

∫ a

D1

∣∣∣∣log
∣∣∣∣1−

ε1
x− a

∣∣∣∣
∣∣∣∣ dx+ C

∫ D2

a

∣∣∣∣log
∣∣∣∣1−

ε1
x− a

∣∣∣∣
∣∣∣∣ dx.

Assuming that ε1 ≥ 0 (the case ε1 ≤ 0 is treated similarly) and changing variables in these two integrals
implies

I3(ε) ≤ Cε1
∫ ε1

D1−a

−∞
|log |1− s|| ds

s2
+ Cε1

∫ +∞

ε1
D2−a

|log |1− s|| ds
s2
. (3.18)

Then, we write, for ε1 small

ε1

∫ +∞

ε1
D2−a

|log |1− s|| ds
s2

= ε1

∫ 1/2

ε1
D2−a

|log |1− s|| ds
s2

+ ε1

∫ +∞

1/2

|log |1− s|| ds
s2
.

The function 1
s2 |log |1− s|| is integrable on [1/2,+∞) and hence the second term converges to 0. For the

second term, we write | log |1− s|| ≤ K|s| (with K = 2 log 2) on [0, 1/2] and thus

ε1

∫ 1/2

ε1
D2−a

|log |1− s|| ds
s2
≤ ε1

∫ 1/2

ε1
D2−a

Ks
ds

s2
= Kε1 log

(
D2 − a
2ε1

)
→ 0, as ε→ 0.

This implies that the second term in the right hand-side of (3.18) converges to zero. The first term is treated
similarly, and we deduce that I3(ε)→ 0 as ε→ 0. In view of (3.17), this implies that I(a, c, d) is continuous
on R3 and thus F is continuous on R4.

We now turn to the study of F∞, and remark that it suffices now to prove that F∞(a, b, 0) is well-defined
and continuous on R2. We have from the assumptions that Z(y)→ +∞ as y → +∞ and thus

∣∣∣∣log
∣∣∣∣
Z(y) + b

Z(y)− a

∣∣∣∣
∣∣∣∣ =

∣∣∣∣log
∣∣∣∣1 +

a+ b

Z(y)− a

∣∣∣∣
∣∣∣∣ =

∣∣∣∣log
(
1 +

a+ b

Z(y)− a

)∣∣∣∣ ≤
2|a+ b|
Z(y)− |a| , as y → +∞.

Since 1
Z is decreasing and in L1([1,+∞)), we deduce that y 7→ log

∣∣∣ Z(y)+b
Z(y)−a

∣∣∣ is integrable near +∞ (integra-

bility on compacts sets has already been proved for F ). Moreover, its integral near infinity is continuous in
(a, b) by dominated convergence. This concludes the proof of the lemma.

We now recall a classical representation theorem for the modulus of entire functions of exponential type,
which will be crucial in the proof of Lemma 3.5 below.
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Theorem 3.7. [Koo88, Theorem p56] Let f(z) be entire and of exponential type and suppose that

∫ +∞

−∞

log+ |f(x)|
1 + x2

dx < +∞,

where log+(t) = max{0, log(t)}. Denote by {λn}, the set of zeros of f(z) in Im(z) > 0 (repetitions according
to multiplicities), and put

A = lim sup
y→+∞

log |f(iy)|
y

Then, for Im(z) > 0,

log |f(z)| = A Im z +

+∞∑

n=1

log

∣∣∣∣
1− z/λn
1− z/λn

∣∣∣∣+
1

π

∫ +∞

−∞

Im z

|z − τ |2 log |f(τ)|dτ.

Proof of Lemma 3.5. We now prove the main statement of the lemma. We apply Theorem 3.7 at the point
ixε . Given that xε → x, we may assume that xε > 0, and have

log |g(ixε)| =
+∞∑

ℓ=1

log

∣∣∣∣
ixε − aℓ
ixε − aℓ

∣∣∣∣+ σxε +
xε
π

∫ +∞

−∞

log |g(τ)|
|τ − ixε|2

dτ, (3.19)

where (aℓ)ℓ∈N is the sequence of zeros of g in C+ := {z ∈ C, Im(z) > 0} (repeated according to multiplicities).
We first estimate the third term in the right handside of (3.19) using Assumption 2, as

xε
π

∫ +∞

−∞

log |g(τ)|
|τ − ixε|2

dτ ≤ CR

xε
π

∫ +∞

−∞

1

τ2 + x2ε
dτ =

CR

π

∫ +∞

−∞

1

t2 + 1
dτ = CR. (3.20)

The estimate of the first term in the right handside of (3.19) is more complicated. First, we notice that

since ixε and aℓ are in C+, we have |ixε− aℓ| ≤ |ixε− aℓ| and thus log
∣∣∣ ixε−aℓ

ixε−aℓ

∣∣∣ ≤ 0 for all ℓ ∈ N. Therefore,

since {ibk, k ∈ N} ⊂ {aℓ, ℓ ∈ N}, we deduce

∑

ℓ∈N

log

∣∣∣∣
ixε − aℓ
ixε − aℓ

∣∣∣∣ ≤
∑

k∈N

log

∣∣∣∣
xε − bk
xε + bk

∣∣∣∣ . (3.21)

We can also assume without loss of generality that xε 6= bk for all k ∈ N (otherwise, the left handside
in (3.16) is −∞ and (3.16) holds true), and that the sequence (bk)k∈N ∈ (0,∞)N is an increasing sequence.
Denote then N = N(ε) the integer such that

· · · ≤ bN−1 ≤ bN < xε < bN+1 ≤ bN+2 ≤ · · · . (3.22)

Notice that since x > 0, we have N(ε)→ +∞ as ε→ 0 (see (3.29) below for a more precise estimate). We
are thus left to study

∑

k∈N

log

∣∣∣∣
xε − bk
xε + bk

∣∣∣∣ = S≤ + S>, with S≤ :=
∑

k≤N

log

(
xε − bk
xε + bk

)
, S> :=

∑

k>N

log

(
bk − xε
xε + bk

)
. (3.23)

Using again that all terms in the sum are nonpositive, together with (3.15) and the fact that the functions
s 7→ xε−s

xε+s (resp. s 7→ s−xε

s+xε
= 1− 2 xε

s+xε
) are decreasing (resp. increasing if xε > 0), we obtain respectively

S≤ ≤
∑

D+1≤k≤N

log

(
xε − bk
xε + bk

)
≤

∑

D+1≤k≤N

log

(
xε − Z(εk −Dε) +R(ε)

xε + Z(εk −Dε)−R(ε)

)
, (3.24)

S> ≤
∑

k>N

log

(
bk − xε
xε + bk

)
≤
∑

k>N

log

(
Z(εk +Dε) +R(ε)− xε
xε + Z(εk +Dε) +R(ε)

)
. (3.25)
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Note also that bk < xε implies Z(εk −Dε)−R(ε) ≤ xε and xε −R(ε) > 0 (for ε small enough), so the first
expression makes sense (the same applies for the other term). We may rewrite these two inequalities as

S≤ ≤
∑

D+1≤k≤N

f≤(k), S> ≤
∑

k>N

f>(k),

with

f≤(s) = log

(
xε − Z(εs−Dε) + R(ε)

xε + Z(εs−Dε)− R(ε)

)
, f>(s) = log

(
Z(εs+Dε) +R(ε)− xε
xε + Z(εs+Dε) +R(ε)

)
.

Note then that the function f≤ is negative decreasing, whereas f> is negative increasing to zero. As a
consequence, we have

S≤ ≤
N∑

k=D+1

f≤(k) ≤
∫ N

D

f≤(s)ds =

∫ N−D

0

log

(
xε − Z(εs) +R(ε)

xε + Z(εs)−R(ε)

)
ds

=
1

ε

∫ ε(N−D)

0

log

∣∣∣∣
xε − Z(y) +R(ε)

xε + Z(y)−R(ε)

∣∣∣∣ dy

= −1

ε
I≤N,ε, with I≤N,ε :=

∫ ε(N−D)

0

log

∣∣∣∣
xε + Z(y)−R(ε)
xε − Z(y) +R(ε)

∣∣∣∣ dy. (3.26)

Similarly, we have

S> ≤
∞∑

k=N+1

f>(k) ≤
∫ +∞

N+1

f>(s)ds =

∫ +∞

N+1+D

log

(
Z(εs) +R(ε)− xε
xε + Z(εs) +R(ε)

)
ds

=
1

ε

∫ +∞

ε(N+1+D)

log

∣∣∣∣
Z(y) +R(ε)− xε
xε + Z(y) +R(ε)

∣∣∣∣ dy

= −1

ε
I>N,ε, with I>N,ε :=

∫ +∞

ε(N+1+D)

log

∣∣∣∣
xε + Z(y) +R(ε)

Z(y) +R(ε)− xε

∣∣∣∣ dy. (3.27)

Combining (3.19)-(3.20)-(3.21)-(3.23)-(3.24)-(3.25)-(3.26)-(3.27), we have obtained so far that

log |g(ixε)| ≤ σxε + CR −
1

ε
(I≤N,ε + I>N,ε), (3.28)

and it only remains to study I≤N,ε, I
>
N,ε.

Note that (3.15) applied to N and N + 1, and the definition of N in (3.22) yield

Z(ε(N −D))−R(ε) ≤ bN < xε < bN+1 ≤ Z(ε(N + 1 +D)) + R(ε).

In particular, by continuity of Z, this implies that Z(εN) = Z(εN(ε)) converges to x as ε→ 0+, and hence

εN = εN(ε)→ Z−1(x), as ε→ 0+. (3.29)

Next, we define the function hε : R
+ → R by

hε(y) := log
∣∣∣xε+Z(y)−R(ε)
xε−Z(y)+R(ε)

∣∣∣ = log
(

xε+Z(y)−R(ε)
xε−Z(y)+R(ε)

)
, for Z(y) ≤ xε −R(ε),

hε(y) := log
∣∣∣xε+Z(y)+R(ε)
xε−Z(y)−R(ε)

∣∣∣ = log
(

xε+Z(y)+R(ε)
−xε+Z(y)+R(ε)

)
, for Z(y) ≥ xε +R(ε),

hε(y) := 0, otherwise.

Recalling the definition of I≤N,ε, I
>
N,ε in (3.26)-(3.27), we now have

∣∣∣∣I
≤
N,ε + I>N,ε −

∫ +∞

0

hε(y)dy

∣∣∣∣ ≤
∣∣∣∣∣

∫ Z−1(xε−R(ε))

ε(N−D)

log

∣∣∣∣
xε + Z(y)−R(ε)
xε − Z(y) +R(ε)

∣∣∣∣ dy
∣∣∣∣∣

+

∣∣∣∣∣

∫ ε(N+1+D)

Z−1(xε+R(ε))

log

∣∣∣∣
xε + Z(y) +R(ε)

xε − Z(y)−R(ε)

∣∣∣∣

∣∣∣∣∣ , (3.30)
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and now examine the convergence of the different terms involved. We shall prove that

∫ +∞

0

hε(y)dy → I(x), as ε→ 0+, (3.31)

and that the right handside of (3.30) converges to zero. This, together with (3.28) will then yield (3.16),
concluding the proof of the lemma.

Let us now prove (3.31) by splitting the integral into the two intervals:

∫ +∞

0

hε(y)dy =

∫ Z−1(x−R(ε))

0

log

∣∣∣∣
xε + Z(y)−R(ε)
xε − Z(y) +R(ε)

∣∣∣∣ dy +
∫ +∞

Z−1(x+R(ε))

log

∣∣∣∣
xε + Z(y)−R(ε)
xε − Z(y) +R(ε)

∣∣∣∣ dy.

Lemma 3.6 implies the following convergence of the two integrals as ε→ 0+:

∫ +∞

0

hε(y)dy →
∫ Z−1(x)

0

log

∣∣∣∣
x+ Z(y)

x− Z(y)

∣∣∣∣ dy +
∫ +∞

Z−1(x)

log

∣∣∣∣
x+ Z(y)

x− Z(y)

∣∣∣∣ dy = I(x),

which is (3.31).
We finally consider the right handside of (3.30). According to (3.29), both endpoints of these two intervals

converge to Z−1(x). Using again Lemma 3.6, this implies that the right handside of (3.30) converges to
zero, which concludes the proof of the lemma.

3.4 Upper bound: Proof of Theorem 1.7

In this section, we give a proof of Theorem 1.7. In particular, we assume that f ∈ C∞([0, L]), that Items 1–4

in Assumption 1.2 are satisfied, and that q = f′′

2 . These assumptions are made so that to apply the spectral
results of Theorem (A.1), deduced from [All98].

According to Definition 1.1 and Lemma 2.3, null controllability of (1.1) in time T is equivalent to having
for any y0 ∈ L2(0, L), the existence of h ∈ L2(0, T ) such the solution v to (2.10) satisfies v(T, ·) = 0.

With the duality (2.11) this can equivalently be formulated as: having for any y0 ∈ L2(0, L), the existence
of h ∈ L2(0, T ) such that for all ζ∗ ∈ L2(0, L) we have

0 = (ζ(T ), v(0))L2(0,L) +

∫ T

0

ε∂xζ(t, 0)v(T − t, 0)dt = 0, or equivalently,

0 =

∫ L

0

e−
f(x)
2ε y0(x)

(
e−

T
ε
Pεζ∗

)
(x)dx + ε

∫ T

0

e−
f(0)
2ε h(T − t)∂x(e−

t
ε
Pεζ∗)|x=0dt, (3.32)

where ζ solves (2.8) with ζ(0, x) = ζ∗(x) = e
f(x)
2ε u0(x) and v solves (2.10).

With domain H2 ∩ H1
0 (i.e. Dirichlet boundary conditions), the operator Pε is selfadjoint on L2, with

compact resolvent. We introduce a Hilbert basis (ϕε
ℓ)ℓ∈N of L2(0, L) such that

Pεϕ
ε
ℓ = λεℓϕ

ε
ℓ , with ϕε

ℓ(0) = ϕε
ℓ(L) = 0, λεℓ ≤ λεℓ+1,

as in Theorem A.1.
We will need the following intermediate result, which we state on a time interval (0, τ) instead of (0, T )

for in the proof of Theorem 1.7, this control will be only used in part of the whole time interval (0, T ).

Proposition 3.8. Under the assumptions of Theorem 1.7, fix δ > 0. Then, there exists ε0 and C > 0 so
that for any 0 < ε < ε0, 0 < τ < δ−1 and v0 ∈ L2(0, L), there exists a control h ∈ L2(0, τ) to zero of





(ε∂t + Pε)v = 0, (t, x) ∈ (0, τ)× (0, L),

v(t, 0) = e−
f(0)
2ε h(t), v(t, L) = 0, t ∈ (0, τ),

v(0, x) = v0(x), x ∈ (0, L).

with the control cost

‖h‖2L2(0,τ) ≤
C

ε6τ3
e

4T2
1 +δ

ετ
+ f(0)

ε

∑

n∈N

λεn
|(ϕε

n)
′(0)|2

∣∣∣∣∣

∫ L

0

v0(x)ϕ
ε
n(x)dx

∣∣∣∣∣

2

. (3.33)
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The proof consists in solving the moment problem obtained by testing (3.32) with ζ∗ ranging in a basis of
eigenfunctions of Pε. It also relies on properties on Pε described in Theorem A.1 (recall that our assumptions
imply qf = 0).

Proof of Proposition 3.8. According to (3.32) controlling v0 to zero in time τ is equivalent to having existence
of z̃ = h(τ − ·) ∈ L2(0, τ) such that for all ℓ ∈ N,

0 = e−
τ
ε
λε
ℓ

∫ L

0

v0(x)ϕ
ε
ℓ(x)dx + εe−

f(0)
2ε (ϕε

ℓ)
′(0)

∫ τ

0

z̃(t)e−
t
ε
λε
ℓdt.

The idea of the moment method for finding such z̃(t) solving

∫ τ

0

z̃(t)e−
t
ε
λε
ℓdt = αε

ℓ , with αε
ℓ = −

e−
τ
ε
λε
ℓ

εe−
f(0)
2ε (ϕε

ℓ)
′(0)

∫ L

0

v0(x)ϕ
ε
ℓ(x)dx, (3.34)

is to construct it as a sum of biorthogonal functions (Ψε
j)j∈N ∈ L2(0, τ)N, namely

z̃(t) =
∑

j∈N

αε
jΨ

ε
j(t), with

∫ τ

0

Ψε
j(t)e

−λε
ℓ
ε
tdt = δjℓ. (3.35)

Denoting z(t) := ε−1z̃(t/ε), ψε
j (t) = ε−1Ψε

j(t/ε) and βε
ℓ := ε−1

√
λεℓ , Equation (3.35) is equivalent to

z(t) =
∑

j∈N

αε
jψ

ε
j (t), with

∫ ετ

0

ψε
j (s)e

−(βε
ℓ )

2sds = δjℓ. (3.36)

For δ > 0, Theorem A.1 yields existence of ε0, γ > 0 and N ∈ N (all depending on δ) such that for all
0 < ε ≤ ε0, the sequence (βε

ℓ )ℓ∈N satisfies

βε
ℓ+1 − βε

ℓ ≥
2π

T1 + δ/2
, for all ℓ ≥ N, (3.37)

βε
ℓ+1 − βε

ℓ ≥ γ > 0, for all ℓ ∈ N,

where T1 is defined in (1.7). Proposition B.1 with γ∞ = 2π
T1+δ/2 yields existence of C, ε0 > 0 such that for

all ε < ε0, setting Sδ :=
1
2 (T1 + δ), we can find a sequence (ψε

j )j∈N satisfying (3.36) with

‖z‖2L2(0,ετ) ≤
C

(ετ)3
e

(16+δ)S2
δ

ετ

∑

ℓ∈N

(βε
ℓ )

2e2(β
ε
ℓ )

2ετ |αε
ℓ |2 =

C

(ετ)3
e

(16+δ)S2
δ

ετ

∑

ℓ∈N

λεℓ
ε2
e2τ

λε
ℓ
ε |αε

ℓ |2 (3.38)

Choosing now the numbers αε
j as in the second part of (3.34), the function z satisfies the first part of (3.34),

and hence is a null-control for v0. Moreover, we can now estimate the last term in (3.38) as

∑

ℓ∈N

λεℓe
2τ

λε
ℓ
ε |αε

ℓ |2 ≤
1

ε2e−
f(0)
ε

∑

ℓ∈N

λεℓ
|(ϕε

ℓ)
′(0)|2

∣∣∣∣∣

∫ L

0

v0(x)ϕ
ε
ℓ(x)dx

∣∣∣∣∣

2

Combined with (3.38), this yields

‖z‖2L2(0,ετ) ≤
C

ε7τ3
e

(16+δ)S2
δ

ετ
1

e−
f(0)
ε

∑

n∈N

λεn
|(ϕε

n)
′(0)|2

∣∣∣∣∣

∫ L

0

v0(x)ϕ
ε
n(x)dx

∣∣∣∣∣

2

.

This gives the result recalling that Sδ =
1
2 (T1+δ) and ‖h‖2L2(0,τ) = ‖z̃‖

2
L2(0,τ) = ε ‖z‖2L2(0,ετ) (up to changing

the notation for δ).

We are now in position to prove Theorem 1.7. We first take advantage of the natural parabolic dissipation
[LR95, Lis12, LL22a], and then use the control function constructed in Proposition 3.8.

Proof of Theorem 1.7. We construct a control function h(t) for Equation (2.10) under the following form
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• h = 0 on [0,mT ] and use dissipation;

• h as constructed in Proposition 3.8 on the interval [mT, T ] (instead of [0, τ ]; this is possible since the
equation is invariant by translations in time).

At time mT the solution of (2.10) is thus given by

v(mT, x) =
∑

n∈N

e−
λε
n
ε

mT vnϕ
ε
n(x),

where vn =
∫ L

0
e−

f(x)
2ε y0(x)ϕ

ε
ndx. Moreover, using the Cauchy-Schwarz estimate, we have

|vn| ≤ ‖y0‖L2(0,L)

∥∥∥e−
f(x)
2ε ϕε

n

∥∥∥
L2(0,L)

.

We then take this function v(mT, ·) as an initial condition for the control problem on [mT, T ]. On this
interval, we use the control function h furnished by Proposition 3.8. It satisfies Estimate (3.33) which reads

‖h‖2L2(mT,T ) ≤
C

ε6(1−m)3T 3
e

4T2
1 +δ

ε(1−m)T
+ f(0)

ε

∑

n∈N

λεn
|(ϕε

n)
′(0)|2

∣∣∣∣∣

∫ L

0

v(mT, x)ϕε
n(x)dx

∣∣∣∣∣

2

≤ Cm

ε6T 3
e

4T2
1 +δ

ε(1−m)T
+ f(0)

ε

∑

n∈N

λεn
|(ϕε

n)
′(0)|2 e

−2
λε
n
ε

mT |vn|2

≤ ‖y0‖2L2(0,L)

Cm

ε4T 3
e

4T2
1 +δ

ε(1−m)T
+ f(0)

ε

∑

n∈N

λεn
|ε(ϕε

n)
′(0)|2 e

−2
λε
n
ε

mT
∥∥∥e−

f(x)
2ε ϕε

n

∥∥∥
2

L2(0,L)

≤ ‖y0‖2L2(0,L)

Cm

ε4T 3
e

4T2
1 +δ

ε(1−m)T
+ f(0)

ε AεBε,

where we have denoted for 0 < θ < 1 small

Aε =
∑

n∈N

e−2
λε
n
ε

θmT , Bε = sup
n∈N

λεn
|ε(ϕε

n)
′(0)|2 e

−2
λε
n
ε

(1−θ)mT
∥∥∥e−

f(x)
2ε ϕε

n

∥∥∥
2

L2(0,L)
.

We estimate Aε and Bε in Lemma 3.9 and 3.10 that we state below. Combined with the previous estimate,
it gives (for any δ, Tmax,m > 0, existence of Cm, ε0 > 0 such that for all T ∈ (0, Tmax), m ∈ (0, 1), θ ∈ (0, 1)
and all ε ∈ (0, ε0))

‖h‖2L2(0,T ) = ‖h‖
2
L2(mT,T ) ≤

Cm

θε4T 3
e

2D(m)
ε ‖y0‖2L2(0,L) , (3.39)

with (recalling that WE = dA,E + f
2 )

D(m) =
2T 2

1

(1−m)T
+ sup

E≥E0

[
WE(0)− E(1 − θ)mT −min

[0,L]
WE

]
+ Cδ,

for a constant C depending on m, T , T1. This proves Estimate (1.9) in Theorem 1.7 after taking ε0 small
enough to absorb the polynomial loss, up to changing δ. Estimate (1.11) in follow from optimizating in m,

see Section C.5. We take θ = δ and first downgrade the exponential part by using E ≥ E0 = |f′(x0)|2
4 to

D(m) ≤ 2T 2
1

(1−m)T
− (1− θ) |f

′(x0)|2
4

mT + sup
E≥E0

[
WE(0)−min

[0,L]
WE

]
+ Cδ

≤ 2T 2
1

(1−m)T
− |f

′(x0)|2
4

mT + sup
E∈V ([0,L])

[
WE(0)−min

[0,L]
WE

]
+ C̃δ.

where we have noticed that WE = f/2 for E ≥ max[0,L] V . As a consequence of this together with (3.39),
we deduce that we can infer T > Tunif if

G(T ) := min
m∈[0,1)

(
2T 2

1

(1−m)T
− |f

′(x0)|2
4

mT + sup
E∈V ([0,L])

[
WE(0)−min

[0,L]
WE

])
< 0.

Lemma C.2 then concludes the proof of (1.11), and that of Theorem 1.7.
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It remains to prove the two Lemmata estimating Aε and Bε.

Lemma 3.9. Under the assumptions of Theorem 1.7, given Tmax > 0, there are C, ε0 > 0 such that for all
T ∈ (0, Tmax), m ∈ (0, 1), θ ∈ (0, 1) and all ε ∈ (0, ε0),

|Aε| ≤
C

θmT
.

Proof. Item 1, Item 3 and estimate (A.4), each one to the version adapted to Theorem A.1 give respectively
for ε small enough and for some γ2 > 0

λε0 ≥
|f′(x0)|2

4
− δ =: Λδ > 0, together with λεn+1 − λεn ≥ εγ2 > 0.

In particular, this implies λεn ≥ Λδ + nεγ2 and we can estimate

|Aε| ≤
∑

n∈N

e−2nγ2θmT =
1

1− e−2γ2θmT
,

whence the result by the mean value theorem.

Lemma 3.10. For any δ > 0, there exists ε0 so that for any 0 < ε < ε0, we have

|Bε| ≤ Ce2
F+δ

ε , with F = sup
E≥E0

(
dA,E(0)− E(1− θ)mT −min

[0,L]
WE

)
.

Proof. For any n ∈ N and ε > 0, we call E = λεn. Estimate (3.4) in Theorem 3.2 yields ε√
E
|(ϕε

n)
′(0)| ≥

e−
1
ε
(dA,E(0)+δ), uniformly inE and ε (for ε small enough). For the second term, we simply write e−2

λε
n
ε

(1−θ)mT =

e−2E
ε
(1−θ)mT . The last term is estimated thanks to the Agmon type estimate (3.2) of Theorem 3.1 as

∥∥∥e−
f(x)
2ε ϕε

n

∥∥∥
L2(0,L)

=

∥∥∥∥e
−WE

ε e
dA,E

ε ϕε
n

∥∥∥∥
L2(0,L)

≤ e−
min[0,L] WE

ε

∥∥∥∥e
dA,E

ε ϕε
n

∥∥∥∥
L2(0,L)

≤ e−
min[0,L] WE

ε e
δ
ε .

The combination of these three estimates gives

λεn
|ε(ϕε

n)
′(0)|2 e

−2
λε
n
ε

(1−θ)mT
∥∥∥e−

f(x)
2ε ϕε

n

∥∥∥
2

L2(0,L)
≤ e 2

ε
(dA,E(0)+δ)e−2E

ε
(1−θ)mT e−2

min[0,L] WE

ε e2
δ
ε .

Recalling (see Item 1 in Theorem A.1) that E ≥ E0 −Cε2 and taking the supremum over all E = λεn yields
the sought result (up to a loss in δ, we can take the supremum in E ≥ E0).

4 Explicit computations of the various bounds on an example

In this section, we provide with some explicit computation of the different bounds we computed in the main
part of the paper for concrete examples of functions f. For symmetry reasons, we shift the problem and
consider the interval (−L/2, L/2) controlled at the point −L/2.

For a > 0, M > 0, we choose

f±M,a(x) = ±
∫ x

0

√
a2s2 +M2ds = ±M2

a

∫ ax
M

0

√
y2 + 1dy = ±x

2

√
a2x2 +M2 ± M2

2a arcsinh(axM ), (4.1)

where we have used the identity

∫ y

0

√
1 + t2dt =

1

2

(
y
√
y2 + 1 + arcsinh(y)

)
, y ∈ R.

With this choice, we have f±
′

M,a(x) = ±
√
a2x2 +M2 on (−L/2, L/2). The potential

V (x) =
|f±′

M,a(x)|2
4

=
a2x2 +M2

4
(4.2)
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reaches its minimum at the point x0 = 0 ∈ (−L/2, L/2). We have chosen this example for the relative
simplicity of the computations and because the formal limit when a → 0+ is the model with constant
transport term, well studied in the literature [CG05, Gla10, Lis12, Lis14, Lis15, DE19, AM19b, AM19a],
and the limit a→ +∞ proves that Tunif can be much larger than the control/flushing time for the transport
equation with T

f
±′
M,a

({−L/2}) (see [LL21]). Indeed, V is a constant plus a harmonic potential. The parameter

a will allow to stress the fact that the convexity is responsible for a concentration of some eigenfunctions

close to the minimum, which is not the case for the “flat potential” V = M2

4 corresponding to the more
studied case f(x) = ±Mx [CG05, Gla10, Lis12, Lis14, Lis15, DE19, AM19b, AM19a]. We now compute
explicitly of the quantities involved in the statements of Proposition 1.4 and Theorems 1.5–1.6–1.7.

4.1 Computation of T
f±

′

M,a

, T1, TE,B, dA,E0

Lemma 4.1. For the function f = f±M,a(x) defined in (4.1), the minimal control time (or flushing time,
depending on the sign) for the limit equation (ε = 0) is given by

T
f
±′
M,a

({−L/2}) = 2

a
arcsinh

(
aL

2M

)
.

Lemma 4.2. Recalling the definitions (1.6)-(1.7)-(1.8), for the function f = f±M,a(x) defined in (4.1), we
have

T1 =
2π

a

√
a2L2/4 +M2 = π

√
L2 + 4M2/a2, (4.3)

TE,B =
1

a

∫ a2L2/16+M2/4

M2/4

log

∣∣∣∣
x+ E + 2B

x− E

∣∣∣∣ dx+
2

aπ

∫ +∞

a2L2/16+M2/4

log

∣∣∣∣
x+ E + 2B

x− E

∣∣∣∣ arcsin
(

aL

2
√
4x−M2

)
dx.

Moreover, we have

T1 →
a→0+

+∞, T1 →
a→+∞

πL,

TE,B →
a→0+

L
2π

∫ +∞
0 log

∣∣∣ y
2+M2+4E+8B
y2+M2−4E

∣∣∣ dy < +∞, TE,B →
a→+∞

0,

with in particular lima→0+ TE0,B = L
2

√
2M2 + 8B (case E = E0 = M2

4 ).

Note that the function in second integral in the expression of TE,B behaves like (x−(a2L2/16+M2/4)−1/2

near a2L2/16 +M2/4, like log(|x − E|) near E (if E is in the interval) and like x−3/2 at +∞. Therefore,
the integral is well defined.

Lemma 4.3. For the function f = f±M,a(x) defined in (4.1), the Agmon distance to the potential minimum

is given by dA,E0(x) =
ax2

4 .

Proof of Lemma 4.3. This follows from the expression (4.2) of the associated potential and the direct com-
putation

dA,E0(x) =

∣∣∣∣∣

∫ x

0

√
f′(y)2

4
− f′(0)2

4
dy

∣∣∣∣∣ =
1

2

∣∣∣∣
∫ x

0

a|y| dy
∣∣∣∣ =

ax2

4
.

Proof of Lemma 4.1. According to Proposition 2.6, we have the exact formula

Tf′±
M,a

=

∫ L/2

−L/2

ds

|f′±M,a(s)|
=

∫ L/2

−L/2

dy√
ay2 +M2

=
1

a

∫ aL
2M

− aL
2M

dy√
y2 + 1

=
2

a
arcsinh

(
aL

2M

)
,

where we have used
∫ x

−x

dy√
y2 + 1

= 2 arcsinh(x), x ∈ R.
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Proof of Lemma 4.2. According to (4.1), we have 4V (x) = |f±′

M,a(x)|2 = a2x2 + M2, and V (x) = λ ⇔
a2x2 + M2 = 4λ ⇔ x = ±

√
4λ−M2

a and it belongs to [−L/2, L/2] if 4λ − M2 ≤ a2L2/4. We rename
Λ = Λ(λ) = 4λ−M2 so that (1.7) and

∫ t

−t

dy√
1− y2

= 2 arcsin(t), t ∈ [−1, 1]

give

• if 0 ≤ Λ ≤ a2L2/4, we have x±(λ) = ±
√
4λ−M2

a = ±
√
Λ
a and (as for the harmonic oscillator)

T (λ) = 2

∫ √
Λ
a

−
√

Λ
a

√
Λ +M2

Λ− a2x2 dx =
2

a

∫ 1

−1

√
Λ +M2

1− y2 dy = 2π

√
Λ +M2

a
= 4π

√
λ

a
;

• if a2L2/4 ≤ Λ, we have x±(λ) = ±L/2 so that

T (λ) = 2

∫ L/2

−L/2

√
Λ +M2

Λ− a2x2 dx =
2

a

∫ aL

2
√

Λ

− aL

2
√

Λ

√
Λ +M2

1− y2 dy

=
4
√
Λ +M2

a
arcsin

(
aL

2
√
Λ

)
= 4 arcsin

(
aL

2
√
4λ−M2

)
2
√
λ

a
.

Coming back to (1.7), we finally obtain

T1 = sup
λ≥E0

T (λ) = max

(
sup

0≤Λ≤a2L2/4

2π

√
Λ +M2

a
; sup
a2L2/4≤Λ

4 arcsin

(
aL

2
√
Λ

) √
Λ +M2

a

)
.

The first function is increasing in Λ. The second function is decreasing in Λ (this is also seen directly from

the definition since if a2L2/4 ≤ Λ and x ∈ [−L/2, L/2], Λ+M2

Λ−a2x2 = 1 + M2+a2x2

Λ−a2x2 is decreasing as a function

of Λ, so that T (λ) is actually decreasing). As a consequence, the maximum is reached at a2L2/4. As a
consequence, we obtain (4.3).

We now turn to the computation of Φ(λ) and recall (1.6)

Φ(λ) =

∫ x+(λ)

x−(λ)

√
λ− V (x)dx =

∫ x+(λ)

x−(λ)

√
λ− a2x2 +M2

4
dx,

and use
∫ t

−t

√
1− y2dy = t

√
1− t2 + arcsin(t), t ∈ [−1, 1]. (4.4)

Hence, if Λ = 4λ−M2 ≤ a2L2/4, we obtain (as for the harmonic oscillator)

Φ(λ) =
1

2

∫ √
Λ
a

−
√

Λ
a

√
Λ− a2x2dx =

Λ

2a

∫ 1

−1

√
1− y2dy =

π

4a
Λ =

π

a
(λ− M2

4
),

while if Λ = 4λ−M2 ≥ a2L2/4, we get

Φ(λ) =
1

2

∫ L/2

−L/2

√
Λ− a2x2dx =

Λ

2a

∫ aL

2
√

Λ

− aL

2
√

Λ

√
1− y2dy =

Λ

2a

(
aL

4Λ

√
4Λ− a2L2 + arcsin(

aL

2
√
Λ
)

)

=
L

8

√
4Λ− a2L2 +

Λ

2a
arcsin(

aL

2
√
Λ
),

where we have used (4.4). The important quantity is mainly the derivative of Φ:

Φ′(λ) =
π

a
if 0 ≤ 4λ−M2 ≤ a2L2/4;

Φ′(λ) = 4
∂

∂Λ
Φ(Λ) =

2

a
arcsin

(
aL

2
√
Λ

)
=

2

a
arcsin

(
aL

2
√
4λ−M2

)
if 4λ−M2 ≥ a2L2/4.
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Note that this is consistent with Lemma 1.9 stating that Φ′(λ) = 1
4
√
λ
T (λ). From here, we may now

compute, with E0 = V (x0),

TE,B =
1

π

∫ +∞

0

log

∣∣∣∣
Φ−1(y) + E + 2B

Φ−1(y)− E

∣∣∣∣ dy

=
1

π

∫ +∞

E0

log

∣∣∣∣
x+ E + 2B

x− E

∣∣∣∣Φ
′(x)dx

=
1

a

∫ a2L2/16+M2/4

M2/4

log

∣∣∣∣
x+ E + 2B

x− E

∣∣∣∣ dx+
2

aπ

∫ +∞

a2L2/16+M2/4

log

∣∣∣∣
x+ E + 2B

x− E

∣∣∣∣ arcsin
(

aL

2
√
4x−M2

)
dx.

This concludes the proof of the first part of Lemma 4.2.
To conclude the proof of the lemma, we now analyse the different asymptotic regimes. The limits for T1

follow from (4.3). For TE,B, the dominated convergence theorem (see the arguments in the proof of Lemma
3.6 for an effective domination) implies that the first term in the previous expression converges to zero as
a→ 0+, together with

lim
a→0+

TE,B(a) =
L

π

∫ +∞

M2/4

log

∣∣∣∣
x+ E + 2B

x− E

∣∣∣∣
1√

4x−M2
dx =

L

2π

∫ +∞

0

log

∣∣∣∣
y2 +M2 + 4E + 8B

y2 +M2 − 4E

∣∣∣∣ dy.

In the case E = E0 =M2/4, the integral simplifies to

lim
a→0+

TE0,B(a) =
L

2π

∫ +∞

0

log

∣∣∣∣
y2 + 2M2 + 8B

y2

∣∣∣∣ dy =
L

2π

√
2M2 + 8B

∫ +∞

0

log

∣∣∣∣
t2 + 1

t2

∣∣∣∣ dt =
L

2

√
2M2 + 8B,

where we have used
∫ +∞
0

log
∣∣∣ t2+1

t2

∣∣∣ dt = 2
∫ +∞
0

1
1+t2 dt = π by integration by part.

We finally notice that in the limit a → +∞, both terms in the expression of TE,B vanish, using
| arcsin(s)| ≤ |s|π/2.

4.2 Computation of G1.5,E = G1.7,E and G1.6,E0
,

Recall that the constants G1.5,E = G1.7,E and G1.6,E0
are defined in (1.15). According to Theorem 1.6

and Lemma 1.12, we only need to compute the constant G1.6,E forE = E0 (which corresponds to the best
estimate). Lemma 1.12 also implies that in the present setting, G1.5,E = G1.7,E is independent of E by

parity arguments. We are thus left to compute only G1.5,E0
and G1.6,E0

. Recall also from (4.1) that f+M,a

is increasing and f−M,a = −f+M,a is decreasing, which, according to Lemma 1.12, plays a key role in the
computations.

Lemma 4.4. For E = E0 and B = 0, we have:

• In case +:

G1.5,E0
= 0,

G1.6,E0
=
aL2

8
−
(
L

8

√
a2L2 + 4M2 +

M2

2a
arcsinh(

aL

2M
)

)
.

In particular,

G1.6,E0
→

a→0+
− ML

2
, G1.6,E0

∼ −M
2

2a
log(a) →

a→+∞
−∞.

• In case −:

G1.5,E0
=
L

8

√
a2L2 + 4M2 +

M2

2a
arcsinh(

aL

2M
),

G1.6,E0
=
aL2

8
.
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In particular,

G1.5,E0
→

a→0+

ML

2
, G1.5,E0

∼ aL2

8
→

a→+∞
+∞,

G1.6,E0
→

a→0+
0, G1.6,E0

→
a→+∞

+∞

Recall that in this situation T1.5,E0
= G1.5,E0

/E0 and E0 = M2/4. Moreover, Theorem 1.5 formulates
Tunif({−1/2}) ≥ T1.5,E0

= G1.5,E0
/E0.

Proof of Lemma 4.4. Let us begin with the computation ofG1.5,E0
, following the simplifications of Lemma 1.12

using that f±M,a is odd. In case +, this lemma yields G1.5,E = 0, and in case −, we have (recalling (4.1) and
that we are working on the translated interval [−L/2, L/2])

G1.5,E = −f−M,a(L/2) = f+M,a(L/2) =
L
8

√
a2L2 + 4M2 + M2

2a arcsinh( aL
2M ).

We now compute G1.6,E0
. In case + using that f+M,a is odd together with Lemmata 1.12 and 4.3 gives

G1.6,E0
= 2dA,E0(L/2)− f+M,a(L/2) =

aL2

8 −
(

L
8

√
a2L2 + 4M2 + M2

2a arcsinh( aL
2M )

)
.

Now, in the case −, using again that f−M,a is odd together with Lemma 1.12, we obtain

G1.6,E = 2dA,E(L/2) =
aL2

8 .

The asymptotic behaviors follow from the fact that arcsinh(s) = s+O
(
s3
)

near zero and arcsinh(s) ∼ log(s)
near +∞.

4.3 Asymptotics a→ +∞
Recalling that arcsinh(t) = log

(
t+
√
1 + t2

)
, we have in this case the following asymptotic behaviors as

a→ +∞:

• T
f
±′
M,a

({−L/2}) ∼a→+∞ 2 log(a)
a −→

a→+∞
0+ according to Lemma 4.1, i.e. the limit transport equation is

controllable in small time for large a.

• if we choose the sign − (note that in this case, the control disappears in the limit transport equation
and it is only zero on the right), then according to (1.16) and Lemma 4.4, we have

Tunif ≥ T1.5 ≥
1

E0
G1.5,E0

∼a→+∞
a

2

L2

M2
→ +∞,

i.e. the minimal uniform control time tends to +∞ for large a.

• if we choose the sign +, this is not useful since in this case T1.5,E0
= 0 according to Lemmata 4.4

and 1.12.

4.4 Formal limit a→ 0+: comparison with the Coron-Guerrero case

The computations performed and the explicit constants obtained in Sections 4.1–4.2 do not apply to the
situation studied in Coron-Guerrero [CG05]. The latter would correspond to the function f±M,a in (4.1) with
a = 0, and thus can be seen as a formal limit a→ 0 in Sections 4.1–4.2. Even if our results do not apply to
the case a = 0 and our study does not allow to make this limit rigorous, we believe it is worth computing
the limit of the different bounds we obtain in this asymptotic regime.

First, we notice that the (formal) limit a → 0+ in Lemma 4.1 yields the appropriate control/flushing
time for the limit equation:

T
f
±′
M,a

({−L/2})→ L

M
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Second, we comment on the lower bound Tunif ≥ T1.6 given by Theorem 1.6. According to (1.15)–(1.17),
this rewrites

T1.6 = sup
E∈V ([0,L]),B≥0

1

E +B

(
G1.6,E + TE,B

)
≥ sup

B≥0

1

E0 +B

(
G1.6,E0

+ TE0,B

)
.

According to Lemma 4.2 lima→0+ TE0,B = L
2

√
2M2 + 8B (here E0 = M2

4 ) and according to Lemma 4.4, we
deduce that in the limit a→ 0+,

1

E0 +B

(
G1.6,E0

+ TE0,B

)
→ 1

M2/4 +B

(
−ML

2
+
L

2

√
2M2 + 8B

)

=
2L

M2 + 4B

(
−M +

√
2
√
M2 + 4B

)
, (Case +),

1

E0 +B

(
G1.6,E0

+ TE0,B

)
→ 1

M2/4 +B

(
0 +

L

2

√
2M2 + 8B

)
=

2
√
2L√

M2 + 4B
, (Case −).

Theorem 1.6 gives us that

lim inf
a→0+

Tunif,a ≥ lim inf
a→0+

T1.6,a ≥
2L

M2 + 4B

(
−M +

√
2
√
M2 + 4B

)
, (Case +),

lim inf
a→0+

Tunif,a ≥ lim inf
a→0+

T1.6,a ≥
2
√
2L√

M2 + 4B
, (Case −).

The maximum of x 7→ −M
x +

√
2√
x

(for x > 0) is reached for x = 2M2, so the maximum of the first

expression is reached when B =M2/4. The second case is better when B = 0, so we get (1.20)–(1.21).

Let us now comment on the upper bound of Theorem 1.7 when a → 0+. The fact that T1 →
a→0+

+∞ as

stated in Lemma 4.2 suggests that the quantity T1 (which appears as the spectral gap of the βℓ in (3.37)) is

not the appropriate one (at least in this regime). Indeed, in the case a = 0, the operator is Pε := −ε2∂2x+M2

4

and the associated eigenfunctions are ψε
k = sin

(
kπx
L

)
, k ∈ N∗, with the eigenvalues λεk =

(
εkπ
L

)2
+ M2

4 . In

particular (compare with Theorem A.1), one can check that the family ε−1
√
λεℓ does not have a uniform

(in ε) gap. However, in this particular setting, this issue is solved by making a translation of the spectrum,

replacing λεk by λεk−M2

4 . From the control point of view, this only consists in making the change of unknown

u = e
M2t
4ε v and new control hu(t) = e

M2t
4ε h(t) inside Proposition 3.8.

The new family ε−1
√
λεk − M2

4 then enjoys a uniform gap as in (A.2) with T1 = 2L. Hence, (A.2) (or

equivalently (3.37)) is fulfilled and our proof of Theorem 1.7 then adapts to this problem. The constants
involved are however slightly less accurate than those available in the literature [CG05, Gla10, Lis12, Lis14,
Lis15, DE19], and we therefore do not pursue in this direction.

A Some results from [All98]

In this section, we extract and translate in our context some of the results of Allibert [All98]. All along
the section, to match the setting of [All98], we assume that V ∈ C∞([0, L]), and that Items 1–4 in
Assumption 1.2 are satisfied. We apply as a blackbox the results of [All98] and hence also have to assume
that qf = 0. We recall that the function Φ(λ) and T1 are defined respectively in (1.6) and (1.7).

The goal of this appendix is to deduce a proof of the following result from the results of [All98].

Theorem A.1. Consider the operator Pε := −ε2∂2x + V (x) + εqf + ε2W , with V ∈ C∞([0, L];R), W ∈
L∞((0, L);R), acting on the space L2((0, L), dx), with domain H2 ∩ H1

0 (0, L). Assume further that V
satisfies Items 1–4 in Assumption 1.2 and that qf = 0. Denote by (λεk)k∈N, the sequence of eigenvalues of
the operator Pε, sorted so that λεk ≤ λεk+1. The following properties hold true:

1. There is C > 0 such that we have V (x0)− Cε2 ≤ λε0 and λεk < λεk+1 for all k ∈ N and ε ∈ (0, 1).
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2. There exist D,C0, ε0 > 0 such that for all ε ∈ (0, ε0) and k ∈ N, we have

Φ−1
(
ε(πk −D)

)
− C0ε

3/2 ≤ λεk ≤ Φ−1
(
ε(πk +D)

)
+ C0ε

3/2. (A.1)

3. For all δ > 0, there are ε0, N > 0 such that for all ε ≤ ε0,
√
λεℓ+1 −

√
λεℓ ≥ ε

2π

T1 + δ
, for all ℓ ≥ N. (A.2)

Moreover, there are ε0, γ, γ2 > 0 such that for all ε ≤ ε0,
√
λεℓ+1 −

√
λεℓ ≥ εγ > 0, for all ℓ ∈ N (A.3)

λεℓ+1 − λεℓ ≥ εγ2 > 0, for all ℓ ∈ N. (A.4)

To prove this result, let us now recall the setting of [All98]. Allibert [All98] considers on (0, b) for b > 0,
the operator

PAll
h u = − h2

R(z)
√
1 +R′(z)2

∂z

(
R(z)√

1 +R′(z)2
∂zu

)
+

1

R2(z)
u.

This operator is selfadjoint on the space L2
(
(0, b), R(z)

√
1 +R′(z)2dz

)
with domain H2∩H1

0 (0, b), with the
assumption that z 7→ 1

R2(z) admits at c ∈ (0, b) a strict nondegenerate minimum, and that 1
R2(c) <

1
R2(b) <

1
R2(0) .

The geometric quantities entering into the discussion are

ΦAll(λ) =

∫ z+(λ)

z−(λ)

√
1 +R′(z)2

√
λ− 1

R2(z)
dz,

TAll
1 = sup

λ≥ 1
R2(c)

TAll(λ), TAll(λ) = 2

∫ z+(λ)

z−(λ)

√
1 +R′(z)2

√
λ√

λ− 1
R2(z)

dz.

In this expression, z−(λ) is the solution to 1
R2(z−(λ)) = λ with z−(λ) ≤ c for λ ≤ 1

R2(0) , and z−(λ) = 0 for

λ ≥ 1
R2(0) . Similarly, z+(λ) is the solution to 1

R2(z+(λ)) = λ with z+(λ) ≥ c for λ ≤ 1
R2(b) , and z+(λ) = b for

λ ≥ 1
R2(b) .

We want to compare this setting to the one considered here. Namely, we study the operator Pε :=

−ε2∂2x + V (x) + εqf, with V (x) = |f′(x)|2
4 and qf =

f′′

2 − q, acting on the space L2((0, L), dx), with domain
H2 ×H1

0 (0, L).

We define the increasing diffeomorphism

x : [0, b] → [0, L]

z 7→ x(z) =
∫ z

0

√
1 +R′(t)2dt

where we set L :=
∫ b

0

√
1 +R′(t)2dt. Given a potential V ∈ Ck([0, L]) satisfying Items 1–4 in Assump-

tion 1.2, the function 1
R2(z) := V (x(z)) satisfies the assumptions of Allibert [All98] with c given by x(c) = x0.

We obtain, with this change of variables, that ΦAll(λ) = Φ(λ), TAll(λ) = T (λ) and TAll
1 = T1, where

Φ(λ), T (λ) and T1 are defined in (1.6)-(1.7). Note that x−(λ) = x(z−(λ)) and x+(λ) = x(z+(λ)) in these
definitions.

Moreover, under this change of variable, we have ∂
∂s = 1√

1+R′(z)2
∂
∂z so that the operator PAll

h becomes

− h2

R(s)
∂s (R(s)∂s·) + V (s),

where we have written R(x(z)) = R(z) (and hence V (s) = 1
R(s)2 ). This operator acts on the space

L2
(
(0, L),R(s)ds

)
with domain H2 ∩H1

0 (0, L).
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Now, observe that the map

T : L2((0, L),R(s)ds) → L2((0, L), ds)

u 7→ Tu, with (Tu)(s) = R(s)
1
2u(s)

is an isometry and the conjugated operator of 1
R(s)∂s (R(s)∂s·) is

T

(
1

R(s)
∂s (R(s)∂s·)

)
T−1u = R

1/2

(
1

R(s)
∂s

(
R(s)∂s(R

−1/2u)
))

= ∂2su− V1u,

where V1(s) = − 1
4
R
′(s)2

R(s)2 + 1
2
R
′′(s)

R(s)2 .

We thus obtain
Ph := TPAll

h T−1 = −h2∂2s + V (s) + h2V1(s). (A.5)

This is almost the operator we consider, except for lower order terms.
Then, Allibert [All98] describes the spectrum of the operator PAll

h :

1. he constructs in [All98, Lemmata 6-7 and Section 3.1.2] approximate eigenvalues and eigenfunctions.
The approximate eigenvalues are O(h3/2) close to real eigenvalues;

2. he proves in [All98, Section 3.1.3] that the sequence of real eigenvalues constructed in the first point
actually contains all eigenvalues (using a Sturm-Liouville argument); in particular, the spectrum is
simple;

3. he computes in [All98, Section 3.1.4] the spectral gap (using the explicit expression of the approximate
eigenvalues).

We first collect the following properties of Pε from [All98].

Theorem A.2. Consider the operator Pε acting on the space L2((0, L), dx), with domain H2 ∩ H1
0 (0, L).

Denote by (λεk)k∈N, the sequence of eigenvalues of the operator Pε, sorted so that λεk ≤ λεk+1. Assuming
that V ∈ C∞([0, L]) satisfies Items 1–4 in Assumption 1.2, then Items 1, 2, 3 of Theorem A.1 hold for the
eigenvalues (λεk)k∈N of Pε.

Note that a much finer property than (A.1) is actually proved in [All98], but this weaker form is sufficient
for our needs.

Proof of Theorem A.2 from [All98]. The first lower bound in Item 1 comes from

(Pεu, u)L2 ≥
(
V (x0)− ‖V1‖L∞ε2

)
‖u‖2L2,

and the simplicity of the spectrum from the fact that we consider Dirichlet boundary conditions (hence, the
space of solutions to the ODE eigenvalue equation has dimension one).

Let us now explain how Item 2 is deduced from [All98, Lemme 6 and Lemme 7]. Firstly, note that these
properties concern the eigenvalues of the operator PAll

ε , which, according to (A.5), are exactly those of Pε.
Secondly [All98, Lemme 6 and Lemme 7] prove the existence of a sequence µk,ε such that

Φ(µk,ε) = εkπ + εΘ(ε, µk,ε), (A.6)

where Θ : [0, 1]×R+ → R is a uniformly bounded function, and an eigenvalue of Pε, λ̃
ε
k ∈ {λεℓ , ℓ ∈ N}, such

that |λ̃εk − µk,ε| ≤ C0ε
3/2. Then, in [All98, Section 3.1.3], he proves that the set {λ̃εℓ , ℓ ∈ N} constructed

that way coincides with the spectrum, that is λ̃εk = λεk for all k ∈ N. This implies

µk,ε − C0ε
3/2 ≤ λεk ≤ µk,ε + C0ε

3/2 (A.7)

We set D := sup(ε,µ)∈[0,1]×R+ |Θ(ε, µ)|. As a consequence of (A.6), (A.7), together with the fact that Φ is
increasing, we obtain

Φ(λεk − C0ε
3/2) ≤ Φ(µk,ε) = εkπ + εΘ(ε, µk,ε) ≤ ε(kπ +D)

Φ(λεk + C0ε
3/2) ≥ Φ(µk,ε) = εkπ + εΘ(ε, µk,ε) ≥ ε(kπ −D),
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which proves (A.1).
Finally, concerning Item 3, (A.2) and (A.3) are proved in [All98, Proposition 2 p 1511 and Section 3.1.4].

The last estimate (A.4) comes from

λεℓ+1 − λεℓ =
(√

λεℓ+1 −
√
λεℓ

)(√
λεℓ+1 +

√
λεℓ

)
≥ εγ2

√
λε0 ≥ 2εγ

(
V (x0)− Cε2

)
,

where we have used (A.3) together with Item 1.

We now deduce from this result for Pε a proof of Theorem A.1, that is, prove that the same properties
hold for Pε.

The proof of Theorem A.1 from Theorem A.2 consists in a classical perturbative (deformation) argument,
and relies of the following lemma.

Lemma A.3. Let H be a Banach space, and (P (t))t∈[0,1] ∈ L(H)[0,1] be a family of projectors (in the sense
that P (t)2 = P (t)) having finite rank r(t) ∈ N, and such that the map t 7→ P (t) is continuous [0, 1]→ L(H).
Then, all projectors have the same rank, i.e. r(t) = r(0) for all t ∈ [0, 1].

Proof of Theorem A.1 from Theorem A.2. We write W̃ =W − V1 and set

Aε(t) := (1− t)Pε + tPε = Pε + tε2W̃ .

We denote by (λεk)k∈N the spectrum of Pε, which satisfies Items 1, 2, 3 of Theorem A.1. We have, for
z /∈ Sp(Pε)

z −Aε(t) = (z − Pε)
(
Id−(z − Pε)

−1tε2W̃
)
. (A.8)

Next, we remark that for all t, ε, z such that |t|ε2
∥∥(z − Pε)

−1
∥∥
L

∥∥∥W̃
∥∥∥
∞

< 1, the operator
(
Id−(z −

Pε)
−1tε2W̃

)
is invertible with

(
Id−(z − Pε)

−1tε2W̃
)−1

=
∞∑

n=0

(
tε2(z − Pε)

−1W̃
)n

∥∥∥
(
Id−(z − Pε)

−1tε2W̃
)−1
∥∥∥
L
≤

∞∑

n=0

(
|t|ε2

∥∥(z − Pε)
−1
∥∥
L

∥∥∥W̃
∥∥∥
∞

)n

≤ 1

1− |t|ε2 ‖(z − Pε)−1‖L
∥∥∥W̃

∥∥∥
∞

.

Recalling that
∥∥(z −Aε(t))

−1
∥∥
L = 1

dist(z,Sp(Aε(t)))
for z /∈ Sp(Aε(t)) (since Aε(t) is selfadjoint) together

with (A.8), we deduce

|t|ε2
∥∥(z − Pε)

−1
∥∥
L

∥∥∥W̃
∥∥∥
∞
< 1 =⇒





z /∈ Sp(Aε(t)),

(z −Aε(t))
−1 =

(
Id−(z − Pε)

−1tε2W̃
)−1

(z − Pε)
−1

∥∥(z −Aε(t))
−1
∥∥
L ≤

‖(z−Pε)
−1‖L

1−|t|ε2‖(z−Pε)−1‖L‖W̃‖∞
,

(A.9)

and hence

|t|ε2
∥∥∥W̃

∥∥∥
∞
< dist(z, Sp(Pε)) =⇒ dist(z, Sp(Pε)) ≤ dist(z, Sp(Aε(t))) + |t|ε2

∥∥∥W̃
∥∥∥
∞
.

Now taking z = νε(t) ∈ Sp(Aε(t)) implies that

dist(νε(t), Sp(Pε)) ≤ |t|ε2
∥∥∥W̃

∥∥∥
∞
. (A.10)

We now recall the gap property (A.4) of the spectrum (λεk)k∈N of the operator Pε, and define the contour
(oriented counterclockwise)

Γε
k = ∂B(λεk,

γ2ε

3
).
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According to (A.4), these sets are disjoint and each contains exactly one eigenvalue of Pε. We define the
associated orthogonal projector onto ker(Pε − λεk) by

Πε
k =

∫

Γε
k

(z − Pε)
−1dz

As a consequence of (A.10), we obtain that for all t ∈ [0, 1] and all ε ∈ (0, ε0) with ε0 such that ε20

∥∥∥W̃
∥∥∥
∞
<

γ2ε0
3 , we have

Γε
k ∩ Sp(Aε(t)) = ∅, Sp(Aε(t)) ⊂

⋃

k∈N

B(λεk,
γ2ε

3
).

In particular, we can define the orthogonal projector onto the spectral subspace of Aε(t) associated to its
eigenvalues inside Γε

k, namely,

Πε
k(t) :=

∫

Γε
k

(z −Aε(t))
−1dz

(hence Πε
k(0) = Πε

k). According to (A.9), we have the uniform bound for z ∈ ⋒k∈NΓ
ε
k,

∥∥(z −Aε(t))
−1
∥∥
L ≤

∥∥(z − Pε)
−1
∥∥
L

1− ε2 ‖(z − Pε)−1‖L
∥∥∥W̃

∥∥∥
∞

for t ∈ [0, 1] so that t 7→ Πε
k(t) is continuous [0, 1]→ L(L2). According to Lemma A.3, we obtain Rk(Πε

k(t)) =
Rk(Πε

k) = 1 for all t ∈ [0, 1]. As a consequence, for all t ∈ [0, 1], Aε(t) has a single eigenvalue λεk(t) inside

Γε
k, having multiplicity one. Moreover, from (A.10) we have |λεk(t)− λεk| ≤ |t|ε2

∥∥∥W̃
∥∥∥
∞

.

Items 1, 2, 3 of Theorem A.2 being satisfied by λεk, they are thus satisfied as well by λεk(t) for all
t ∈ [0, 1] and ε ∈ (0, ε0) for ε0 sufficiently small. Note that we use that s 7→ √s is uniformly Lipschitz on
[V (x0) − Cε20,+∞) thanks to Item 1 in Assumption 1.2 and an appropriate choice of ε0. This yields the
sought result in case t = 1.

We finally prove Lemma A.3, which is a consequence of the following remark.

Lemma A.4. Let P1 and P2 two continuous projections with finite respective rank r1 > r2 in a Banach H.
Then, ‖P1 − P2‖H→H ≥ 1.

Proof of Lemma A.4. We define H1 (resp. H2) the range of P1 (resp. P2) which are spaces of finite dimen-
sion. We define the application F : H1 → H2, defined by F (x1) = P2(x1). By the rank-nullity theorem
and the assumption r1 > r2, we have dimker(F ) > 0 and there exists x1 ∈ H1 with ‖x1‖H = 1 so that
P2(x1) = 0. But since x1 ∈ H1, ‖P1(x1)‖H = ‖x1‖H = 1. This gives the result.

Proof of Lemma A.3. given t ∈ [0, 1], there exist δ > 0 such that for all t′ ∈ [0, 1], |t′ − t| ≤ δ =⇒
‖P (t′)− P (t)‖H→H ≤ 1/2. This implies that r(t′) = r(t) for all t′ ∈ [t−δ, t+δ]∩ [0, 1] (this would otherwise
contradict Lemma A.4 since we assume that all projectors have finite rank). A connectedness argument
concludes that r is globally constant on [0, 1].

B A moment result

The purpose of this Section is the proof of Proposition B.1 below which may not be new, but for which
we did not find any reference, especially for the uniform dependence of the constants. The study of of
biorthogonal sequences and their application to controllability of parabolic equations is classical and dates
back to Fattorini-Russell [FR71, FR75]. We also refer to Hansen [Han91], and Ammar Khodja–Benabdallah–
González Burgos–de Teresa [AKBGBdT11]. At the time of writing this article, Cannarsa, Martinez and
Vancostenoble [CMV20] obtained results close to the one we obtain in this section. We have chosen to keep
this section since our method seems simpler, with a slightly more explicit constant. Our proof relies on
an Ingham inequality, see e.g. [Har89, KL05], together with a transmutation argument due to Ervedoza-
Zuazua [EZ11b].

The main result of this section is the following proposition.
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Proposition B.1. For any γ∞ > 0, γ > 0, N ∈ N and any S > π
γ∞

and ε > 0, we can find a constant

C = C(γ∞, γ,N, S, ε) > 0 so that for any sequence (βn)n∈N∗ satisfying

1. βn+1 − βn ≥ γ for all n ∈ N∗ and β1 ≥ γ,
2. βn+1 − βn ≥ γ∞ for any n ∈ N∗ with n ≥ N ,

and for any 0 < T ≤ 1, there exists a sequence of functions (un)n∈N∗ ∈ L2(0, T )N
∗

so that

1. for any l, n ∈ N
∗, we have

∫ T

0 un(t)e
−β2

l tdt = δn,l,

2. For any (an)n∈N∗ so that β2
ne

β2
nTan ∈ ℓ2(N∗), we have

‖z‖2L2(0,T ) ≤
C

T 3
e

(16+ε)S2

T

∑

n∈N∗

β2
ne

2β2
nT |an|2, with z(t) =

∑

n∈N∗

anun(t).

Our proof relies on the following classical inequality due to Ingham-Haraux [Har89, KL05].

Theorem B.2 (Ingham-Haraux). For any γ∞ > 0, γ > 0, and N ∈ N and any S > 2π
γ∞

, we can find a

constant C0 = C0(γ∞, γ,N, S) > 0 so that for any sequence (µk)k∈Z satisfying:

1. µk+1 − µk ≥ γ for all k ∈ Z,

2. µk+1 − µk ≥ γ∞ for any k ∈ Z with |k| ≥ N ,

then, we have

C−1
0

∫ S

0

∣∣∣∣∣
∑

k∈Z

ake
iµks

∣∣∣∣∣

2

ds ≤
∑

k∈Z

|ak|2 ≤ C0

∫ S

0

∣∣∣∣∣
∑

k∈Z

ake
iµks

∣∣∣∣∣

2

ds

for all (ak)k∈Z ∈ ℓ2(Z) with finite support.

Note that in these estimates, only the length of the time interval (0, S) is relevant; under the assumption
that S > π

γ∞
the conclusion holds with the integrals over (0, S) replaced by integrals over (−S, S).

Corollary B.3. For any γ∞ > 0, γ > 0, N ∈ N and any S > π
γ∞

, we can find a constant C0 =

C0(γ∞, γ,N, S) > 0 so that for any sequence (βn)n∈N∗ satisfying Item 1-2 of Proposition B.1, there exists a
sequence of functions (vn)n∈N ∈ L2((−S, S))N∗

so that

∫ S

−S

vn(s) sin(βls) ds = δn,l, for all l, n ∈ N
∗, and

C−1
0

∫ S

−S

∣∣∣∣∣
∑

n∈N∗

bnvn(s) ds

∣∣∣∣∣

2

≤
∑

n∈N∗

|bn|2 ≤ C0

∫ S

−S

∣∣∣∣∣
∑

n∈N∗

bnvn(s) ds

∣∣∣∣∣

2

(B.1)

for all (bn)n∈N∗ ∈ ℓ2(N∗).

Proof. For k ∈ Z, we set µk := βk if k > 0, µk := −β−k if k < 0 and µ0 = 0. That the sequence (µk)k∈Z

satisfies the assumptions of Theorem B.2 readily follows from the assumptions.
Given (bn)n∈N∗ ∈ ℓ2(N∗), we define for k ∈ Z, ak := bk

2i if k > 0, ak := − b−k

2i if k < 0 and a0 := 0. We
have

∑

k∈Z

ake
iµks =

∑

k∈N∗

bk
2i
eiβks − b−k

2i
e−iβks =

∑

n∈N∗

bn sin(βns).

Theorem B.2 (applied on the time interval (−S, S), of length > 2π
γ∞

) gives

C−1
0

∫ S

−S

∣∣∣∣∣
∑

n∈N∗

bn sin(βns)

∣∣∣∣∣

2

ds ≤
∑

n∈N∗

|bn|2 ≤ C0

∫ S

−S

∣∣∣∣∣
∑

n∈N∗

bn sin(βns)

∣∣∣∣∣

2

ds.

In particular, the family (sin(βns))n∈N
forms a Riesz basis of the space it spans in L2(−S, S). Lemma B.4

below in H = L2(−S, S) yields the existence of a biorthogonal family (vn)n∈N∗ to (sin(βns))n∈N∗ satisfy-
ing (B.1) for the same constant C0.

40



To deduce a proof of Proposition B.1, we now construct from the sequence biorthogonal to (sin(βns))n∈N∗

in L2(−S, S), a sequence biorthogonal to (e−β2
nt)n∈N∗ in L2(0, T ) satisfying precise bounds. To this aim, we

use ideas coming from transposition from heat to waves, see [Mil06, EZ11a, EZ11b], and more precisely a
kernel constructed in [EZ11b].

Proof of Proposition B.1. According to [EZ11b, Section 3.1], given α > 2S2, there exists a kernel function
kT (t, s) ∈ C∞(R2) solution to





∂tkT (t, s) + ∂2skT (t, s) = 0, for s ∈ (−S, S), t ∈ (0, T ),

(kT (t, s), ∂skT (t, s)) |s=0 =
(
0, e−α( 1

t
+ 1

T−t )
)
,

kT (t, s)|t=0 = kT (t, s)|t=T = 0, supp(kT ) ⊂ [0, T ]× R.

(B.2)

and such that [EZ11b, Proposition 3.1] for all δ ∈ (0, 1) and all (t, s) ∈ (0, T )× (−S, S), kT satisfies

|kT (t, s)| ≤ |s| exp
(

1

min {t, T − t}

(
s2

δ
− α

(1 + δ)

))
. (B.3)

Let (vn)n∈N∗ the sequence given by Corollary B.3. We define wn ∈ C∞(R) by

wn(t) :=

∫ S

−S

kT (t, s)vn(s)ds, suppwn ⊂ [0, T ].

We compute

∫ T

0

wn(t)e
−β2

l tdt =

∫ T

0

∫ S

−S

kT (t, s)vn(s)e
−β2

l t dtds =

∫ S

−S

vn(s)fl(s)ds (B.4)

where we have set fl(s) =
∫ T

0 kT (t, s)e
−β2

l t dt. Using (B.2), we have for s ∈ (−S, S)

d2

ds2
fl(s) =

∫ T

0

∂2

∂s2
kT (t, s)e

−β2
l t dt = −

∫ T

0

∂

∂t
[kT (t, s)]e

−β2
l t dt = −β2

l

∫ T

0

kT (t, s)e
−β2

l tdt = −β2
l fl(s),

where we have performed an integration by parts using the zero boundary conditions of kT at t = 0 and

t = T . Noticing that fn(0) = 0 and f ′
n(0) =

∫ T

0
e−α( 1

t
+ 1

T−t)e−β2
l tdt, using (B.2), we obtain

fl(s) = cl sin(βls), with cl =
1

βl

∫ T

0

e−α( 1
t
+ 1

T−t)e−β2
l t dt. (B.5)

In particular, using the definition of vn in Corollary B.3 together with (B.4), we have

∫ T

0

wn(t)e
−β2

l tdt = cl

∫ S

−S

vn(s) sin(βls)ds = clδn,l, n, l ∈ N
∗.

Therefore, defining un(t) := c−1
n wn(t) for any n ∈ N

∗, the sequence (un)n∈N∗ forms a family biorthogonal to

(e−β2
l t)l∈N∗ in L2(0, T ), which proves Item 1 of the proposition. It only remains to estimate un to conclude

the proof, that is, estimate c−1
l . We have, performing the change of variable σ = 2t

T − 1, for all ν ∈ (0, 1),

∫ T

0

e−α( 1
t
+ 1

T−t )dt =
T

2

∫ 1

−1

e
− 4α

T

(
1

1−σ2

)

dσ ≥ T

2

∫ ν

−ν

e
− 4α

T

(
1

1−σ2

)

dσ ≥ Tνe−
4α
T

(
1

1−ν2

)

and thus, with ν =
(
1 + α

T

)−1/2
, we have 1

1−ν2 = 1 + T
α and this lower bound reads

∫ T

0

e−α( 1
t
+ 1

T−t)dt ≥ T
(
1 +

α

T

)−1/2

e−
4α
T

−4 ≥ CT 3/2e−
4α
T ,

for T ∈ [0, 1]. As a consequence, with cl defined in (B.5), we have the rough esimate

cl ≥
1

βl
e−β2

l T

∫ T

0

e−α( 1
t
+ 1

T−t) dt ≥ C T
3/2

βl
e−β2

l T e−
4α
T . (B.6)
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Finally, for a finite sequence (an)n∈N∗ (see below for a definition) and bn = c−1
n an, we write

z(t) =
∑

n∈N∗

anun(t) =
∑

n∈N∗

bnwn(t) =

∫ S

−S

∑

n∈N∗

kT (t, s)bnvn(s)ds.

By Cauchy-Schwarz inequality in L2(−S, S), we deduce

‖z‖2L2(0,T ) =

∫ T

0

(∫ S

−S

∑

n∈N∗

kT (t, s)bnvn(s)ds

)2

dt ≤
∫ T

0

‖kT (t, ·)‖2L2(−S,S)

∫ S

−S

∣∣∣∣∣
∑

n∈N∗

bnvn(s)

∣∣∣∣∣

2

dsdt

≤ C0

∫ T

0

‖kT (t, ·)‖2L2(−S,S) dt
∑

n∈N∗

|bn|2,

after having used (B.1). Then, we fix α := 2S2(1 + ε) for ε > 0, and next fix δ ∈ (0, 1) close to 1 so that

δ/(1 + δ) < 2 and S2/δ < α/(1 + δ), and by (B.3), |kT (t, s)| ≤ Se
2
T

(
S2

δ
− α

1+δ

)

≤ S uniformly in T ∈ [0, 1].
Therefore, we obtain

‖z‖2L2(0,T ) ≤ C
∑

n∈N∗

c−2
n |an|2 ≤

C

T 3
e

8α
T

∑

n∈N∗

β2
ne

2β2
nT |an|2 =

C

T 3
e

16S2(1+ε)
T

∑

n∈N∗

β2
ne

2β2
nT |an|2

after having used (B.6).

We have used the following classical lemma that we state and prove only because we did not find any
reference precising the constants involved. The proof we present is taken from Gohberg-Krein [GK69,
Theorem 2.1 p310].

In the following, we shall say that a sequence (ak)k∈N is finite if ak 6= 0 for only a finite number of indices
k ∈ N.

Lemma B.4 (Biorthogonal family with explicit constants). Let H be a Hilbert space with norm ‖·‖H ,
C1, C2 > 0 two constants, and (ϕk)k∈N ∈ HN a sequence so that

C1

∥∥∥∥∥
∑

k∈N

akϕk

∥∥∥∥∥

2

H

≤
∑

k∈N

|ak|2 ≤ C2

∥∥∥∥∥
∑

k∈N

akϕk

∥∥∥∥∥

2

H

(B.7)

for any finite sequence (ak)k∈N. Then, there exists a sequence (ψk)k∈N in spank∈N ϕk so that

(ϕk, ψn)H = δk,n, for all k, n ∈ N,

and

C−1
2

∥∥∥∥∥
∑

k∈N

akψk

∥∥∥∥∥

2

H

≤
∑

k∈N

|ak|2 ≤ C−1
1

∥∥∥∥∥
∑

k∈N

akψk

∥∥∥∥∥

2

H

for any finite sequence (ak)k∈N.

Proof. Let (ek)k∈N be an arbitrary orthonormal basis of the Hilbert space H̃ = spank∈N ϕk endowed with
the norm ‖·‖H̃ = ‖·‖H . We define two linear operators, A on spank∈N ek and A1 on spank∈N ϕk, by

A

(
∑

k∈N

akek

)
=

(
∑

k∈N

akϕk

)
; A1

(
∑

k∈N

akϕk

)
=

(
∑

k∈N

akek

)

for finite sequences (ak)k∈N. Note that it is uniquely defined thanks to the orthogonality of the family
(ek)k∈N and Assumption (B.7). Assumption (B.7) actually gives more precisely

∥∥∥∥∥A
(
∑

k∈N

akek

)∥∥∥∥∥

2

H

≤ C−1
1

∑

k∈N

|ak|2 = C−1
1

∥∥∥∥∥
∑

k∈N

akek

∥∥∥∥∥

2

H

,

∥∥∥∥∥A1

(
∑

k∈N

akϕk

)∥∥∥∥∥

2

H

=

∥∥∥∥∥
∑

k∈N

akek

∥∥∥∥∥

2

H

=
∑

k∈N

|ak|2 ≤ C2

∥∥∥∥∥
∑

k∈N

akϕk

∥∥∥∥∥

2

H

.
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In particular, A and A1 can be extended uniquely by uniform continuity to H̃ (recall that spank∈N ek =

H̃ = spank∈N ϕk by definition) with ‖A‖H̃→H̃ ≤ C
−1/2
1 and ‖A1‖H̃→H̃ ≤ C

1/2
2 . Moreover, they satisfy

AA1 = A1A = IdH̃ . Then, we define ψn := A∗
1en. With this definition, we have

(ϕk, ψn)H = (ϕk, A
∗
1en)H = (A1ϕk, en)H = (ek, en)H = δk,n.

Moreover,

∥∥∥∥∥
∑

k∈N

akψk

∥∥∥∥∥

2

H

=

∥∥∥∥∥A
∗
1

(
∑

k∈N

akek

)∥∥∥∥∥

2

H

≤ ‖A∗
1‖2H̃→H̃

∥∥∥∥∥
∑

k∈N

akek

∥∥∥∥∥

2

H

≤ C2

∑

k∈N

|ak|2,

∑

k∈N

|ak|2 =

∥∥∥∥∥A
∗A∗

1

(
∑

k∈N

akek

)∥∥∥∥∥

2

H

≤ ‖A∗‖2H̃→H̃

∥∥∥∥∥
∑

k∈N

akψk

∥∥∥∥∥

2

H

≤ C−1
1

∥∥∥∥∥
∑

k∈N

akψk

∥∥∥∥∥

2

H

,

which concludes the proof of the lemma.

C Proofs of technical results

In this section, we provide with proofs of some technical results stated in the introduction.

C.1 Proof of Lemma 1.9

Proof of Lemma 1.9. Note that for E > minV = V (x0), Φ is differentiable at all points where x− and x+
are, that is for E ∈ R \ {V (L), V (0)}, with

Φ′(E) = x′+(E)
√
E − V (x+(E))− x′−(E)

√
E − V (x−(E)) +

∫ x+(E)

x−(E)

1

2
√
E − V (s)

ds

=

∫ x+(E)

x−(E)

1

2
√
E − V (s)

ds =
1

4
√
E
T (E).

As a consequence, we have
(
Φ(E2)

)′
= 2EΦ′(E2) = 1

2T (E
2).

C.2 Proof of Lemma 1.10

Proof of Lemma 1.10. Hence, T1 (defined in (1.7)) and TE,B (defined in (1.8)) are linked by: (recall E0 =

V (x0) =
|f′(x0)|2

4 )

TE,B =
1

π

∫ +∞

V (x0)

log

∣∣∣∣
x+ E + 2B

x− E

∣∣∣∣Φ
′(x)dx =

1

π

∫ +∞

V (x0)

log

∣∣∣∣
x+ E + 2B

x− E

∣∣∣∣
T (x)

4
√
x
dx ≤ T1Γ(E,B, V (x0)),

with

Γ(E,B,E0) =
1

π

∫ +∞

E0

log

∣∣∣∣
x+ E + 2B

x− E

∣∣∣∣
1

4
√
x
dx =

1

2π

∫ +∞

√
E0

log

∣∣∣∣
y2 + E + 2B

y2 − E

∣∣∣∣ dy.

Changing variables in this last integral, we obtain

Γ(E,B,E0) =

√
E0

2π
Γ0

(√
E + 2B

E0
,

√
E

E0

)
, with Γ0(α, β) =

∫ +∞

1

log

∣∣∣∣
y2 + α2

y2 − β2

∣∣∣∣ dy

We have obtained

TE,B ≤
T1
√
E0

2π
Γ0

(√
E + 2B

E0
,

√
E

E0

)
,
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and we now compute Γ0(α, β) for α, β ≥ 1 (since E ≥ E0). We set, for α, β ≥ 1

Fα(y) := y
(
log(y2 + α2)− 2

)
+ 2α arctan

( y
α

)
, y ∈ R,

G+
β (y) := y

(
log(y2 − β2)− 2

)
+ β log

(
y + β

y − β

)
, y > β,

G−
β (y) := y

(
log(β2 − y2)− 2

)
+ β log

(
β + y

β − y

)
, 1 ≤ y < β,

and notice that F ′
α(y) = log(y2 + α2) for all y ∈ R, (G+

β )
′(y) = log(y2 − β2) for all y > β and (G−

β )
′(y) =

log(β2−y2) for all 1 ≤ y < β. Moreover, we notice that limy→β+ G+
β (y) = 2β(log(2β)−1) = limy→β− G−

β (y),

and thus Gβ := 1(−∞,β)G
−
β + 1[β,+∞)G

+
β is continuous. As a consequence, we can compute explicitly for

α, β ≥ 1

Γ0(α, β) = [Fα(y)−Gβ(y)]
∞
1 = lim

y→+∞
(Fα(y)−G+

β (y))− (Fα(1)−G−
β (1)) = πα− Fα(1) +G−

β (1)

= πα− log(1 + α2)− 2α arctan

(
1

α

)
+ log(β2 − 1) + β log

(
β + 1

β − 1

)
,

which is the sought result.

C.3 Proof of Lemma 1.11

Proof of Lemma 1.11. Note first that, recalling that WE = f
2 +dA,E and W̃E = f

2 −dA,E, and that dA,E = 0
on KE , we obtain

min
[0,L]

WE ≤ min
KE

WE = min
KE

W̃E ≤ sup
[0,L]

W̃E ,

and thus (1.18) holds true. Next, according to Lemma 1.10, the quantities S1.6,E,B and S1.7 are linked by

0 = S1.5 ≤ S1.6,E,B = TE,B ≤
S1.7
4π
√
2
Γ0

(√
E + 2B

E0
,

√
E

E0

)
,

As a consequence, using that 2E+B
E0

=
(√

E+2B
E0

)2
+
(√

E
E0

)2

S1.6,E,B

E +B
≤ E0

E +B

S1.7
E0

1

4π
√
2
Γ0

(√
E + 2B

E0
,

√
E

E0

)
≤ S1.7

E0

1

2π
√
2

sup
α≥β≥1

1

α2 + β2
Γ0(α, β).

Note that the supremum is actually a maximum according to Lemma 1.10, whence (1.19).

C.4 Proof of Lemma 1.12

Proof of Lemma 1.12. We write f = ±g with g strictly increasing [0, L]; the case f increasing (resp. decreas-
ing) will be denoted the case + (resp. −) and in both cases we have g′ ≥ 0.

Note that we only need to prove the result in the case E ∈ V ([0, L]), for if E > maxV , we have dA,E = 0

identically on [0, L] and thus WE = W̃E = f
2 and the result follows.

For E ≥ E0, we recall that x±(E) are defined just after (1.7). Outside of KE = [x−(E), x+(E)], we have

d′A,E(x) =
√

|g′(x)|2
4 − E for x ≥ x+(E), and d′A,E(x) = −

√
|g′(x)|2

4 − E for x ≤ x−(E). As a consequence,

recalling the definition of WE in (1.4), we have

W ′
E(x) = −

√
|g′(x)|2

4 − E ± g′(x)
2 = g′(x)

2

(
−
√
1− 4E

|g′(x)|2 ± 1
)

for x ≤ x−(E),

W ′
E(x) = ± g′(x)

2 for x ∈ [x−(E), x+(E)],

W ′
E(x) =

√
|g′(x)|2

4 − E ± g′(x)
2 = g′(x)

2

(√
1− 4E

|g′(x)|2 ± 1
)

for x ≥ x+(E).
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Outside of KE = [x−(E), x+(E)], we always have 0 ≤
√
1− 4E

|g′(x)|2 ≤ 1, so that for x ∈ [0, L], WE is

increasing in the case + and decreasing in the case −.
Concerning W̃E(s) =

f
2 (s)− dA,E(s), we compute similarly

W̃E

′
(x) = ± g′(x)

2 +
√

|g′(x)|2
4 − E = g′(x)

2

(
±1 +

√
1− 4E

|g′(x)|2
)

for x ≤ x−(E),

W̃E

′
(x) = ± g′(x)

2 for x ∈ [x−(E), x+(E)],

W̃E

′
(x) = ± g′(x)

2 −
√

|g′(x)|2
4 − E = g′(x)

2

(
±1−

√
1− 4E

|g′(x)|2
)

for x ≥ x+(E).

So, as for WE , the function W̃E(s) is increasing on [0, L] in the case + and decreasing in the case −.
To summarize, in the case +, we have

min
[0,L]

WE =WE(0); sup
[0,L]

W̃E = W̃E(L);

while in the case −, we have

min
[0,L]

WE =WE(L); sup
[0,L]

W̃E = W̃E(0);

The statements concerning G1.5,E = G1.7,E =WE(0)−min[0,L]WE = 0 and G1.6,E =WE(0)−sup[0,L] W̃E

are then direct consequences of the above results.
Concerning the last properties of these functions, we notice that dA,E(0) and dA,E(L) are non-increasing

functions of E. This proves that G1.6,E is non increasing in both cases.
Finally, if g is odd, then g′ = |g′| is even and dA,E is even. All sought simplifications follow.

C.5 Elementary computations

We collect here two elementary lemmata, that are used in the proof of Theorem 1.7.

Lemma C.1. Let a, b > 0, and set F (m) := a
(1−m) − bm for m ∈ [0, 1). Then,

• if a ≤ b then, minm∈[0,1) F (m) = F
(
1−

√
a
b

)
= 2
√
ab− b;

• if a ≥ b then, minm∈[0,1) F (m) = F (0) = a.

Proof. We simply write F ′(m) = a
(1−m)2 − b ≥ 0⇔ (1−m)2 ≤ a

b ⇔ 1−m ≤
√

a
b ⇔ m ≥ 1−

√
a
b .

Lemma C.2. Let a, b, c > 0. Let G(T ) = minm∈[0,1)
a

(1−m)T − bmT + c. Then,

G(T ) < 0 if and only if T > 2

√
a

b
+
c

b
.

Proof. In the case a ≥ bT 2, it follows from Lemma C.1 that G(T ) ≥ 0. In case a ≤ bT 2, we have from
Lemma C.1 that G(T ) = minm∈[0,1)

a
(1−m)T − bmT + c = 2

√
ab− bT + c which gives the result.
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