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Uniform observation of semiclassical Schrödinger eigenfunctions on

an interval

Camille Laurent∗and Matthieu Léautaud†

Abstract

We consider eigenfunctions of a semiclassical Schrödinger operator on an interval, with a single-well
type potential and Dirichlet boundary conditions. We give upper/lower bounds on the L

2 density of the
eigenfunctions that are uniform in both semiclassical and high energy limits. These bounds are optimal
and are used in an essential way in the companion paper [LL22] in application to a controllability problem.
The proofs rely on Agmon estimates and a Gronwall type argument in the classically forbidden region,
and on the description of semiclassical measures for boundary value problems in the classically allowed
region. Limited regularity for the potential is assumed.
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1 Introduction and main results

We investigate the localization of eigenfunctions of the semiclassical Schrödinger operator

Pε := −ε2∂2x + Vε(x), (1.1)

on the interval [0, L], with Dirichlet boundary conditions, where Vε : [0, L] → R is a family of real-valued
bounded potentials. In this setting, for any ε > 0, the operator Pε endowed with domain D(Pε) = H2([0, L])∩
H1

0 ([0, L]) is a selfadjoint operator on L2(0, L), with compact resolvents. Its spectrum Sp(Pε) thus consists

∗CNRS UMR 7598 and Sorbonne Universités UPMC Univ Paris 06, Laboratoire Jacques-Louis Lions, F-75005, Paris, France,

email: camille.laurent@sorbonne-universite.fr
†Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, CNRS, Bâtiment 307, 91405 Orsay Cedex France, email:

matthieu.leautaud@math.u-psud.fr.

1



only in countably many real eigenvalues with finite multiplicity (equal to 1 since this is a 1D problem). We
are concerned with properties of eigenfunctions of Pε, that is to say, solutions ψ to

Pεψ = Eψ, ψ ∈ H2([0, L]) ∩H1
0 ([0, L]), ‖ψ‖L2([0,L]) = 1, (1.2)

where, as already mentioned, E is necessary a real number (depending on ε). We shall further assume that
the potentials Vε converge to a fixed potential V . The assumptions we make on Vε and V are one of the two
following.

Assumption 1.1. Assume

• V ∈ C0([0, L];R), Vε ∈ L∞(0, L;R) are real valued and ‖V − Vε‖L∞(0,L) → 0;

• there is x = x0 ∈ (0, L) such that V is strictly decreasing on [0,x0] and strictly increasing on [x0, L].

Assumption 1.2. Assume

• Vε, V ∈ C1([0, L];R) are real valued and ‖V − Vε‖C1([0,L]) → 0;

• the only x ∈ [0, L] such that V ′(x) = 0 is x = x0 ∈ (0, L) and V (x0) = min[0,L] V .

Note that Assumption 1.2 implies Assumption 1.1. We shall also write alternatively Vε(x) = V (x) + qε(x)
with qε → 0 in L∞ or C1 topology as ε → 0. That is to say, we consider the single well problem on the
interval. We denote by E0 the ground state energy, that is to say

E0 = min
x∈[0,L]

(V (x)) = V (x0).

The classically allowed region at energy E for the potential V is defined by:

KE = {x ∈ [0, L], V (x) ≤ E},

and the Agmon distance (see e.g. [Hel88, Chapter 3]) to the set KE at the energy level E by

dA,E(x) := inf
y∈KE

∣∣∣∣
∫ x

y

√
(V (s)− E)+ds

∣∣∣∣ =
∣∣∣∣
∫ x

yE

√
(V (s)− E)+ds

∣∣∣∣ , if E ≥ E0, (1.3)

where (V (x) − E)+ = max (V (x)− E, 0) and where yE is any point in KE . Note in particular that dA,E

vanishes identically on KE (and only on this set). If E < E0, we have KE = ∅ so that the Agmon distance
above is not well-defined; in that case, we shall use the convention that

dA,E(x) = dA,E0(x), if E ≤ E0.

This is the appropriate convention since, if ψ and E ∈ R satisfy (1.2), the L2 inner product of (1.2) with ψ
yields

E = ε2 ‖ψ′‖2L2([0,L]) +

∫

[0,L]

(V + qε)|ψ|2, (1.4)

and thus, under Assumption 1.1,

E ∈ Sp(Pε) =⇒ E ≥ E0 − ‖qε‖∞ →ε→0+ E0. (1.5)

Under Assumption 1.2, we prove upper and lower bounds that, roughly speaking, say that solutions of

Pεψ = Eψ behave, in the sense of L2-density, like |ψ(x)| ∼ e−
dA,E(x)

ε up to some loss e
δ
ε . The upper bounds

on the eigenfunctions of Pε are expressed under the form of uniform Agmon estimates.

Theorem 1.3 (Upper bounds on eigenfunctions: uniform Agmon type estimates). Let V, Vε satisfy Assump-
tion 1.1. Then, for all δ > 0 there exist ε0 = ε0(δ) ∈ (0, 1] such that for all E ∈ R and ψ solution to (1.2),
we have for all ε < ε0

∥∥∥∥∥e
dA,E

ε
ε√

|E|+ 1
ψ′

∥∥∥∥∥
L2

+

∥∥∥∥e
dA,E

ε ψ

∥∥∥∥
L2

≤ e
δ
ε . (1.6)

ε√
|E|+ 1

|ψ′(0)| ≤ e−
dA,E(0)−δ

ε ,
ε√

|E|+ 1
|ψ′(L)| ≤ e−

dA,E(L)−δ

ε . (1.7)
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The main result of this note is the following converse estimate.

Theorem 1.4 (Lower bounds on eigenfunctions). Let V, Vε satisfy Assumption 1.2. Then, for any interval
U ⊂ [0, L] with nonempty interior and any δ > 0, there is ε0 > 0 such that for all E ∈ R and ψ solution
to (1.2), we have for all ε < ε0,

‖ψ‖L2(U) ≥ e−
1
ε (dA,E(U)+δ), dA,E(U) = inf

x∈U
dA,E(x), (1.8)

ε√
|E|+ 1

|ψ′(0)| ≥ e−
1
ε (dA,E(0)+δ),

ε√
|E|+ 1

|ψ′(L)| ≥ e−
1
ε (dA,E(L)+δ). (1.9)

Note that this lower bound is as precise as the upper bound (1.6) (except for the δ loss) and thus essentially

optimal. Also, in these estimates, the loss e−
δ
ε can be removed/improved in several situations (see e.g.

Proposition 2.3 in the classically allowed region).
Remark that Theorems 1.4 and 1.3 are counterparts one to the other. They state essentially that, in

this very particular one dimensional setting, an eigenfunction ψ associated to the energy E satisfies |ψ(x)| ∼
e−

dA,E(x)

ε in the sense of L2 density (and that this is uniform in E, x, ε).
Notice finally that, under Assumption 1.1, the set KE is an interval given for E ≥ E0 by KE =

[x−(E), x+(E)] ⊂ [0, L], where x±(E) are defined precisely below.

Definition 1.5. For E ≥ E0, set

• x−(E) the solution to V (x−(E)) = E which is ≤ x0 for E ≤ V (0), and x−(E) = 0 for E ≥ V (0),

• x+(E) the solution to V (x+(E)) = E which is ≥ x0 for E ≤ V (L), and x+(E) = L for E ≥ V (L),

(with x0 = x−(E0) = x+(E0) if E = E0).

The proof of Theorem 1.4 relies on an explicit expression of semiclassical measures in the present context,
which is of its own interest.

Theorem 1.6. Assume that Vε, V satisfy Assumption 1.2. Suppose that εn → 0, En → E∗ ∈ R ∪ {+∞} as
n→ +∞, and ψn solves

(Pεn − En)ψn = rn, ψn ∈ H2([0, L]) ∩H1
0 ([0, L]), ‖ψn‖L2([0,L]) = 1, (1.10)

where ‖rn‖L2(0,L) = o(εn). Then, in the sense of weak−∗ convergence of measures, we have |ψn(x)|2dx ⇀ mE∗

for a nonnegative Radon measure mE∗
on [0, L] explicitely given by

mE∗
= CE∗

1(x−(E),x+(E))(x)dx√
(E − V (x))+

, if E0 < E∗ < +∞, with CE∗
=

(∫ x+(E∗)

x−(E∗)

dx√
E∗ − V (x)

)−1

,

mE∗
= δx0 , if E∗ = E0,

mE∗
=
dx

L
, if E∗ = +∞.

Moreover, in R we have

|εnψ′
n(0)|2 → 2CE∗

√
E∗ − V (0)1V (0)<E∗

, |εnψ′
n(L)|2 → 2CE∗

√
E∗ − V (L)1V (L)<E∗

, if E∗ < +∞,

E−1
n |εnψ′

n(0)|2 → 2

L
, E−1

n |εnψ′
n(L)|2 → 2

L
, if E∗ = +∞.

Several remarks are in order. First, for a given E∗, the uniqueness of the limit measure implies that the
whole sequence |ψn(x)|2dx converges. This is an extremely rare situation (probably linked to the simplicity
of the spectrum and the regularity of the spectral gap in this 1D situation, but we do not use this information
here).

Second, this theorem only describes the limit measures of |ψn(x)|2dx. The latter are projections on the
x-space of the semiclassical measure that live in the phase-space (x, ξ) ∈ [0, L]×R, and are as well described
explicitly in the proof of Theorem 1.6. Their expression is slightly less readable, so that we decided not to
write them here.
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Other possible approaches to this problem (which could in principle also lead to statements like those of
Theorems 1.4 and 1.6) include WKB expansions (at least to leading order), see e.g. [GS94, pp139-143] for
the single well problem in R or [Dui74] (in a much more general seeting), or ODE methods see e.g. [Olv74,
Section 6 pp 190–198], [BS91, Theorems 4.5 and 4.6] or [FF02].

The study of eigenvalues and eigenfunctions for 1D Schrödinger operators in the semiclassical limit is a
classical topics; we refer e.g. to the seminal papers of Simon [Sim83] and Helffer-Sjöstrand [HS84] for the
bottom energy and Helffer-Robert [HR84] for higher energies, as well as the books by Helffer and Dimassi-
Sjöstrand [Hel88, DS99]. In particular, the proof of Theorem 1.3 consists in a rather classical Agmon esti-
mates [HS84, Hel88, DS99], and we essentially need to check here the limited regularity of the potential and
the uniform dependence on the energy levels E. This uniformity is necessary for the proof of Theorem 1.6
in [LL22].

The literature on lower bounds (such as given in Theorem 1.4) and semiclassical measures (such as given
in Theorem 1.6) for a boundary value problem is slightly poorer. We mention the article [All98] where an
analogue of Theorem 1.4 is stated in which the lower bounds in the right hand-sides of (1.8) and (1.9) is given
in terms of the Agmon distance to the ground energy dA,E0 . Similar (but less precise) estimates have been
also used by the authors in [LL21a, LL21b] for applications to eigenfunctions on surfaces of revolution.

The exponential bounds obtained in both Theorem 1.3 and 1.4 could certainly be refined under additional
assumptions (analyticity of Vε = V , non degeneracy of V at x0...), especially for the bottom energy E0, using
e.g. some of the techniques developed in [HS84, HS86, Hel88, DS99, HN06].

Note finally that there are very few situations in which semiclassical measures of eigenfunctions/quasimodes
can be described explicitely; see e.g. [Jak97] on the torus or [ALM16] on the disk. It is therefore satisfactory
to be able to express all semiclassical measures in this very simple geometric situation. Refer to [HMR87,
Section 4] (relying on [Dui74])for a related statement in case Vε = V is smooth, and without boundary, linked
to quantum ergodicity. Note by the way that the proof of Theorem 1.6 below implies in particular that the
operator (1.1) is quantum unique ergodic at all energy levels under Assumption 1.2.

The plan of the article is thus as follows. Section 2 is devoted to the proofs of the above results. The proof
of Theorem 1.3, consequence of Agmon estimates, is first given in Section 2.1 below as a warmup. Then, we
focus on the proof of Theorem 1.4, which relies on three key lemmata:

• a geometric control estimate in the classically allowed region, proved in Section 2.2. The latter essentially
reduces to the description of semiclassical measures as stated in Theorem 1.6, and Section 2.2 is thus
dedicated to the proof of Theorem 1.6;

• a tunneling estimate into the classically forbidden region (inspired by [All98]), with sharp tunneling
rate, proved in Section 2.3;

• a rough Gronwall estimate used to patch the previous two estimates in the transition between the
classically allowed and forbidden regions (that is, near the two turning points), also proved in Section 2.3.

The last two points use arguments inspired by [All98, Section 3.2 pp1541-1546]. There are three main
differences with that reference. First, we have dA,E in the exponent of Theorem 1.4, where Allibert only
had dA,E0 . Second, our estimate is uniform with respect to the energy level E. Third, the potential has
limited regularity and can be perturbed by lower order terms (denoted qε here). This uniformity is actually
a source of some complications in the proofs. Yet, it is necessary for the proof of the cost of controllability in
Theorem 1.6 in [LL22]. We finally prove Theorem 1.4 from the three key lemmata in Section 2.4.

Section 3 is devoted to the proof of several technical properties of semiclassical measures for boundary-
value problems (and in dimension one only), that are prerequisites to the proof of Theorem 1.6. The results
are summarized in Proposition 2.4.

The plan of Section 3 is as follows. We start by proving a priori estimate and the so-called hidden regularity
of traces in Section 3.1. This allows to define semiclassical measures associated to the eigenfunctions ψn(x)
(as well as limits of the Neumann traces), that are lifts to the phase space (x, ξ) ∈ [0, L]×R of the measures
mE∗

appearing in Theorem 1.6. We then prove that these semiclassical measures are supported on the energy
layer {ξ2+V (x) = E∗} in Section 3.2. Next, we prove in Section 3.3 that the measure satisfies an appropriate
transport equation (charged at the boundary). Invariance properties near the boundary are finally deduced
in Section 3.4.
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Most arguments in Section 3 are essentially inspired from the seminal paper of Gérard and Leicht-
nam [GL93], where eigenfunctions of the Laplace operator are considered in any dimension, in domains
with boundary having limited smoothness. We believe it is useful to provide here with a detailed argument
in our context for two reasons. First, the results of [GL93] do not apply here since they only deal with the
flat Laplacian without potential. Second, the proofs of [GL93] (as well as other references on boundary prop-
agation for semiclassical measures, e.g. [Leb96, Bur97a, Bur97b, RZ09]) are highly technical because of the
geometry and the weak regularity of the boundary. Many arguments simplify considerably in our 1D context.
We thus take this as an opportunity to write a proof as detailed and pedagogical as possible, which we hope
can be read as an elementary introduction to boundary propagation.

Note that although the problem is one dimensional, the fact that we consider a semiclassical Schrödinger
operator makes it a very good toy model that encompasses part of the richness of propagation theory for
boundary value problems [MS78]. Indeed, we shall see that elliptic, hyperbolic and glancing points all arise
on the energy layer ξ2 + V (x) = E∗ for certain values of the energy E∗ (see Section 3.4).

Note finally that all proofs of the present article are completely self-contained except for the standard
semiclassical calculus in R.

Acknowledgements. The second author is partially supported by the Agence Nationale de la Recherche under
grants SALVE ANR-19-CE40-0004 and ADYCT (ANR-20-CE40-0017).

The authors would like to thank Bernard Helffer for his remarks on a preliminary version of this work and
for and pointing out several references.

2 Proofs

Before turning to the proofs, we start with two simple remarks that will be used along the proofs. The first
remark aims at reducing the proofs to the energies E that are ≥ E0.

The first remark concerns the a priori regularity of the functions x± of Definition 1.5 and dA,E defined
in (1.3).

Lemma 2.1. Under Assumption 1.1, the functions x± : [E0,∞) → [0, L] are uniformly continuous function.
The function R × [0, L] → R defined by (E, x) 7→ dA,E(x) is uniformly continuous and x 7→ dA,E(x) is
C-Lipschitz with C independent of E.

Proof. The first statement comes from continuity of V −1 on the compact [x0, L] (and similarly on [0,x0]).
The second statement follows from the explicit expression

dA,E(x) =
∫ x

x+(E)

√
V (s)− Eds, if E ≥ E0, x ≥ x+(E),

dA,E(x) = 0, if E ≥ E0, x ∈ [x−(E), x+(E)],

dA,E(x) =
∫ x−(E)

x

√
V (s)− Eds, if E ≥ E0, x ≤ x−(E),

dA,E(x) = dA,E0(x) =
∣∣∣
∫ x

x0

√
V (s)− Eds

∣∣∣ , if E ≤ E0, x ∈ [0, L],

and in particular, dA,E(x) = 0 for E ≥ maxV and dA,E(x) = dA,E0(x) for E ≤ E0. Moreover, we see that

dA,E is C-Lipschitz with C = max
{√

V (x)− E,E ∈ [E0,maxV ], x ∈ [0, L]
}
.

The second remark concerns the reduction of the statements for all energy levels E ∈ R to only E ≥ E0.

Remark 2.2. We notice that it suffices to prove the statements of Theorems 1.3–1.4 for E ≥ E0 (and not
for all E ∈ R).

Indeed, if Pεψ = Eψ, and if we set Eε = E + ‖qε‖∞, we then have Eε ≥ E0 from (1.5). Moreover, with
P̃ε = Pε+‖qε‖∞ (which is equal to Pε with qε replaced by q̃ε = qε+‖qε‖∞ ≥ 0 which is such that ‖q̃ε‖L∞ → 0
under Assumption 1.1 or ‖q̃ε‖C1 → 0 under Assumption 1.2) we have P̃εψ = Eεψ.

The results of Theorems 1.3–1.4 apply to P̃ε and Eε ≥ E0 with dA,E replaced by dA,Eε . The conclusion
for all E ∈ R follows from Lemma 2.1 below: for any δ > 0 there is ε0 > 0 such that for all dA,E−δ ≤ dA,Eε ≤
dA,E + δ uniformly on x ∈ [0, L] and ε < ε0.
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2.1 Uniform Agmon estimates: Proof of Theorem 1.3

We follow e.g. [Hel88] for the proof of Theorem 1.3.

Proof of Theorem 1.3. Notice first that according to Remark 2.2, it suffices to consider E ≥ E0. Next, consider
the range E ≥ max[0,L] V . In that case, (V −E)+ = 0 and the Agmon distance dA,E vanishes identically on
[0, L]. Hence the statement (1.6) writes

ε√
|E|+ 1

‖ψ′‖L2 + ‖ψ‖L2 ≤ e
δ
ε ,

which, for ε sufficiently small, is a consequence of ‖ψ‖L2([0,L]) = 1 together with

ε2 ‖ψ′‖2L2([0,L]) ≤ (|E|+ ‖V ‖∞ + 1),

which follows from (1.4). Next, Estimate (1.7) holds uniformly on compact sets of energies E as a consequence
of the hidden regularity Estimate (3.2) in Lemma 3.1 below, taken for h = ε and V = V1 = Vε − E. For

E ≥ 1, we write Estimate (3.2) for h = ε√
E

,V1 = Vε

E = h2

ε2 Vε and V2 = −1. This implies that ε√
E
|ψ′(0)| =

h|ψ′(0)| ≤ Ch−1‖V1‖L∞ + C ≤ h
ε2 ‖Vε‖L∞ + C ≤ ε−2CV,qε uniformly in E, ε, and in particular (1.7) holds in

this range of energies.

We finally consider the most substantial case, namely E ∈ [min[0,L] V −1,max[0,L] V ], and proceed with the
proof of the Agmon estimates. We start with the following integration by parts formula. For all φ ∈W 1,∞(0, L)
and u ∈ H2 ∩H1

0 (0, L) we have

∫ L

0

(
ε2|∂x(eφ/εu)|2 − |∂xφ|2e2φ/ε|u|2

)
= Re

∫ L

0

e2φ/ε(−ε2∂2xu)u.

We use this identity with u = ψ a solution to −ε2ψ′′ + V ψ + qεψ = Pεψ = Eψ. This yields

∫ L

0

ε2|∂x(eφ/εψ)|2 +
∫ L

0

(V − E − |∂xφ|2 + qε)e
2φ/ε|ψ|2 = 0.

We now write (0, L) = Ω+
α ⊔ Ω−

α with Ω+
α = {V − E ≥ α2} and Ω−

α = {V − E < α2} for some 0 < α ≤ 1 to
be chosen later. We obtain
∫ L

0

ε2|∂x(eφ/εψ)|2 +
∫

Ω+
α

(V − E − |∂xφ|2 + qε)e
2φ/ε|ψ|2 ≤ sup

Ω−
α

∣∣V − E − |∂xφ|2 + qε
∣∣
∫

Ω−
α

e2φ/ε|ψ|2. (2.1)

We now choose the weight φ = (1 − δ)dA,E for δ ∈ (0, 1) (where dA,E is defined in (1.3) and is Lipschitz
continuous according to Lemma 2.1).

On Ω+
α , noticing that |d′A,E |2 = (V − E)+ = V − E, we have

V − E − |∂xφ|2 + qε = (V − E)(1− (1 − δ)2) + qε ≥ α2δ(2− δ)− ‖qε‖∞ ,

hence providing with a lower bound for the left handside of (2.1). Concerning the right handside of (2.1), we
write for E ∈ [min[0,L] V,max[0,L] V ]

sup
Ω−

α

|V − E − |∂xφ|2 + qε| ≤ 4(‖V ‖∞ + 1) + 1 =: CV .

We fix ε0 = ε0(δ, α) such that ‖qε‖∞ ≤ 1
2α

2δ for all ε ∈ (0, ε0). Coming back to (2.1), we have obtained for
δ ∈ (0, 1) and ε ≤ ε0,

∫ L

0

ε2|∂x(eφ/εψ)|2 +
1

2
α2δ

∫

Ω+
α

e2φ/ε|ψ|2 ≤ CV

∫

Ω−
α

e2φ/ε|ψ|2.

This implies

∫ L

0

ε2|∂x(eφ/εψ)|2 +
1

2
α2δ

∫ L

0

e2φ/ε|ψ|2 ≤ (CV + 1)

∫

Ω−
α

e2φ/ε|ψ|2. (2.2)
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To conclude the proof, we now estimate the right handside in (2.2). We write Ω−
α =

(
Ω−

α ∩ [0,x0)
)
⊔
(
Ω−

α ∩
[x0, L]

)
and split the integral accordingly, using that V is injective on each part. We now only consider the

second term, the first one being treated similarly. Uniform continuity of V −1 on the compact [x0, L] implies
the existence of α = α(δ) ∈ (0, 1] such that

(
E ∈ R, x, y ∈ {z;E ≤ V (z) ≤ E + α2} ∩ [x0, L]

)
=⇒ |x− y| ≤ δ. (2.3)

As a consequence, we have for x ∈ Ω−
α ∩ [x0, L] (and V (x) ≥ E, otherwise φ(x) = 0 and the same estimate is

true)

φ(x) = (1 − δ)dA,E(x) = (1− δ)

∫ x

x+(E)

√
(V (s)− E)+ds ≤ (1− δ)(x − x+(E))α ≤ (1 − δ)δα,

using (2.3) (where x+(E) ∈ KE is the solution in [x0, L] of V (x+(E)) = E). Coming back to (2.2), we now
have

∫ L

0

ε2|∂x(eφ/εψ)|2 +
1

2
α2δ

∫ L

0

e2φ/ε|ψ|2 ≤ (CV + 1)e2δα/ε
∫

Ω−
α

|ψ|2 ≤ (CV + 1)e2δα/ε.

We now want to replace φ by dA,E . Recall that φ = (1 − δ)dA,E , and that 0 ≤ dA,E(x) ≤ LDV for another
constant DV :=

√
max[0,L] V −min[0,L] V + 1 uniformly in x,E, so that we may write

∫ L

0

|∂x(edA,E/εψ)|2 +
∫ L

0

e2dA,E/ε|ψ|2

=

∫ L

0

|∂x(eδdA,E/εeφ/εψ)|2 +
∫ L

0

|eδdA,E/εeφ/εψ|2

≤
(
1 +

δDV

ε
+

2

α2δ

)
eδLDV /ε

[∫ L

0

|∂x(eφ/εψ)|2 +
1

2
α2δ

∫ L

0

e2φ/ε|ψ|2
]
.

Combining the above two estimates implies
∫ L

0

ε2|∂x(edA,E/εψ)|2 +
∫ L

0

e2dA,E/ε|ψ|2 ≤ (CV + 1)

(
1 +

δDV

ε
+

2

α2δ

)
e

δ
ε (2+LDV ),

which proves (1.6) up to changing δ (2 + LDV ) into δ.
To obtain the bound on the normal trace, we need an H2 bound on edA,E/εψ. To this aim, we follow

e.g. [Hel88, Remark 3.3] and first regularize dA,E . We consider ρδ =
1
δρ(

·
δ ) ∈ C∞

c (−δ, δ) a nonnegative smooth
approximation of the identity, and define dδA,E = ρδ ∗ dA,E for δ small enough, where V, qε (and dA,E accord-

ingly) have been extended in a fixed neighborhood of [0, L]. We have 0 ≤ dδA,E ≤ supx∈[−δ,L+δ] dA,E(x) ≤
2LDV , and, uniformly for x ∈ [0, L],

|dδA,E(x)− dA,E(x)| ≤
∫

|dA,E(x− y)− dA,E(x)|ρδ(y)dy ≤ DV

∫
|y|ρδ(y)dy

≤ δDV

∫
|y|ρ(y)dy, (2.4)

where we used that |d′A,E | =
√
(V − E)+ ≤ DV . As a consequence, from (1.6), we now obtain for a constant

DV depending only on V , for ε < ε0 = ε0(δ), denoting ‖f‖H1
ε
= ε ‖f ′‖L2 + ‖f‖L2 and Ψε = ed

δ
A,E/εψ

‖Ψε‖H1
ε
≤ 2

∥∥∥e 1
ε (d

δ
A,E−dA,E)

∥∥∥
W 1,∞

∥∥∥edA,E/εψ
∥∥∥
H1

ε

≤ Cδε
−1eDV

δ
ε e

δ
ε . (2.5)

The function Ψε is solution of

(Pε − E)Ψε = −2ε(ed
δ
A,E/ε)′εψ′ − ε2(ed

δ
A,E/ε)′′ψ, Ψε(0) = Ψε(L) = 0.

According to the above inequality (2.5) and bounds on dδA,E , we obtain ‖Ψ′′
ε‖L2 ≤ Cδe

(DV +2) δ
ε uniformly for

E ∈ [min[0,L] V − 1,max[0,L] V +1] and ε ≤ ε0(δ). This together with (2.5) directly implies |edδ
A,E(0)/εψ′(0)| =

|Ψ′
ε(0)| ≤ Cδe

DV
δ
ε (and similarly at L). Using again (2.4) finally replaces ed

δ
A,E(0)/ε by edA,E(0)/ε in this

estimate with an additional eCDV
δ
ε loss, and thus implies (1.7) (after having changed CDV δ into δ). This

concludes the proof of the theorem.
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2.2 Lower estimates in the classically allowed region

In this section, we first deduce the following “geometric control estimate” from the description of semiclas-
sical measures in Theorem 1.6. We then give a proof of Theorem 1.6, relying on technical statements for
semiclassical measures for one-dimensional boundary-value problems, proved in Section 3 below.

Proposition 2.3 (Geometric control in the classically allowed region). Let V ∈ C1([0, L]) satisfy Assump-
tion 1.2 and qε → 0 in C1([0, L]). Then for any family (λε)ε∈(0,1), λε ∈ R, converging to zero as ε → 0+,
for any ν > 0, there are constant C, ε0 > 0 such that for all y ∈ [0, L], all ε ∈ (0, ε0], all E ∈ R and ψ
satisfying (1.2), we have

‖ψ‖L2(U) ≥ C, with U = (y − ν, y + ν) ∩ [0, L], if E ≥ V (y)− λε, (2.6)

ε√
|E|+ 1

|ψ′(0)| ≥ C, if E ≥ V (0) + ν, (2.7)

ε√
|E|+ 1

|ψ′(L)| ≥ C, if E ≥ V (L) + ν. (2.8)

Some remarks are in order:

• Note that the lemma states “observability inequalities” for eigenfunctions (1.2) from a neighborhood of
a point y, assuming a “geometric control condition”, which is here formulated as E ≥ V (y) (internal
case) or E ≥ V (0) + ν (observation from the boundary 0) or E ≥ V (L) + ν (observation from the
boundary L). The latter condition ensures that all classical trajectories with energy E intersect the
region (y − ν, y + ν) (internal case) or 0 (observation from the boundary 0) or L (observation from the
boundary L).

• Note that the proof below proceeds by contradiction and uses semiclassical measures, following the
general strategy introduced by Lebeau [Leb96].

• Note that the explicit expression of the measures in Theorem 1.6 can be used to describe for instance the
asymptotic values of the constants C in (2.6)-(2.7)-(2.8). Note also that the eigenfunction equation (1.2)
can be “relaxed” to a quasimode equation as in the statement of Theorem 1.6.

Proof of Proposition 2.3 from Theorem 1.6. We proceed to the proof by contradiction, following the strategy
introduced by Lebeau [Leb96]. Given λε → 0 and ν > 0, if the statement of the lemma is not satisfied, the
following holds: for all n ∈ N, there exist yn ∈ [0, L], εn ∈ (0, 1

n ], En ∈ R, ψn satisfying (1.10) with rn = 0,
together with

‖ψn‖L2(yn−ν,yn+ν) <
1

n
in case En ≥ V (yn)− λεn , (2.9)

resp.
εn√

|En|+ 1
|ψ′

n(0)| <
1

n
in case En ≥ V (0) + ν, (2.10)

resp.
εn√

|En|+ 1
|ψ′

n(L)| <
1

n
in case En ≥ V (L) + ν.

We may now extract from the sequence (yn, εn, En, ψn)n∈N a subsequence (which we do not relabel, with a
slight abuse of notation) such that

εn → 0, yn → y∗ ∈ [0, L],

En → E∗ ∈ [V (y∗),+∞],

|ψn(x)|2dx ⇀ mE∗
,

where the last convergence holds in the sense of weak−∗ convergence of measure. The measure mE∗
is

described explicitly in Theorem 1.6. Note that the assumptions yield E∗ ≥ V (y∗) ≥ V (x0) = min V . This
implies y∗ ∈ [x−(E∗), x+(E∗)] and in particular, mE∗

((y∗ − ν/2, y∗ + ν/2)) > 0 in all three cases of the
definitions of mE∗

in Theorem 1.6.
Remark also that dominated convergence in (2.9) implies that

‖ψn‖L2(y∗−2ν/3,y∗+2ν/3) → 0, as n→ +∞. (2.11)
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We obtain a contradiction with mE∗
((y∗ − ν/2, y∗ + ν/2)) > 0 by taking a bump function ϕ ∈ C0

c ((y∗ −
2ν/3, y∗ + 2ν/3), [0, 1]) equals to one on (y∗ − ν/2, y∗ + ν/2) which yields

‖ψn‖2L2(y∗−2ν/3,y∗+2ν/3) ≥ ‖ϕψn‖2L2(0,L) −→
n→+∞

∫

[0,L]

ϕ(x)2dmE∗
(x) ≥ mE∗

((y∗ − ν/2, y∗ + ν/2)) > 0,

and contradicts (2.11). This proves the internal observability estimate (2.6) and we are now left to prove the
boundary observability. We only treat the case at the left boundary x = 0, that is to prove that (2.10) gives
a contradiction.

To this aim, we now consider the cases E∗ = +∞ and E∗ < +∞ separately. If E∗ < +∞, then Theorem
1.6 gives |εnψ′

n(0)|2 → 2CE∗

√
E∗ − V (0)1V (0)<E∗

. Moreover, taking limit in the second part of (2.10) gives

E∗ ≥ V (0) + ν. This implies 2CE∗

√
E∗ − V (0)1V (0)<E∗

> 0 and therefore limn→+∞ |εnψ′
n(0)|2 > 0 which is

a contradiction to (2.10).
If now E∗ = +∞, Theorem 1.6 gives E−1

n |εnψ′
n(0)|2 → 2

L . Yet, since E−1
n ≤ 2

|En|+1 for n large, (2.10)

gives E−1
n |εnψ′

n(0)|2 → 0, which is a contradiction and ends the proof of the Lemma.

We are now left to prove Theorem 1.6. It relies on the following Proposition 2.4 in which we describe
fine localization properties and transport equations satisfied by semiclassical measures for solutions to 1D
boundary value problems. The proof of Proposition 2.4 is given in Section 3 below. In the statement of
Proposition 2.4, we change slightly the current notation: we focus on the energy level E = 0 for a potential
Vn → V , and consider the semiclassical parameter hn → 0. When deducing a proof of Theorem 1.6, we will
use Proposition 2.4 both with

• hn = εn and Vn = Vn − En which converges to V = V − E∗ (in case En has a finite limit E∗),

• hn = εn√
En

and Vn = −1 + V
En

+
qεn
En

which converges to V = −1 (in case En → +∞),

and in both cases, we describe the energy level V = 0.

Proposition 2.4. Let Vn,V ∈ C1([0, L]) real valued so that Vn → V in C1([0, L]). Let hn → 0 and ψn be
such that

ψn ∈ H2(0, L) ⊂ C1([0, L]), ψn(0) = ψn(L) = 0, ‖ψn‖L2(0,L) = 1,

−h2nψ′′
n + Vn(x)ψn = rn in D′((0, L)), (2.12)

and, given a function u defined on [0, L], denote by u the function such that u = u on [0, L] and u = 0 on
[0, L]c. Assume that rn = OL2(0,L)(hn), then there exist

• a subsequence of indices (still denoted by n),

• a probability measure µ on T ∗R = Rx × Rξ, supported in [0, L]× Rξ, such that

(
Ophn

(a)ψn, ψn

)
L2 → 〈µ, a〉, for all a ∈ C∞

c (T ∗R), (2.13)

• two nonnegative numbers ℓ0 and ℓL so that

|hnψ′
n(0

+)|2 → ℓ0, |hnψ′
n(L

−)|2 → ℓL, (2.14)

• a probability measure m on R such that |ψn(x)|2dx ⇀ m, in the sense of weak−∗ convergence of measures
on R.

Moreover, writing p(x, ξ) := ξ2 + V(x), the following statements hold:

1. we have supp(µ) ⊂ {p(x, ξ) = 0} ∩ [0, L]× Rξ;

2. if rn = o(hn)L2(0,L), then µ satisfies Hpµ = 0 in D′((0, L)× Rξ

)
;

3. if rn = o(hn)L2(0,L), then depending on the value V(0), we have

• (Elliptic case): if V(0) > 0: then ℓ0 = 0 and there is δ > 0 such that µ = 0 in (−δ, δ)× R,
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• (Glancing case): if V(0) = 0: then Hpµ = −ℓ0δx=0 ⊗ δ′ξ=0 for x close to 0. If moreover, V ′(0) < 0,

then ℓ0 = 0 and Hpµ = 0 in D′((−∞, L)× R
)
,

• (Hyperbolic case): if V(0) < 0: then Hpµ = ℓ0

2
√

−V(0)
δx=0⊗(δ

ξ=
√

−V(0)
−δ

ξ=−
√

−V(0)
) in D′((−∞, L)×

R
)
,

(and symmetric relations are true close to L).

4. The measures m and µ are linked by m = π∗µ, where π : Rx ×Rξ → Rx is the canonical projection, that
is to say

∫
R
ϕ(x) dm =

∫
R2 ϕ ◦ π dµ for all ϕ ∈ C0

c (R
2).

Note that since Hp is only assumed to be a C0 vector field, Hpµ is defined by duality which makes sense
since µ is a measure (and not only a distribution), see Lemma 3.5 below.

Let us now prove Theorem 1.6 from Proposition 2.4. Note that the regularity assumption on V ∈ C1([0, L])
requires some care in the propagation estimates for semiclassical measures (in the proof of Theorem 1.6 as
well as in the proof of Proposition 2.4). One reason for this is that the Cauchy-Lipschitz theorem does not
apply to the continuous Hamiltonian vector field 2ξ∂x − V ′(x)∂ξ .

Proof of Theorem 1.6. We consider the cases E∗ = +∞ and E∗ < +∞ separately. In each case, we will
compute a semiclassical measure, but with respect to a different small parameter namely hn = εn√

En
or

hn = εn respectively. In the present proof, we shall describe the full semiclassical measure µE∗
in phase space,

associated to the sequence of eigenfunctions ψn (extended by zero outside [0, L]) and the scale hn. Then,
the measure mE∗

will be the (restriction to [0, L] of the) projection in x of the the semiclassical measure
π∗µE∗

= 1[0,L]mE∗
, where π : Rx × Rξ → Rx is the canonical projection (see the last Item of Proposition

2.4). The limits of the respective boundary terms will result from the computation of ℓ0 and ℓL in the same
Proposition 2.4.

Case 1: E∗ = +∞. We rewrite the first equation in (1.10) as

(−h2n∂2x + Vn)ψn = rnE
−1
n ,

where we have set hn = εn√
En

→ 0+ and Vn = −1 + V
En

+
qεn
En

. Extending ψn by 0 outside of [0, L] (without

changing notation), Proposition 2.4 can be applied with Vn = −1 + V
En

+
qεn
En

and V = −1 with Vn → V
in C1([0, L]) and rn

En
= o(hn) since rn = o(εn). It provides a semiclassical measure µ such that, up to a

subsequence, (
Ophn

(a)ψn, ψn

)
L2 → 〈µ, a〉, for all a ∈ C∞

c (R× R).

Moreover, according to Proposition 2.4, the measure µ is supported by [0, L]x × {±1}ξ and locally invariant
by the flow of the vector field 2ξ∂x in (0, L)x × {±1}ξ, we necessarily have

µ = θ1
1[0,L]dx

L
⊗ δξ=1 + θ2

1[0,L]dx

L
⊗ δξ=−1 + θ3δ(0,1) + θ4δ(0,−1) + θ5δ(L,1) + θ6δ(L,−1),

with θj ∈ [0, 1],
∑

j

θj = 1.

(see below for a justification of this decomposition in a slightly more intricate setting). Also, the second part
of Proposition 2.4 gives

2ξ∂xµ =

(
ℓ0
2
δx=0 −

ℓL
2
δx=L

)
⊗ (δξ=1 − δξ=−1) on Rx × Rξ, (2.15)

where ℓ0 and ℓL are the limits of the normal traces h2n|ψ′
n(0)|2 and h2n|ψ′

n(L)|2 respectively.
In particular, the derivative of µ is a measure. This implies that µ({(0, 1)}) = µ({(0,−1)}) = µ({(L, 1)}) =

µ({(L,−1)}) = 0, and thus θj above vanish for all j ≥ 3. Therefore, there is θ ∈ [0, 1] such that

µ = θ
1[0,L]dx

L
⊗ δξ=1 + (1− θ)

1[0,L]dx

L
⊗ δξ=−1 on R× R.

Now, we compute the derivative of this measure, namely

2ξ∂xµ =
2θ

L
(δx=0 − δx=L)⊗ δξ=1 −

2(1− θ)

L
(δx=0 − δx=L)⊗ δξ=−1.
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Identifying this with (2.15) yields

θ =
1

2
, and ℓ0 = ℓL =

2

L
. (2.16)

We can now finally compute π∗µ =
1[0,L]dx

L which gives mE∗
= dx

L after restriction to [0, L]. Since the limit
is the same for any subsequence, we deduce that the convergence holds for the full sequence. Recalling that
hn = εn√

En
, the values of ℓ0 and ℓL in (2.16) and the convergence result of (2.14) gives the expected limit for

the boundary terms.

Case 2: V (x0) ≤ E∗ < +∞. This time, we consider semiclassical operators scaled with the small parameter
hn = εn → 0+, namely for a ∈ C∞

c (Rx × Rξ), Opεn(a) = a(x, εnDx).
Proposition 2.4 applied with hn = εn, Vn = V −En and V = V −E∗ gives again a subsequence of indices

(still denoted by n) and a nonnegative Radon measure µ on T ∗R = Rx × Rξ such that

(
Opεn(a)ψn, ψn

)
L2 → 〈µ, a〉, for all a ∈ C∞

c (R× R).

where we have again extended ψn by zero without changing names.
Writing p(x, ξ) = ξ2 + V (x), Proposition 2.4 gives that µ is a probability measure, supported by the

compact set

p−1(E∗) = {(x, ξ) ∈ [0, L]× R such that p(x, ξ) = E∗},

and moreover invariant by the flow of the Hamiltonian vector field of p, namely Hp = 2ξ∂x − V ′(x)∂ξ, locally
in the interior of (0, L)x × Rξ. Note that, as already mentioned, we have slightly changed by a constant the
notation for p with respect to Proposition 2.4 without changing the Hamiltonian flow.

We assume further in the proof that

V (L) < V (0). (2.17)

The case V (L) > V (0) is treated similarly. In the case V (L) = V (0), there are actually less sub-cases to
consider and the additional sub-case E∗ = V (L) = V (0) is treated as in sub-case 2 below (glancing near
both endpoints of the interval); the two closed trajectories at energy E∗ are smooth and tangent to both
boundaries x = 0 and x = L. Given this additional assumption (2.17) on the shape of V , we only have to
consider separately the following six sub-cases:

1. V (0) < E∗ < +∞

2. E∗ = V (0)

3. V (L) < E∗ < V (0)

4. E∗ = V (L)

5. V (x0) < E∗ < V (L)

6. E∗ = V (x0).

Sub-case 1: V (0) < E∗ < +∞. Both 0 and L belong to KE∗
= π(p−1(E∗)) (where π : Rx × Rξ → Rx

is the canonical projection) and the set p−1(E∗) decomposes as p−1(E∗) = C+ ⊔ C− ⊔ {(0,±
√
E∗ − V (0))} ⊔

{(L,±
√
E∗ − V (L))} where C± =

{
(x, ±

√
E∗ − V (x)), x ∈ (0, L)

}
are two disjoint bounded curves (that

are both orbits of Hp in case V is regular enough). We may decompose accordingly the measure µ as

µ = µ1C+ + µ1C−
+ µ1{(0,

√
E∗−V (0))} + µ1{(0,−

√
E∗−V (0))} + µ1{(L,

√
E∗−V (L))} + µ1{(L,−

√
E∗−V (L))},

(2.18)
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in the sense of measures, i.e. for F,E two Borel sets, µ1E(F ) = µ(E ∩ F ). In this decomposition, the four
measures supported by points are proportional to Dirac masses. We define δC±

as

〈
δC±

, ϕ
〉
= CE∗

∫ L

0

ϕ(x,±
√
E∗ − V (x))

dx√
E∗ − V (x)

, with CE∗
=

(∫ L

0

(E∗ − V (s))−
1
2 ds

)−1

, (2.19)

for ϕ ∈ C0
c (Rx × Rξ) or, with a somewhat loose notation

δC±
= CE∗

1(0,L)(x)dx√
E∗ − V (x)

⊗ δ
ξ=±

√
E∗−V (x)

.

Let us now prove, using invariance by Hp, that µ1C±
is proportional to δC±

, that is, it is the unique invariant
measure on C±. This would be straightforward if we would have V ′ ∈ C1, as a consequence of the Cauchy-
Lipschitz theorem, but we only assume V ′ ∈ C0 here. We define a measure ν on (0, L) by

〈ν, f〉M,C0
c (0,L) :=

〈
µ1C+ ,

√
E∗ − V (x)f ⊗ 1

〉
M,C0

c ((0,L)×R)
, with f ⊗ 1(x, ξ) = f(x)

Let us first prove that ∂xν = 0 in the distributional sense: we have

〈ν, ∂xf〉M,C0
c (0,L) =

〈
µ1C+ ,

√
E∗ − V ∂xf ⊗ 1

〉
M,C0

c ((0,L)×R)

=
〈
µ1C+ , ξ∂xf ⊗ 1

〉
M,C0

c ((0,L)×R)

=
〈
µ1C+ , Hp(f ⊗ 1)

〉
M,C0

c ((0,L)×R)
= 0

where we have used that ξ =
√
E∗ − V (x) on C+ in the first equality and the invariance property of µ1C+

in the last equality (the latter is a consequence of the invariance of µ and the fact that C+ ∩ C− = ∅ in
this subcase). This proves in particular that there exists a constant β so that ν = βdx. In particular, for
ϕ ∈ C0

c ((0, L)× R), we compute, using again that ξ =
√
E∗ − V (x) on C+

〈
µ1C+ , ϕ(x, ξ)

〉
M,C0

c ((0,L)×R)
=
〈
µ1C+ , ϕ(x,

√
E∗ − V (x))⊗ 1

〉
M,C0

c ((0,L)×R)

=

〈
ν,
ϕ(x,

√
E∗ − V (x))√

E∗ − V (x)

〉

M,C0
c (0,L)

= β

∫ L

0

ϕ(x,
√
E∗ − V (x))√

E∗ − V (x)
dx

= βC−1
E∗

〈
δC+ , ϕ

〉
.

Coming back to the decomposition (2.18) we have now obtained

µ = θ1δC+ + θ2δC−
+ θ3δ(0,

√
E∗−V (0))

+ θ4δ(0,−
√

E∗−V (0))
+ θ5δ(L,

√
E∗−V (L))

+ θ6δ(L,−
√

E∗−V (L))
,

θj ∈ [0, 1],
∑

j

θj = 1.

Note also that for any ϕ ∈ C1
c (R

2),

〈
δC±

, Hpϕ
〉
= CE∗

∫ L

0

(
±2
√
E∗ − V (x)∂x − V ′(x)∂ξ

)
ϕ(x,±

√
E∗ − V (x))

dx√
E∗ − V (x)

= ±2CE∗

∫ L

0

d

dx

[
ϕ(x,±

√
E∗ − V (x))

]
dx

= ±2CE∗
ϕ(L,±

√
E∗ − V (L))∓ 2CE∗

ϕ(0,±
√
E∗ − V (0)). (2.20)

So that

HpδC±
= ±2CE∗

δ
(0,±

√
E∗−V (0))

∓ 2CE∗
δ
(L,±

√
E∗−V (L))

. (2.21)
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Moreover, both boundary points are of hyperbolic type (as in the case E∗ = ∞). Using Proposition 2.4, these
measures satisfy the following equation

Hpµ =
ℓ0

2
√
E∗ − V (0)

δx=0 ⊗ (δ
ξ=
√

E∗−V (0)
− δ

ξ=−
√

E∗−V (0)
)

− ℓL

2
√
E∗ − V (L)

δx=L ⊗ (δ
ξ=
√

E∗−V (L)
− δ

ξ=−
√

E∗−V (L)
), (2.22)

where Hpµ is well-defined as a distribution according to Lemma 3.5 below (using that the coefficients of Hp

are continuous and µ is a measure). We can thus conclude as in the case E∗ = ∞ that Hpµ is a measure
and therefore θ3 = θ4 = θ5 = θ5 = 0. Again, comparing (2.21), (2.22) and µ = θ1δC+ + θ2δC−

, we obtain

θ1 = θ2 = ℓ0

4CE∗

√
E∗−V (0)

= ℓL

4CE∗

√
E∗−V (L)

. The fact that µ is a probability measure gives θ1 = θ2 = 1
2 . In

particular, µ = 1
2 (δC+ + δC−

), ℓ0 = 2CE∗

√
E∗ − V (0) and ℓL = 2CE∗

√
E∗ − V (L) which gives the expected

result for mE∗
= π∗µ and the limits of the boundary derivatives.

Sub-case 2: E∗ = V (0). The set p−1(E∗) writes p−1(E∗) = C+ ⊔ C− ⊔ {(0, 0), (L,±
√
E∗ − V (L))} where

again C± =
{
(x, ±

√
E∗ − V (x)), x ∈ (0, L)

}
are two disjoint bounded curves (that are both orbits of Hp in

case V is regular enough). As in the first sub-case, we have accordingly

µ = θ1δC+ + θ2δC−
+ θ3δ(0,0) + θ4δ(L,

√
E∗−V (L))

+ θ5δ(L,−
√

E∗−V (L))
,

θj ∈ [0, 1],
∑

j

θj = 1,

where δC±
is the unique invariant measure carried by C± and given by (2.19). Note that in the present situation,

the right boundary x = L is of hyperbolic type whereas the left boundary point x = 0 is of diffractive type.
Now, the second part of Proposition 2.4 yields in this case the equation

(2ξ∂x − V ′∂ξ)µ = − ℓL

2
√
E∗ − V (L)

δx=L ⊗ (δ
ξ=
√

E∗−V (L)
− δ

ξ=−
√

E∗−V (L)
), (2.23)

in a neighborhood of x = L. In particular, the derivative (2ξ∂x − V ′∂ξ)µ is a measure near x = L. This
implies as in the above cases that θ4 = θ5 = 0 and thus

µ = θ1δC+ + θ2δC−
+ θ3δ(0,0). (2.24)

Near x = L, we are as in the previous Case 1 and differentiating this expression (i.e. away from x = 0) yields,
using (2.21),

(2ξ∂x − V ′∂ξ)µ = −2CE∗
δx=L ⊗

(
θ1δξ=

√
E∗−V (L)

− θ2δξ=−
√

E∗−V (L)

)
.

(See again Lemma 3.5 below for the meaning of the left handside.) Identifying the above two lines, we obtain
again θ1 = θ2 = ℓL

4CE∗

√
E∗−V (L)

.

We now consider the diffractive boundary at x = 0 in (2.23). Assumption 1.2 and Proposition 2.4 imply
that Hpµ = 0 close to 0. A variant of (2.21) implies HpδC±

= 0 close to 0, which combined with (2.24) gives
θ3 = 0. As a consequence θ1 = θ2 = 1

2 .

We have finally obtained that µ = 1
2 (δC+ + δC−

) and ℓL = 2CE∗

√
E∗ − V (L). We can check that π∗µ

gives the mE∗
announced in the Theorem. It only remains to check that the Glancing case of Proposition 2.4

combined with the Assumption 1.2 (which implies V ′(0) < 0) impose ℓ0 = 0. This is the expected result since√
E∗ − V (0)1V (0)<E∗

= 0.

Sub-case 3: V (L) < E∗ < V (0). In this case, there is a single point xE∗
∈ (0, L) such that V (xE∗

) = E∗
(it is given by xE∗

= x−(E∗)), and we have xE∗
< x0 and V ′(xE∗

) < 0. The set p−1(E∗) writes

p−1(E∗) = C ⊔ {(L,
√
E∗ − V (L))} ⊔ {(L,−

√
E∗ − V (L))}, (2.25)

where C = {(x,±
√
E∗ − V (x)), x ∈ [xE∗

, L)}. (2.26)
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We define the following probability measure on C

〈δC , ϕ〉 =
CE∗

2

∑

±

∫ L

xE∗

ϕ(x,±
√
E∗ − V (x))

dx√
E∗ − V (x)

, with CE∗
=

(∫ L

xE∗

dx√
E∗ − V (x)

)−1

,

and we now aim at proving that µ1C is proportional to δC . Note that the difficulty in proving this comes again
from the fact that V ′ is only continuous. Would we have V ′ ∈ W 1,∞, then the Cauchy-Lipschitz theorem
would apply to Hp and invariance of µ1C would readily imply that it is proportional to δC .

We define as above

〈
δC±

, ϕ
〉
= CE∗

∫ L

xE∗

ϕ(x,±
√
E∗ − V (x))

dx√
E∗ − V (x)

,

and we decompose further µ1C = µ1C+ +µ1C−
+µ1{(xE∗ ,0)}. We notice that these measures are all compactly

supported; we may test them with any function in C0(R2). The same proof as in Subcase 2 implies that
necessarily µ1C±

= α±δC±
and µ1{(xE∗ ,0)} = βδ(xE∗ ,0)

. Invariance of µ reads 〈µ,Hpφ〉 = 0 for all φ ∈
C1(R2), supp(φ) ⊂ (0, L) × R. Applied to φ(x, ξ) = χ̃(x)ϕ(ξ) with χ̃ ∈ C1

c (0, L) such that χ̃(xE∗
) = 1, we

notice that Hpϕ = 2ξχ̃′(x)ϕ(ξ) − V ′(x)χ̃(x)ϕ′(ξ) and thus deduce

〈α+δC+ + α−δC−
+ βδ(xE∗ ,0)

, 2ξχ̃′(x)ϕ(ξ) − V ′(x)χ̃(x)ϕ′(ξ)〉 = 0.

Take χ ∈ C∞
c (R) with χ = 1 in a neighborhood of zero and ϕǫ(ξ) =

∫ ξ/ǫ

−∞ χ(t)dt. We obtain

0 = 〈α+δC+ + α−δC−
+ βδ(xE∗ ,0)

, 2ξχ̃′(x)ϕε(ξ) − V ′(x)χ̃(x)
1

ǫ
χ(ξ/ǫ)〉,

whence multiplying by ǫ,

0 = ǫ

〈
α+δC+ + α−δC−

, 2ξχ̃′(x)ϕε(ξ) − V ′(x)χ̃(x)
1

ǫ
χ(ξ/ǫ)

〉
− βV ′(xE∗

).

Letting ǫ→ 0 and using dominated convergence, we deduce

βV ′(xE∗
) = −

〈
α+δC+ + α−δC−

, V ′(x)χ̃(x)1{ξ=0}
〉
= 0

since C± ∩ {ξ = 0} = ∅. This implies βV ′(xE∗
) = 0, and thus β = 0 since V ′(xE∗

) > 0.
Now we take any ϕ ∈ C1

c ((0, L)× R) and compute as in (2.20)

〈
δC±

, Hpϕ
〉
= CE∗

∫ L

xE∗

± d

dx

[
ϕ(x,±

√
E∗ − V (x))

]
dx = ∓CE∗

ϕ(xE∗
, 0).

As a consequence, we obtain for all ϕ ∈ C1
c ((0, L)× R)

0 = 〈µ,Hpϕ〉 =
∑

±
α±
〈
δC±

, Hpϕ
〉
= −α+CE∗

ϕ(xE∗
, 0) + α−CE∗

ϕ(xE∗
, 0),

and thus α+ = α−. This concludes the proof that µ1C is proportional to δC .
We now come back to the decomposition (2.25) and have obtained that

µ = θ1δC + θ2δ(L,
√

E∗−V (L))
+ θ3δ(L,−

√
E∗−V (L))

, θj ∈ [0, 1],
∑

j

θj = 1.

The same computation as before gives

〈δC , Hpϕ〉 = CE∗

∑

±

∫ L

xE∗

± d

dx

[
ϕ(x,±

√
E∗ − V (x))

]
dx =

∑

±
±CE∗

ϕ(L,±
√
E∗ − V (L)).

So that HpδC =
∑

± ∓CE∗
δ
(L,±

√
E∗−V (L))

. We thus argue as in the previous cases that θ2 = θ3 = 0, hence

θ1 = 1. As a consequence, µ = δC . Concerning the boundary estimates at 0, we are in the Elliptic case of
Proposition 2.4 which implies ℓ0 = 0. This is the expected result since

√
E∗ − V (0)1V (0)<E∗

= 0. At L, we
are in the Hyperbolic case, and we conclude as in the other subcases.
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Sub-case 4: E∗ = V (L). The set p−1(E∗) writes p−1(E∗) = C ⊔ {(L, 0)} where C ⊂ (0, L) × R is defined
as in (2.26) (and is an orbit of Hp in case V is regular). We have accordingly µ = θδC + (1 − θ)δ(L,0), with
δC the unique invariant measure carried by C (a proof of uniqueness of this measure under the sole regularity
assumption V ′ ∈ C0 follows as in the above two sub-case). Moreover, the second part of Proposition 2.4 yields
in this case the equation

(2ξ∂x − V ′∂ξ)µ = 0.

The point x = L is of diffractive type and the same analysis as in Sub-case 2 yields µ({(L, 0)}) = 0, hence
θ = 1. This proves µ = δC and we can conclude as in all other above cases. The proof that ℓ0 = ℓL = 0 is
performed as before for the respective Elliptic and Glancing cases (using that V ′(L) > 0).

Sub-case 5: V (x0) < E∗ < V (L). The set p−1(E∗) is a C1 closed curve contained in (0, L) × R and
dp|p−1(E∗) does not vanish. The measure µ is supported on this curve and invariant by the vector field Hp,
being nondegenerate and tangent to p−1(E∗). Henceforth, µ is the unique probability measure carried by
p−1(E∗) and invariant by Hp (again, uniqueness of this measure for V ′ ∈ C0 follows as in the above sub-cases)
defined by

〈µ, ϕ〉 = CE∗

2

∑

±

∫ x+(E∗)

x−(E∗)

ϕ(x,±
√
E∗ − V (x))

dx√
E∗ − V (x)

, with CE∗
=

(∫ x+(E∗)

x−(E∗)

dx√
E∗ − V (x)

)−1

.

The projection on x of µ gives the expected result. Moreover, we are in the elliptic case at both boundaries
x = 0 and L so that the normal trace converges to zero.

Sub-case 6: E∗ = V (x0). Note that the assumption V (y∗) ≤ E∗ implies that V (y∗) = E∗ and thus y∗ = x0.
We have p−1(E∗) = {(y∗, 0)} and the only probability measure carried by this set is µ = δ(x,ξ)=(y∗,0). We
compute π∗µ = δx0 and we are again in the Elliptic case at both point of the boundary.

This concludes the proof of the theorem.

2.3 Lower estimates in the classically forbidden region and near the turning

points

Next, we define the following “semiclassical energy densities” of the eigenfunctions ψ. For x ∈ [0, L]:

E(x) := ε2|ψ′|2(x) + |ψ|2(x),
E
+(x) := ε2|ψ′|2(x) + (V (x) − E)|ψ|2(x).

The following lemma is a variant of [All98, Lemma 12], see also [LL21b, Lemma 4.10], in which we keep track
of the dependence with respect to the lower order terms.

Lemma 2.5 (Tunneling into the classically forbidden region). For all α > 0, all E,ψ, ε solution to (1.2), and
all points x, y belonging to the same connected component of {V − E ≥ α2}, we have

E
+(x) ≤ exp

(
2

ε

∣∣∣∣
∫ y

x

√
V (s)− Eds

∣∣∣∣+
‖V ′‖∞
α2

L+
‖qε‖∞
αε

L

)
E
+(y).

Proof of Lemma 2.5. We differentiate the function E
+, yielding

(E+)′ = 2ε2Re(ψ
′
ψ′′) + V ′|ψ|2 + 2(V − E)Re(ψψ

′
).

We recall from the definition in (1.1) and Equation (1.2) that we have

Eψ = Pεψ = −ε2ψ′′ + V ψ + qεψ.

This implies that

(E+)′ = 2 (V − E + qε)Re(ψψ
′
) + V ′|ψ|2 + 2(V − E)Re(ψψ

′
)

= (4(V − E) + 2qε)Re(ψψ
′
) + V ′|ψ|2. (2.27)
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We now estimate each of the terms in the right handside of (2.27) on the set {V − E ≥ α2}. We first have
the pointwise estimate

∣∣∣4(V − E)Re(ψψ
′
)
∣∣∣ = 4ε−1

√
V − E (ε|ψ′|)

(√
V − E|ψ|

)

≤ 2ε−1
√
V − E

(
ε2|ψ′|2 + (V − E)|ψ|2

)
= 2ε−1

√
V − EE

+.

Second, we have the pointwise estimate

∣∣V ′|ψ|2
∣∣ = |V ′|

V − E
(V − E)|ψ|2 ≤ ‖V ′‖∞

α2
E
+, on {V − E ≥ α2}.

Third, we have on {V − E ≥ α2}
∣∣∣2qε Re(ψψ

′
)
∣∣∣ ≤ ‖qε‖∞

ε

(
ε2

α
|ψ′|2 + α|ψ2|

)
≤ ‖qε‖∞

ε

(
ε2

α
|ψ′|2 + α

V − E

α2
|ψ2|

)
=

‖qε‖∞
αε

E
+.

Combining the last three estimates in (2.27) yields, for all t ∈ {V − E ≥ α2}
∣∣(E+)′(t)

∣∣ ≤
(
2

ε

√
V (t)− E +

‖V ′‖∞
α2

+
‖qε‖∞
αε

)
E
+(t).

Two applications of the Gronwall Lemma imply that for all z < x such that [z, x] ⊂ {V − E ≥ α2}, we have

e−µ(x,z)
E
+(z) ≤ E

+(x) ≤ eµ(x,z)E+(z),

for µ(x, z) = 2
ε

∫ x

z

√
V (t)− Edt+

(
‖V ′‖

∞

α2 +
‖qε‖∞

αε

)
(x − z). This yields the sought result.

Note that the estimate involving ‖V ′‖∞ could be slightly refined using a sign assumption on V ′.
The following Lemma is an analogue of [All98, Lemma 11], see also [LL21b, Lemma 4.11], and gives a

rough Gronwall type estimate for the energy E, without precise constants. The interest of this less precise
result is that it remains true uniformly for all x ∈ [0, L]. This allows in particular to compensate the fact that
Lemma 2.5 is not uniform when x is close to the boundary of the set {V − E > 0}.
Lemma 2.6 (Rough Gronwall estimate). For all E ∈ R, ψ ∈ H2([0, L]) ∩H1

0 ([0, L]) and all ε > 0 such that
Pεψ = Eψ, and all x, y ∈ [0, L], we have

E(x) ≤ exp

(
1

ε
|x− y|

(
‖V − E + 1‖L∞(Ix,y)

+ ‖qε‖∞
))

E(y),

where Ix,y is the interval between x and y.

Proof. The proof is very close to that of Lemma 2.5. We write similarly

(E)′ = 2ε2Re(ψ
′
ψ′′) + 2Re(ψψ

′
) = 2(V − E + qε + 1)Re(ψψ

′
).

This implies on the interval Ix,y

|(E)′| ≤ 1

ε

(
‖V − E + 1‖L∞(Ix,y)

+ ‖qε‖∞
)
E,

and we conclude the proof with a Gronwall argument on Ix,y as in Lemma 2.5.

2.4 End of the proof of Theorem 1.4

With the three previous Lemmata at hand, we are now in position to prove Theorem 1.4. We first prove the
following intermediate result.

Lemma 2.7 (Lower bounds on eigenfunctions). Suppose V, Vε satisfy Assumption 1.2. Then, there is a
constant D > 0 such that for any y0 ∈ [0, L] and any δ > 0, there is ε0 > 0 such that for all E ∈ R,
0 < ε < ε0 and ψ solution to (1.2), we have,

‖ψ‖L2(U) ≥ e−
1
ε (dA,E(y0)+Dδ), U = (y0 − δ,y0 + δ) ∩ [0, L], (2.28)

ε√
|E|+ 1

|ψ′(0)| ≥ e−
1
ε (dA,E(0)+δ),

ε√
|E|+ 1

|ψ′(L)| ≥ e−
1
ε (dA,E(L)+δ). (2.29)
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Note that in this statement (as well as in all statements of the article), δ is thought of as a small parameter.

Proof that Lemma 2.7 implies Theorem 1.4. Notice first that according to Remark 2.2, it suffices to consider
E ≥ E0. Then, the only difference between the two statements concerns the internal observation. We
write U = [z1, z2] with z1, z2 ∈ [0, L]. We treat the case for which z1 ≥ x0: the case z2 ≤ x0 is treated
similarly. Concerning the case z1 < x0 < z2, we take y0 = x0 and choose δ > 0 small enough so that
(x0 − δ,x0 + δ) ⊂ (z1, z2) and Lemma 2.7 yields the result since in this case infx∈U dA,E(x) = dA,E(x0) for
all E ≥ E0.

Since we assume now z1 ≥ x0, we have infx∈U dA,E(x) = dA,E(z1). According to Lemma 2.1, dA,E is

uniformly Lipschitz, so there δ̃ > 0 small enough uniform in E ≥ E0 so that |dA,E(z) − dA,E(z1)| ≤ δ for

|z − z1| ≤ δ̃. We can also assume δ̃ < (z2 − z1)/2 and δ̃ ≤ δ. Applying Lemma 2.7 with y0 = z1 + δ̃ and δ

replaced by δ̃, we obtain ‖ψ‖L2((y0−δ̃,y0+δ̃)∩[0,L]) ≥ e−
1
ε (dA,E(y0)+Dδ̃). Since (y0 − δ̃,y0 + δ) ∩ [0, L] ⊂ U and

using the previous estimates, this gives ‖ψ‖L2(U) ≥ e−
1
ε (dA,E(z1)+(D+1)δ) which is the expected result up to

changing δ.

We now prove Lemma 2.7, as a consequence of Theorem 1.6 and Lemmata 2.5 and 2.6.

Proof of Lemma 2.7. We first prove the internal observation inequality (2.28). We distinguish different cases
according to the respective location of the points y0 and x0.

Consider first the case where x0 ∈ (y0 − δ,y0 + δ). Then, Proposition 2.3 with ν small enough so that
(y0 − ν,y0 + ν) ⊂ U , yields

‖ψ‖L2(U) ≥ ‖ψ‖L2(x0−ν,x0+ν) ≥ C0,

uniformly for E ∈ R, which implies (2.28) in this case.

We now consider the case where x0 /∈ (y0−δ,y0+δ), and assume further in what follows that x0 ≤ y0−δ.
The case x0 ≥ y0 + δ is proved similarly (by symmetry). In particular, this implies V ′(y0) > 0 and V (y0) >
min[0,L] V .

For this δ, Proposition 2.3 yields the existence of C0, ε0 > 0 such that for all z ∈ [0, L], all ε ∈ (0, ε0], all
E ∈ R and ψ solution to (1.2), we have

E ≥ V (z) =⇒ ‖ψ‖L2((z− δ
2 ,z+

δ
2 )∩[0,L]) ≥ C0. (2.30)

Thanks to a variant of Remark 2.2, we can assume from now on that E ≥ E0.

Case 1: x+(E) ≥ y0 − δ/2. In this case, either x+(E) ≥ y0 (hence E ≥ V (y0)), then (2.30) with z = y0

yields
‖ψ‖L2((y0−δ,y0+δ)∩[0,L]) ≥ ‖ψ‖L2((y0−δ/2,y0+δ/2)∩[0,L]) ≥ C0,

which concludes the proof in that case.

Or else if x+(E) ≤ y0 ≤ x+(E) + δ/2, then (2.30) with z = x+(E) yields

‖ψ‖L2(((y0−δ,y0+δ)∩[0,L]) ≥ ‖ψ‖L2(((x+(E)− δ
2 ,x+(E)+ δ

2 )∩[0,L]) ≥ C0,

which concludes the proof in that case.

Case 2: x+(E) < y0 − δ/2. Lemma 2.1 (uniform continuity of V −1 on the compact [x0, L]) implies the
existence of α > 0 such that for all x, y ∈ [0, L], E ∈ R,

x, y ∈ {z ∈ [x0, L], E − α2 ≤ V (z) ≤ E + α2} =⇒ |x− y| ≤ δ/4. (2.31)

In this case, that V (x+(E)) = E together with (2.31) implies that y0 /∈ {z ∈ [x0, L], E − α2 ≤ V (z) ≤
E + α2}. Since x+(E) < y0 in this case, this implies that necessarily V (y0) > E + α2. Estimate (2.30) with
z = x+(E) implies

C0 ≤ ‖ψ‖L2((x+(E)− δ
2 ,x+(E)+ δ

2 )∩[0,L]) . (2.32)
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Lemma 2.6 together with ‖qε‖∞ ≤ 1 yields

|ψ|2(x) ≤ exp

(
1

ε
|x− y|(2 + 2‖V ‖∞)

)
E(y), x, y ∈ [0, L]. (2.33)

Integrating over x ∈ (x+(E)− δ
2 , x+(E) + δ

2 ) ∩ [0, L] implies, for y = x+(E) + δ
2 < y0 ≤ L,

‖ψ‖2L2(x+(E)− δ
2 ,x+(E)+ δ

2 )∩[0,L] ≤ δ exp

(
δ

ε
(2 + 2‖V ‖∞)

)
E

(
x+(E) +

δ

2

)
. (2.34)

Now, remark that (2.31) implies 0 < x+(E+α2)−x+(E) ≤ δ/4. The point y = x+(E)+ δ
2 ∈ {z;V (z)−E ≥ α2}

is chosen so that to apply Lemma 2.5. Note first that on the set {z;V (z)− E ≥ α2} and for |α| < 1 (which
we may assume), we have E ≤ α−2

E
+ and that z ≥ x+(E) + δ/4 =⇒ z ∈ {V −E ≥ α2} (this is the case for

z = y0). Lemma 2.5 now implies, for all z ≥ x+(E) + δ/4,

α2
E(x+(E) + δ/4) ≤ E

+(x+(E) + δ/4)

≤ exp

(
2

ε

∣∣∣∣∣

∫ z

x+(E)+δ/4

√
V (s)− Eds

∣∣∣∣∣ +
‖qε‖∞
αε

L+
‖V ′‖∞
α2

L

)
E
+(z). (2.35)

Integrating in z ∈ (y0 − δ/4,y0 − δ/8) (which implies z ≥ x+(E) + δ/4 according to the assumption x+(E) <
y0 − δ/2) yields

δ

8
α2

E(x+(E) + δ/2) ≤ exp

(
2

ε

∣∣∣∣∣

∫
y0

x+(E)+δ/4

√
V (s)− Eds

∣∣∣∣∣+
‖qε‖∞
αε

L+
‖V ′‖∞
α2

L

)∫
y0−δ/8

y0−δ/4

E
+(s)ds.

An interpolation estimate together with Pεψ = Eψ yields

∫
y0−δ/8

y0−δ/4

E
+(s)ds ≤ Cδ−1

(
‖ψ‖2L2(y0−δ/4,y0−δ/8) + ‖ψ‖L2(y0−δ/2,y0)

∥∥ε2ψ′′∥∥
L2(y0−δ/2,y0)

)

≤ Cδ−1 ‖ψ‖2L2(y0−δ,y0+δ)∩[0,L] .

Note that we have used E ≤ ‖V ‖∞ otherwise this zone is empty. Combining the above two estimates
with (2.32) and (2.34) yields the existence of constants C = C(V, δ, L) > 0 (recall that α depends on δ and
V ) independent on E, ε such that

1 ≤ C exp

{
2

ε

(∣∣∣∣∣

∫
y0

x+(E)+δ/4

√
V (s)− Eds

∣∣∣∣∣+ (2 + 2‖V ‖∞)δ +
‖qε‖∞
α

L

)}
‖ψ‖2L2(y0−δ,y0+δ)∩[0,L] .

We further assume that ε0 is sufficiently small so that assume that
‖qε‖∞

α L ≤ δ for all ε ∈ (0, ε0). This then
concludes the proof in that case, and hence the proof of (2.28) in the theorem.

We now explain how this proof needs to be modified in the case of boundary observability (2.29), say, from
the right boundary point L. In this case, the range of energy levels E ∈ R is again split in three different
regimes. We fix again α > 0 as in (2.31).

First, if E ≥ V (L) + 1 then Proposition 2.3 Estimate (2.8) (taken for ν = 1) yields ε√
|E|+1

|ψ′(L)| ≥ C,

which concludes the proof in that case.
Second, we consider the case V (L)− α2 ≤ E ≤ V (L) + 1. We remark that we have again, by definition of

α and x+,
L− δ/2 ≤ x+(V (L)− α2) ≤ x+(V (L)) = L.

Hence (x+(V (L) − α2) − δ
2 , x+(V (L) − α2) + δ

2 ) ∩ [0, L] ⊂ (L − δ, L]. Applying Estimate (2.30) for z =
x+(V (L)− α2) and using V (L)− α2 ≤ E, yields

‖ψ‖L2(L−δ,L) ≥ C0.

Using (2.33) integrated in x ∈ (L− δ, L) and taken for y = L implies

C2
0 ≤ ‖ψ‖2L2(L−δ,L) ≤ C exp

(
δ

ε
(2 + 2‖V ‖∞)

)
E(L),
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where E(L) = ε2|ψ′(L)|2 on account to the Dirichlet boundary condition. This concludes the proof in that
case.

Third, if E ≤ V (L)− α2, the proof follows exactly as in the Case 2 above for the proof of (2.28), except
that the proof is finished when writing Estimate (2.35), at the point z = L, together with noticing that
E
+(L) = ε2|ψ′(L)|2, on account to the Dirichlet boundary condition.

This concludes the proof of (2.29) at the right boundary point L, and the proof is the same at the left
boundary point 0.

3 Semiclassical measures for one-dimensional boundary-value prob-

lems

The object of this Section is to make precise different properties of semiclassical measures in the presence
of boundary (and in dimension one only). The combination of all results proved in the section constitutes
a proof of Proposition 2.4. The proof relies only on standard facts of semiclassical analysis for which we
refer e.g. to [Rob87, DS99, Zwo12] and semiclassical measures [Gér91, GL93, GMMP97, Zwo12]. Concerning
the boundary value problem, we essentially follow [GL93] with several major simplifications (due to absence
of geometry of the boundary) and some minor complications (due to the family of limited regularity poten-
tials converging in C1). We thus present a self-contained proof except for usual semiclassical analysis and
semiclassical measure in 1D. The latter material can be found in [Zwo12, Chapters 4 and 5] for instance.

To make the reading easier, we divide the proof in several Lemmata.

3.1 Regularity and traces

We begin with standard regularity estimates (see e.g. [GL93, Lemma 2.1]).

Lemma 3.1. There is C > 0 such that for all h ∈ (0, 1), r ∈ L2(0, L), V ∈ L∞(0, L) and ψ ∈ H2(0, L) ⊂
C1([0, L]) such that

ψ(0) = ψ(L) = 0, −h2ψ′′ + Vψ = r in D′((0, L)),

we have

h2‖ψ′‖2L2(0,L) ≤ ‖V‖L∞(0,L)‖ψ‖2L2(0,L) + ‖r‖L2(0,L)‖ψ‖L2(0,L), (3.1)

and if moreover V = V1 + V2 with V2 ∈ C1([0, L]) and h ∈ (0, 1),

h2|ψ′|2(0+) + h2|ψ′|2(L−) ≤ C
(
h−2‖V1‖2L∞(0,L) + ‖V2‖C1(0,L) + 1

)
‖ψ‖2L2(0,L) + Ch−2‖r‖2L2(0,L). (3.2)

Note that all along the present Section 3, we have V2 = V2 ∈ C1([0, L])

Proof. Multiplying the equation by ψ, integrating on (0, L) and using an integration by parts, we obtain

h2
∫

(0,L)

|ψ′|2dx+

∫

(0,L)

V(x)|ψ|2dx =

∫

(0,L)

rψdx.

The Cauchy-Schwarz inequality yields (3.1). To prove the second inequality, multiply the equation by χ(x)ψ
′

with χ ∈ C∞
c (R; [0, 1]) equal to −1 near 0 and equal to 1 near L. Integrating, we obtain

0 = h2Re

∫

(0,L)

ψ′′χψ
′
dx − Re

∫

(0,L)

V(x)ψχψ
′
dx+Re

∫

(0,L)

rχψ
′
dx (3.3)

Next integrating by parts, we obtain for the first term of (3.3)

h2 Re

∫

(0,L)

ψ′′χψ
′
dx =

h2

2

∫

(0,L)

χ
d

dx
|ψ′|2dx =

h2

2

[
|ψ′|2(0+) + |ψ′|2(L−)

]
− h2

2

∫

(0,L)

χ′|ψ′|2dx.

Concerning the last term of (3.3), we simply write
∣∣∣∣∣Re

∫

(0,L)

rχψ
′
dx

∣∣∣∣∣ ≤ ‖r‖L2(0,L)‖ψ′‖L2(0,L) ≤ h2‖ψ′‖2L2(0,L) + h−2‖r‖2L2(0,L).
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We may estimate the second term of (3.3) with V = V1 + V2, V1 ∈ L∞,V2 ∈ C1 as

∣∣∣∣∣Re
∫

(0,L)

V1(x)ψχψ
′
dx

∣∣∣∣∣ ≤ ‖V1‖L∞‖ψ‖L2‖ψ′‖L2 ≤ h−2‖V1‖2L∞‖ψ‖2L2 + h2‖ψ′‖2L2,

and, integrating by parts, using ψ(0) = ψ(L) = 0,

∣∣∣∣∣Re
∫

(0,L)

V2(x)ψχψ
′
dx

∣∣∣∣∣ =
∣∣∣∣∣
1

2

∫

(0,L)

V2(x)χ
d

dx
|ψ|2dx

∣∣∣∣∣ =
∣∣∣∣∣
1

2

∫

(0,L)

(V2χ)
′|ψ|2dx

∣∣∣∣∣ ≤ C‖V2‖C1(0,L)‖ψ‖2L2(0,L).

Combining the above four lines in (3.3) implies

h2|ψ′|2(0+) + h2|ψ′|2(L−) ≤ Ch2‖ψ′‖2L2(0,L) ++Ch−2‖V1‖2L∞‖ψ‖2L2

+ C‖V2‖C1(0,L)‖ψ‖2L2(0,L) + Ch−2‖r‖2L2(0,L).

The sought estimate (3.2) then follow from (3.1) and h ≤ 1.

We now extend the potentials Vn,V as Vn,V ∈ C1
c ((−1, L + 1);R) (abusing notation slightly) such that

‖Vn − V‖C1(−1,L+1) → 0. We define the operator

Pn = −h2n
d2

dx2
+ Vn, acting on L2(R).

Note that Pn is symmetric on C∞
c (R) since Vn are real-valued. The equation in (2.12) together with the jump

formula imply that

Pnψn = −h2n
(
ψ′
n(0

+)δ0 − ψ′
n(L

−)δL
)
+ rn, in D′(R). (3.4)

Corollary 3.2. Assume (2.12). Then,

1. if rn = OL2(0,L)(1) and Vn = OL∞([0,L])(1), then hn
(
ψn

)′
= hn(ψ

′
n) is a bounded sequence in L2(R) and

in particular,

lim sup
n→+∞

∥∥∥ψ̂n

∥∥∥
L2(|hnξ|≥R)

−→
R→+∞

0 (3.5)

(where û denotes the classical Fourier transform of u).

2. if rn = OL2(0,L)(hn) and Vn = OC1([0,L])(1), then hnψ
′
n(0

+) and hnψ
′
n(L

−) are bounded sequences in
R, and up to a subsequence, there are ℓ0 ≥ 0 and ℓL ≥ 0 so that

|hnψ′
n(0

+)|2 → ℓ0, |hnψ′
n(L

−)|2 → ℓL. (3.6)

Moreover, we have

lim sup
n→+∞

∥∥∥hnψ̂′
n

∥∥∥
L2(|hnξ|≥R)

−→
R→+∞

0. (3.7)

Property (3.5) (resp. (3.7)) says that the sequence ψn (resp. hnψ
′
n) is hn−oscillating. This means that

the scale hn “captures the maximal oscillation rate of the sequence”.

Proof. Using (3.1) (applied to ψn) together with the fact in (2.12) that ψn is normalized in L2, and the
assumption rn = OL2(0,L)(1), we obtain that hnψ

′
n is bounded in L2(0, L), whence the first statement since(

ψn

)′
= (ψ′

n) thanks to the Dirichlet boundary condition. The Plancherel formula then implies that

∥∥∥ψ̂n

∥∥∥
L2(|hnξ|≥R)

≤ (2π)−1R−1
∥∥hnψn

′∥∥
L2

≤ CR−1 →R→+∞ 0.

The fact that hnψ
′
n(0

+) and hnψ
′
n(L

−) are bounded directly follows from (3.2) together with the fact that
h−1
n ‖rn‖L2(0,L) and ‖Vn‖C1([0,L]) are bounded and ψn is normalized.
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We finally consider the oscillation property for the sequence hnψ
′
n. Taking α ∈ (1/2, 1), using Equa-

tion (3.4) and the Plancherel formula, we obtain

∥∥∥ĥnψ′
n

∥∥∥
L2(|hnξ|≥R)

≤ R−1+α
∥∥∥|hnξ|−αh2n(̂ψn)′′

∥∥∥
L2(|hnξ|≥R)

≤ 2R−1+αh2n
(
|ψ′

n(0
+)|+ |ψ′

n(L
−)|
) ∥∥∥|hnξ|−αδ̂0

∥∥∥
L2(|hnξ|≥R)

+ (2π)−1R−1
∥∥Vnψn − rn

∥∥
L2 .

Since

∥∥∥|hnξ|−αδ̂0

∥∥∥
L2(|hnξ|≥R)

=

(∫

|hnξ|≥R)

|hnξ|−2αdξ

)1/2

= h−1/2
n

√
2

(∫ ∞

R

|η|−2αdη

)1/2

= Cαh
−1/2
n R−α+1/2,

we then deduce (3.7) from the facts that hn (|ψ′
n(0

+)|+ |ψ′
n(L

−)|) and
∥∥Vnψn − rn

∥∥
L2 are bounded.

3.2 Localization in the characteristic set

The existence of semiclassical measures µ associated to (ψn, hn)n∈N as in (2.13) is classical, see e.g. [Zwo12,
Theorem 5.2]. In this section, we explain how the fact that ψn solves Equation (2.12) (or rather ψn solves (3.4))
relates the associated limit measures µ to the classical hamiltonian

p(x, ξ) = ξ2 + V(x).

Remark that in case V ∈ C∞(R) and Vn = V , the function p(x, ξ) is the semiclassical principal symbol of the
operator Pn. We also denote by Hp(x, ξ) := 2ξ∂x − V ′(x)∂ξ the Hamiltonian flow of p. Localization and flow
invariance properties for the measures µ away from the boundary are proved e.g. in [Zwo12, Theorem 5.5]
assuming C∞ regularity. Limited regularity is considered in [Bur97a]. Here, we precise these proofs in the
case of Dirichlet boundary condition and of family of potentials converging in C1 regularity.

Lemma 3.3. Assume (2.12) with rn = OL2(0,L)(1) and Vn = OL∞([0,L])(1). Then, the measure µ in (2.13)
is a probability measure supported in the set [0, L]× Rξ.

Proof. To prove that µ is a probability measure, we take χ, χL ∈ C∞
c (R; [0, 1]) such that χ = 1 in a neighbor-

hood of 0, and χL = 1 in a neighborhood of [0, L], and write (using supp(ψn) ⊂ [0, L])

1 =
∥∥ψn

∥∥
L2(R)

=
∥∥χLψn

∥∥
L2(R)

≤
∥∥χ(hnD/R)χLψn

∥∥
L2(R)

+
∥∥(1− χ(hnD/R))ψn

∥∥
L2(R)

.

Using Item 1 Corollary 3.2, we have lim supn→+∞
∥∥(1− χ(hnD/R))ψn

∥∥
L2(R)

−→
R→+∞

0, and pseudodifferential

calculus yields ∥∥χ(hnD/R)χLψn

∥∥2
L2(R)

→n→+∞ 〈µ, χ2
L ⊗ χ2(·/R)〉.

We deduce from the above two lines that

1 ≤ 〈µ, χ2
L ⊗ χ2(·/R)〉+ oR→∞(1),

and hence 1 ≤ 〈µ, χ2
L ⊗ 1〉 ≤ 1 by dominated convergence. This proves both that µ is a probability measure,

and that supp(µ) ⊂ [0, L]× Rξ.

Lemma 3.4. Assume (2.12) with rn = OL2(0,L)(hn), Vn = OC1([0,L])(1) and ‖Vn − V‖C0(−1,L+1) → 0.
Then, the measure µ in (2.13) is a probability measure supported in the set {p(x, ξ) = 0} ∩ [0, L] × Rξ.
Moreover, for all a ∈ C∞

c (R2;R) such that a = 1 in neighborhood of {p(x, ξ) = 0} ∩ [0, L] × Rξ, we have∥∥Ophn
(1 − a)ψn

∥∥
L2(R)

→ 0 as n→ +∞.

Note that the compactness of the set {p(x, ξ) = 0}∩ [0, L]×Rξ ⊂ [0, L]× [−A,A], with A =
√−min[0,L] V

thus implies that µ ∈ E
′(R2), i.e., has compact support.

Note also that the assumption that rn = OL2(0,L)(hn) can be weakened to rn = OL2(0,L)(h
1/2+ε
n ) for any

ε > 0 for the same proof to work (using directly (3.2) instead of Corollary 3.2 Item 2). We did not try to
optimize the proofs in this respect.
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Proof. Let a ∈ C∞
c (Rx × Rξ). Applying A = Ophn

(a) to equation (3.4) and taking the inner product with
ψn, we obtain (after having noticed that Ophn

(a) is a smoothing operator),

(
APnψn, ψn

)
L2(R)

= −h2n
(
A
(
ψ′
n(0

+)δ0 − ψ′
n(L

−)δL
)
, ψn

)
L2(R)

+ o(1).

Corollary 3.2 Item 2 (i.e. boundedness of hn|ψ′
n(0)|) and continuity of the trace H1/2+ε(R) → C, u 7→ u(0),

gives

h2n

∣∣∣
(
A(ψ′

n(0)δ0), ψn

)
L2

∣∣∣ = h2n|ψ′
n(0)|

∣∣∣
(
A(δ0), ψn

)
L2

∣∣∣ = h2n|ψ′
n(0)|

∣∣∣
〈
δ0,

tAψn

〉
S′(R),S(R)

∣∣∣
≤ Chn

∣∣(A∗ψn)(0)
∣∣ ≤ Cεhn

∥∥A∗ψn

∥∥
H1/2+ε(R)

≤ Cεhn
∥∥ψn

∥∥
H1/2+ε(R)

,

after having used uniform boundedness of A∗ on Hs(R) (classical Sobolev spaces). The last term is of order

Oε(h
1/2−ε
n ) by interpolation in Corollary 3.2 between L2 and H1, and hence converges to zero for ε < 1/2. The

same convergence to zero holds for h2n

∣∣∣
(
A(ψ′

n(L)δL), ψn

)
L2

∣∣∣, and we have thus proved that for all a ∈ C∞
c (R2),

(
APnψn, ψn

)
L2(R)

→ 0.

For ǫ > 0, let ρǫ(x) =
1
ǫρ(x/ǫ) be an approximation of identity (ρ ∈ C∞

c (R), ρ ≥ 0,
∫
R
ρ = 1). We define

Vǫ := ρǫ ∗ V and Vǫ
n := ρǫ ∗ Vn. We notice that for any ǫ > 0, we have (under the assumptions of the lemma)

that Vǫ
n = Oǫ,C1([0,L])(1) and ‖Vǫ

n − Vǫ‖C0(−1,L+1) → 0 as n → +∞. Moreover, ‖Vǫ − V‖C0(−1,L+1) → 0 as
ǫ→ 0. We now write

(
A(h2nD

2
x + Vǫ

n)ψn, ψn

)
L2(R)

=
(
APnψn, ψn

)
L2(R)

+
(
A(Vǫ

n − Vn)ψn, ψn

)
L2(R)

. (3.8)

The first term in the right hand-side converges to zero, whereas the second term is bounded by

‖A‖L(L2) ‖Vǫ
n − Vn‖C0 → ‖A‖L(L2) ‖Vǫ − V‖C0 , as n→ +∞.

Pseudodifferential calculus (composition rule) in the left hand-side of (3.8), together with the fact that ‖Vǫ
n−

Vǫ‖C0(−1,L+1) → 0 as n → +∞ and the definition of µ imply that it converges towards 〈µ, (|ξ|2 + Vǫ)a〉. We
have thus obtained that

∣∣〈µ, (|ξ|2 + Vǫ)a〉
∣∣ ≤ ‖A‖L(L2) ‖Vǫ − V‖C0 → 0, as ǫ→ 0+.

Since 〈µ, (|ξ|2 + Vǫ)a〉 →
ǫ→0+

〈µ, (|ξ|2 + V)a〉, we have obtained 〈µ, pa〉 = 0 for all a ∈ C∞
c (R2). This implies

that supp(µ) ⊂ p−1({0}), and concludes the proof of first statement of the lemma.
Concerning the second statement, using pseudodifferential calculus and the normalization of the ψn’s, we

have

∥∥Ophn
(1− a)ψn

∥∥2
L2(R)

=
(
Ophn

(
(1− a)2

)
ψn, ψn

)
L2(R)

+O(hn)

=
∥∥ψn

∥∥2
L2(R)

+
(
Ophn

(−2a+ a2)ψn, ψn

)
L2(R)

+O(hn)

→ 1 + 〈µ,−2a+ a2〉.

Recalling that a = 1 in a neighborhood of supp(µ) and that µ is a probability measure, we have 〈µ,−2a+a2〉 =
〈µ,−1〉 = −1, whence the sought result.

3.3 Propagation of the measure

We next want to investigate propagation properties for the measure µ, and start with a remark.

Lemma 3.5. Under the assumptions of Lemma 3.4, with V ∈ C1
c ([−1, L+ 1]), the distribution Hpµ defined

by (3.9)

〈Hpµ, a〉D′(R2),D(R2) := −〈µ, (2ξ∂x − V ′∂ξ)a〉M(R2),C0(R2), a ∈ C∞
c (R2), (3.9)

is of order at most 1, and is supported in the set {ξ2 + V(x) = 0} ∩
(
{0, L} × Rξ

)
.
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Proof. Since V ∈ C1(R), we have from the definition (3.9) that |〈Hpµ, a〉D′(R2),D(R2)| ≤ CK‖a‖C1(R2) for all
a ∈ C∞

c (K), K ⊂ R2 compact. Hence Hpµ is a distribution of order 1. The support properties readily follow
from those of µ proved in Lemma 3.4.

As a preliminary for propagation properties, we first prove that the convergence in (2.13) holds not only
for compactly supported symbols a but also for symbols of order 2. For m ∈ R, we shall say that a ∈ Sm(R2)

if |∂αx ∂βξ a(x, ξ, h)| ≤ Cα,β〈ξ〉m−β for all α, β ∈ N, (x, ξ) ∈ R2, h ∈ (0, 1] (note that such symbols depend
implicitly on h, with uniform bounds).

Lemma 3.6. Assume (2.12) with rn = OL2(0,L)(hn), Vn = OC1([0,L])(1) and ‖Vn−V‖C0(−1,L+1) → 0. Then,
for all a ∈ S2(T ∗R) independent of h, we have

〈
Ophn

(a)ψn, ψn

〉
H−1,H1 → 〈µ, a〉E′(R2),E(R2). (3.10)

We denote for s ∈ R by

‖u‖2Hs
h
=

∫

R

(1 + h2|ξ|2)s/2|û(ξ)|2dξ, where û(ξ) =

∫

R

e−ixξu(x)dx, u ∈ S(R),

the usual semiclassical Sobolev norm. Note that in Expression (3.10), Ophn
(a)ψn ∈ H−1, and is bounded

uniformly in H−1
hn

since ψn and hnψn
′ are bounded in L2(R), see Corollary 3.2. In particular, one can replace

in (3.10) a ∈ S2(T ∗R) independent of h by a + ε(h)b with b ∈ S2(T ∗R) possibly depending on h (with
uniformly bounded seminorms in this class) and ε(h) → 0.

Here and below, we take the convention that duality brackets between H−1 and H1 or between H−1
h and

H1
h in (3.10) are C−linear in the first variable and C−antilinear in the second variable.

Before giving the proof of Lemma 3.6, we give the following corollary which is actually the last item of
Proposition 2.4 (and is valid under less restrictive assumptions).

Corollary 3.7. We have |ψn(x)|2dx ⇀ m where the nonnegative Radon measure m on R is given by m = π∗µ.

Proof of Corollary 3.7 from Lemma 3.6. For any ϕ ∈ C∞
c (R), we can apply Lemma 3.6 to a = ϕ ◦ π ∈

S0(T ∗R), to obtain
∫
R
ϕ(x)|ψn(x)|2 dx → 〈µ, ϕ ◦ π〉E′(R2),E(R2) = 〈m, ϕ〉E′(R),E(R) by definition of m. By

density of C∞
c (R) in C0

c (R), this implies the result.

Proof of Lemma 3.6. We choose φ ∈ C∞
c (R2) real-valued such that φ = 1 in a neighborhood of supp(µ). We

decompose

〈
Ophn

(a)ψn, ψn

〉
H−1,H1 =

〈
Ophn

(φ)Ophn
(a)ψn, ψn

〉
H−1,H1 +

〈
(1−Ophn

(φ))Ophn
(a)ψn, ψn

〉
H−1,H1 .

We first notice that we have on the one hand (for any a ∈ Sm(R2) with principal part independent of h)

(
Ophn

(φ)Ophn
(a)ψn, ψn

)
L2 =

(
Ophn

(aφ)ψn, ψn

)
L2 +O(hn) →

n→+∞
〈µ, φa〉 = 〈µ, a〉 ,

using pseudodifferential calculus and the support properties of φ.
To conclude the proof, it suffices to prove

〈
(1 −Ophn

(φ))Ophn
(a)ψn, ψn

〉
H−1,H1

→ 0. (3.11)

We first prove the intermediate statement that
∥∥∥(1−Ophn

(φ))hnψ
′
n

∥∥∥
L2

→
n→+∞

0. (3.12)

To prove (3.12), we decompose for χ ∈ C∞
c (R) equal to one near zero,

(1−Ophn
(φ))hnψ

′
n = (1−Ophn

(φ))χ(R−1hnDx)hnψ
′
n + (1−Ophn

(φ))(1 − χ(R−1hnDx))hnψ
′
n,

for R large. For the second term, we have

lim sup
n→+∞

∥∥∥(1−Ophn
(φ))(1 − χ(R−1hnDx))hnψ

′
n

∥∥∥
L2

≤ C lim sup
n→+∞

∥∥∥(1− χ(R−1hnDx))hnψ
′
n

∥∥∥
L2

→
R→+∞

0,
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using (3.7). As for the first term, using that ψn is supported in [0, L], we write for any R > 0

∥∥∥(1 −Ophn
(φ))χ(R−1hnDx)hnψ

′
n

∥∥∥
L2

=
(
BRψn, ψn

)
L2

for BR = χ(x/L)χ(R−1hnDx)(1 − Ophn
(φ)∗)(1 − Ophn

(φ))χ(R−1hnDx), that is a semiclassical pseudodif-
ferential operator in Ophn

(S0). Writing BR = Oph(bR) + hOph(S
−1) with bR(x, ξ) = χ(x/L)χ(R−1ξ)2(1 −

φ(x, ξ))2, we have obtained (
BRψn, ψn

)
L2 → 〈µ, bR〉 = 0,

since φ = 1 in a neighborhood of supp(µ), for any R > 0. Combining the above three lines, we have
proved (3.12).

We finally prove (3.11) for a ∈ S2. Denoting by t Ophn
(φ) the transpose of Ophn

(φ) for the duality bracket

between H−1
h and H1

h, we have
∣∣∣
〈
(1−Ophn

(φ))Ophn
(a)ψn, ψn

〉
H−1,H1

∣∣∣ =
∣∣∣
〈
Ophn

(a)ψn, (1− t Ophn
(φ))ψn

〉
H−1

h ,H1
h

∣∣∣
≤
∥∥Ophn

(a)ψn

∥∥
H−1

h

∥∥(1− t Ophn
(φ))ψn

∥∥
H1

h

≤ C
∥∥ψn

∥∥
H1

h

(∥∥(1− t Ophn
(φ))hnψn

′∥∥
L2 +

∥∥(1− t Ophn
(φ))ψn

∥∥
L2

)

→
n→+∞

0,

where we have used (3.12), the fact that Oph(a) : H1
h → H−1

h uniformly in h, and Lemma 3.4 for the last
convergence. This concludes the proof of the lemma.

Note that the right hand-side of (3.10) makes sense for any a ∈ C∞(R2), using that µ is compactly
supported. Convergence in (3.10) however uses a ∈ S2(R2).

Lemma 3.8. Assume (2.12) with rn = oL2(0,L)(hn) and ‖Vn − V‖C1(−1,L+1) → 0. Then, for all a0, a1 ∈
C∞

0 (Rx) real valued and a(x, ξ) = a0(x) + a1(x)ξ, the measure µ in (2.13) satisfies

〈µ,Hpa〉 = −ℓ0a1(0) + ℓLa1(L).

In the next proofs we need an function χ such that

χ ∈ C∞
c ((−2, 2); [0, 1]), χ even, χ(s) = 1 for |s| ≤ 1, (3.13)

When ε > 0, is given, we will denote the function χε(s) = χ(εs).

Proof. We set A = χ(h3nDx)A0 with A0 := a0(x) + a1(x)hnDx. As in the proof of Lemma 3.4, for ǫ > 0, we
let ρǫ(x) = 1

ǫρ(x/ǫ) be an approximation of identity and define Vǫ := ρǫ ∗ V and Vǫ
n := ρǫ ∗ Vn. We notice

that for any ǫ > 0, we have ‖Vǫ
n − Vǫ‖C1(−1,L+1) → 0 as n→ +∞, and ‖Vǫ − V‖C1(−1,L+1) → 0 as ǫ→ 0.

The proof consists in computing in two different ways the limit of the quantity

LA(hn) :=
1

hn

〈
APnψn, ψn

〉
S(R),S′(R)

− 1

hn

〈
Aψn, Pnψn

〉
S(R),S′(R)

, (3.14)

which makes sense since Aψn ∈ S(R) and APnψn ∈ S(R). Using that Pn is formally selfadjoint together with
pseudodifferential rules, we have on the one hand

LA(hn) =
1

hn

(
[A,Pn]ψn, ψn

)
L2

=
1

hn

(
[A,P ǫ

n]ψn, ψn

)
L2

+
1

hn

(
[A,Pn − P ǫ

n]ψn, ψn

)
L2
, (3.15)

where P ǫ
n = −h2n d2

dx2 + Vǫ
n.

We first study the first term in (3.15). Recalling A = χ(h3nDx)A0, we decompose

[A,P ǫ
n] = χ(h3nDx)[A0, P

ǫ
n] + [χ(h3nDx), P

ǫ
n]A0.

On the one hand, we have [χ(h3nDx), P
ǫ
n] = [χ(h3nDx),Vǫ

n] = OL(L2)(h
3
n) according to pseudodifferential

calculus (or Lemma 3.12 below), and thus
∣∣∣∣
1

hn

(
[χ(h3nDx), P

ǫ
n]A0ψn, ψn

)
L2

∣∣∣∣ ≤ Cǫh
2
n‖A0ψn‖L2‖ψn‖L2 = Oǫ(h

2
n),
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according to Corollary 3.2 and the definition of A0. On the other hand, we have

1

hn

〈
χ(h3nDx)[A0, P

ǫ
n]ψn, ψn

〉
H−1,H1 =

〈
1

hn
[A0, P

ǫ
n]ψn, ψn

〉

H−1,H1

+Rǫ
n,

with

|Rǫ
n| =

∣∣∣∣∣

〈
1

hn
[A0, P

ǫ
n]ψn, (1− χ(h3nDx))ψn

〉

H−1,H1

∣∣∣∣∣ ≤ Cε

∥∥ψn

∥∥
H1

hn

∥∥(1− χ(h3nDx))ψn

∥∥
H1

hn

,

using that 1
hn

[A0, P
ǫ
n] ∈ Ophn

(S2) (actually, it is a semiclassical differential operator of order 2, that is finite

sum of terms of the form cjk(x)h
k
nD

j
x, k ≥ j, 0 ≤ j ≤ 2). We conclude that Rǫ

n converges to zero as n → ∞
thanks to Corollary 3.2.

Combining the above lines and using Lemma 3.6 (and the remark thereafter), we have obtained that the
first term in (3.15) satisfies

1

hn

(
[A,P ǫ

n]ψn, ψn

)
L2 =

〈
1

hn
[A0, P

ǫ
n]ψn, ψn

〉

H−1,H1

+ oǫ(1)

→
n→+∞

〈
µ,

1

i
{a, pǫ}

〉
= −1

i
〈µ,Hpǫa〉 →ǫ→0+ −1

i
〈µ,Hpa〉 . (3.16)

Concerning the second term in (3.15), we have 1
hn

(
[A,Pn − P ǫ

n]ψn, ψn

)
L2 = 1

hn

(
[A,Vn − Vǫ

n]ψn, ψn

)
L2 where

[A,Vn − Vǫ
n] = χ(h3nDx)[(a0(x) + a1(x)hnDx) ,Vn − Vǫ

n] + [χ(h3nDx),Vn − Vǫ
n] (a0(x) + a1(x)hnDx)

= χ(h3nDx)a1(x)
hn
i
∂x(Vn − Vǫ

n) + [χ(h3nDx),Vn − Vǫ
n] (a0(x) + a1(x)hnDx) .

As a consequence, recalling that ψn and hnψn
′ are bounded in L2, we obtain

∣∣∣∣
1

hn

(
[A,Pn − P ǫ

n]ψn, ψn

)
L2

∣∣∣∣ =
∣∣∣∣
1

i

(
a1(x)∂x(Vn − Vǫ

n)ψn, χ(h
3
nDx)ψn

)
L2

− 1

hn

(
(a0(x) + a1(x)hnDx)ψn, [χ(h

3
nDx),Vn − Vǫ

n]ψn

)
L2

∣∣∣∣

≤ C ‖∂x(Vn − Vǫ
n)‖L∞ +

C

hn

∥∥[χ(h3nDx),Vn − Vǫ
n]
∥∥
L(L2)

≤ C ‖∂x(Vn − Vǫ
n)‖L∞ + Ch2n ‖∂x(Vn − Vǫ

n)‖L∞ →
n→+∞

C ‖∂x(V − Vǫ)‖L∞ ,

(3.17)

where we used Lemma 3.12 below with ε = h3n in the last line. Combining now (3.15) with (3.16), (3.17), and
the fact that ‖∂x(V − Vǫ)‖L∞ → 0 as ǫ→ 0, we have obtained

LA(hn) →
n→+∞

−1

i
〈µ,Hpa〉 . (3.18)

We now compute LA(hn) defined in (3.14) in a different way using the equation (3.4). We obtain

LA(hn) = −hn
〈
A
(
ψ′
n(0

+)δ0 − ψ′
n(L

−)δL
)
, ψn

〉
S(R),S′(R)

+ hn

〈
Aψn,

(
ψn

′
(0+)δ0 − ψn

′
(L−)δL

)〉
S(R),S′(R)

+ o(1)

= hn

[
−ψ′

n(0
+)(A∗ψn)(0) + (Aψn)(0)ψn

′
(0+)

]

+ hn

[
ψ′
n(L

−)(A∗ψn)(L)− (Aψn)(L)ψn
′
(L−)

]
+ o(1). (3.19)

We now only treat the boundary terms at 0; the boundary terms at L being handled similarly. Recalling the
definition of A at the beginning of the proof, we have

A∗ =

(
a0(x) +

hn
i
a′1(x) + a1(x)hnDx

)
χ(h3nDx).
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As a consequence, we have

(A∗ψn)(0) =

(
a0(0) +

h

i
a′1(0)

)[
χ(h3nDx)ψn

]
(0) + a1(0)

[
χ(h3nDx)hnDxψn

]
(0), (3.20)

(Aψn)(0) =
[
χ(h3nDx)

(
a0ψn

)]
(0) +

[
χ(h3nDx)

(
a1hnDxψn

)]
(0). (3.21)

It is now possible to apply Lemma 3.9 below with ε = h3n with f = ψn or hnDxψn or a0(x)ψn or a1(x)hnDxψn.
For instance, using that ψn(0) = 0, we have

∣∣[χ(h3nDx)
(
a0ψn

)]
(0)
∣∣ ≤ Ch

3
2
n

(∥∥(a0ψn)
′∥∥

L2 +
∥∥a0ψn

∥∥
L2

)
≤ Ch

1
2
n ,

on account to Corollary 3.2. Similarly, according to Lemma 3.9, we have

[
χ(h3nDx)

(
a1hnDxψn

)]
(0) =

1

2
a1(0)hnDxψn(0

+) + sn,

with |sn| ≤ Ch
5
2
n

(
‖(a1ψ′

n)
′‖L2(0,L) + ‖a1ψ′

n‖L2(0,L)

)
≤ Ch

1
2
n ,

where we used the equation (2.12). Note that the power 3 in χ(h3nDx) has been chosen so that to handle the
remainder terms. Collecting all terms in (3.19)-(3.20)-(3.21), we have obtained

LA(hn) =
1

i
a1(0)|hnψ′

n(0
+)|2 − 1

i
a1(L)|hnψ′

n(L
−)|2 +O

(
h1/2n

)
→

n→+∞
1

i
(a1(0)ℓ0 − a1(L)ℓL),

where we used (3.6) in the limit. This concludes the proof of the lemma when combined with (3.18).

We have used the following Lemma which is a 1D simpler version of [GL93, Lemma 3.8], and which proof
relies on the elementary lemmata 3.10 and 3.11 below which sometimes use the specific properties (parity)
for χ in (3.13).

Lemma 3.9. Let f ∈ L2
comp(R) be such that, in D′(R), we have

f ′ = F + αδ0 + βδL, with F ∈ L2(R), α, β ∈ C.

Then, with χ as in (3.13), we have f |(−∞,0) ∈ C0([−∞, 0]), f |(0,L) ∈ C0([0, L]), f |(L,∞) ∈ C0([L,∞]),
together with

(
χ(εDx)f

)
(0) =

f(0+) + f(0−)

2
+ r, with |r| ≤ Cε1/2

(
‖F‖L2(R) + ‖f‖L2(R)

)
.

Proof. The fact that f is piecewise continuous follows from the fact that f ′ is a Radon measure. Using Lemma
3.11 below and a partition of the unity, we are reduced to the case where f is supported in (−L/2, L/2) and
β = 0.

We define g(x) = f(x)+f(−x)
2 . Then, g is C0

c (R) with g′ ∈ L2(R) and ‖g′‖L2(R) ≤ ‖F‖L2(R). We have

g(0) = f(0+)+f(0−)
2 . Using that χ is even and writing χε(s) = χ(εs), we also have (denoting by χ̌ε the inverse

Fourier transform of χε)

[χ(εDx)g] (0) =
1

2

∫

Ry

[f(−y) + f(y)] χ̌ε(y)dy =
1

2

∫

Ry

[χ̌ε(y) + χ̌ε(−y)] f(y)dy = [χ(εDx)f ] (0).

We can conclude by applying Lemma 3.10 below to g.

Lemma 3.10. There is C > 0 such that for all f ∈ C0
c (R) with f ′ ∈ L2(R), we have

∣∣(χ(εDx)f
)
(0)− f(0)

∣∣ ≤ Cε1/2 ‖f ′‖L2(R) , for all ε > 0.

Proof. Denoting χ̌ε the inverse Fourier transform of χε, we have χ̌ε(ξ) =
1
ε χ̌(ε

−1ξ). Since χ(0) = χε(0) = 1,
we have

∫
R
χ̌ε(ξ)dξ = 1 so that

(
χε(Dx)f

)
(0)− f(0) =

∫

Ry

[f(−y)− f(0)] χ̌ε(y)dy = −
∫

Ry

yχ̌ε(y)

∫ 1

0

f ′(−ty)dtdy

= −ε
∫

Rx

xχ̌(x)

∫ 1

0

f ′(−tεx)dtdx.
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We have by Cauchy-Schwarz inequality

∣∣(χε(Dx)f
)
(0)− f(0)

∣∣ ≤ ε

∫ 1

0

∫

Rx

|xχ̌(x)| |f ′(−tεx)| dtdx ≤ ε ‖xχ̌‖L2

∫ 1

0

(∫

Rx

|f ′(−tεx)|2 dx
)1/2

dt

≤ Cε1/2
∫ 1

0

t−1/2

(∫

Rs

|f ′(s)|2 ds
)1/2

dt ≤ Cε1/2 ‖f ′‖L2(R) ,

which is the sought estimate.

Lemma 3.11. Let c > 0 and N ∈ R+, then, there exists CN,c > 0 so that for all f ∈ L2(R) so that f = 0
a.e. in (−c, c), we have

∣∣(χ(εDx)f
)
(0)
∣∣ ≤ CN,cε

N ‖f‖L2 .

Proof. With the same notations as the proof of Lemma 3.10, we have

∣∣(χ(εDx)f
)
(0)
∣∣ =

∣∣∣∣
∫

R

f(−y)χ̌ε(y)dy

∣∣∣∣ ≤
∥∥y−Nf

∥∥
L2

∥∥yN χ̌ε(y)
∥∥
L2 ≤ εN−1/2c−N ‖f‖L2

∥∥xN χ̌(x)
∥∥
L2 ,

whence the sought result after having changed the value of N .

We have also used the following lemma to handle “low-regularity” potentials.

Lemma 3.12. Assume V ∈ C0(R) such that V ′ ∈ L∞(R) and χ ∈ C∞
c (R). Then we have

[χ(εD), V (x)] ∈ L(L2(R)), with ‖[χ(εD), V (x)]‖L(L2) ≤ Cχε ‖V ′‖L∞(R) .

Proof. The operator χ(εD) is the convolution by 1
ε χ̌
( ·
ε

)
where χ̌ is the inverse Fourier transform of χ. Its

kernel is therefore 1
ε χ̌
(
x−y
ε

)
and the kernel of [χ(εD), V (x)] is therefore Kε(x, y) =

1
ε χ̌
(
x−y
ε

)
(V (y)− V (x)).

The Schur Lemma and symmetry of the kernel in (x, y) give

‖[χ(εD), V (x)]‖L(L2(R)) ≤ max

[
sup
x∈R

‖Kε(x, y)‖L1(Ry)
, sup
y∈R

‖Kε(x, y)‖L1(Rx)

]

≤ 1

ε
sup
x∈R

∫

Ry

∣∣∣∣χ̌
(
x− y

ε

)∣∣∣∣ |V (y)− V (x)| dy ≤ sup
s∈R

∫

Rt

|χ̌ (s− t)| |V (εt)− V (εs)|

≤ ε ‖V ′‖L∞(R) sup
s∈R

∫

Rt

|χ̌ (s− t) (s− t)| dt.

This yields the expected result with Cχ = ‖tχ̌(t)‖L1
t
.

3.4 Invariance properties near the boundary

Now, we will state the propagation at the boundary. We only consider the boundary problem at x = 0, the
problem near x = L being handled similarly. The following is a 1D version of [GL93, Theorem 2.3].

Lemma 3.13. Under the assumptions of Proposition 2.4, with ‖rn‖L2 = o(1), we have

• (Elliptic case) if V(0) > 0: then ℓ0 = 0 and µ = 0 for x close to 0

• (Glancing case) if V(0) = 0: then Hpµ = −ℓ0δx=0 ⊗ δ′ξ=0 for x close to 0

• (Hyperbolic case) if V(0) < 0: then Hpµ = ℓ0

2
√

−V(0)
δx=0 ⊗ (δ

ξ=
√

−V(0)
− δ

ξ=−
√

−V(0)
) for x close to 0.

Note that the simple 1D setting here allows to avoid the use of the Malgrange preparation theorem and
provides with a self-contained elementary proof (as compared to [GL93, Theorem 2.3]).

Remark 3.14. Note that one recovers the equation in the glancing case V(0) = 0 by taking the limit√
−V(0) → 0 in the equation obtained in the hyperbolic case.
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Proof. In the first elliptic case, that µ = 0 near x = 0 is a consequence of Lemma 3.4 together with {p =
0} ∩ ({0} × R) = ∅ if V(0) > 0. Applying Lemma 3.8 with a0 = 0 and a1 satisfying a1(0) = 1 and
supp(a1)× R ∩ supp(µ) = ∅ yields ℓ0 = 0.

For the glancing case, we use Lemma 3.5 together with {ξ2 + V(x) = 0} ∩ {0} × Rξ = {(0, 0)}. Classical
Distribution theory implies that close to x = 0,

Hpµ = q(0,0)δ(0,0) + q(1,0)∂xδ(0,0) + q(0,1)∂ξδ(0,0),

where qα ∈ C. Lemma 3.8 gives, for every a(x, ξ) = a0(x) + ξa1(x)

ℓ0a1(0) = −〈µ,Hpa〉 = q(0,0)a0(0)− q(1,0)a
′
0(0)− q(0,1)a1(0).

Since a0 and a1 are arbitrary smooth functions, we obtain q(0,0) = q(1,0) = 0 and q(0,1) = −ℓ0, so that
Hpµ = −ℓ0δx=0 ⊗ δ′ξ=0, which is the sought result.

For the hyperbolic case, Lemma 3.5 together with

{ξ2 + V(x) = 0} ∩ {0} × Rξ = {(0x,
√
−V(0))} ∪ {(0x,−

√
−V(0))}

imply again that, close to x = 0,

Hpµ = q+(0,0)δ(0,
√

−V(0))
+ q+(1,0)∂xδ(0,

√
−V(0))

+ q+(0,1)∂ξδ(0,
√

−V(0))

+ q−(0,0)δ(0,−
√

−V(0))
+ q−(1,0)∂xδ(0,−

√
−V(0))

+ q−(0,1)∂ξδ(0,−
√

−V(0))
. (3.22)

This time, Lemma 3.8 gives for every a(x, ξ) = a0(x)

0 = −〈µ,Hpa〉 = 〈Hpµ, a〉 = (q+(0,0) + q−(0,0))a0(0)− (q+(1,0) + q−(1,0))a
′
0(0).

This implies

q(0,0) := q+(0,0) = −q−(0,0) and q(1,0) := q+(1,0) = −q−(1,0). (3.23)

Then, Lemma 3.8 gives for every a(x, ξ) = a1(x)ξ

ℓ0a1(0) = −〈µ,Hpa〉 =
√
−V(0)

[
2a1(0)q(0,0) − 2a′1(0)q(1,0)

]
− (q+(0,1) + q−(0,1))a1(0).

This gives q(1,0) = 0 and

ℓ0 =
√
−V(0)2q(0,0) − (q+(0,1) + q−(0,1)). (3.24)

To finish, we now choose a(x, ξ) = p(x, ξ)b(x, ξ) as a test function, for b ∈ C∞
c (R2), and obtain

〈µ,Hpa〉 = 〈µ, pHpb〉+ 〈bµ,Hpp〉 = 0,

where we have used Lemma 3.4 for the first term and Hpp = 0 for the second. Applying again (3.22)
to this function a and using the information we already have on the coefficients in (3.22), we obtain using
a(0,±

√
−V(0)) = 0 (recall that p = ξ2 + V(x)) that

0 = −〈µ,Hpa〉 = −q+(0,1)(∂ξa)(0,
√
−V(0)) + q−(0,1)(∂ξa)(0,−

√
−V(0)).

But now for a(x, ξ) = p(x, ξ)b(x, ξ), on the set p = 0, we have

(∂ξa)(x, ξ) = (∂ξp)(x, ξ)b(x, ξ) + (∂ξb)(x, ξ)p(x, ξ) = 2ξb(x, ξ).

So, we deduce

0 = −
√
−V(0)q+(0,1)b(0,

√
−V(0))−

√
−V(0)q−(0,1)b(0,−

√
−V(0)).

Since b is arbitrary and
√
−V(0) 6= 0, we obtain q+(0,1) = q−(0,1) = 0. This, together with (3.24) implies that

ℓ0 = 2
√
−V(0)q(0,0) which, combined with (3.22), (3.23) and q(1,0) = 0, gives the expected result in the

hyperbolic case.
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We now specify to the glancing and diffractive case at x = 0.

Lemma 3.15. If V(0) = 0 and V ′(0) < 0, then ℓ0 = 0 and µ({(0, 0)}) = 0.

Proof. For this, we follow [BG97]. We take χ ∈ C∞
c (−1, 1) with χ = 1 in a neighborhood of 0, χ ≥ 0 and∫

R
χ = 1. Define χ̃(s) =

∫ s

−∞ χ ∈ C∞(R) and test the identity Hpµ = −ℓ0δx=0⊗δ′ξ=0 obtained in Lemma 3.13

with the function a(x, ξ) = χ(x/α)χ̃(ξ/β) ∈ C∞(R2) for α, β > 0. This yields (for α sufficiently small)

〈µ,−2ξ

α
χ′(x/α)χ̃(ξ/β)〉+ 〈µ, V

′(x)

β
χ(x/α)χ̃′(ξ/β)〉 = ℓ0

β
χ(0)χ(0) =

ℓ0
β
.

Multiplying by β, choosing α =
√
β, and using dominated convergence yields, in the limit β → 0+

O
(√

β
)
+ 〈µ,V ′(x)χ(x/

√
β)χ(ξ/β)〉 = ℓ0.

Now taking the limit β → 0+ and using again dominated convergence implies V ′(0)µ({(0, 0)}) = ℓ0. That
V ′(0) < 0, µ ≥ 0 and ℓ0 ≥ 0 implies that ℓ0 = 0 and µ({(0, 0)}) = 0.
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