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Computing the set of asymptotic critical values of
polynomial mappings from smooth algebraic sets

Jérémy Berthomieu, Andrew Ferguson, Mohab Safey El Din

Sorbonne Université, CNRS, LIP6, F-75005, Paris, France

Abstract

Let f = (f1, . . . , fp) ∈ Q[z1, . . . , zn] be a polynomial tuple. Define the polynomial
mapping f : X → Cp, where X is a smooth algebraic set defined by the simulta-
neous vanishing of the reduced regular sequence g1, . . . , gm, with m + p ≤ n. Let
d = max(deg f1, . . . ,deg fp,deg g1, . . . ,deg gm), df be the differential of f and κ be the
function measuring the distance of a linear operator to the set of singular linear opera-
tors from Cn to Cp. We consider the problem of computing the set of asymptotic critical
values of f . This is the set of values c in the target space of f such that there exists a
sequence of points (xi)i∈N tending to ∞ for which f(xi) tends to c and ‖xi‖κ(df(xi))
tends to 0 when i tends to infinity.

The union of the classical and asymptotic critical values contains the so-called bifur-
cation set of a polynomial mapping. Thus, by computing both the critical values and
the asymptotic critical values, one can utilise generalisations of Ehresmann’s fibration
theorem in non-proper settings for applications in polynomial optimisation and compu-
tational real algebraic geometry.

We design new efficient algorithms for computing the set of asymptotic critical val-
ues of a polynomial mapping restricted to a smooth algebraic set. By investigating
the degree of the objects constructed in our algorithms, we give the first bound on
the degree of this set of values of pD, where D = dn−p−1

∑p+1
i=0

(
n+p−1
m+2p+i

)
di. We also

give the first complexity analysis of this problem, showing that it requires at most
O∼

(
p(p+ 1)Dp+5 + (n+m+ 2p)d+3Dp+4

)
operations in the base field. Moreover, in

the special case p = 1, we give another complexity estimate of O∼((n + m + 2)d+3D5)
arithmetic operations.

Additionally, we show how to apply these algorithms to polynomial optimisation
problems and the problem of computing sample points per connected component of a
semi-algebraic set defined by a single inequality/inequation.

We provide implementations of our algorithms and use them to test their practical
capabilities. We show that our algorithms significantly outperform the current state-of-
the-art algorithms by tackling previously out of reach benchmark examples.

Keywords: Asymptotic critical values, Polynomial optimisation, Gröbner bases
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1. Introduction

Definition of asymptotic critical values. Let K be either R or C and let f = (f1, . . . , fp) ∈
K[x1, . . . , xn]p be a polynomial mapping. Let g = (g1, . . . , gm) be a reduced regular
sequence such that the variety X = V(g1, . . . , gm) ⊂ Cn is smooth. We consider the
polynomial mapping

f : x = (x1, . . . , xn) ∈ X 7→ (f1(x1, . . . , xn), . . . , fp (x1, . . . , xn)) ∈ Kp.

We assume that n ≥ m+ p and that this mapping is dominant, so that the image of f is
dense in Cp. For ease of notation, we shall denote x1, . . . , xn by x, z1, . . . , zn by z and,
for the value of the polynomial mapping f , c1, . . . , cp by c. Denote by df the differential
of the mapping f and, for a given point x ∈ X, df(x) the differential of f at x, a linear
map from the tangent space TxX of X at x to the tangent space Tf(x)Kp of Kp at f(x).

Denote by L(Kn,Kp) the space of linear mappings from Kn to Kp and by Σ the
singular set of L(Kn,Kp). First defined in [22], denote by ν the distance of an operator
A ∈ L(Kn,Kp) to the set of singular operators: [18, Proposition 2.2]

ν(A) = dist(A,Σ) = inf
B∈Σ
‖A−B‖.

Then, the set of asymptotic critical values of the polynomial mapping f restricted to the
algebraic set X is defined as follows:

K∞(f) = {c ∈ Cp | ∃(xt)t∈N ⊂ X s.t.‖xt‖ → ∞,f(xt)→ c and ‖xt‖ν(df(xt))→ 0}

Let jac(f , g) be the Jacobian matrix associated to the mapping (f1, . . . , fp, g1, . . . , gm),

jac(f , g) =



∂f1
∂z1

· · · ∂f1
∂zn

...
...

∂fp
∂z1

· · · ∂fp
∂zn

∂g1
∂z1

· · · ∂g1
∂zn

...
...

∂gm
∂z1

· · · ∂gm
∂zn


.

For 1 ≤ j ≤ p, denote by jac(f , g)[j] the submatrix of jac(f , g) obtained by removing
the jth row. Note that we only ever remove one of the first p rows. Denote by Nj the
kernel of the matrix jac(f , g)[j]. In the special case (p,m) = (1, 0), the matrix has no
entries, so by convention we say its kernel is Kn. Let wj(z) be the restriction of the
differential dfj to the kernel Nj .

Following [15, Proposition 2.3], for a linear subspace H ⊂ Kn defined by vectors
B1, . . . , Bm, let F ∈ L(H,Kp) be a linear map represented by a matrix with rows
(A1, . . . , Ap) ⊂ Kn. We consider the so-called Kuo distance defined by

κ(F ) = min
1≤j≤p

dist (Ai, span((Aj)i 6=j , (Bk)1≤k≤m)) .

In particular, for z ∈ X we have that

κ(df(z)) = min
1≤j≤p

||wj(z)||.
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By [15, Corollary 2.1], the function ν is equivalent to the Kuo distance. Hence, an equiv-
alent definition of the set of asymptotic critical values, the one that we shall primarily
use, is the following:

K∞(f) = {c ∈ Cp | ∃(xt)t∈N ⊂ X s.t.‖xt‖ → ∞,f(xt)→ c and ‖xt‖κ(df(xt))→ 0} .

Restriction to a proper algebraic subset of Cn can affect the asymptotic critical values of
a polynomial mapping in subtle ways. For example, a path that leads to an asymptotic
critical value in the unrestricted setting may not satisfy the Jacobian condition in the
definition of K∞(f). However, restricting f to an algebraic set that contains this path
and thereby adding rows to said Jacobian, can result in this path now satisfying all the
above conditions.

Example 1. Let f = z2
1 + (z1z2 − 1)2. First we consider the global case, f : C2 → C.

We shall show that 0 ∈ K∞(f). The gradient is equal to

df = (2z1 + 2z2(z1z2 − 1), 2z1(z1z2 − 1)).

Then, consider the path z(t) = (t, 1/t − t) as t → 0. We see that ‖z(t)‖ → ∞ and
f(z(t)) = t2 + t4 → 0. Furthermore, we have that df(z(t)) = (2t3,−2t3). Since p = 1
and m = 0, the Kuo distance κ can be simply replaced by the 2-norm. Hence,

‖z(t)‖2‖df(z(t))‖2 = 8t6

(
t2 +

(
1

t
− t
)2
)
→ 0,

and so 0 is an asymptotic critical value of f .
Note that the path y(t) = (t, 1/t) satisfies the first two conditions for a path towards

the asymptotic critical value 0, ‖y(t)‖ → ∞ and f(y(t)) → 0 as t → 0. However,
df(y(t)) = (2t, 0) and so

‖y(t)‖2‖df(y(t))‖2 = 4t2
(
t2 +

1

t2

)
= 4t4 + 4→ 4.

Now consider algebraic set X = V(g) = V(z1z2 − 1) and the restricted polynomial
map f : X → C. Then, consider the Jacobian

jac(f, g) =

[
2z1 + 2z2(z1z2 − 1) 2z1(z1z2 − 1)

z2 z1

]
.

Let N1 be the kernel of dg, then w1 = df |Nj and κ(df) = ‖w1‖. Choose a basis for N1,
(−z1, z2). Then,

w1 = −2z1(2z1 + 2z2(z1z2 − 1)) + z2(2z1(z1z2 − 1)) = 2z1z2 − 2z2
1z

2
2 − 4z2

1 .

Clearly, the path y(t) is in the set V(z1z2− 1) for all t > 0, so we have ‖y(t)‖ → ∞ and
f(y(t))→ 0 as t→ 0 but now we also have

‖y(t)‖2κ(df(y(t)))2 = ‖y(t)‖2‖w1(y(t))‖2 = 16t4
(
t2 +

1

t2

)
→ 0.
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Motivation. Denote by K0(f), the set of critical values of f

K0(f) = {c ∈ Cp | ∃x ∈ X s.t. f(x) = c and rank(jac(f , g)(x)) < m+ p} .

The set of generalised critical values is thus defined to be the union of the classical critical
values and the asymptotic critical values, K(f) = K0(f) ∪K∞(f). In [22], the author
proved that this set contains the so-called bifurcation set of f . Essentially, this provides
a generalisation of Ehresmann’s fibration theorem to non-proper settings. Thus,

f : X \ f−1(K(f))→ Kp \K(f)

is a locally trivial fibration which by definition, means that for all connected open sets
U ⊂ Kp \ K(f), for all y ∈ U there exists a diffeomorphism ϕ such that the following
diagram commutes:

f−1(y)× U f−1(U)

U

π

ϕ

f

where π is the projection map onto U [15, Theorem 3.1]. However, for this to be compu-
tationally meaningful, we require the set K(f) not to be dense in Kp. It is well known
that by Bertini’s algebraic version of Sard’s theorem, the set K0(f) has codimension at
least one in Kp. Crucially, it has also been shown that the set of asymptotic critical
values satisfies a generalised Sard’s theorem [15, Theorem 3.3].

Therefore, the computation of the generalised critical values for effective uses in real
algebraic geometry is appealing. Their fibration property has been capitalised upon in
[13, 24] to design algorithms for

• exact polynomial optimisation (i.e. computing the minimal polynomial of the infi-
mum of the map x → f(x) restricted to X ∩ Rn and an isolating interval for this
infimum),

• computing sample points for each connected component of a semi-algebraic set
defined by a single inequality.

Prior works. Computing the set of critical values of a polynomial mapping restricted to
an algebraic set is classical. By the Jacobian criterion under the assumption that X is
smooth and g is a reduced regular sequence, one may consider the algebraic set defined
by the intersection of X with the variety defined by the maximal minors of jac(f , g) to
find the critical points of f . Then, the set K0(f) is equal to the set of values of f at
these points [8, Corollary 16.20].

As far as we are aware, the first work towards the computation of the asymptotic
critical values of a polynomial mapping was given in [18]. This is based on a geometric
characterisation of K∞(f) that allows one to construct an algebraic set of codimension
at least one in Cp that contains the asymptotic critical values. Then, one can construct
polynomials defining this algebraic set by using algorithms that compute elimination
ideals in polynomial rings, such as Gröbner basis based algorithms. Note that the authors
of this paper only consider the global setting. Later, the authors of [15] proposed an
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algorithm for computing the generalised critical values of a polynomial mapping restricted
to an algebraic set. This follows a similar schematic of defining algebraic sets, considering
their intersections with linear hyperspaces and projecting onto the target space. However,

this algorithm constructs (p(m + p))(
n

m+p) locally closed sets in C(n+1)( n
m+p)+p+n before

projecting onto Cp making the algorithm impractical. Furthermore, a complexity analysis
for this algorithm is lacking.

Several attempts to improve this algorithmic pattern have been made in the global
case with p = 1. We mention [24] in which the author makes the connetion between
generalised critical values and properties of polar varieties. This connection is exploited
in [16] where the authors build rational arcs that reach all the generalised critical values of
a polynomial. Moreover, in [17], the authors make a distinction between asymptotic crit-
ical values, detecting those that are found non-trivially, meaning away from the critical
locus of the polynomial, something not covered in this paper.

Main results. By adapting the results of [18, Section 4], building a geometric char-
acterisation of K∞(f) using Lagrange multipliers, we develop efficient algorithms for
computing asymptotic critical values under the restriction to a smooth algebraic set. We
introduce an element of randomisation to avoid some combinatorial steps in the algorithm
designed in [15]. Next, with a geometric result, we reduce the computation of K∞(f) to
intersecting the Zariski closure of some locally closed subset of Cn+m+2p with a linear
affine subspace of codimension 2 such that the projection onto the target space of f of
this intersection contains K∞(f). Then, by taking advantage of the multi-homogeneous
structure of the objects defined in this algorithm, we give a bound on the degree of the
asymptotic critical values.

Theorem 2. Let f = (f1, . . . , fp) ∈ K[z]p be a dominant polynomial mapping from a
smooth algebraic set defined by a reduced regular sequence g = (g1, . . . , gm). Let d =
max(deg f1, . . . ,deg fp,deg g1, . . . ,deg gm). Then, the asymptotic critical values of f are
contained in a hypersurface of degree at most

pdn−p−1

p+1∑
i=0

(
n+ p− 1

m+ 2p− i

)
di.

We note that in many cases, the bound given in Theorem 2, combined with the bound
on the degree of the critical values in [10, Corollary 2] in the p = 1 case, is less than
the bound given on the degree of the generalised critical values in [15, Theorem 4.1].
However, for certain values of the parameters m, p and n, the latter bound is actually
smaller. This is discussed in Section 9.

While in practice, and in our experiments, Gröbner bases are the tool of choice for
performing the algebraic elimination routines necessary in our algorithms, we study their
complexity by utilising the geometric resolution algorithm given in [12]. We recall the

“soft-Oh” notation: f(n) ∈ Õ(g(n)) means that f(n) ∈ g(n) logO(1)(3+g(n)), see also [11,
Chapter 25, Section 7].

We now give our first complexity result. The following is for the special case p = 1,
which is of particular importance for many applications such as polynomial optimisation.

Theorem 3. Let f ∈ K[z] be a polynomial from a smooth algebraic set defined by a
reduced regular sequence g = (g1, . . . , gm). Let d = max(deg f, deg g1, . . . ,deg gm) and
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D = dn−2
∑p+1
i=0

(
n

m+2−i
)
di. There exists an algorithm which, on input f, g, outputs a

non-zero polynomial H ∈ K[c] such that K∞(f) ⊂ V(H) using at most

O∼((n+m+ 2)d+3D5)

arithmetic operations in K.

The p = 1 case relies on resultant computation for a smaller complexity bound.
However, in the p > 1 case, we must change our methodology. We use the FGLM
algorithm [9] which has dominant complexity in our algorithm, to arrive at the following
result.

Theorem 4. Let f = (f1, . . . , fp) ∈ K[z]p be a dominant polynomial mapping from a
smooth algebraic set defined by a reduced regular sequence g = (g1, . . . , gm). Let d =

max(deg f1, . . . ,deg fp,deg g1, . . . ,deg gm). Let D = dn−p−1
∑p+1
i=0

(
n+p−1
m+2p−i

)
di. There

exists an algorithm which, on input f and g, outputs p finite lists of non-zero polynomials
Gi ⊂ K[c] such that K∞(f) ⊂ (V(G1) ∪ · · · ∪V(Gp)) ( Cp using at most

O∼
(
p(p+ 1)Dp+5 + (n+m+ 2p)d+3Dp+4

)
arithmetic operations in K.

Furthermore, we have implemented all the algorithms given in this paper in the
Maple [19] computer algebra system. For the Gröbner basis computations, we rely
on the Gröbner package in Maple. Testing these implementations for a wide range
of benchmark examples, we illustrate that our algorithms significantly outperform the
state-of-the-art.

Structure of the paper. In Section 2, we develop the geometric characterisation of the
asymptotic critical values given in [18] to the setting of restrictions to smooth algebraic
sets. Then, we explore an interpretation of this characterisation in terms of Lagrange
multipliers that leads directly to an algorithm for computing the set of asymptotic critical
values. In Section 3, we prove our main geometric result, upon which the efficiency of our
algorithms relies. Then, in Section 4, we apply the results of the previous two sections to
introduce two elements of randomisation in order to design new algorithms more efficient
than the state-of-the-art. In Sections 5 and 6, we prove our main results by analysing
our new algorithms. An additional algorithm, deriving from a different interpretation of
the geometric characterisation of the asymptotic critical values is presented in Section 7.
Finally, in Section 9, we compare all the algorithms given in this paper in terms of time.
Furthermore, we compare our degree result to the bound given in [15, Theorem 4.1] and
to the true number of asymptotic critical values for a set of benchmark examples.

2. Preliminaries

Let f : X → Cp be a dominant polynomial mapping defined from an algebraic set
X = V(g) where X is smooth and is defined by g, a reduced regular sequence. By [15,
Theorem 3.3] the set of asymptotic critical values of f has codimension at least one in
Cp. The aim of this section is to define an algebraic set containing K∞(f) that also has
codimension at least one in Cp.
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To access the asymptotic behaviour algebraically, we utilise the following transforma-
tion that sends zs = 0 to ∞:

τs(z) =

(
z1

zs
, . . . ,

zs−1

zs
,

1

zs
,
zs+1

zs
, . . . ,

zn
zs

)
.

For each choice of s = 1, . . . , n, j = 1, . . . , p and point x ∈ X, let W j
s (x) be the graph of

xswj(x), a point in the Grassmannian of linear subspaces of Cn×C that are of dimension
n−p−m+ 1, denoted by Gn−p−m+1(Cn×C). We remark that this point is well defined
for x ∈ X such that the kernel of jac(f , g)[j] has dimension n − p −m + 1. Therefore,
since X is a smooth affine variety and the mapping f is dominant, this is well-defined
outside of a proper Zariski closed subset of X.

Then, define the rational mapping

M j
s (f) : X \ {zs = 0} → Cp ×Gn−p−m+1(Cn × C),

z 7→ (f(τs(z)),W
j
s (τs(z))).

Let Λ = Gn−p−m+1(Cn × 0). This is the set of (n − p −m + 1)-dimensional graphs
of linear maps from Cn to C that are identically the zero map.

Ljs(f) = graphM j
s (f) ∩ ({z ∈ X|zs = 0} × Cp × Λ).

Define π : X × Cp × Gn−k+1(Cn × C) → Cp to be the projection map and take
Kj
s(f) = π(Ljs(f)). We shall prove in this section that Ljs(f) is an algebraic set.

This framework suggests looking at each coordinate tending to infinity separately.
Instead, we shall introduce a probabilistic element that allows one to investigate every
coordinate tending to infinity at once.

Denote by GLn(K) the group of n×n invertible matrices with entries in K. For a group
element A ∈ GLn(K), consider the polynomial mapping fA given by fA(z) = f(Az)
restricted to the algebraic set V(gA) where gA(z) = g(Az). The following lemma shows
that K∞(fA) = K∞(f).

Lemma 5. Let f : X → Cp be a polynomial mapping from an algebraic set X. Let
A ∈ GLn(K) be an invertible matrix and define the polynomial mapping

fA : z ∈ A−1X → f(Az) ∈ Cp.

Then, K∞(f) = K∞(fA).

Proof. Let c ∈ K∞(f) be an asymptotic critical value with a path z(t) ⊂ X such that
‖z(t)‖ → ∞,f(z(t)) → c and ‖z(t)‖ν(df(z(t))) → 0 as t → ∞. Then, for a given
invertible matrix A ∈ GLn(K), define the path y(t) = A−1z(t). Clearly, as t → ∞,
‖y(t)‖ → ∞ and fA(y(t)) → c. Then, to prove that c ∈ K∞(fA), it remains to show
that ‖y(t)‖ν(dfA(y(t))) → 0. Firstly, ‖y(t)‖ ≤ ‖A−1‖‖z(t)‖. Moreover, by the chain
rule,

dfA(y(t)) = dfA(A−1z(t)) = df(z(t))A.

Then, since A is an invertible matrix and since the Rabier distance is the distance to the
set of singular operators [18, Proposition 2.2], we have that ‖z(t)‖ν(df(z(t))A)→ 0 and
hence c ∈ K∞(fA). The reverse direction holds with the same argument.
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The advantage of the transformation τs is that it allows us to give an algebraic
description of the sets Ljs(f). By elimination of variables, we are then able to compute
the Zariski-closure of the projection of Ljs(f) on the c-space. This gives, in general, a
superset of the asymptotic critical values of codimension at least 1 in Cp. Moreover, in
the special case p = 1, of particular interest for many applications such as polynomial
optimisation, this inclusion becomes equality.

First, we give a lemma that will allow a Lagrange multiplier interpretation of the Kuo
distance.

Lemma 6. Consider the linear maps F : Cn → Cm, defined by vectors (F1, . . . , Fm) ⊂
Cn, and L : Cn → C with n ≥ m. defined, with a slight abuse of notation, by the vector
L. Then,

L ∈ span(F1, . . . , Fm) ⇐⇒ kerF ⊂ kerL.

Proof. We shall prove this by double inclusion. Firstly, suppose that L ∈ span(F1, . . . , Fm).
Then, let x ∈ kerF so that Fi · x = 0 for all i. Thus, there exists y ∈ Cm such that for
all x we have L · x =

∑m
i=1 yi(Fi · x) = 0. Hence, x ∈ kerL and kerF ⊂ kerL.

On the other hand, suppose that kerF ⊂ kerL. Consider a trivial extension of F ,
the linear map G : Cn → Cn, defined by (F1, . . . , Fn) where Fm+1 = · · · = Fn ≡ 0.
Then, consider the induced isomorphism G̃ : Cn/ kerF → imG and the linear map
L̃ : Cn/ kerF → C. By extending a basis of imG ∼= Cm to a basis of Cn, we may extend
L̃ to L̂ : Cn → C so that

L̂ ◦G = L̂|imG ◦G = L̃ ◦ G̃−1 ◦G = L̃ ◦ π = L,

where π is the projection map from Cn to Cn/ kerF . Therefore, for any x ∈ Cn we have

L · x = L(x) =

n∑
i=1

yi(Fi · x) =

m∑
i=1

yi(Fi · x)

for some y ∈ Cn and so L ∈ span(F1, . . . , Fm).

In the algorithms presented in this paper, we shall derive polynomials whose simul-
taneous vanishing set is the Zariski closure of the graph of the set M j

s (fA). For this
purpose, we introduce m+ p− 1 new variables λ, that will be Lagrange multipliers. Ad-
ditionally, since we consider a graph we also have n new variables u and p new variables
c that will correspond to the values of the the map M j

s (fA).
For a reduced rational function, ϕ/θ, we define the function numer by numer(ϕ/θ) =

ϕ. For a vector of reduced rational functions, (ϕ1/θ1, . . . , ϕm/θm), we extend the function
numer so that numer(ϕ1/θ1, . . . , ϕm/θm) = (ϕ1, . . . , ϕm).

Lemma 7. Let f ∈ K[z]p be a dominant polynomial mapping with domain a smooth
algebraic set X defined by a reduced, regular sequence (g1, . . . , gm) and let A ∈ GLn(K).
Then, there exist polynomials h1, . . . , hn+m+p ∈ K[z, c,u,λ] such that

graphM j
s (fA) = V(h1, . . . , hn+m+p) \V(zs),

Ljs(f
A) = graphM j

s (fA) ∩V(zs, u1, . . . , un).

8



Proof. Firstly, since A ∈ GLn(K), f being dominant implies that fA is also dominant.
Thus, M j

s (fA) is well-defined outside of a nowhere dense algebraic set.
Clearly, by the first p components of the map M j

s (fA) we take h1, . . . , hp to be
numer(fA(τs(z))− c), where c are new indeterminates for the value of fA at τs(z) and
we take the numerators of these rational functions to get polynomials. We shall handle
the denominators of these polynomials later by removing the algebraic set they define,
thus ensuring these rational functions are always well-defined.

Then, by the restriction to the algebraic set X = V(g1, . . . , gm), which after the trans-
formation by A becomes V(gA1 , . . . , g

A
m), we set hp+1, . . . , hp+m to be numer(gA(τs(z))).

Now, we need an algebraic interpretation of W j
s (τs(z)) and Λ = Gn−p−m+1(Cn × 0).

Recall that W j
s (τs(z)) is an element of the Grassmannian Gn−p+1(Cn×C), since the

map M j
s (fA) is well-defined outside of a nowhere dense algebraic set, and that wj(z)

is the restriction of zs dfAj to the kernel of the Jacobian matrix of f with the jth row

removed. Then, the condition that W j
s (τs(z)) → W , for some W ∈ Λ, along some

path to an asymptotic critical value implies that the kernel of jac(fA, gA)[j] tends to
a subset of the kernel of zs dfAj . By Lemma 6, this is equivalent to the evaluation of

zs dfAj tending to vector in the span of the evaluation of jac(fA, gA)[j] at τs(z). Thus,

we may use Lagrange multipliers to represent W j
s (τs(z)) and its limit in Λ. Hence, we

set hm+p+1, . . . , hn+m+p to be the numerators of the following polynomials at τs(z),

zs dfAj −
m+p−1∑
i=1

λi jac(fA, gA)
[j]
i − u,

where u are n new indeterminates to represent the value of this Lagrangian function and
λ are Lagrange multipliers.

Now, note that all the denominators of the rational functions we have defined are
all powers of zs. Thus, according to the definition of the map M j

s (fA), by removing
the algebraic set V(zs) from V(h1, . . . , hn+m+p), we get exactly the graph of M j

s (fA).
Therefore, the algebraic closures give us the first equality

graphM j
s (fA) = V(h1, . . . , hn+m+p) \V(zs).

Secondly, to compute Ljs(f
A) we intersect with the space ({z ∈ X|zs = 0}×Cp×Λ).

As discussed above, by Lemma 6, the intersection with Λ is achieved by setting the
introduced u variables to 0. Then, the second equality is clear

Ljs(f
A) = graphM j

s (fA) ∩V(zs, u1, . . . , un).

We now have an algebraic description of Ljs(f
A) and hence of the np sets Kj

s(fA).
However, we shall see that by choosing a sufficiently generic A, it suffices to consider
only p of these sets, for instance the sets Kj

1(fA).

Lemma 8. Let f ∈ K[z]p be a dominant polynomial mapping with domain a smooth
algebraic set X. There exists a non-empty Zariski open subset OGL of GLn(K) such that
for A ∈ OGL the following equality holds:

K∞(f) ⊆
p⋃
j=1

Kj
1(fA).

9



Proof. Suppose c ∈ K∞(f). Then, there exists some sequence (xt)t∈N ⊂ X such that as
t→∞,

‖xt‖ → ∞,f(xt)→ c and ‖xt‖κ(df(xt))→ 0.

By the isomorphism between Cn and R2n, consider two discs in R2n centred at c and 0
respectively. From the latter two limits, one defines a finite number of polynomials with
real components that defines semi-algebraic sets again in R2n. By intersecting these sets
with their respective discs, one can apply the curve selection lemma at infinity [18, Lemma
3.3], an extension of the classical curve selection lemma [5, Theorem 2.5.5] obtained by
considering a semialgebraic compactification of R2n. Recall that such semi algebraic
curves may be chosen to be Nash curves [5, Proposition 8.1.12].

Therefore, there exists a path γ : (0, 1)→ X such that

f(γ(t))→ c, ‖γ(t)‖ → ∞ and ‖γ(t)‖κ(df(γ(t)))→ 0 as t→ 0,

where each component of γ is expressible as a Puiseux series in t. Denote this expression
z(t). Then, by the definition of Puiseux series, each component of z(t) has finitely many
terms with negative exponents. Let r be the least rational number such that tr has a
non-zero coefficient for some component of z(t), or in other words, the exponent of the
term that tends to infinity fastest as t→ 0. Then, for each 1 ≤ i ≤ n we have

zi =
∑
k≥r

zikt
k.

Consider the group of n × n invertible matrices GLn(K) with entries in K. For B =
(bik)1≤i,k≤n ∈ GLn(K), let y = Bz and set

y1 =
∑
k≥r

y1kt
k.

Consider the coefficient

y1r =

n∑
k=1

b1kzkr.

Then, y1r = 0 defines the Zariski-closed subset C of GLn(K) such that B ∈ C implies
that the first component of Bz(t) is such that r is not the least exponent. By definition,
some yi is non-zero and so C is a proper subset. Therefore, there exists a non-empty
Zariski-open subset O−1

GL of GLn(K) such that for B ∈ O−1
GL, ‖(Tz)1(t)‖ tends to infinity

at the same speed as ‖z(t)‖ as t → 0. Let OGL be the non-empty Zariski closed subset
of GLn(K) defined by A ∈ OGL ⇐⇒ A−1 ∈ O−1

GL.
Choose some A ∈ OGL and consider the polynomial mapping fA = f(Az) restricted

to the algebraic set defined by XA = V(gA) = V(g(Az)) and the path Γ(t) = A−1z(t).
As t → 0, ‖Γ(t)‖ → ∞ and fA(Γ(t)) → c. Furthermore, by definition of OGL, we
have that ‖Γ1(t)‖ → ∞ as t → 0. Recall that κ is equivalent to ν. Thus, since
A ∈ GLn(K), by [18, Corollary 2.1], we have ‖y(t)‖ν(dfA(y(t))) → 0 which implies
that ‖Γ(t)‖κ(dfA(Γ(t))) → 0. Choose j such that κ(dfA(Γ(t))) = ‖wj(Γ(t))‖. Then,

since the Grassmannian Gn−k+1(Kn × K) is compact, there is a limit W j
1 of graphs
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Γ1(t)wj(Γ(t)) where W j
1 ∈ Λ by [21, Lemma 5.1]. Therefore, we have in the limit

(0, c,W j
1 ) ∈ Lj1(f) and so c ∈ Kj

1(fA). Thus,

K∞(f) = K∞(fA) ⊆
(n,p)⋃

(s,j)=(1,1)

Kj
s(fA) =

p⋃
j=1

Kj
1(fA).

3. Geometric result

In this section, we state our main geometric result that will form the basis of the
proof of correctness of the probabilistic algorithms we give in Sections 4 and 7.

Proposition 9. Let W ⊂ CN be an algebraic set. Let Z be a hyperplane of CN such
that W \ Z = V1 ∪ · · · ∪ Vk for some positive k. Suppose that V1, . . . , Vk have dimension
m. Let π be the canonical projection map from W onto Cn so that π restricted to Vi is
dominant for all i and let G2(Cn) be the Grassmannian of planes through the origin in
Cn. Then, there exists a Zariski-open dense subset O of G2(Cn) such that for all E ∈ O,

π−1(E) \ Z = W \ Z ∩ π−1(E), dimπ−1(E) \ Z = m− n+ 2

Proof. Note that since there is a finite number of irreducible components of W that
are not contained in Z, it suffices to consider the case k = 1 as a finite intersection
of dense Zariski-open subsets is still a dense Zariski-open subset. Hence, let V be the
n-dimensional irreducible component of W so that W \ Z = V .

Let VH ∈ PN be the projectivisation of V . Then, the map π naturally extends to a
projection map πH : VH → Pn. Note that πH is a morphism of varieties since dimV = n
and π is dominant. Thus, by [20, Theorem 1.1], the preimage of every line L ∈ Pn,
π−1
H is connected and hence irreducible in the Zariski topology of VH . This implies that

the preimage of π of a generic line in Cn, a hyperspace section of V of dimension 2, is
irreducible. Let C[u1, . . . , un] be a coordinate ring of Cn, then each of these lines may
be parametrised by the equations

u1 = a1e1 + b1, . . . , un = ane1 + bn,

where e1 is a parameter and a,b are vectors of Cn outside of some proper Zariski-closed
subset C. Then, from such a line we get a plane E defined in two parameters and the
equations

u1 = a1e1 + b1e2, . . . , un = ane1 + bne2.

Then, there exists a dense Zariski-open subset O1 of G2(Cn) so that for all E ∈ O1 the
preimage π−1(E) is an irreducible two-dimensional section of V .

Consider E ∈ O1 and the parametrisation given by u1 = a1e1 + b1e2, . . . , un =
ane1 + bne2. Let a,b ∈ Cn be parameters and consider the ideal I(π−1(E)). Since Z is
a hyperplane of CN , there exists a linear form F such that Z = V(F ). Then, the subset
of E such that π−1(E) ⊂ Z is given by the normal form of F with respect to a Gröbner
basis of I(π−1(E)). Either the normal form is identically zero, or we obtain a polynomial
whose coefficients are polynomials in the parameters a,b. Thus, this subset of E that we
must avoid is a Zariski-closed subset. It remains to show that this Zariski-closed subset
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is not G2(Cn). To do so, take some x ∈ V \ Z. Since π is dominant, there exists some
E ∈ G2(Cn) such that x ∈ π−1(E). Recall that V \Z is a dense Zariski-open subset of V .
Hence, there exists a Zariski-open dense subset O2 of G2(Cn) such that for all E ∈ O2,
π−1(E) * Z.

Let O = O1 ∪ O2. Then, O is a Zariski-open dense subset of G2(Cn). Fix some
E ∈ O. Then, since π−1(E) is irreducible and is not contained in Z we have that

π−1(E) \ Z = π−1(E).

We aim to apply the results of Proposition 9 to reduce the dimension of the algebraic
sets we consider in our algorithms. First, however, we give an algebraic condition that is
sufficient to prove the required dominance of the projection from the graph of M j

1 (fA)
onto the u-space. For that purpose, for given f , g and A ∈ GLn(K), define for each

1 ≤ j ≤ p the polynomial mappings Hj = (gA, z1 dfAj −
∑m+p−1
i=1 λi jac(fA, gA)

[j]
i ).

Lemma 10. Let f ∈ K[z]p be a dominant polynomial mapping with domain a smooth
algebraic set X defined by a reduced, regular sequence (g1, . . . , gm) and let A ∈ GLn(K) be

such that the results of Lemma 8 hold. Let π be the projection map from graphM j
s (fA)

onto the u-space. If the Jacobian matrix jac(Hj) has full rank for all j, then π is a
dominant map.

Proof. Fix some 1 ≤ j ≤ p. We aim to show that the set of points in Cm that are not in
the image of π is a proper Zariski-closed subset. Thus, choose a generic point (a1, . . . , an).
We shall show that there exists a point (z1, . . . , zn, c1, . . . , cp, u1, . . . , un, λ1, . . . , λm+p−1) ∈
graphM j

s (fA) where (u1, . . . , un) = (a1, . . . , an).
By Lemma 7, we have that

graphM j
1 (fA) = V(h1, . . . , hn+m+p) \V(z1),

where

for 1 ≤ i ≤ m hp+i = numer(gAi (τ1(z))),

for 1 ≤ i ≤ n hm+p+1 = dfAj (τ1(z))i −
m+p−1∑
k=1

λk jac(fA, gA)
[j]
k,i(τ1(z))− z1ui).

Then, a generic point of graphM j
1 (fA) is one such that z1 6= 0. Thus, τ1 is invertible and

we can divide by z1. Hence, locally we have that (hp+1, . . . , hn+m+p) = Hj . Consider
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the system of equations

v1 = gA1
...

vm = gAm

w1 = z1
∂fA

j

∂z1
−
m+p−1∑
i=1

λi jac(fA, gA)
[j]
i,1

...

wn = z1
∂fA

j

∂zn
−
m+p−1∑
i=1

λi jac(fA, gA)
[j]
i,n

x1 = b1
...

xp−1 = bp−1

for generic b1, . . . , bp−1 ∈ Cp−1. Since the Jacobian of Hj has full rank, by the genericity
of b we have that the Jacobian of the polynomials on the right hand side of these equations
has full rank. Thus, by the inverse function theorem there exist equations, defined for
z1 6= 0, (z,λ) = (φ1(v,w,x), . . . , φn+m+p−1(v,w,x)). Therefore, substituting v for 0, w

for a and x for b, we have constructed a point (z,fA(z),a,λ) ∈ graphM j
1 (fA). Hence,

the image of π is a Zariski-dense subset of Cm and so π is dominant.

4. Algorithms

4.1. Subroutines

The algorithms in this paper rely primarily on algebraic geometric operations. Through
the ideal-variety correspondence, these shall be performed through ideal theoretic oper-
ations. We give three subroutines of this type that will be used in our algorithms and
proofs.

Eliminate(P,v,w):

Input: P , a finite basis of an ideal, I, of a polynomial ring (with base field K and
two lists of indeterminates, v and w) which we denote K[v,w].

Output: E, a finite basis of the ideal I ∩K[w].

Intersect(P1, . . . , Pk):

Input: P1, . . . , Pk, finite bases of ideals, I1, . . . , Ik, of a polynomial ring.

Output: P , a finite basis of the ideal
⋂k
i=1 Ii.

Saturate(P1, P2):

Input: P1, P2, finite bases of ideals, I1, I2, of a polynomial ring.

Output: S, a finite basis of the ideal I1 : I∞2 .
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Remark 11. These ideal theoretic operations can be computed algorithmically. For
example, Gröbner bases can be computed to solve all the above problems. We refer to [7,
Chapter 3, Section 1, Theorem 2], [3, Proposition 6.19] and [2, 8] for algorithms for
computing a finite basis for respectively elimination ideals, intersection of ideals and the
saturation of ideals. There exist algorithms for computing Gröbner bases that are correct
and terminate [7, Chapter 2, Section 7, Theorem 2].

4.2. Computing asymptotic critical values

Algorithm 1: acv1

Input: g a reduced regular sequence defining a smooth algebraic set X,
f : X → Kp a dominant polynomial mapping with components in the
ring K[z] and the list z.

Output: R, a finite list of polynomials whose zero set has codimension at least
1 in Cp and contains the set of asymptotic critical values of f .

1 Generate a random change of variables A ∈ Kn×n.
2 Generate random numbers a,b ∈ Kn and set

fA ← f(Az), gA ← g(Az).
3 For j from 1 to p do

4 v(z)← z1 dfAj − λ1 jac(fA, gA)
[j]
1 − · · · − λm+p−1 jac(fA, gA)

[j]
m+p−1 − ae1.

5 N(z)← {fA1 − c1, . . . , fAp − cp, gA1 , . . . , gAm, v1 − b1e2, . . . , vn − bne2}.
6 G← numer(N(τ1(z))).
7 Gs ← Saturate(G, z1).
8 L← Gs ∪ {z1, e1, e2}.
9 Vj ← Eliminate(L, {z, e1, e2, λ1, . . . , λm+p−1}, {c}).

10 R← Intersect(V1, . . . , Vp).
11 Return R.

Theorem 12. Let f = (f1, . . . , fp) ∈ K[z]p be a dominant polynomial mapping from a
smooth algebraic set defined by a reduced regular sequence g = (g1, . . . , gm). Suppose that
A ∈ GLn(K) satisfies the genericity condition of Lemma 8 and suppose that a,b ∈ Cn
define a plane E ⊂ Cn that satisfies the genericity condition of Proposition 9. Suppose
that jac(Hj) has full rank for all j. Then, Algorithm 1 terminates and returns as output
a finite basis whose zero set has codimension at least 1 in Cp and contains the set of
asymptotic critical values of f .

Proof. Firstly, Algorithm 1 relies on multivariate polynomial routines that are correct
and terminate, see Remark 11. Hence, Algorithm 1 terminates in finitely many steps. By
the choice of A, we may apply Lemma 8. Therefore, we aim to compute sets Kj

1(fA) for
1 ≤ j ≤ p. However, since these sets are semi-algebraic, we shall instead compute their
closures in the Zariski topology which have the same dimension. We shall show that the

algebraic sets defined by the list of polynomials Vj computed in step 9 contains Kj
1(fA)

and has codimension at least 1 in Cp. Then, the union of these algebraic sets, V(R) as
computed in step 10, contains the asymptotic critical values of f and has codimension
at least 1 in Cp by [7, Chapter 9, Section 4, Theorem 8].
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Thus, fix some 1 ≤ j ≤ p. By Lemma 7, there exists polynomials h1, . . . , hn+m+p ∈
K[z, c,u,λ] such that

graphM j
1 (fA) = V(h1, . . . , hn+m+p) \V(z1),

Lj1(fA) = graphM j
1 (fA) ∩V(z1, u1, . . . , un).

Let E be the plane in the u-space parametrised by the equations ui = aie1 + bie2. Let

W = V(h1, . . . , hn+m+p). Then, graphM j
1 (fA) is the union of the irreducible compo-

nents of W that do not vanish on V(z1). Then, graphM j
1 (fA) is equidimensional of

dimension n+ p− 1 and, by Lemma 10, the projection map π from graphM j
1 (fA) onto

the u-space is dominant. Then, by Proposition 9, by the choice of E we have that

π−1(E) \V(z1) = W \V(z1) ∩ π−1(E).

Therefore, since E contains the origin of the u space,

Lj1(fA) = graphM j
1 (fA) ∩V(z1, u1, . . . , un)

= W \V(z1) ∩V(z1, u1, . . . , un)

= π−1(E) \V(z1) ∩V(z1, u1, . . . , un)

= π−1(E) \V(z1) ∩V(z1, e1, e2).

Thus, we may replace ui by aie1 + bie2, its value in the parametrisation of E. By
the definition of h1, . . . , hn+m+p, the resulting polynomials are exactly those defined in

step 6. Therefore, the algebraic set defined by L as defined in step 8 is Lj1(fA). Then,
by [7, Chapter 4, Section 4, Theorem 4], eliminating all variables except c computes
the closure of the projection onto the c-space. The resulting algebraic set is exactly

Kj
1(fA). Moreover, by Proposition 9, the hyperspace section π−1(E) has dimension

(n+p−1)− (n−2) = p+ 1. By the dominance of the projection onto the u-space, e1, e2

are not identically zero on π−1(E), hence Lj1(fA) has dimension at most p−1. Therefore,

the projection Kj
1(fA) onto the c-space has codimension at least one in Cp.

Note that by step 8 of Algorithm 1, we find equations defining an algebraic set
of dimension at most p + 1. However, we then intersect with 3 hyperplanes but we
only require the dimension to drop by 2. We take advantage of this behaviour in the
following algorithm, which reduces the number of equations and variables by one each.
This algorithm will subsequently allow us to obtain sharper degree bounds on the set of
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asymptotic critical values.

Algorithm 2: acv2

Input: g a reduced regular sequence defining a smooth algebraic set X,
f : X → Kp a dominant polynomial mapping with components in the
ring K[z] and the list z.

Output: R, a finite list of polynomials whose zero set has codimension at least
1 in Cp and contains the set of asymptotic critical values of f .

1 Generate a random change of variables A ∈ Kn×n.
2 Generate random numbers a,b ∈ Kn and set

fA ← f(Az), gA ← g(Az).
3 For j from 1 to p do

4 v(z)← z1 dfAj − λ1 jac(fA, gA)
[j]
1 − · · · − λm+p−1 jac(fA, gA)

[j]
m+p−1 − ae1.

5 N ′(z)← {fA1 − c1, . . . , fAp − cp, gA1 , . . . , gAm, b2v1 − b1v2, . . . , bnv1 − b1vn}.
6 G′ ← numer(N ′(τ1(z))).
7 G′s ← Saturate(G′, z1).
8 L′ ← G′s ∪ {z1, e1}.
9 V ′j ← Eliminate(L′, {z, e1,λ}, {c}).

10 R′ ← Intersect(V ′1 , . . . , V
′
p).

11 Return R′.

To prove the correctness of this algorithm, we first prove a lemma.

Lemma 13. Fix some 1 ≤ j ≤ p and let G and G′ be the list of polynomials computed at
step 6 of Algorithm 1 and at step 6 of Algorithm 2 respectively for the same sufficiently
generic choice of A,a and b. Then,

〈G′〉 = 〈G〉 ∩ C[z, e1,λ, c].

Proof. Firstly, the polynomials fA1 − c1, . . . , fAp − cp, gA1 , . . . , gAm at τ1(z) are elements of
both lists G and G′ which are contained in the polynomial ring C[z, c]. Hence, we need
only consider the remaining polynomials that are in the ring C[z, e1, e2,λ].

We shall prove this by double inclusion. Firstly, take some numer(biv1(τ1(z)) −
b1vi(τ1(z))) ∈ G′. We have that bi numer(v1(τ1(z))− b1e2)− b1 numer(vi(τ1(z))− bie2) ∈
〈G〉 ∩ C[z, e1,λ, c]. However, since v1, v2 have the same degree in z,

bi numer(v1(τ1(z))− b1e2)−b1 numer(vi(τ1(z))− bie2) =

= bi numer(v1(τ1(z)))− b1 numer(vi(τ1(z)))

= numer(biv1(τ1(z))− b1vi(τ1(z))).

On the other hand, let h ∈ 〈G〉 ∩ C[z, e1,λ, c]. Let G = {h1, . . . , hn+m+p}, then h ∈
〈G〉 equals

∑n+m+p
i=1 yihi such that yi ∈ C[z, e1, e2,λ, c] and all e2-terms are cancelled.

Considering a monomial ordering such that e2 is the largest monomial, (y1, . . . , yn+m+p)
is a syzygy on the leading terms of h1, . . . , hn+m+p that involve e2. The S-polynomials
generate the set of syzygies [7, Chapter 2, Section 10, Proposition 5] but by an elementary
application of the exchange lemma, these S-polynomials are elements of 〈G′〉. Hence,
h ∈ 〈G′〉.
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Thus, Algorithm 2 is the same as Algorithm 1 except that we eliminate e2 before the
saturation step 7.

Theorem 14. Let f = (f1, . . . , fp) ∈ K[z]p be a dominant polynomial mapping from a
smooth algebraic set defined by a reduced regular sequence g = (g1, . . . , gm). Suppose that
A ∈ GLn(K) satisfies the genericity condition of Lemma 8 and suppose that a,b ∈ Cn
define a plane E ⊂ Cn that satisfies the genericity condition of Proposition 9. Suppose
that jac(Hj) has full rank for all j. Then, Algorithm 2 terminates and returns as output
a finite basis whose zero set has codimension at least 1 in Cp and contains the set of
asymptotic critical values of f .

Proof. As in Algorithm 1, Algorithm 2 relies on multivariate polynomial routines that
are correct and terminate, see Remark 11. Hence, Algorithm 2 terminates in finitely
many steps.

Fix some 1 ≤ j ≤ p and let G and G′ be the list of polynomials computed at step 6
of Algorithm 1 and at step 6 of Algorithm 2 respectively for the same sufficiently generic
choice of A,a and b. By Lemma 10 and Proposition 9, the projection from V(G) onto
the (e1, e2)-space is dominant. By Lemma 13 and [7, Chapter 4, Section 4, Theorem 4],
V(G′) is the Zariski closure of the projection πe2 of V(G) that eliminates e2. Thus,
V(G′) remains two-dimensional and by Proposition 9, we have that

V(G′) \V(z1) = πe2(V(G)) \V(z1) = πe2

(
V(G) \V(z1)

)
.

By [7, Chapter 4, Section 4, Theorem 10], this is equal to V(G′s), where G′s is the list
computed at step 7. Therefore, there exist embeddings of the algebraic sets defined in
Algorithm 2 in their counterparts defined in Algorithm 1. Thus, V(R′) contains Kj

1(fA).
It remains to show that V(R′) is contained in a proper Zariski-closed subset of Cp.

By the dominance of the projection onto the e1-axis, we have that e1 is not identically
zero over V(G′s). Furthermore, by the saturation in step 7, z1 is not identically zero
either. Hence, V(L′) has dimension at most p−1. Thus, V(V ′j ) has codimension at least

1 in Cp and so does V(R′).

5. Degree result

Theorem 2. Let f = (f1, . . . , fp) ∈ K[z]p be a dominant polynomial mapping from a
smooth algebraic set defined by a reduced regular sequence g = (g1, . . . , gm). Let d =
max(deg f1, . . . ,deg fp,deg g1, . . . ,deg gm). Then, the asymptotic critical values of f are
contained in a hypersurface of degree at most

pdn−p−1

p+1∑
i=0

(
n+ p− 1

m+ 2p− i

)
di.

Proof. Let A ∈ GLn(K) and a,b ∈ Kn be such that the genericity assumptions of
Theorem 14 hold. By Lemma 8, we have that

K∞(f) ⊆
p⋃
j=1

Kj
1(fA).
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By Theorem 14, the sets K1
1 , . . . ,K

p
1 are contained in the algebraic sets V1, . . . , Vp re-

turned by each pass of step 9 of Algorithm 2. Thus, we shall bound the degree of K∞(f)
by p times a bound on the degree of V1, since by symmetry the bounds on the degree
of each Vi will be equal. Then, let G,Gs, L and V1 be the finite lists of polynomials as
defined in the j = 1 pass of Algorithm 2 in steps 6, 7 8 and 9 respectively.

By [7, Chapter 4, Section 4, Theorem 10], the saturation

〈Gs〉 = 〈G〉 : 〈z1〉∞

corresponds to the variety
V(Gs) = V(G) \V(z1).

Thus, V(Gs) is the union of a subset of the irreducible components of V(G). Clearly, the
degree of V(L) is then also bounded by the degree of V(G) and since projection cannot
increase the degree either [14, Lemma 2], we have that the degree of V(G) is at least the
degree of V(V1).

Now, we shall bound the degree of V(G) by taking advantage of the multi-homogeneous
structure. Firstly, we note that G consists of n + m + p − 1 polynomials in n + m + 2p
variables. We shall split the variables into z and c, e1,λ. Note that G consists of m
polynomials of degree at most d that depend only on z and n + p− 1 polynomials that
have degree at most d in z and degree at most 1 in the remaining variables. Then, by
the multi-homogeneous Bézout bound [27, Proposition 3], the p-equidimensional compo-
nent of V(G) has degree at most the sum of the coefficients of the normal form of the
polynomial (dv1 + v2)n+p−1dmvm1 with respect to the ideal 〈vn+1

1 , vm+2p+1
2 〉. Therefore,

by binomial expansion, the degree of V(V1) is at most

degV(V1) ≤ dm
n−m∑

k=n−m−p−1

(
n+ p− 1

k

)
dk

= dn−p−1

p+1∑
i=0

(
n+ p− 1

m+ 2p− i

)
di.

Multiplication by p completes the proof of the bound in the statement.

Note that for m, p, d fixed, the degree of the set of asymptotic critical values is in
O(n2p+mdn−p−1).

6. Complexity result

In this subsection, we analyse the worst-case complexity of Algorithm 2. We focus
on this algorithm in particular due to the fact it allows us to obtain the lowest degree
bound, through the multi-homogeneous Bézout bound as in Section 5. Additionally, this
algorithm handles the fewest variables out of the algorithms given in this paper. This
is important as the dimension of the ambient space will be a factor in the complexity
analysis.

Firstly, let M(d) be the number of base field operations required for multiplying two
univariate polynomials of degree at most d. For example, using the Cantor–Kaltofen
algorithm, we would have that M(n) = O(n log n log log n) [6].
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Algorithm 2 takes as input a polynomial mapping f : X → Cp, f = (f1(z), . . . , fp) ∈
K[z], where X is a smooth algebraic set defined by a reduced regular sequence g =
(g1, . . . , gm). Let d = max(deg f1, . . . ,deg fp,deg g1, . . . ,deg gm). The first steps of this
algorithm, for each 1 ≤ j ≤ p, is to construct a list of polynomials h1, . . . , hn+m+p−1. In
Section 5 it is proven that these polynomials define an algebraic set of degree at most

dn−p−1

p+1∑
i=0

(
n+ p− 1

m+ 2p− i

)
di.

This will be a key factor in our complexity result and so we denote this degree by D.
The remaining steps of Algorithm 2 involve applying some algebraic elimination sub-

routines with the list of polynomials h1, . . . , hn+m+p−1 as the initial input. To obtain
reasonable complexity results, we opt to use the geometric resolution algorithm given
in [12]. However, since these polynomials define an algebraic set of dimension p + 1,
we must first specialise our system to obtain a zero-dimensional input for the geometric
resolution algorithm. Then, we can apply the lifting algorithm of [28] to obtain a para-
metric system. Performing the final necessary intersections and projections of varieties
is then done by resultant computation. In the end, we will obtain a polynomial whose
solution set contains the set of asymptotic critical values.

Firstly, recall the representation given as the output of the geometric resolution al-
gorithm. Consider polynomials ϕ1, . . . , ϕ`, ψ ∈ K[x1, . . . , x`]. Suppose that ϕ1, . . . , ϕ`
are a regular sequence so that the system S defined by ϕ1 = · · · = ϕ` = 0, ψ 6= 0, is
zero-dimensional of degree D. Let T be a linear form in the variables x1, . . . , x`. Then,
with the system S as input, the geometric resolution algorithm returns a representation
of the solution set of S as follows:

Q(T ) = 0
dQ
dT (T ) x1 = V1(T )

...
dQ
dT (T ) x` = V`(T ),

where Q,V1, . . . , V` ∈ Q[T ] are univariate polynomials such that degQ = D,deg Vi < D.
Note that this representation is well-defined outside of the Zariski-closed subset V(dQdT )
of C`. We can now restate and prove our main complexity result.

We recall the complexity of the geometric resolution algorithm in the specialised
context in which we shall use it [12, Theorem 1].

Lemma 15. Let f = (f1, . . . , fp) ∈ K[z]p be a dominant polynomial mapping from a
smooth algebraic set defined by a reduced regular sequence g = (g1, . . . , gm). Let d =

max(deg f1, . . . ,deg fp,deg g1, . . . ,deg gm) and D = dn−p−1
∑p+1
i=0

(
n+p−1
m+2p−i

)
di. Fix some

1 ≤ j ≤ p and define (h1, . . . , hn+m+p−1) to be the output of step 6 of Algorithm 2. Let
L1, . . . , Lp+1 be generic linear forms of the variables of the hi. Let y1, . . . , yp+1 ∈ K be
such that the following system S is zero-dimensional,

h1 = · · · = hn+m+p−1 = 0, L1 = y1, . . . , Lp+1 = yp+1, z1 6= 0.

Then, a geometric resolution of this system can be computed within

O∼((n+m+ 2p)d+3D2)
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arithmetic operations in the base field K.

Proof. Let δ be the degree of the system

h1 = · · · = hn+m+p−1 = 0, L1 = y1, . . . , Lp = yp, z1 6= 0.

Then, since the final equation we include is Lp+1 = yp+1 which has degree 1, by [12,
Theorem 1], computing a geometric resolution of the zero-dimensional system S requires
at most

O((n+m+ 2p)((n+m+ 2p)P + (n+m+ 2p)Ω)M(δ)2)

arithmetic operations in K, where P is the evaluation complexity. Since L1, . . . , Lp are
generic linear forms, we have that δ = D. Moreover, assuming that d ≥ 2 is fixed, we
may bound the evaluation complexity by (n+m+2p)

(
n+m+2p+D
n+m+2p

)
= O((n+m+2p)d+1).

Thus, excluding logarithmic factors, this step has complexity in the class

O∼((n+m+ 2p)d+3D2).

A particular case of interest is p = 1. Indeed, the study of this case allows one to tackle
applications such as exact polynomial optimisation and other problems in computational
real algebraic geometry. Hence, we first give a complexity result in this special case.

Theorem 3. Let f ∈ K[z] be a polynomial from a smooth algebraic set defined by a
reduced regular sequence g = (g1, . . . , gm). Let d = max(deg f, deg g1, . . . ,deg gm) and

D = dn−2
∑2
i=0

(
n

m+2−i
)
di. There exists an algorithm which, on input f, g, outputs a

non-zero polynomial H ∈ K[c] such that K∞(f) ⊂ V(H) using at most

O∼((n+m+ 2)d+3D5)

arithmetic operations in K.

Proof. To prove this result, we shall analyse the complexity of Algorithm 2. We aim to
construct a non-zero polynomial H ∈ K[c] such that K∞(f) ⊂ V(H). Thus, we begin
choosing a sufficiently generic linear change of coordinate A and vectors a,b ∈ Kn so
that the results of Lemma 8 and Proposition 9 hold. Then, with j = 1, let G′ by the
result of step 6 of Algorithm 2 so that

G′ = (h1, . . . , hn+m) ⊂ K[z, c, e1,λ].

We are interested in the irreducible components of the algebraic set defined by G′ that
are not contained in V(z1). By Proposition 9, these components have dimension at most
2. However, the geometric resolution algorithm that we will rely upon requires the input
system to be zero-dimensional. Thus, knowing that we can lift the result of a specialised
computation, we introduce two generic linear forms of the variables (z, c, e1,λ) that when
specialised will reduce V(G′) to a zero-dimensional algebraic set [12, 28]. Let L1, L2 be
these linear forms. Then, with y1, y2 ∈ K generic, consider the zero-dimensional system:

h1 = · · · = hn+m = 0, L1 = y1, L2 = y2, z1 6= 0.
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Using the geometric resolution algorithm of [12], with T another linear form, we
compute a representation 

q(T ) = 0
dq
dT (T )c = v1(T )
dq
dT (T )z1 = v2(T )

...
dq
dT (T )zn = vn+1(T )
dq
dT (T )e1 = vn+2(T )
dq
dT (T )λ1 = vn+3(T )

...
dq
dT (T )λm = vn+m+2(T )

of this system where q, v1, . . . , vn+m+2 ∈ K[T ] have degree at most D, the degree bound
given in Theorem 2. By Lemma 15, this requires at most

O∼((n+m+ 2)d+3D2)

arithmetic operations in K.
We can then consider a lifted representation with polynomials of degree at most D

in L1, L2, T using the algorithm given in [28].

Q(L1, L2, T ) = 0
dQ
dT (L1, L2, T )c = V1(L1, L2, T )
dQ
dT (L1, L2, T )z1 = V2(L1, L2, T )

...
dQ
dT (L1, L2, T )zn = Vn+1(L1, L2, T )
dQ
dT (L1, L2, T )e1 = Vn+2(L1, L2, T )
dQ
dT (L1, L2, T )λ1 = Vn+3(L1, L2, T )

...
dQ
dT (L1, L2, T )λm = Vn+m+2(L1, L2, T )

Note that Vi, Q are indeed polynomials as L1, L2 are generic linear forms. Hence the
system is in Noether position and the number of solutions is constant for all specialisa-
tions, counted with multiplicities. We aim to compute the intersection of this system
with V(z1, e1), as in step 8 in Algorithm 2. To do so, we compute the the projection of
this system onto the (c, z1, e1)-space, and then will set z1 and e1 to zero. We accomplish
this using evaluation-interpolation techniques. Specialising the Li variables, eliminating
T , and then interpolating the result. Therefore, we can in fact skip the lifting step and
instead considering many different geometric resolutions by choosing different generic
y1, y2. However, the existence of the lifted system will inform us on the degree of the
polynomials we must interpolate.

Consider the first 2 equations of the specialised system, and eliminate the variable
T by computing the resultant in T , W = ResT (q, dqdT c − v1), a univariate polynomial
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in c. By [11, Corollary 11.21], we can compute this bivariate resultant within O∼(D2)
arithmetic operations in K. On the other hand, in the lifted system, we may express the
polynomials V1, V2, Vn+2, Q as univariate polynomials in T by a Kronkecker substitution.
Since L1, L2, T appear with degree at most D, the Kronecker substituted polynomials
will have degree in the order of O(D3) in T [11, Chapter 8.4].

Therefore, we must specialise the system in O(D3) points in y1, y2 and compute the
same number of geometric resolutions and resultants. We then interpolate the resulting
polynomials to find a polynomials F ∈ K[c, z1, e1]. By [11, Chapter 10.2], this can be
accomplished within O∼(D3) operations.

Then, define H(c) = F (c, 0, 0). We have that V(H) contains the algebraic set defined
by the result of step 9 in Algorithm 2. By Theorem 14, the algebraic set has codimension
at least 1 in C and so H is non-zero. Hence, the overall complexity is dominated by
computing O(D3) geometric resolutions and is in the class

O∼((n+m+ 2)d+3D5).

In the case p > 1, we are no longer able to use a single resultant to eliminate the
linear form T from the p+ 1 equations in the parametric representation we obtain from
the geometric resolution algorithm. Thus, we opt for the FGLM algorithm to compute
a representation where T is the greatest variable and so can be eliminated [9].

Theorem 4. Let f = (f1, . . . , fp) ∈ K[z]p be a dominant polynomial mapping from a
smooth algebraic set defined by a reduced regular sequence g = (g1, . . . , gm). Let d =

max(deg f1, . . . ,deg fp,deg g1, . . . ,deg gm). Let D = dn−p−1
∑p+1
i=0

(
n+p−1
m+2p−i

)
di. There

exists an algorithm which, on input f and g, outputs p finite lists of non-zero polynomials
Gi ⊂ K[c] such that K∞(f) ⊂ (V(G1) ∪ · · · ∪V(Gp)) ( Cp using at most

O∼
(
p(p+ 1)Dp+5 + (n+m+ 2p)d+3Dp+4

)
arithmetic operations in K.

Proof. As in the proof of Theorem 3, we shall analyse the complexity of Algorithm 2 and
so for each 1 ≤ j ≤ p, we begin with the list of polynomials

G′ = (h1, . . . , hn+m+p−1) ⊂ K[z, c, e1,λ].

By the proof of Theorem 2, the degree of V(G′) is at most D. Moreover, by Proposition 9,
the system

h1 = · · · = hn+m+p−1 = 0, z1 6= 0

has dimension p + 1. Hence, we introduce p + 1 generic linear forms, L1, . . . , Lp+1, of
the variables (z, c, e1,λ) and specialise them to generic y1, . . . , yp+1 ∈ K respectively to
reduce to a zero-dimensional algebraic set. Consider a parametric representation of the
system

h1 = · · · = hn+m+p−1 = 0, L1 = y1, . . . , Lp+1 = yp+1, z1 6= 0,

22



with T another linear form,

q(T ) = 0
dq
dT (T )c1 = v1(T )

...
dq
dT (T )cp = vp(T )
dq
dT (T )z1 = vp+1(T )

...
dq
dT (T )zn = vn+p(T )
dq
dT (T )e1 = vn+p+1(T )
dq
dT (T )λ1 = vn+p+2(T )

...
dq
dT (T )λm+p−1 = vn+m+2p(T )

where q, v1, . . . , vn+m+2p ∈ K[T ] have degree at most D, the degree bound given in
Theorem 2. By Lemma 15, such a representation can be computed using the geometric
resolution algorithm within

O∼((n+m+ 2p)d+3D2)

arithmetic operations in the base field K.
Consider the first p+ 1 equations of this rational parameterisation. Note that these

form a Gröbner basis with respect to a lexicographic ordering with T as the least variable.
Using the FGLM algorithm [9], we can compute a Gröbner basis defining the same ideal
but with respect to a term ordering where T is the greatest variable, thereby eliminating
T . Thus, let ≺ be the lexicographic monomial ordering T > cp > · · · > c1. Let G2

be the Gröbner basis with respect to the ordering ≺ returned by the FGLM algorithm
with input basis (q, dqdT c1 − v1, . . . ,

dq
dT cp − vp). Since the FGLM algorithm returns a

reduced Gröbner basis and since the input polynomials system has degree D, we have
that G2 contains at most (p + 1)D polynomials. By [9, Theorem 5.1], this requires at
most O((p+ 1)D3) arithmetic operations in K.

We aim to compute the intersection of the system obtained from the FGLM algorithm
with V(z1, e1). To do so, we shall interpolate polynomials in c, z1, e1 from different
systems obtained by many specialisations. As in Theorem 3, by [28], there exists a lifted
representation with polynomials, since we have Noether position, of degree at most D in
L1, . . . , Lp+1, T .
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

Q(L1, . . . , Lp+1, T ) = 0
dQ
dT (L1, . . . , Lp+1, T )c1 = V1(L1, . . . , Lp+1, T )

...
dQ
dT (L1, . . . , Lp+1, T )cp = Vp(L1, . . . , Lp+1, T )
dQ
dT (L1, . . . , Lp+1, T )z1 = Vp+1(L1, . . . , Lp+1, T )

...
dQ
dT (L1, . . . , Lp+1, T )zn = Vn+p(L1, . . . , Lp+1, T )
dQ
dT (L1, . . . , Lp+1, T )e1 = Vn+p+1(L1, . . . , Lp+1, T )
dQ
dT (L1, . . . , Lp+1, T )λ1 = Vn+p+2(L1, . . . , Lp+1, T )

...
dQ
dT (L1, . . . , Lp+1, T )λm+p−1 = Vn+m+2p(L1, . . . , Lp+1, T ).

We may express the corresponding polynomials V1, . . . , Vp+1, Vn+p+1, Q as univari-
ate polynomials in T by a Kronecker substitution. Since L1, . . . , Lp+1, T appear with
degree at most D, the Kronecker substituted polynomials will have degree in the order
of O(Dp+2) in T [11, Chapter 8.4]. Therefore, the polynomials we wish to interpo-
late have at most the same degree and so we must specialise the system in O(Dp+2)
points in y1, . . . , yp+1. We then interpolate the resulting polynomials to find polyno-
mials F1, . . . , F(p+1)D ∈ K[c, z1, e1]. By [11, Chapter 10.2], this can be accomplished
within O∼(Dp+2) operations. Define Gi(c) = Fi(c1, . . . , cp, 0, 0). Then, the polynomi-
als (G1, . . . , G(p+1)D) define an algebraic set containing the algebraic set defined by the
result of step 9 in Algorithm 2.

Therefore, for each 1 ≤ j ≤ p, we output a seperate list of these Gi. Hence, the overall
complexity is given by calling the geometric resolution and FGLM algorithms O(Dp+2)
times and so is in the class

O∼
(
p(p+ 1)Dp+5 + (n+m+ 2p)d+3Dp+4

)
.

7. Alternate description of the Jacobian condition

In this section, we develop a different interpretation of the geometric characterisation
of the asymptotic critical values given in Section 2. Instead of a Lagrange multiplier based
approach, we construct a basis of the kernel of jac(f , g)[j] by introducing a matrix of new
variables. Thus, define the set of variables u = {ui,k : 1 ≤ i ≤ n, 1 ≤ k ≤ n−m− p+ 1}
and the variable matrix

MU =

 u1,1 · · · u1,n−m−p+1

...
. . .

...
un,1 · · · un,n−m−p+1

 .
Firstly, we introduce the equations

jac(f , g)[j] ·MU = 0,
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so that the columns of the matrix MU are elements of the kernel of jac(f , g)[j]. Then, we
ensure that the matrix MU has full rank by introducing a matrix of sufficiently generic
scalars TU ∈ K(n−m−p+1)×n and the equations

TUMU = Idn−m−p+1,

where Idn−m−p+1 is the identity matrix of size n−m− p+ 1.

Lemma 16. There exists a proper Zariski open subset OM of K(n−m−p+1)×n such that
if TU ∈ OM then TUMU = Idn−m−p+1 implies that rank(MU ) = n−m− p+ 1.

Proof. Consider an (n − m − p + 1) × n variable matrix. Then, the list of maximal
minors of this matrix defines a proper Zariski closed subset of K(n−m−p+1)×n where the
specialisations of TU do not have full rank. Let OM be the complement of this Zariski
closed subset. Suppose TM ∈ OM , then TM has full rank and so TUMU = Idn−m−p+1

implies that rank(MU ) = n−m− p+ 1.

With the equations defined by Lemma 16, the columns of the matrix MU are defined
to be linearly independent. Therefore, since the kernel of jac(f , g)[j] has dimension
n −m − p + 1 outside of a proper Zariski-closed subset of Cn, they form a basis of the
kernel. Thus, we give Algorithm 3, an alternative version to Algorithm 2 which, as we
shall prove, terminates and returns the same output.

Algorithm 3: acv3

Input: g a reduced regular sequence defining a smooth algebraic set X,
f : X → Kp a dominant polynomial mapping with components in the
ring K[z], a variable matrix MU of size n× (n−m− p+ 1) with entries
in the variable list u and the list z.

Output: R, a finite list of polynomials whose zero set has codimension at least
1 in Cp and contains the set of asymptotic critical values of f .

1 Generate a random scalar matrix TU with entries t1,1, . . . , tn−m−p+1,n ∈ K.
2 Generate a random change of variables A ∈ Kn×n.
3 Generate random numbers a,b ∈ Kn−m−p+1 and set

fA ← f(Az), gA ← g(Az).
4 For j from 1 to p do
5 RU ← List of polynomials TUMU − Idn−m−p+1.

6 JU ← List of equations of jac(fA, gA)[j]MU .

7 (v1(z), . . . , vn−p−m+1(z))← dfAj MU − ae1.

8 N ′(z)← {fA1 − c1, . . . , fAp − cp, gA1 , . . . , gAm, b2v1 − b1v2, . . . , bn−m−p+1v1 −
b1vn−m−p+1} ∪ JU .

9 G′ ← numer(N ′(τ1(z))) ∪RU .
10 G′s ← Saturate(G′, z1).
11 L′ ← G′s ∪ {z1, e1}.
12 V ′j ← Eliminate(L′, {z, e1,u}, {c}).
13 R′ ← Intersect(V ′1 , . . . , V

′
p).

14 Return R′.
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Theorem 17. Let f = (f1, . . . , fp) ∈ K[z]p be a dominant polynomial mapping from a
smooth algebraic set defined by a reduced regular sequence g = (g1, . . . , gm). Suppose that
A ∈ GLn(K) satisfies the genericity condition of Lemma 8 and suppose that a,b ∈ Cn
define a plane E ⊂ Cn that satisfies the genericity condition of Proposition 9. Suppose

that jac(Hj) has full rank for all j. Suppose that the projection map π from graphM j
s (fA)

to Cn is dominant. Then, Algorithm 3 terminates and returns as output a finite basis
whose zero set has codimension at least 1 in Cp and contains the set of asymptotic critical
values of f .

Proof. Since the genericity condition of Lemma 16 holds, the equations RU ∪JU give con-
ditions for the columns of the matrixMU to define a basis for the kernel of jac((fA, gA)[j]).
Thus, the equations fAj MU define wj , the restriction of the differential dfj to the kernel.

The remainder of the algorithm follows exactly Algorithm 2, with only one exception.
The projection onto the c-space now requires the elimination of the newly introduced
variables u instead of λ. Thus, by Theorem 14, Algorithm 3 terminates and returns as
output a finite basis whose zero set has codimension at least 1 in Cp and contains the
set of asymptotic critical values of f .

Remark 18. One can perform a similar analysis of the degree of the objects computed
in, and the complexity of, Algorithm 3 as is done for Algorithm 2 in Sections 5 and 6.
Indeed, one can take advantage of both the multi-homogeneous structure of the polyno-
mials constructed in step 9 as well as the number of linear forms from Lemma 16. Thus,
using the multi-homogeneous Bézout bound, one can arrive at the following formula [27,
Proposition 3].

pdm
n−m∑
i=0

n−m−i∑
j=n−m−p−1−i

(
n−m
i

)(
(m+ p− 1)(n−m− p+ 1)

j

)
di(d− 1)j .

Moreover, we saw that the number of variables is an important factor in the complexity
of the geometric resolution algorithm used in Section 6 to perform the ideal theoretic
operations [12]. Algorithm 3 works within a polynomial ring with n(n−m−p+1)−m−p
more variables than Algorithm 2. Hence, this leads to a worse bound on the degree and
the worst-case complexity as n→∞ whenever m+ p < n.

Note that Algorithm 3 introduces many more variables than Algorithm 2 which leads
to a worse arithmetic complexity. However, as we will see in Section 9, there are some
problems for which Algorithm 3 is faster.

8. Applications

8.1. Solving Polynomial Optimisation Problems

In this subsection we present how to use the algorithms detailed in this paper to solve
polynomial optimisation problems without inequalities.

Firstly, we review the problem we wish to solve. Consider a polynomial f ∈ Q[z]. We
aim to compute the infimum of this polynomial over a smooth algebraic set X defined by
a reduced regular sequence g, infx∈X f(x) = f∗ ∈ R∪{−∞}. We can solve this problem
exactly by computing the generalised critical values of f restricted to X.

There are three cases:
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• f∗ is reached. Then, f∗ is a critical value of f ;

• f∗ is reached only at infinity, meaning that there is no minimiser x ∈ X but
instead a path xt ∈ Rn that approaches the infimum as ‖xt‖ → ∞. Then, f∗ is an
asymptotic critical value of f ;

• f∗ = −∞.

Note that this methodology allows for the consideration of a non-compact domain
X. The procedure is as follows: We first compute an algebraic representation of the
generalised critical values of f restricted to X. One method to accomplish this is to
compute asymptotic critical values and classical critical values separately. Firstly, we
compute a polynomial whose roots contain the asymptotic critical values by using, for
example Algorithm 2. Then, by the Jacobian criterion [8, Corollary 16.20], one can
compute a geometric resolution of the system comprised of the polynomials f − c, g and
the maximal minors of the Jacobian of f and g, to obtain a polynomial representation
of the critical values of f .

There are algebraic elimination algorithms that compute such polynomials with ra-
tional coefficients, for example Gröbner bases [7, Chapter 2] or the geometric resolution
algorithm designed in [12], since we assumed that f ∈ Q[z]. See Section 6 for a discussion
on implementing Algorithm 2 using the geometric resolution algorithm. Thus, after find-
ing a common denominator, we may assume these polynomials have integer coefficients.
Then, we may use a real root isolation algorithm such as in [23], based on Descartes’ rule
of sign [1, Theorem 2.44], to compute isolating intervals with rational endpoints for all
real roots of these polynomials.

Let C = {c1, . . . , ck} ⊂ R be the finite set of real algebraic numbers that are the
real roots of the above polynomials. Then, the set C contains the generalised critical
values of f . By [15, Theorem 3.1], the polynomial f with restricted domain f : X \
f−1(K(f)) → R \ K(f) is a locally trivial fibration over each connected component of
R \K(f). Therefore, since C is finite, the restriction f : X \ f−1(C) → R \ C is also a
locally trivial fibration. Hence, to decide the emptiness of each connected component of
R \C, it is sufficient to decide the emptiness of one fibre for each connected component.

After computing the isolating intervals for the elements of C, we may now choose
rational numbers r1, . . . , rk so that

r1 < c1 < r2 < · · · < rk < ck.

We must assess the emptiness of the fibres of these values. We do so using the
algorithm designed in [26]. We consider, for 1 ≤ i ≤ k, the ideal 〈f − ri〉. This algorithm
requires a radical ideal such that V(f − ri) is smooth and equidimensional. Since ri is
outside of these isolating intervals, we have that V(f−ri) is smooth and equidimensional.
Furthermore, while 〈f − ri〉 may not be radical, we have that V(

√
〈f − ri〉) = V(f − ri)

and so we consider
√
〈f − ri〉 to decide the emptiness of VR(f − ri) = V(f − ri) ∩ Rn.

Firstly, if VR(f−r1) is non-empty then we must be in the third case and so f∗ = −∞.
For the remaining two cases, let cj be the least critical value and let i be the least index
such that VR(f−ri) is non-empty, if such an index or critical value exist. If ri > cj , which
one may decide from the isolating intervals, then cj is the minimum of f . Otherwise,
ri ≤ cj and ci−1 is an asymptotic critical value and is the infimum of f . Finally, if such
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an index does not exist, then cj is the minimum of f and if f also does not have any
critical values, then the infimum is ck.

We consider the complexity of the algorithm for polynomial optimisation described
above. For a polynomial f ∈ Q[z] and reduced regular sequence g of degree at most d,
we first compute a polynomial representation of K(f). With

D =

(
n

m+ 2

)
dn−2 +

(
n

m+ 1

)
dn−1 +

(
n

m

)
dn,

by Theorem 3, one can compute a polynomial representation of the asymptotic critical
values with complexity

O∼
(
(n+m+ 2)d+3D5

)
.

By [10, Corollary 2], the set of critical values has degree at most dm(d− 1)n−m
(
n
m

)
.

Hence, with the geometric resolution algorithm, one can compute a polynomial repre-
sentation of the critical values within

O∼

(
(n+ 1)d+3d2m(d− 1)2(n−m)

(
n

m

)2
)

arithmetic operations in Q [12]. By 2 and [10, Corollary 2], the product of these polyno-
mials has at most

∆ =

((
n

m+ 2

)
dn−2 +

(
n

m+ 1

)
dn−1 +

(
n

m

)
dn
)

+ dm(d− 1)n−m
(
n

m

)
roots and hence f has at most this many generalised critical values. With β bounding
the bit-size of the input polynomial, isolating the real roots with the algorithm designed
in [23] requires O(β∆4) operations. We must then choose at most dn+1 points in Q, the
r1, . . . , r∆ as above, and decide the emptiness of each VR(f−ri). This requires the use of
the algorithm designed in [26] at most ∆ times with each computation requiring O(n7∆3)
operations. Thus, one can compute an isolating interval for the infimum of a polynomial
f ∈ Q[z] restricted to an algebraic set defined by a reduced regular sequence with degrees
at most d in approximately O∼(n7∆4 + (n+m+ 2)d+3D5) arithmetic operations in Q.

Example 19. Consider the polynomial f = z2
1z

2
2 + 2z1z

3
2 + z4

2 + z2
1 + 3z1z2 + 2z2

2 . First,
we compute the set of generalised critical values. Note that in this simple example it
is possible to find exactly the real algebraic numbers that contain the generalised critical
values because the degrees of the polynomials we compute in our algorithms are small.
We find that K0(f) = {0} and using Algorithm 2 we find K∞(f) ⊂ {− 1

4}. Now, to show
that f∗ = − 1

4 one must first show that f is bounded from below. To do so, decide the
emptiness of the real variety VR(f − r) for some rational number r < − 1

4 . For example,
we can choose r = −1 and find that this variety is indeed empty. Finally, one must show
that − 1

4 truly is an asymptotic critical value as Algorithm 2 computes a superset of the
asymptotic critical values. Thus, one shows that f takes values less than 0 by once again
deciding the emptiness of a fibre. So, consider the variety VR(f + 1

8 ) and find that it is
not empty. This shows that f takes values less than 0 and since

f |R2\f−1{0,− 1
4}
→ R \ {0,−1

4
}

is a locally trivial fibration [15, Theorem 3.1], we conclude that the infimum of f is − 1
4 .

28



Example 20. Consider the polynomial f = z3
1 +z2

1z
2
2−2z1z2 +1. We find that K0(f) =

{1} and K∞(f) ⊂ {0}. We first test the third case. Take a value less than 0, for example
−1, and decide the emptiness of VR(f + 1). We find that this fibre is not empty and so
by [15, Theorem 3.1], we conclude that f∗ = −∞.

For more information on solving polynomial optimisation problems, we refer to [13,
25, 29].

8.2. Deciding the emptiness of semi-algebraic sets defined by a single inequality

In this subsection, we continue to explore the applications of algorithms computing
generalised critical values. Let f ∈ Q[z] be a polynomial with degree d and consider
the semi-algebraic set S defined by the single inequality f > 0. The goal is to test the
emptiness of the set S and in the case that S is not empty to compute at least one
point in each connected component. There exists e ∈ Q+ small enough such that the
problem is reduced to computing at least one point in each connected component of the
real algebraic set VR(f − e). Such an e is small enough in this sense if it is less than
the least positive generalised critical value of the map z ∈ Rn → f(z) ∈ R, we refer
to [24, Theorem 5.1]. To decide when this is the case, one computes isolating intervals
for the generalised critical values by [1, Algorithm 10.63]. Once an appropriate e has
been chosen, it remains to compute at least one point in each connected component of
VR(f − e). This may be accomplished using the algorithm designed in [26]. To apply
this algorithm, we require that 〈f − e〉 is radical and V(f − e) is equidimensional and
smooth. Since e is away from any generalised critical values we have that V(f − e) is
equidimensional and smooth. Moreover, if 〈f − e〉 is not radical, we may simply take the
square-free part of f − e instead as V(

√
〈f − e〉) = V(f − e).

As in the previous application, the complexity of computing isolating intervals for all
real generalised critical values is in the class O∼(n7d4n). After choosing an appropriate
rational number e, it remains to apply the algorithm designed in [26]. This requires
O(n7d3n) operations. Therefore, the overall complexity of deciding the emptiness of the
semi-algebraic set defined by f > 0 is in the class O∼(n7d4n). Moreover, in the case
where this set is not empty, at least one point in each connected component is computed.

Example 21. Consider the polynomial f = z2
1(1−z2)−(z1z

2
2−1)2. Again, in this simple

example we obtain polynomials of degree at most 2 from our algorithms and so we can
give explicitly the set containing the generalised critical values. The polynomial giving the
asymptotic critical values is c while for the critical values it is 229c2− 202c− 27. Hence,
we find that K(f) ⊂ {0, 1, −27

229 }. We note that the value 1 is a critical value, hence we
may decide immediately that the semialgebraic set defined by f > 0 is non-empty. Now,
to compute at least one sample point in each connected component of this set, we must
choose a suitable fibre to investigate. Thus, we choose a rational value greater than 0
and less than the least critical value, such as 1

2 , and use the algorithm in [26] to compute
sample points for each connected component of VR(f− 1

2 ). We may do so because 〈f− 1
2 〉

is a radical ideal. Let α be a real root of x4 + x− 1. Then,

(z1, z2) =

(
3

4
(α3 + α2 + 1), α

)
is a sample point.
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9. Experiments

The three algorithms given in this paper have been implemented in the Maple com-
puter algebra system [19]. For our timing results, we use the Groebner package imple-
mented in Maple to perform the algebraic eliminations. Alternatively, to obtain our
degree results, we use MSolve [4], implemented in C, for the Gröbner basis computa-
tions. We present the experimental results of these implementations with computations
performed on a computing server with 1536 GB of memory and an Intel Xeon E7-4820
v4 2GHz processor. To closer analyse our algebraic complexity result, all computations
were performed over finite fields so as to avoid additional computation time due to coef-
ficient growth. We choose the finite field F2147483647 = F231−1 so that the probability of
choosing bad random values in our algorithms is low. All computations that could not
be completed within two days have been given the entry ∞ in Tables 1 and 2 and the
entry N/A in Tables 3 and 4.

With the intention of comparison, we have attempted to implement the algorithm
by Kurdyka and Jelonek, given in [15, Section 5.1], that computes the set of generalised
critical values of a polynomial mapping whose domain is restricted to an algebraic set.
However, we see that this algorithm fails for some examples, such as f = x2 + (xy − 1)2

restricted to V(xy − 1). In Example 1, we saw that 0 ∈ K∞(f), found along the path
(x, y) = (t, 1/t) as t → 0. However, our implementation finds no values. Moreover, we
understand that there may be some typos in the presentation of the algorithm. Based on
our reading of this paper and the results obtained, we attempted another implementation
fixing these mistakes. However, for the same example, we still fail to find the asymptotic
critical value. On the other hand, in the global setting, one can infer an algorithm from
the results of [18, Section 4] that is similar to a version of Algorithm 1 where we do
not apply Proposition 9. This means we consider the polynomials directly as given in
Lemma 6. Hence, an implementation of this algorithm, under the name acv0, will be
compared to the algorithms designed in this paper. As we will see, this will illustrate the
efficiency that Algorithms 1, 2 and 3 get from applying Proposition 9.

To further aid comparison, we implement versions of all these algorithms with and
without a generic linear change of coordinates. This means not applying Lemma 8 and so
we must compute np sets instead of p. However, while our complexity and degree results
rely on a generic linear change of coordinates, for some problems this change can have a
negative effect on the efficiency of the algorithm. This is to be expected for some sparse
problems as such a generic change of coordinates destroys all structure in the input and
means we perform operations on polynomials with dense support.

For our implementations of the algorithms given in this paper, and of the algo-
rithm presented in [15, Section 5.1], see the webpage https://www-polsys.lip6.fr/

~ferguson/acv_algorithms.html.
For the purpose of comparing the algorithms we develop, we introduce a number

of families of polynomial mappings that have asymptotic critical values. Firstly, in the
global setting, we give three families of polynomials. For n ≥ 2, let

fn = z2
1 +

n∑
i=2

(z1zi − 1)2, gn =

n∑
i=1

∏n
j=1 z

2
j

z2
i

, hn =

n∑
i=1

i∏
j=1

z2i−j

j .

For n ≥ 2, each of these polynomials has an asymptotic critical value at 0. For n ≥ 3,
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with A without A
acv0 acv1 acv2 acv3 acv0 acv1 acv2 acv3

System time (s)
f20 ∞ 3.3 2.4 220 650 3.0 1.5 230
f40 ∞ 150 130 ∞ ∞ 29 18 ∞
f60 ∞ 2300 1600 ∞ ∞ 120 84 ∞
g4 ∞ 8.4 0.028 0.3 2700 6.7 0.044 0.86
g6 ∞ ∞ 19 1300 ∞ ∞ 5.1 21000
g8 ∞ ∞ 83000 ∞ ∞ ∞ 1500 ∞
h3 0.46 0.21 0.020 0.070 0.068 0.20 0.017 0.20
h4 ∞ 230 0.47 21000 ∞ ∞ 0.59 ∞
h5 ∞ ∞ 120 ∞ ∞ ∞ 4200 ∞

d2n20 21 0.10 0.15 2.9 450 0.35 0.35 83
d2n100 ∞ 160 160 ∞ ∞ 20 26 ∞
d3n5 ∞ 13000 0.075 0.14 ∞ 63000 0.21 0.33
d3n7 ∞ ∞ 0.42 1.6 ∞ ∞ 1.1 8.3
d4n4 ∞ 0.13 0.38 1.2 ∞ ∞ 1.1 0.71
d4n6 ∞ ∞ 3.7 22 ∞ ∞ 18 120

Table 1: Timings for global systems given to 2 significant figures.

fn also has an asymptotic critical value at n. Additionally, we consider two families of
polynomial mappings restricted to algebraic sets. For n ≥ 2, let

αn : V(z1z2 − 1, . . . , z1zn − 1)→ C, αn(z) = z2
1 + (z1z2 − 1)2 + · · ·+ (z1zn − 1)2,

βn : V(z3
1z2 · · · zn − 1)→ C, βn(z) = z1 · · · zn.

For n ≥ 3, the map βn has an asymptotic critical value at 0. The polynomial mapping
αn, extended from Example 1, also has an asymptotic critical value at 0 for all n ≥ 2.
We note that the critical locus of αn, βn is empty, so these asymptotic critical values are
non-trivial. The system αn has a fixed degree of 4 for all n is restricted to an algebraic set
defined by n− 1 polynomials each of degree 2. This allows us to test how our algorithms
behave as we greatly increase the number of variables and the number of constraints.
On the other hand, βn has linear degree in n and has one restraint of degree n + 2.
Additionally, we compare these algorithms with random dense polynomials in both the
global setting and under the restriction to a hypersurface defined by a random dense
polynomial of the same degree. We denote this type of system, with degrees d in k
variables, by dsnk.

9.1. Timing experiments

In Table 1 and 2, we see that for structured systems like αn and βn, the generic
linear change of coordinates increases the computation time. This can be explained by
two factors: Firstly, the change of coordinates destroying the sparsity in the polynomi-
als. Secondly, when there are many variables, the application of the linear change of
variables A becomes more time consuming. For example, to solve the examples d2n20
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with A without A
acv0 acv1 acv2 acv3 acv0 acv1 acv2 acv3

System time (s)
α10 0.82 0.15 0.075 0.039 0.66 0.21 0.20 0.092
α20 53 1.3 1.2 0.61 23 2.1 2.3 1.0
α30 720 9.5 10 6.8 240 9.3 9.6 4.8
α40 5200 42 39 36 1600 28 29 16
α50 ∞ 110 110 86 5300 73 75 46
α60 ∞ 280 280 210 ∞ 160 150 110
β4 5.1 0.33 0.25 0.26 0.19 0.25 0.18 0.34
β5 300 2.0 0.67 4.0 0.75 0.97 0.67 2.6
β6 ∞ 7.5 3.1 7.2 3.9 2.7 2.1 5.5
β7 ∞ 41 9.9 120 21 7.2 4.2 41
β8 ∞ 190 38 420 130 14 13 55
β9 ∞ 1000 240 ∞ 1100 35 25 370

d2n4 18 0.37 0.026 0.072 69 1.4 0.079 0.29
d2n6 ∞ 7.2 0.10 0.35 ∞ 41 0.30 2.0
d3n3 21000 220 0.21 280 59000 670 0.59 820
d4n2 2.1 2.2 0.19 0.013 3.9 5.1 0.33 0.020
d4n4 ∞ ∞ 5300 ∞ ∞ ∞ 22000 ∞
d6n2 660 770 1.2 0.050 1400 1500 2.3 0.082

Table 2: Timings for restricted systems given to 2 significant figures.

and d2n100 applying A takes almost all computation time at around 0.1 and 160 seconds
respectively. Similarly for the families fn and αn, applying the linear change of variables
takes around half the time due to the large number of variables. Moreover, for generic
systems, the change of coordinates effectively does not change the system. Hence, ex-
cluding the time spent applying A, the change of coordinates decreases computation time
by approximately a factor of n, the number of variables, due to the algorithm computing
one set instead of n sets.

Note that by considering the symmetry in the problem, one could improve the effi-
ciency of our algorithms further. For example, for αn and βn, there is only one special
variable, z1. All other variables are symmetric and so the asymptotic critical values
computed without a generic linear change of variables in the second to the nth set are
the same. Therefore, one only needs to compute two sets, instead of n. Such symmetry
reductions resulting in more efficient algorithms are a topic of future study.

From the timings presented in Table 2, the benefit of applying Proposition 9 is clear.
Algorithms 1 and 2, which rely on this geometric result, are in general significantly
faster than acv0. We note the special case n = 2, where Algorithm 1 can be slower than
acv0. This is because in this setting we do not decrease the dimension of the algebraic
sets we consider when we apply Proposition 9. However, we find that Algorithm 2 is
in general faster than both acv0 and Algorithm 1. We also observe that the different
formulations of this result, Algorithms 2 and 3, can have different behaviours depending
on the problem. For example, Algorithm 2 computes the asymptotic critical values of βn
faster but Algorithm 3 is better at handling αn as we increase the number of variables.
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Degree bound True degree
Sys. acv2 Theorem 2 Crit. Values [15, Theorem 4] K∞(f) K(f)
f20 4 1.97 ×1013 3.49 ×109 1.10 ×1012 3 3
f40 4 7.22 ×1025 1.21 ×1019 1.21 ×1024 3 3
f60 4 1.68 ×1038 4.24 ×1028 1.33 ×1036 3 3
g4 42 2 376 625 1 296 1 1
g6 162 1 750 000 531 441 1 000 000 1 1
g8 420 2 529 924 096 815 730 721 1 475 789 056 1 1
h4 124 65 475 38 416 50 625 1 1
h5 N/A 33 544 666 24 300 000 28 629 151 1 1
h6 N/A 68 714 415 882 56 800 235 584 62 523 502 209 1 1

d2n20 3 61 341 696 1 1 048 576 0 1
d2n100 3 1.63 ×1033 1 1.27 ×1030 0 1
d3n5 64 918 32 243 0 32
d3n7 256 12 393 128 2 187 0 128
d4n4 135 608 81 256 0 81
d4n6 1215 14 080 729 4 096 0 729

Table 3: Degree of asymptotic/generalised critical values in the unrestricted case.

9.2. Degree experiments

We consider the degree of the algebraic set defined by the list of polynomials con-
structed in step 6 which is the basis of Theorem 2. Then, we give the bound of Theorem 2
as well as a bound on the number of critical values given in [10, Corollary 2] and compare
this to the bound on the generalised critical values given in [15, Theorem 4].

In Table 3, we see that for unrestricted systems, the bound of [15, Theorem 4] is
better. However, in Table 4 our degree bound is significantly smaller outside of a few
cases where the parameters n and d are small. We note that the polynomial systems we
compute in Algorithm 2 do not reach the bound of Theorem 2. Moreover, we are unaware
of any examples of polynomial systems with a large number of asymptotic critical values,
since generic systems contain no such values.
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