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Evaluation of neuroprotective 
and immunomodulatory properties 
of mesenchymal stem cells in an ex vivo retinal 
explant model
Élodie Reboussin1† , Juliette Buffault1,2*† , Françoise Brignole‑Baudouin1,3 , Annabelle Réaux‑Le Goazigo1 
, Luisa Riancho1 , Céline Olmiere4 , José‑Alain Sahel1,2,5 , Stéphane Mélik Parsadaniantz1  and 
Christophe Baudouin1,2  

Abstract 

Background: Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) 
causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the 
progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic 
approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative 
potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some 
safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and 
immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model.

Methods: Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axot‑
omy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, 
and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA 
quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of 
both ‘M1’ or classically activated state inflammatory cytokines (TNFα, IL1β, and IL6), and ‘M2’ or alternatively activated 
state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6).

Results: The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control 
group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA 
markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to 
the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. 
In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in 
presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal 
membrane‑like phenotype.
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Background
Glaucoma is a blinding degenerative neuropathy in which 
retinal ganglion cell (RGC) death leads to a progressive 
loss of visual field and eventually vision [1]. Prevent-
ing RGC death through neuroprotective strategies could 
completely modify the visual prognosis of patients with 
glaucoma. In the last few decades, MSCs and their neu-
roprotective and regenerative properties have raised 
considerable hope in glaucoma therapy. However, no 
protocol has yet been validated in humans [2].

MSCs are multipotent cells found in many adult tis-
sues, able to proliferate, self-renew and differentiate into 
many types of specialized cells, including osteocytes, 
adipocytes, or chondrocytes. Moreover, MSCs produce 
numerous growth or neurotrophic factors, leading to the 
hypothesis that they could play a major role in stimulat-
ing the survival and growth of RGCs [2–4]. MSC-based 
therapies in retinal diseases have been explored in order 
to prevent or delay RGCs death and even to regenerate 
RGCs [5, 6]. Intravitreal transplantation of bone mar-
row MSCs (BMMSCs) in rat ocular hypertension models 
has been shown to be highly neuroprotective by reduc-
ing RGCs death [3, 4, 7]. Anterior chamber transplanta-
tion of rat BMMSCs in a rat ocular hypertension model 
also demonstrated neuroprotective effects as measured 
by peripheral RGC density and a significant but transient 
reduction in IOP [8].

In glaucoma patients as well as in rodent preclinical 
models of glaucoma, higher expression of glial fibrillary 
acidic protein (GFAP) was found to be associated with 
the degeneration of the optic nerve fibers [9]. So, glial 
immunomodulation represents a promising therapeu-
tic approach in which MSCs might play a crucial role. 
Indeed, in glaucoma, RGC loss is associated with an 
inflammatory process caused by activation of resident 
glial cells, e.g., microglial cells, Müller cells, and astro-
cytes [9–13]. Once activated, these cells release a cocktail 
of cytokines, chemokines, and reactive oxygen species 
(ROS) and consequently contribute to RGCs loss. Among 
these cells, microglial cells, also called sentinel immune 
cells, exist in two dynamic and opposite activated states 
with neurotoxic or neuroprotective effects [14–16]. Dur-
ing retinal degeneration, microglia are activated and par-
ticularly polarized to a pro-inflammatory M1 phenotype 

[17]. The “classical activation state” or “M1 state” is char-
acterized by the production of ROS and secretion of 
numerous pro-inflammatory molecules such as TNFα, 
IL-1β, and IL-6. The second state, also known as the 
“alternatively activated state” or “M2 state,” is induced by 
IL-4 or IL-13. It allows clearance of debris, restores tis-
sue homeostasis, and promotes tissue repair by inhibiting 
inflammation through the production of anti-inflamma-
tory, neurotrophic factors, and chemokine receptors [14–
16, 18]. Several M2 phenotype markers characterize this 
M2 state, e.g., the enzyme Arginase 1 (ARG1), a marker 
of microglia involved in tissue repair and phagocytosis, 
the receptor CD163, a marker of microglia implicated 
in the anti-inflammatory process and healing, IL-10, an 
anti-inflammatory cytokine used by the M2 subtype to 
antagonize the pro-inflammatory phase and healing, 
and TNFα-stimulated gene-6 (TSG-6/TNFAIP6), which 
is a key anti-inflammatory factor produced by MSCs 
[19–22]. Reducing the pro-inflammatory M1 phenotype 
or inducing M2 microglial polarization might represent a 
potential and promising therapeutic option to treat neu-
roinflammatory degenerative diseases such as glaucoma 
[9, 23–25]. Among potent immunomodulators of micro-
glial polarization, MSCs possess potent immunoregula-
tory properties and might inhibit a harmful inflammatory 
reaction in the diseased retina [2, 25, 26].

Obtaining a model of RGC loss to reproduce the 
degenerative process observed in glaucoma is a chal-
lenge. Indeed, many animal models have been devel-
oped, but have encountered reproducibility issues in the 
rate of RGC loss [2]. The retinal explant model offers the 
advantage compared to cell lines or dissociated cultures, 
to maintain an in vivo-like architecture with all neurore-
tina layers retaining intercellular interactions; it allows 
direct access to the RGC layer; it limits the number of 
animals used and is less time-consuming than the clas-
sical use of animal models, considering the degeneration 
rate of RGCs. Optic nerve transection leads to the death 
by apoptosis of 90% of injured RGCs within 14-day post-
axotomy in  vivo [27–29]. Similar to these results, RGC 
loss by apoptosis was shown in retinal explants [30–32]. 
Thus, this model fills the gap between relevant but time/
cost/animal-consuming preclinical models and rapid/
high-throughput cell culture models often based on one 

Conclusion: Using an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory 
effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane 
formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without 
their potential adverse effects, through paracrine signaling.

Keywords: Glaucoma, Neuroprotection, Immunomodulation, Cellular therapy, Mesenchymal stem cell, Microglia, 
Retinal ganglion cell
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single cell type, which cannot substitute for the complex-
ity of an entire tissue.

Considering the promising MSC neuroprotective 
results previously demonstrated in animal models, our 
objective was to evaluate the effects of MSCs use as a 
neuroprotective and immunomodulatory therapy in a 
neuroretina explant model of RGC degeneration, with a 
particular attention to immuno-inflammatory patterns 
and potential safety issues.

Materials and methods
Animals
Adult (6–8  weeks old) male Long Evans rats weigh-
ing 250–300  g were purchased from Janvier Laborato-
ries and used for harvesting fresh BMMSCs and retinal 
explants to proceed to coculture. Animals were kept in 
pathogen-free conditions with food and water ad libitum 
and housed in a 12-h light/12-h dark cycle. All experi-
ments were conducted after evaluation and approval by 
the Institutional Animal Care and Use Committee fol-
lowing the guidelines from Directive 2010/63/EU of the 
European Parliament on the protection of animals used 
for scientific purposes. All experimental procedures 
were approved by the local animal care ethics committee 
C2EA-05—Charles Darwin.

MSC isolation and culture
Fresh BMMSCs were harvested from femurs of 6-week-
old Long Evans rats (Janvier Laboratories). Briefly, femurs 
were isolated, and the cavities were flushed with 5 ml of 
expansion medium composed of αMEM (Thermo Fisher 
Scientific, ref. 31095029), 10% heat-inactivated fetal calf 
serum (Thermo Fisher Scientific, ref. 10499044), and 1% 
penicillin–streptomycin 10,000 U/ml (Thermo Fisher 
Scientific, ref. 15140122), through a 21G needle. Cells 

were incubated in 75-cm2 flasks (200,000 cells/cm2) at 
37 °C in 5%  CO2 humidified air for 72 h. Three days later, 
nonadherent cells were washed away with DPBS (Thermo 
Fisher Scientific, ref. 14190169), and fresh medium was 
added and kept until the first passage. MSCs were cul-
tured with a weekly passage at a seeding rate of 100,000 
cells/ml and characterized using flow cytometry (FCM) 
until cocultured with retinal explants.

Flow cytometry
BMMSCs were cultured in 75-cm2 flasks until near con-
fluence, in standard culture conditions (5%  CO2, 37  °C, 
and saturated humidity atmosphere). Then, MSCs were 
harvested using Trypsin 0.05% EDTA (Thermo Fisher 
Scientific, ref. 25300054), washed twice with DPBS, and 
suspended in DPBS at 500,000 cells/ml after numeration 
using Flow-Count fluorospheres (Beckman Coulter, ref. 
7547053). The suspension of live MSCs was characterized 
using flow cytometry (Cytomics FC 500 flow cytometer, 
Beckman Coulter, Miami, FL, USA) and positive (CD29, 
CD90, CD73) and negative (CD11b/c, CD45, CD68, 
MHC class II (Ia)) antigens were analyzed. The antibod-
ies used for this characterization are presented in Table 1. 
Incubations for direct fluorochrome-conjugated antibod-
ies and for non-conjugated primary antibodies were per-
formed in 50 µl DPBS for 30 min in the dark. For indirect 
immunostaining, another 30-min incubation was carried 
out with the secondary antibody. After immunostaining, 
cells were washed once in DPBS and finally suspended in 
300 µl of DPBS for flow cytometric acquisition.

Retinal explant cultures
Eight-week-old Long Evans rats (Janvier Laboratories) 
were used to collect retinal explants for culture, as pre-
viously described [30, 33]. Rats were euthanized, and 

Table 1 Antibodies used for the MSC characterization using flow cytometry

Antibody Host Supplier Reference

Positive markers

 CD29 Armenian hamster eBioscience 11‑0291‑80

 CD73 Mouse BD Biosciences 551123

 CD90 Mouse eBioscience 45‑0900‑80

Negative markers

 CD11b/c Rabbit BD Pharmingen 554862

 CD45 Mouse Serotec MCA43PE

 CD68 Mouse Serotec MCA341R

 Ia Mouse Bio‑Rad MCA46G

Isotype control FITC Armenian hamster eBioscience 11‑4888‑81

IgG2a kappa Isotype control Mouse eBioscience 45‑4724‑80

IgG1, κ Mouse BD Pharmingen 554680

IgG‑UNLB Mouse SouthernBiotech 0107‑01
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the eyes were excised, then quickly placed in an ice-cold 
 CO2 independent medium (Thermo Fisher Scientific, 
ref. 18045-054). Under sterile conditions at 4 °C in a  CO2 
independent medium, the anterior chamber, lens, and 
vitreous body were removed, and the retina was sepa-
rated from the surrounding ocular tissues by dissection 
with curved microforceps. Retinas were then cut into 
four equal quarters and flat-mounted with the RGC layer 
up on Millicell-Polytetrafluoroethylene (PTFE) 0.4-μm 
culture plate inserts (Merck Millipore, ref. PICM01250), 
in culture medium composed of Neurobasal A (Thermo 
Fisher Scientific, ref. 10888022), 2% B27 supplement 
(Thermo Fisher Scientific, ref. 0080085-SA), 1% N2 sup-
plement (Thermo Fisher Scientific, ref. 17502048), l-glu-
tamine (Thermo Fisher Scientific, ref. 25030032), and 
1% penicillin–streptomycin 10,000 U/ml, at 37  °C in 5% 
 CO2 humidified air. The next day, half of the medium was 
changed, which was then changed every 48 h thereafter.

Pharmacologic agents
Brain-derived neurotrophic factor (BDNF) (Sigma-
Aldrich, ref. SRP3014) or N-methyl-d-aspartate (NMDA) 
(Sigma-Aldrich, ref. M3262) were diluted daily in retinal 
culture medium and added in direct contact with the 
RGCs at a concentration of 200 ng/ml or 50 µM, respec-
tively, in a 3-µl droplet carefully dispensed onto the sur-
face of the explant [30]. Also, half of the retinal culture 
medium containing BDNF or NMDA was changed at 
Day 1 and every 48 h thereafter.

Retinal explant–MSC coculture
MSCs from passages 5 to 7 were used for this experi-
ment. Before coculture, MSCs were trypsinized, washed 
in DPBS, and suspended in retinal explant culture 
medium at 5000 cells/µl [30, 33]. MSCs were labeled 
with Vybrant™ DiO Cell-Labeling Solution (Invitrogen, 
V22886) before the coculture to track them within the 
coculture system. Once the retinal explants were flat-
mounted with the RGC layer up, 2  µl of this MSC sus-
pension was gently dispensed onto the surface of the 
retinal explants.

Immunohistochemistry
Tissue preparation
For cryosections, retinal explants were fixed in PFA 4% 
for 24 h at 4 °C, then dehydrated in sucrose 30% (DPBS; 
pH 7.4) overnight at 4 °C, before being embedded in OCT 
(Tissue-Tek® O.C.T. Compound, Sakura® Finetek) and 
frozen. Cryosections of retinal explants 12  µm in thick-
ness were performed using a Leica cryostat CM 3050S 
and stored at − 20  °C until use. For wholemount count-
ing, retinal explants were fixed in PFA at 4 °C overnight 
and rinsed in DPBS before the immunofluorescence step.

Dual immunofluorescence labeling in whole flat‑mounted 
retinal explants or cryosections
Retinal explant wholemounts or cryosections were incu-
bated for 2  h at room temperature (RT) in a blocking 
buffer (5% BSA, 2% Triton X-100, and 0.5% Tween20, in 
DPBS) and left to incubate overnight at 4 °C in the incu-
bation buffer (2.5% BSA, 1% Triton X-100 and 0.25% 
Tween20, in DPBS) with polyclonal rabbit anti-RBPMS 
(1/200, Merck Millipore, ref. ABN 1362), monoclo-
nal mouse anti-Brn-3a (1/100, Merck Millipore, ref. 
MAB1585), monoclonal mouse anti-NeuN (1/500, Merck 
Millipore, ref. MAB377), monoclonal mouse anti-CD68 
(1/400, AbD Serotec, ref. MCA341R), polyclonal rab-
bit anti-GFAP (1/500, Dako, Agilent, ref. Z033429-2), 
polyclonal rabbit anti-Iba1 (1/500, Wako, ref. W1W019-
19741), polyclonal rabbit anti-fibronectin (1/250, Abcam, 
ref. ab2413), and polyclonal goat anti-choline acetyltrans-
ferase (1/200, Merck Millipore, ref. AB144P). Explant 
wholemounts or cryosections were washed in DPBS and 
incubated with an Alexa Fluor 594-conjugated donkey 
anti-mouse immunoglobulin (1/500, Thermo Fisher Sci-
entific, ref. A21203), an Alexa Fluor 488-conjugated don-
key anti-rabbit immunoglobulin (1/500, Thermo Fisher 
Scientific, ref. A21206), or an Alexa Fluor 594-conjugated 
donkey anti-goat immunoglobulin (1/500, Thermo Fisher 
Scientific, ref. A11058) as secondary antibodies (Thermo 
Fisher Scientific), and the nuclei were stained with Dapi 
(1/500) for 1  h, at RT. Then, retinal explants, whole-
mounts or cryosections, were washed and mounted in 
Fluoromount (Sigma Aldrich, ref. F4680-25ML).

Histopathological analysis of retinal explants
Retinal explant cryosections 12  μm in thickness were 
stained with hematoxylin and eosin (H&E). Stained cryo-
sections were scanned at ×100 and ×200 magnifications 
with the digital whole-slide scanner NanoZoomer 2.0 HT 
scanner (Hamamatsu Photonics), using the NanoZoom-
er’s 3-CCD TDI camera. NDP viewer software (Hama-
matsu Photonics) was used to measure the thickness of 
the retinal explants and analyze their histology.

Immunohistological quantification
For RGC quantification in wholemount retinas, imaging 
was performed at ×200 magnification (306 µm2) using an 
epifluorescence microscope (Zeiss AX-10). RGCs were 
identified based on Brn3a and RBPMS markers. Images 
were taken at four locations from the optic nerve to the 
peripheral retina for each explant. Cell counts were per-
formed manually using image analysis software (ImageJ, 
United States National Institutes of Health (NIH)) and cell 
counter plugin and expressed as RGC/306 µm2 or percent-
age of cells compared to Days Ex Vivo (DEV) 0. Concern-
ing quantification in transverse sections, sections were 
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taken throughout the whole explant, with approximately 
18 slides/explants, allowing placement of different areas of 
the explant on the same slide. Three images were acquired 
per section, in five different sections on a slide. RGC or dis-
placed amacrine cells (DAC) quantification was expressed 
as RGC/mm or DAC/mm. For GFAP, Iba1 and CD68 
immunostaining quantification, explant cryosections were 
taken using an epifluorescence microscope (Zeiss AX-10). 
Three images were acquired for each explant using a ×10 
or ×20 objective and the same parameters of time exposure 
for each explant. NIH Image J software was then used to 
quantify the Raw Integrated Density of each section, allow-
ing us to obtain the sum of pixels values. For all images, 
Background values have been subtracted of Raw Integrated 
Density and the same area was selected. Sections were ana-
lyzed in a blinded manner; the experimenter was blinded to 
the treatment.

Quantitative RT‑PCR
Total RNA of 6–16 retinal explants per group (3  mg/
explant) was purified using the NucleoSpin RNA XS kit 
(Macherey–Nagel, ref. 740902.50) according to proto-
col. Total RNA was reverse-transcribed into cDNA a 
High Capacity RNA to cDNA kit (Life Technologies, ref. 
4368814) according to the manufacturer’s instructions. 
Real-time PCR was performed using the TaqMan Gene 
Expression PCR Master mix (Applied Biosystems, ref. 
4324020) and the Applied Biosystem Fast 7500 (Applied 
Biosystems). The delta–delta Ct method (ddCt) was used to 
analyze the relative gene expression; that is, the fold change 
of mRNA upon downregulation of various target genes was 
determined. Rps18 was used as a housekeeping gene.

Statistical analysis
Statistical analyses were performed using GraphPad Prism 
7. Data are presented as mean ± SEM. Student’s t-test or 
Mann–Whitney was performed for unpaired comparisons 
between RGC viabilities after counting with Brn3a and 
RBPMS staining and relative mRNA levels. Unpaired t-test 
was used to quantify neurons after exposure to pharmaco-
logical agents (BDNF and NMDA), and two-way ANOVA 
or Mann–Whitney was used for retinal explant cocultures 
with MSCs. RT-qPCR data were analyzed using one-way 
ANOVA, Student’s t-test, or Mann–Whitney for unpaired 
comparisons. One-way ANOVA was used to quantify 
GFAP, Iba1 and CD68 immunostaining.

Results
Isolation and characterization of rat bone marrow 
mesenchymal stem cells
Rat BMMSCs from three different production batches 
were characterized using FCM analysis. The data showed 
that MSCs highly expressed positive MSC markers CD29, 

CD73, and CD90 and did not express CD11b/c, CD45, 
CD68, and the MHC Class II (Ia) antigen in accordance 
with the International Society for Cellular Therapy [32]. 
Overlaid fluorescence histograms of specific markers 
(in black line vs negative control in grey), percentages of 
positive cells and mean fluorescence intensities are pre-
sented in the Additional file 1.

RGC degeneration in a retinal explant culture model
The best therapeutic window to assess neuroprotection 
was determined by evaluation of RGCs degeneration fol-
lowing optic nerve axotomy in the retinal explant culture 
model, which can vary between laboratories, handlers, 
or culture conditions. Brn3a and RBPMS specific RGCs 
markers were used for RGCs counting from ‘Day ex vivo’ 
(DEV) 0–7 (Fig. 1A–D) [34, 35]. Loss of RGCs occurred 
with both markers after 24 h of culture but without sig-
nificance. The number of RGCs was statistically differ-
ent at DEV 3 and later compared to DEV 0 for Brn3a 
quantification (44% RGCs death at DEV 3 from DEV 0, 
P < 0.0001) or DEV 5 for RBPMS quantification (36% 
RGCs death compared DEV 0, P < 0.0001) (Fig. 1). From 
DEV 5 to DEV 7, a plateau of the RGCs loss curves for 
Brn3a and RBPMS quantification was obtained. From 
these results, we determined an optimal therapeutic win-
dow from DEV 5 to 7 of culture for testing neuroprotec-
tive agents or MSCs.

Retinal explant responses to neuroprotective or excitotoxic 
stimuli
To evaluate the ability of the retinal explant model to 
respond to neuroprotective agents, we exposed explants 
for 5  days to BDNF [36, 37]. At DEV 5 with Brn3a and 
RBPMS markers, quantification of RGCs on whole-
mount retinas confirmed the neuroprotective effect 
of BDNF, with a significant increase in the percent-
age of Brn3a+ RGCs survival at DEV 5 in treated 
group compared to control group (76.38% ± 7.08% vs. 
45.47% ± 1.55%, P = 0.0053) and RBPMS+ RGCs survival 
at DEV 5 in treated group compared to control group 
(72.81% ± 6.16% vs. 50.06% ± 1.37%, P = 0.0113) (Fig.  2). 
Retinal explants significantly respond to a neuroprotec-
tive stimulus.

To evaluate the ability of the retinal explant model 
to respond to excitotoxic agents, we exposed explants 
for 5  days to NMDA [36, 37]. At DEV 5 NMDA expo-
sure at 50 µM caused significant decrease in RGCs sur-
vival compared to controls with both markers Brn3a 
(0.65% ± 0.33% vs. 39.73% ± 3.98%, P < 0.0001) and 
RBPMS (17.46% ± 2.91% vs. 47.75% ± 4.53%, P = 0.0014) 
(Fig. 3). Retinal explants significantly respond to an exci-
totoxic stimulus.
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Fig. 1 Representative images of wholemount retinal explants (n = 8 per day) in culture from DEV0 to DEV7 immunolabeled with Brn3a (A) and 
RBPMS (B) at ×200 magnification (scale bar = 100 µm). Quantification of Brn3a+ RGCs (C) and RBPMS+ RGCs (D) from wholemount retinal explants 
was expressed as percentage of DEV 0 (defined as 100%). Error bars are standard error of the mean. ***P < 0.001, ****P < 0.0001
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Coculture of MSCs with retinal explants confers RGC 
neuroprotection
In accordance with the publications of Johnson et al., we 
investigated whether the presence of MSCs could limit 
or prevent RGC loss in retinal explants after an even 
longer duration, namely at DEV 7 [33, 38]. At DEV 7, the 
number of RGCs stained with Brn3a and NeuN was sig-
nificantly higher in cryosections of retinal explants cocul-
tured with 1.104 MSCs compared to the control group 
(28.13 ± 4.61/mm vs 16.16 ± 5.85/mm, P = 0.0490 and 
62.55 ± 6.92/mm vs 44.39 ± 8.26/mm, P = 0.0018, respec-
tively). RBPMS quantification did not show statistically 

significant differences at DEV 7 between control and 
MSC coculture groups. No significant difference in RGC 
numbers was found between DEV 0 and DEV 7 with 
 104 MSCs for RBPMS, Brn3a, or NeuN staining (Fig. 4). 
However, NeuN being a neuronal marker expressed by 
both RGCs and DACs, we specifically quantified DACs in 
RGC layer using an anti-choline acetyltransferase (ChAT) 
antibody in order to avoid a bias in RGCs survival count-
ing using this marker. We found no significant difference 
in ChAT+ DACs between group at DEV 0 and DEV 7 
(Additional file  2). Thus, RGCs survival estimated with 
NeuN is not influenced by potential NeuN+ DACs in the 

Fig. 2 A Representative images of wholemount retinal explants (n = 4/day) in culture at DEV 0 and DEV 5, immunolabeled with Brn3a (red) and 
RBPMS (green) at ×200 magnification (scale bar = 100 µm) treated daily with BNDF (200 ng/ml). B Quantification of Brn3a+ or RBPMS+ RGCs in 
control group (grey bar) and Brn3a+ or RBPMS+ RGCs in BDNF‑treated group (black bar) at DEV 5 from wholemount retinal explants was expressed 
as percentage of DEV 0 (defined as 100%). Error bars are standard error of the mean. *P < 0.05, **P < 0.01

Fig. 3 A Representative images of wholemount retinal explants (n = 4/day) in culture at DEV 0 and DEV 5, immunolabeled with Brn3a (red) and 
RBPMS (green) at ×200 magnification (scale bar = 100 µm) treated daily with NMDA (50 µM). B Quantification of Brn3a+ or RBPMS+ RGCs in control 
group (grey bar) and Brn3a+ or RBPMS+ RGCs in NMDA‑treated group (black bar) at DEV 5 from wholemount retinal explants was expressed as 
percentage of DEV 0 (defined as 100%). Error bars are standard error of the mean. Error bars are standard error of the mean. **P < 0.01, ****P < 0.0001
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RGC layer. MSCs reduced RGC loss in retinal explants at 
DEV 7.

MSCs decrease gliosis in retinal explants
To determine the inflammatory response following 
MSCs implantation, we analyzed GFAP immunostain-
ing and GFAP mRNA expression in retinal explants at 
DEV 0 and DEV 7. GFAP immunoreactivity in astro-
cytes and Müller cells was upregulated in all retinal lay-
ers at DEV 7 in the control group compared to DEV 0, 
where GFAP was limited to the nerve fiber layer (NFL) 

and outer plexiform layer (OPL). In contrast, at DEV 
7 in the MSC coculture group, GFAP immunostaining 
was limited to the NFL and to a lesser extent to the OPL 
(Fig.  5A). Moreover, we measured the Raw Integrated 
Density at DEV 0 and DEV 7 in the control group and 
the MSCs coculture group. This semi-quantitative 
analysis clearly demonstrated the significant upregu-
lation of GFAP staining at DEV 7 in both groups con-
firming the glial activation (P = 0.0015 and P = 0.0361, 
respectively) compared to DEV 0 (Fig.  5B). Nonethe-
less, no significant difference was observed between the 

Fig. 4 A Quantification of RBPMS+, NeuN+ and Brn3a+ RGCs from retinal explants (n = 6/day) cocultured with 1.104 MSCs for 7 days. RGC counts 
on cryosections are expressed as RGCs/mm. *P < 0.05, **P < 0.001. B Representative images of retinal explant cryosections cocultured with 1.104 
MSCs for 7 days at DEV 0 and DEV 7, immunolabeled with Brn3a (red) and DiO‑labeled MSCs (green) at ×200 magnification (scale bar = 100 µm)
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control and the MSC coculture group at DEV 7. GFAP 
mRNA was significantly higher at DEV 7 in the control 
and MSC coculture groups (38.5-fold, P < 0.0001 and 
11.4-fold, P < 0.0001, respectively) compared to DEV 0. 
However, GFAP mRNA was significantly lower at DEV 
7 in the MSC coculture group compared to the control 

group (P < 0.0001) (Fig.  5C). These data demonstrate 
that MSC coculture conferred limited glial activation 
in retinal explants at DEV 7 compared to the control 
group. However, GFAP activation was limited but still 
robust in the NFL and OPL layer in the MSC coculture 
group, proving a significant, localized reactive gliosis 
following MSC implantation.

Fig. 5 A Representative images of retinal explant cryosections cocultured with 1.104 MSCs for 7 days at DEV 0 and DEV 7, immunolabeled with 
GFAP (red) and DiO‑labeled MSCs (green) at ×200 magnification (scale bar = 100 µm). B Quantification of GFAP immunoreactivity (expressed as Raw 
Integrated Density). n = 4–6 animals/group. Ordinary one‑way ANOVA was performed. *P < 0.05, **P < 0.01. C RT‑qPCR analysis of GFAP expression 
in retinal explants at DEV 0 and DEV 7. mRNA levels are presented after normalization with the housekeeping gene Rps18. n = 12 animals/group. 
Unpaired t‑test was performed for unpaired comparisons. ****P < 0.0001
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MSCs reduce microglial activation
To determine the microglial cell response following 
coculture with MSCs, we analyzed ionized calcium 
binding adaptor molecule 1 (Iba1) and CD68 immu-
nostaining and ITGAM and CD68 mRNA expressions 
in retinal explants at DEV 0 and DEV 7. At DEV 0, 
Iba1+ microglial cells were located in the inner plexi-
form layer (IPL) and ganglion cell layer (GCL), and no 
CD68+ cells were found in retinal layers. At DEV 7 in 
the control group, Iba1+ and CD68+ cells were found 
in all retinal layers, contrary to the MSC group, where 
Iba1+ and CD68+ cells were limited to the inner retinal 
layers (GCL, IPL and inner nuclear layer (INL)). More-
over, at DEV 7 in the MSC group, microglial cells were 
present mainly at the interface between the GCL and 
MSCs (Fig.  6A, B). Then, we quantified Iba1 and CD68 
Raw Integrated Density at DEV 0 and DEV 7 in the con-
trol and MSC coculture groups. It demonstrates the sig-
nificant upregulation of Iba1 staining at DEV 7 in MSC 
coculture group compared to DEV 0 (P = 0.0235). More-
over, no significant difference was observed between con-
trol group at DEV 7 and MSC coculture or DEV 0 groups 
(Fig. 6C). Concerning CD68 staining, no significant dif-
ference was observed in all groups, despite a slight ten-
dency to fluorescence increase at DEV 7 for both groups 
(Fig.  6D). RT-qPCR analysis showed that ITGAM and 
CD68 mRNA fold inductions were significantly lower in 
the MSC group compared to the control group (respec-
tively, 17.3 vs. 33.1 and 83.4 vs. 169, P < 0.0001) (Fig. 6E, 
F). These data demonstrate that microglial cells were 
distributed differently throughout the retina at DEV 7 in 
the control and MSC groups, with a limited but strong 
distribution of microglial cells to the internal retinal lay-
ers in the MSC group. In the control group at DEV 7, 
Iba1+ microglial cells migrated and proliferated toward 
the outers layers of the retina. Furthermore, microglial 
activation and proliferation were higher at DEV 7 in the 
control group compared to the MSC coculture group. 
However, in the MSC coculture group, this microglial 
activation was concentrated at the RGC/MSC interface. 
MSC limited the microglial activation in retinal explants.

MSCs have an immunomodulatory effect on retinal 
explants
To investigate whether the presence of MSCs in 
the retinal explant coculture model could exert 

immunomodulatory properties and influence on micro-
glial phenotypes, we analyzed microglial polarization 
markers through the mRNA expression of type M1 clas-
sically activated, namely TNFα, IL1β and IL6, and M2 
alternatively activated, namely Arginase 1, IL10, CD163 
and TNFAIP6 [15, 20]. Our data showed that mRNA 
expression of M1 phenotype markers TNFα, and IL1β 
levels were significantly lower at DEV 7 in the MSC 
group compared to the control group (P = 0.0143 and 
P < 0.001, respectively) (Fig. 7A). There was a significant 
increase in the level of IL6 mRNA expression at DEV 7 
but no significant difference between the control group 
and the MSC coculture group. The mRNA expression 
levels of the markers of M2-polarized microglia, Argin-
ase 1, IL10, and TNFAIP6 were significantly lower in the 
MSCs coculture group at DEV 7 compared to the control 
group (P < 0.0001, P = 0.071, and P < 0.0001, respectively) 
(Fig.  7B). Only mRNA expression of the M2 marker 
CD163 was significantly lower in the control group com-
pared to DEV 0, with no significant difference between 
the MSC coculture group and the control group at DEV 
7. However, there were no significant difference between 
the DEV 7 MSC group and DEV 0 for IL10, CD163 or 
TNFAIP6 mRNA expression levels. MSCs reduced the 
expression of M1 inflammatory markers.

MSCs affect retinal architecture and induce an ERM‑like 
phenotype
Before the coculture, DiO labeling of MSCs allowed 
tracking of the MSCs to determine their ability to graft 
into the retinal explant. At DEV 7, a few MSCs were 
found in the retinal explants at the GCL level. Most 
MSCs did not penetrate the retina and remained at the 
surface of the explant, probably where the 2  µl of MSC 
suspension was deposited (Fig. 3B).

Explant “swelling” was observed in all explants in the 
MSC cocultured group, with increased explant thickness 
and retinal folding, compared to DEV 0 and to DEV 7 
controls. MSCs also induced the appearance of an epiret-
inal membrane at the surface of the retinal explants. In 
order to investigate whether this distortion was associ-
ated with an epiretinal membrane phenotype, we used 
an anti-fibronectin antibody, since this protein is known 
to be upregulated in idiopathic epiretinal membranes 
[39]. Figure 8 shows the increase in fibronectin labelling 
at the surface of the explant cocultured with MSCs. This 

Fig. 6 Representative images of retinal explant cryosections cocultured with 1.104 MSCs at DEV 0 and DEV 7 immunolabeled with Iba1 (red) (A), 
CD68 (red) (B) and DiO‑labeled MSCs (green) at ×200 magnification (scale bar = 100 µm). C Quantification of Iba1 immunoreactivity (expressed as 
Raw Integrated Density). n = 4–6 animals/group. Ordinary one‑way ANOVA was performed. *P < 0.05. D Quantification of CD68 immunoreactivity 
(expressed as Raw Integrated Density). n = 4–6 animals/group. Ordinary one‑way ANOVA was performed. E, F RT‑qPCR analysis of ITGAM and CD68 
expression in retinal explants at DEV 0 and DEV 7. mRNA levels are presented after normalization with the housekeeping gene Rps18. n = 12–13 
animals/group. Unpaired t‑test was performed for unpaired comparisons. ****P < 0.0001

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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fibronectin expression was higher on the apical side of the 
explant, at the contact area between the MSCs and GCL. 
Likewise, H&E staining was performed to assess retinal 
micro-architectural organization and to quantify explant 
swelling in presence of MSCs. The laminar structure of 
the retinal explants at DEV 7 in the control group showed 
a folded appearance to the outer segments (OS) and 
outer nuclear layer (ONL) compared to DEV 0 (Fig.  9). 
Explants in the coculture group exhibited a thicker inter-
nal retinal layer. Figure  9C shows a significant increase 
in retinal explant thickness, which was found in all the 
explants in the MSCs cocultured group compared to 
the DEV 7 control and DEV 0 groups (405 ± 30  µm vs 
218 ± 20  µm and 220 ± 28  µm, respectively, P < 0.0001). 
MSCs induced thickening of the explants and disorgani-
zation of the retinal architecture with a formation of an 
epiretinal membrane.

Discussion
Over the last decade, there has been increasing interest 
in the use of stem cells, including retinal progenitor cells 
(RPCs), embryonic stem cells (ESCs), induced pluripo-
tent stem cells (iPSCs) and MSCs to regenerate RGCs 

in glaucoma [40]. MSCs have also shown neuroprotec-
tive and immunomodulatory properties. They have the 
advantages of demonstrating immunosuppressive effects 
and are less immunogenic and tumorigenic than ESCs. 
Compared with harvesting RPCs, it is relatively easy to 
obtain MSCs, and they possess a higher proliferative 
capacity [2]. The iPSCs strategy is also interesting, as 
these cells have the potential for reducing immunogenic-
ity through autologous transplantation, but iPSCs have a 
lower variable differentiation efficiency and a relatively 
high risk of gene mutation [41].

Despite promising results in animals, clinical trials 
of intravitreal injections of BMMSCs have raised some 
safety concerns, which require further studies and the 
development of additional experimental models mimick-
ing retinal degeneration in glaucoma [2].

In the present study, we showed that our ex vivo axot-
omy model results in rapid RGC degeneration and glio-
sis caused by optic nerve transection and disruption of 
axonal transport, enabling investigation of neuropro-
tective or anti-inflammatory therapeutic compounds 
or stem cell transplantation therapies in human or 
rodent tissues [42, 43]. This retinal explant model has 

Fig. 7 RT‑qPCR analysis of M1 (A) and M2 (B) phenotype marker expression in retinal explants at DEV 0 and DEV 7. mRNA levels are presented after 
normalization with the housekeeping gene Rps18. n = 6–16 explants/group. Unpaired t‑test or Mann–Whitney test were performed for unpaired or 
nonparametric comparisons. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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the advantage of maintaining an in  vivo type architec-
ture with all the neuroretina layers retaining intercel-
lular interactions. It also limits the number of animals 
killed, since one animal provides eight explants. Thus, 
this model fills the gap between relevant but time/cost/
animal-consuming preclinical models and cell culture 
models which cannot substitute for the complexity of an 
entire tissue.

Advances in glaucoma research increasingly sug-
gest that this degenerative optic nerve disease is linked 
to neuroinflammation [10]. The activation of microglia 
seems to play an important role in glaucoma pathogen-
esis, and strategies aiming to modulate reactive microglia 
are explored to slow down the progression of glaucoma 
and improve RGC survival [9]. In this study, we show that 
the MSCs have immunomodulatory properties and could 
be able to block RGC death in the retinal explant axot-
omy model by modifying the inflammatory state.

Although MSCs allowed us to observe neuroprotec-
tion, reduced gliosis, and modulation of inflammation in 
our ex vivo retinal explant model, we noticed edema and 
folding of the retinal explants.

This swelling of the explants may correspond to the 
adverse effects reported in clinical trials in humans. 

Indeed, despite promising results in animals with good 
efficacy and good safety profiles, the translation to 
humans in clinical trials was more than disappointing 
[25]. Several studies and trials have warned of serious 
ocular adverse effects following MSC transplantation, 
questioning the safety of using MSCs in retinal disease 
[44–46]. Among the complications reported, retinal 
detachments, retinal folds, subretinal exudative fluid, 
vitreous hemorrhage, vitreoretinal proliferation, pro-
inflammatory vitreous clumping, thick epiretinal mem-
brane formation as well as ocular hypertension and 
microcystic corneal edema have been described [45, 
47–49]. Surprisingly, these effects were not found in a 
phase 1 trial studying the safety of intravitreal autolo-
gous MSC transplantation in 14 patients with retini-
tis pigmentosa [50]. This could be due to the atrophic 
status of the retina in such severe degenerations. In a 
clinical phase I study, Satarian et  al. described severe 
fibrous tissue proliferation in the BMMSC-injected eye 
of one patient, which was reproduced in a mouse vitre-
ous cavity injected with the same MSCs [49]. MSCs of 
the other two patients did not generate fibrosis in the 
animal vitreous. Considering the heterogeneity of indi-
vidual MSC samples, they thus proposed evaluation of 

Fig. 8 Representative cryosections of retinal explants cocultured with  104 MSCs at DEV 0 and DEV 7, immunolabeled with fibronectin (green) at 
×200 magnification (scale bar = 100 µm) (n = 3–5/group)
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the cells in animals prior to their intravitreal injection 
in patients.

Possible explanations for the disorganization found 
in our explants following coculture with MSCs could 
include differentiation of MSCs into myofibroblasts, 
promoting retinal fibrosis [51]. We noticed an increase 
of gliosis and microglial activation at the junction 
between the explants and MSCs. Tassoni et  al. also 
demonstrated in both in  vivo and ex  vivo mice retina 
that intravitreal BMMSC transplantation was associ-
ated with gliosis-mediated retinal folding, upregulation 
of intermediate filaments, and recruitment of mac-
rophages. They described a JAK/STAT3 and MAPK 
(ERK1/2 and JNK) cascade activation in retinal Müller 
glia [52].

The question, therefore, arises of finding a method 
allowing preservation of the beneficial effects of MSCs 
while avoiding the undesirable effects and disadvantages 
of using MSCs, such as potential tumorigenicity, need for 
autologous collection, and variability.

It was initially hypothesized that cell replacement 
was an important mechanism of action of MSCs. How-
ever, considering the poor ability to graft MSCs into the 
retina [4, 33], the beneficial effects of MSCs are now 
believed to be mediated mostly by their paracrine abil-
ity to release multiple factors such as neurotrophins, 
growth factors (BDNF, NGF, PDGF), chemokines, 
immunomodulators (IDO, PGE2, TSG-6) and extracel-
lular vesicles [26, 53, 54]. This broad range of released 
factors with diverse functions, including anti-inflamma-
tory potential, neuroprotection, and immunomodula-
tion, is known as the secretome or conditioned medium 
(CM). Concerning the immunomodulatory effects of 
MSCs, we were able to show in our model that MSCs 
reduced the expression of M1 state as well as M2 state 
cytokine mRNAs. Therefore, MSCs induced an immu-
nosuppressant effect, but failed to promote M2 subtype 
polarization. Such properties of MSCs have been found 
in several studies [20, 55]. Holan et  al. demonstrated 
that the cytokine environment of MSCs influences the 

Fig. 9 A Representative hematoxylin and eosin (H&E) staining of retinal explant cryosections cocultured with  104 MSCs at Days Ex Vivo 0 and 
Ex Vivo 7 at ×100 magnification (scale bar = 200 µm) and B at ×200 magnification (scale bar = 100 µm). MSC mesenchymal stem cell, GCL 
ganglion cell layer, IPL inner plexiform layer, INL inner nuclear layer, OPL outer plexiform layer, ONL outer nuclear layer, OS outer segments, IM insert 
membrane. C Retinal explant thickness measurement. Each bar is the mean ± SEM. n = 4–6/group. Ordinary one‑way ANOVA was performed. 
****P < 0.0001
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spectrum of cytokines they produce, and thus, their 
immunoregulatory potential [56]. To enhance the effi-
ciency of such CM, several priming methods, such as 
culture duration,  O2 level, addition of growth factors or 
anti/pro-inflammatory cytokines, or three-dimensional 
culture methods, could allow switching the factors pro-
duced by MSCs towards an anti-inflammatory profile 
[57–60].

More recently, other stem cell-free approaches using 
extracellular vesicles (exosomes and microvesicles), 
have been under investigation. These vesicles are con-
sidered to be responsible for the paracrine effects of 
MSCs, promoting immunomodulation, tissue repair, 
and regeneration, with a lower risk of oncogenic trans-
formation and immune reactions than injections of 
whole MSCs [25, 61–63].

Conclusion
Using an ex  vivo retinal explant model, we demon-
strated a neuroprotective and immunomodulatory 
effect of MSCs on RGCs. Since this model allowed us 
to reproduce the expected but also undesirable effects 
of injections of MSCs, it appears suitable for screening 
efficacy and safety of potential candidates for retinal 
therapy and should be useful for future assessment of 
cell-based or alternative methods of neuroprotection 
and neuroregeneration.
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