Surface-dependent activity of model CoMoS hydrotreating catalysts

<u>Ricardo GARCIA DE CASTRO</u>,^{1,2} Elodie DEVERS,² Mathieu DIGNE,² Anne-Félicie LAMIC-HUMBLOT,¹ Gerhard D. PIRNGRUBER,² Xavier CARRIER^{1,*}

1- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, 75005 Paris (France)

2- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, 69360 Solaize (France)

SUPPORTING INFORMATION

I. Mo and Co loadings for model catalysts in the sulfide phase

Table S.1 Average Mo and Co loadings and Co/Mo ratio for model catalysts after sulfidation at 400 °C supported on the A(11 $\overline{2}$ 0), C(0001), M(10 $\overline{1}$ 0) and R(1 $\overline{1}$ 02) crystal planes of α -Al₂O₃ calculated from Eq. 1 of the main text.

Crystal Plane —	Loading / atoms \cdot nm ⁻²		Co/ Mo ratio	
	Мо	Со		
C(0001)	3.9 ± 1.0	1.7 ± 0.6	0.44	
A(1120)	4.3 ± 1.9	1.8 ± 0.7	0.42	
M(1010)	3.8 ± 1.7	1.6 ± 0.7	0.42	
R(1102)	4.7 ± 1.2	1.9 ± 0.9	0.40	

II. Mo3d, Co2p, S2p and S2s parameters for XPS peak deconvolution.

		MoO ₃		
Peak	Туре	Binding Energy /eV	Area	FWHM
Main Peaks	Mo3d _{5/2}	[232.9, 233.1] (A)	(B)	(C)
	Mo3d _{3/2}	A+3.2	B * 2/3	C *1
		MoO _x S _y		
Peak	Туре	Binding Energy /eV	Area	FWHM
Main Peaks	Mo3d _{5/2}	[229.7, 229.9] (D)	(E)	(F)
	Mo3d _{3/2}	D +3.2	E * 2/3	F *1
		MoS ₂		
Peak	Туре	Binding Energy /eV	Area	FWHM
Main Peaks	Mo3d _{5/2}	[228.8, 229.0] (G)	(H)	(I)
	Mo3d _{3/2}	G + 3.2	H * 2/3	I * 1

Table S.2 Summary of the constraining parameters for the different contributions in a Mo3dXPS spectrum for a sulfided model Co-Mo-based catalyst.

Table S.3 Summary of the constraining parameters for the different contributions in a S2p XPS spectrum for a sulfided model Co-Mo-based catalyst.

S ₂ ²⁻					
Peak	Туре	Binding Energy /eV	Area	FWHM	
Main Peaks	S2p _{3/2}	[163.2, 163.4] (A)	(B)	(C)	
	S2p _{1/2}	A+1.2	B * 0.5	C *1	
S ²⁻					
Peak	Туре	Binding Energy /eV	Area	FWHM	
Main Peaks	S2p _{3/2}	[161.7, 161.9] (D)	(E)	(F)	
	S2p _{1/2}	D +1.2	E * 0.5	F *1	

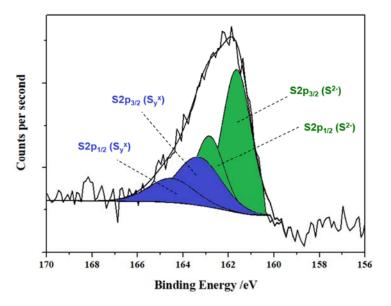


Figure S.1 Spectral decomposition of the S2p region of a model catalyst supported on the $M(10\overline{1}0)$ plane of α -Al₂O₃ after its sulfidation at 300 °C. The S²⁻ contribution is associated to MoS₂ while the S_x^y contribution is associated to the mixed oxysulfide phase MoS_xO_y

Table S.4 Relative proportion (%) of the different sulfur species detected on the S2p XPS region on the surface of a model catalyst supported on the M($10\overline{1}0$) plane of α -Al₂O₃ with the corresponding binding energies of the S2p3/2 peaks for both contributions.

Sulfur (S2p, 3/2 peaks)			
Species	%	Binding Energy /eV	
S ²⁻	65.5	161.6	
S_y^x	34.5	163.3	

Table S.5 Summary of the constraining parameters for the different contributions in the S2sXPS region for a sulfided model Co-Mo-based catalyst.

S ²⁻						
Туре	Binding Energy /eV	Area	FWHM			
S2s	[225.9, 226.1] (A)	(B)	(C)			
S_2^{2-}						
S2s A	$\mathbf{A} + \mathrm{BE} \left[\mathrm{S2p}_{3/2} (\mathrm{S2^{2-} - S^{2-}}) \right]$	$\mathbf{D} * A_{max} [S_{2max}(S_{2}^{2}/S_{2}^{2})]$	C*FWHM			
		B * Area $[S2p_{3/2}(S_2^{2-}/S^{2-})]$	$[S2p_{3/2}(S_2^{2^-}/S^2)]$			

		C0 ²⁺			
Peak	Туре	Binding Energy /eV	Area	FWHM	
Main Peaks	Co2p _{3/2}	[780.9, 781.9] (A)	(B)	1.85*Al (C)	
Maill Feaks	Co 2p _{1/2}	A +15.8	B * 0.5	C *1	
C09S8					
Peak	Туре	Binding Energy /eV	Area	FWHM	
Main Peaks	Co2p _{3/2}	[778 , 779] (D)	(E)	0.85*Al (F)	
Maill Feaks	Co2p _{1/2}	D +14.7	E * 0.5	F *1	
CoMoS					
Peak	Туре	Binding Energy /eV	Area	FWHM	
Main Peaks	Co2p _{3/2}	D + 0.5 (G)	(H)	1.5*Al (I)	
	Co2p _{1/2}	G + 15.3	H * 0.5	I * 1	
SATELLITE PEAKS					
	Туре	Binding Energy /eV	Area	FWHM	
1	Peak 1	A + 2.5	-	[2,5]	
2	Peak 2	A + 18.4	-	[2,5]	

Table S.6 Summary of the constraining parameters for the different contributions in aCo2p XPS spectrum for a sulfided model Co-Mo-based catalyst.

III. Evaluation of the amount of Co₉S₈.

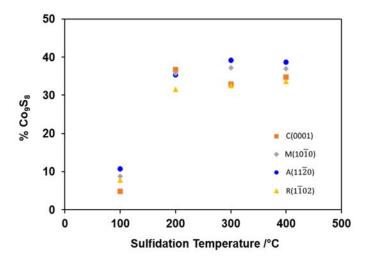


Figure S.2. Relative amount of Co₉S₈ (in percentage) for model Co-only catalysts supported on the A(11 $\overline{2}0$), C(0001), M(10 $\overline{1}0$) and R(1 $\overline{1}02$) crystal planes of α -Al₂O₃ as a function of the sulfidation temperature.



Figure S.3. Relative amount of Co₉S₈ (in percentage) for model Co-Mo based HDT catalysts supported on the A(11 $\overline{2}0$), C(0001), M(10 $\overline{1}0$) and R(1 $\overline{1}02$) crystal planes of α -Al₂O₃ as a function of the sulfidation temperature.

IV. Root mean square roughness calculation

The root mean square roughness (Rrms) is defined as the average of profile height deviations from the mean line or surface, for 1D and 2D surface analysis, respectively. Quantitatively, this definition can be expressed as the square root of the average height deviation from the mean line (or surface) squared, as displayed in Eq. SI.1

$$R_{rms} = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (Z_i - Z_{mean})^2}$$
(SI.1)

Where Z_i are the individual height deviations (peaks or valleys) from the average (Z_{mean}), and n is the total number of considered deviations from the mean line.