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We explore the merits of linear-response range-separated time-dependent density-functional theory (TDDFT) for
the calculation of photoionization spectra. We consider two variants of range-separated TDDFT, namely the time-
dependent range-separated hybrid (TDRSH) scheme which uses a global range-separation parameter and the time-
dependent locally range-separated hybrid (TDLRSH) which uses a local range-separation parameter, and compare with
standard time-dependent local-density approximation (TDLDA) and time-dependent Hartree-Fock (TDHF). We show
how to calculate photoionization spectra with these methods using the Sternheimer approach formulated in a non-
orthogonal B-spline basis set with appropriate frequency-dependent boundary conditions. We illustrate these methods
on the photoionization spectrum of the Be atom, focusing in particular on the core resonances. Both the TDRSH
and TDLRSH photoionization spectra are found to constitute a large improvement over the TDLDA photoionization
spectrum and a more modest improvement over the TDHF photoionization spectrum.

I. INTRODUCTION

Time-dependent density-functional theory (TDDFT)1, ap-
plied within the adiabatic linear-response formalism2–4, is
a widely used approach for calculating bound-state excita-
tions in electronic systems. Less commonly, linear-response
TDDFT has also been used for calculating photoioniza-
tion spectra (electronic transitions from bound to continuum
states) of atoms and molecules5–20. These calculations re-
quire an appropriate description of the continuum states (e.g.,
using grid-based approaches or B-spline basis sets) and an
accurate enough exchange-correlation potential and associ-
ated response kernel. Semilocal density-functional approx-
imations, such as the local-density approximation (LDA)
or generalized-gradient approximations (GGA), do not usu-
ally provide accurate atomic and molecular photoionization
spectra. These approximations suffer indeed from large
self-interaction errors and exponentially decaying exchange-
correlation potentials, leading to too low ionization thresh-
olds and resonances that are either at too low energies or
completely absent. More satisfactory photoionization spec-
tra are obtained with asymptotically corrected exchange-
correlation potential approximations7–10,14–16,18 (restoring the
correct −1/r long-range asymptotic decay) and with the more
involved exact-exchange (EXX) potential11 or the localized
Hartree-Fock (HF) exchange potential and its associated ker-
nel19.
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An alternative for overcoming the limitations of TDDFT
with semilocal density-functional approximations is given by
range-separated TDDFT approaches21–28 which, in the sim-
plest variant, express the long-range part of the exchange po-
tential and kernel at the HF level while a semilocal density-
functional approximation is still used for the short-range part
of the kernel. Range-separated TDDFT appropriately de-
scribes Rydberg and charge-transfer electronic excitations,
and has become very much used in calculations of bound-state
excitations in molecules. In Ref. 29, some of the present au-
thors started to explore the merits of range-separated TDDFT
for the calculation of photoionization spectra and showed that
the so-called linear-response time-dependent range-separated
hybrid (TDRSH) scheme28,30 provides an adequate photoion-
ization spectrum of the He atom. In the present work, we con-
tinue the systematic exploration of linear-response TDRSH
for the calculation of photoionization spectra. We focus on
the Be atom which has a much richer photoionization spec-
trum than the He atom since it contains both core and va-
lence electrons, leading in particular to a series of core res-
onances (1s→2p, 1s→3p, etc...) just below the 1s ionization
edge. We also test a new variant, called the linear-response
time-dependent locally range-separated hybrid (TDLRSH)
scheme, in which the range-separation parameter is a position-
dependent function31–34, which allows for more flexibility in
the description of both valence and core properties.

As in Ref. 29, we use a B-spline basis set for an appro-
priate description of the continuum. More specifically, in
Ref. 29, we used a straightforward diagonalization of the
linear-response Casida equations (in the orthogonal occu-
pied/virtual orbital basis) using zero boundary conditions at
the edge of the support of the last B-spline function, result-
ing in a discretization of the continuous spectrum. Whereas
in the case of the He atom the relatively simple structure of
the photoionization spectrum (only one channel) made it pos-
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sible to use a simple interpolation scheme for the oscillator
strengths, this approach is not feasible for the more com-
plicated photoionization spectrum of the Be atom and one
would have to use an artificial broadening to compensate. In
this work, we use instead the linear-response Sternheimer ap-
proach7,10,17,35–40 (in the non-orthogonal B-spline basis) using
appropriate frequency-dependent boundary conditions, result-
ing directly in an adequate representation of the continuous
spectrum without the need for broadening. This is a much
more efficient way of calculating photoionization spectra over
a wide energy window, requiring only a relatively small com-
putational box.

The paper is organized as follows. In Section II, we re-
view the range-separated hybrid (RSH) and locally range-
separated hybrid (LRSH) schemes, and give in some detail the
linear-response Sternheimer equations including a nonlocal
HF exchange kernel both in real space and in a general non-
orthogonal basis set which, to the best of our knowledge, were
never given in the literature. We also discuss how the bound-
ary conditions on a finite domain are imposed and our spe-
cific implementation using a B-spline basis set. In Section III,
we give and discuss the results obtained on the Be atom.
We explain how to select an optimal range-separation param-
eter, we discuss the photoionization spectra at the TDRSH
and TDLRSH level and compare with linear-response time-
dependent local-density approximation (TDLDA) and time-
dependent Hartree-Fock (TDHF), and we analyze the posi-
tions and the Fano lineshape of the core resonances. Sec-
tion IV contains our conclusions. Finally, in Appendix A we
explain in detail how to obtain the appropriate boundary con-
ditions for atoms, and in Appendix B we compare the present
Sternheimer approach with the straightforward Casida method
of Ref. 29.

II. THEORY AND COMPUTATIONAL METHOD

For simplicity, we consider only the case of a closed-shell
atomic or molecular system and thus work on the spin-free
one-electron Hilbert space L2(R3,C). Unless otherwise indi-
cated, Hartree atomic units are used in this work.

A. Range-separated hybrid scheme

Let us briefly recall the range-separated hybrid (RSH)
scheme41. The RSH orbitals {ϕi} and their associated energies
{εi} of a N-electron system are found from the self-consistent
Schrödinger-type equation∫

R3
h[γ0](r, r′)ϕi(r′)dr′ = εiϕi(r), (1)

where h[γ0](r, r′) is the nonlocal RSH Hamiltonian depending
on the density matrix γ0(r, r′) = 2

∑N/2
i=1 ϕi(r)ϕ∗i (r′). The RSH

Hamiltonian has the form, for a generic density matrix γ,

h[γ](r, r′) = T (r, r′) + δ(r − r′)vne(r) + vHxc[γ](r, r′), (2)

where T (r, r′) is the kinetic integral kernel such that∫
R3 T (r, r′)ϕi(r′)dr′ = −(1/2)∇2ϕi(r), and vne(r) is the nuclei-

electron potential and vHxc[γ](r, r′) is the Hartree-exchange-
correlation potential. The expression of vHxc[γ](r, r′) is

vHxc[γ](r, r′) = δ(r − r′)vH[ργ](r) + vlr,HF
x [γ](r, r′)

+δ(r − r′)vsr
xc[ργ](r), (3)

containing the local Hartree potential

vH[ργ](r) =

∫
R3
ργ(r′)wee(r, r′)dr′, (4)

written with the density ργ(r) = γ(r, r) and the Coulomb
electron-electron interaction wee(r, r′) = 1/|r − r′|, the non-
local long-range (lr) HF exchange potential

vlr,HF
x [γ](r, r′) = −

1
2
γ(r, r′)wlr

ee(r, r′), (5)

written with the long-range electron-electron interaction42

wlr
ee(r, r′) =

erf(µ|r − r′|)
|r − r′|

, (6)

with µ = µ̃/a0 where a0 = 1 a.u. is the Bohr radius and
µ̃ ∈ [0,+∞) is the adimensional range-separation parame-
ter, and the local complementary short-range (sr) exchange-
correlation potential vsr

xc[ργ](r). For the latter term, we use in
this work the LDA

vsr
xc[ργ](r) =

∂ēsr
xc,UEG(ρ, µ)

∂ρ

∣∣∣∣∣∣
ρ=ργ(r)

, (7)

where ēsr
xc,UEG(ρ, µ) is the complementary short-range

exchange-correlation energy density of the uniform-electron
gas (UEG) of density ρ, as parametrized in Ref. 43.

For more flexibility in the description of both valence and
core properties, we will also consider an extension of the
RSH scheme, referred to as the locally range-separated hybrid
(LRSH) scheme, in which the range-separation parameter µ in
Eqs. (6) and (7) is replaced by a function of position r 7→ µ(r)
(see Refs. 31–34). The long-range electron-electron interac-
tion in Eq. (6) now becomes33

wlr
ee(r, r′) =

1
2

[
erf(µ(r)|r − r′|)
|r − r′|

+
erf(µ(r′)|r − r′|)
|r − r′|

]
. (8)

Following Ref. 31, we choose µ(r) as

µ(r) =
µ̃

2
|∇ρ(r)|
ρ(r)

, (9)

where again µ̃ ∈ [0,+∞) is the adimensional range-separation
parameter and we take ρ(r) as the fixed HF ground-state den-
sity (contrary to Ref. 33, we do not attempt to self-consistently
update the density in Eq. (9) during the iterations of the RSH
calculation). For the hydrogen atom, ρ(r) ∝ e−2|r|/a0 , and
thus µ(r) = µ̃/a0, i.e. the LRSH scheme reduces to the RSH
scheme.

For µ̃ = 0, the long-range interaction wlr
ee vanishes and vsr

xc
becomes the usual full-range LDA exchange-correlation po-
tential, and thus the RSH and LRSH schemes reduce to stan-
dard Kohn-Sham (KS) LDA. For µ̃ → ∞, the long-range
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interaction wlr
ee becomes the usual Coulomb interaction and

vsr
xc vanishes, and thus the RSH and LRSH schemes reduce to

standard HF. Typically, in between these two limits, one ex-
pect to find an intermediate value of µ̃ leading to properties
more accurate than those given by either KS LDA or HF.

B. Linear-response Sternheimer equations in real space

We now formulate linear response of the RSH or LRSH
scheme using the Sternheimer approach. Even though the
Sternheimer approach is well known for TDDFT without non-
local HF exchange7,10,17,35–40, we did not find real-space ex-
pressions for the case including nonlocal HF exchange in the
literature.

We consider the following time-dependent perturbation po-
tential

vext(r, t) =
[
vext(r)e−iωt + vext(r)e+iωt

]
eηt, (10)

where vext(r) = r · E e is the electric-dipole interaction (E
is the amplitude of the electric field and e is its unit polar-
ization vector), ω ≥ 0 is the frequency, and eηt is an adia-
batic switching factor with a small parameter η > 0 so that
vext(r, t → −∞) = 0 (see Refs. 38 and 44 for a discus-
sion about the parameter η). The time-dependent occupied
RSH orbitals {ψi} satisfy the time-dependent Schrödinger-type
equation

i
∂

∂t
ψi(r, t) =

∫
R3

h[γ(t)](r, r′)ψi(r′, t)dr′ + vext(r, t)ψi(r, t),

(11)

where the RSH Hamiltonian is now evaluated at the time-
dependent density matrix γ(r, r′, t) = 2

∑N/2
i=1 ψi(r, t)ψ∗i (r′, t).

We expand the time-dependent RSH occupied orbitals to first
order in the electric field E as

ψi(r, t) =
(
ϕi(r) + E ψ(1)

i (r, t)
)

e−iεit + O(E2), (12)

where ϕi ≡ ψ(0)
i are the zeroth-order (time-independent) or-

bitals. Inserting Eq. (12) into Eq. (11), and keeping only first-

order terms, leads to the equation for ψ(1)
i(

i
∂

∂t
+ εi

)
ψ(1)

i (r, t) =

∫
R3

h[γ0](r, r′)ψ(1)
i (r′, t)dr′

+

∫
R3

v(1)
Hxc(r, r′, t)ϕi(r′)dr′ + v(1)

ext(r, t)ϕi(r), (13)

where we have introduced v(1)
ext(r, t) = vext(r, t)/E and the first-

order change in the Hartree-exchange-correlation potential

v(1)
Hxc(r1, r′1, t) =∫

R6
fHxc[γ0](r1, r′1; r2, r′2)γ(1)(r2, r′2, t)dr2dr′2, (14)

involving the first-order change in the density matrix

γ(1)(r, r′, t) = 2
N/2∑
i=1

[
ψ(1)

i (r, t)ϕ∗i (r′) + ϕi(r)ψ(1)∗
i (r′, t)

]
,(15)

and the Hartree-exchange-correlation kernel

fHxc[γ0](r1, r′1; r2, r′2) =
δvHxc[γ](r1, r′1)
δγ(r2, r′2)

∣∣∣∣∣∣
γ=γ0

. (16)

From Eq. (3), the latter quantity is found to be

fHxc[γ0](r1, r′1; r2, r′2) = δ(r1 − r′1)δ(r2 − r′2) fH(r1, r2)

+ f lr,HF
H (r1, r′1; r2, r′2) + δ(r1 − r′1)δ(r2 − r′2) f sr

xc[ργ0 ](r1, r2),
(17)

where fH(r1, r2) = wee(r1, r2) is the Hartree kernel,
f lr,HF
H (r1, r′1; r2, r′2) = −(1/2)δ(r1 − r2)δ(r′1 − r′2)wlr

ee(r1, r′1) is
the nonlocal HF exchange kernel, and f sr

xc[ργ0 ](r1, r2) is the
short-range exchange-correlation kernel, which for the LDA
[Eq. (7)] takes the local form

f sr
xc[ργ0 ](r1, r2) = δ(r1 − r2)

∂2ēsr
xc,UEG(ρ, µ)

∂ρ2

∣∣∣∣∣∣∣
ρ=ργ0 (r1)

. (18)

From the form of the perturbation in Eq. (10), we can write
ψ(1)

i as

ψ(1)
i (r, t) =

[
ψ(+)

i (r, ω)e−iωt + ψ(−)
i (r, ω)e+iωt

]
eηt, (19)

which, after insertion into Eq. (13), gives the TDRSH or
TDLRSH Sternheimer equations for ψ(+)

i and ψ(−)
i , written in

a common form,

(±ω + iη + εi)ψ
(±)
i (r1, ω) =

∫
R3

h[γ0](r1, r′1)ψ(±)
i (r′1, ω)dr′1

+

∫
R9

fHxc[γ0](r1, r′1; r2, r′2)γ(±)(r2, r′2, ω)ϕi(r′1)dr′1dr2dr′2 + v(1)
ext(r1)ϕi(r1), (20)

where we have introduced v(1)
ext(r) = r · e and

γ(±)(r, r′, ω) = 2
N/2∑
i=1

[
ψ(±)

i (r, ω)ϕ∗i (r′) + ϕi(r)ψ(∓)∗
i (r′, ω)

]
.

(21)

As long as η > 0, the solutions ψ(±)
i of Eq. (20) are properly

square-integrable for any fixed frequency ω. Note that if we
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had introduced ψ(−)∗
i (r, ω) in place of ψ(−)

i (r, ω) in Eq. (19),
like in Ref. 38, then we would have obtained an equation sim-
ilar to Eq. (20) but with imaginary shifts ±iη.

The photoexcitation/photoionization cross section can then
be calculated as38

σ(ω) = lim
η→0+

4πω
c

Im[α(ω + iη)], (22)

where c = 137.036 a.u. is the speed of light and α(ω) is the
spherically averaged dipole polarizability given by

α(ω + iη) = −
1
3

∑
a∈{x,y,z}

∫
R3

(r · ua) ρ(+)(r, ω)dr, (23)

where ua is the unit vector along the direction a and
ρ(+)(r, ω) = γ(+)(r, r, ω) is the Fourier component of the first-
order density at frequency ω + iη of the first-order change of
the density [Eq. (21)].

Note that, most often, in the derivation of the Sternheimer
equations7,36–38, ψ(±)

i are in fact defined so that they are or-
thogonal to ϕi, which lead to adding the projector operator
onto the space orthogonal to ϕi acting on the last two terms in
Eq. (20). While this is probably a good choice for numerical
calculations, it is not mandatory for the theoretical derivation,
as discussed in Ref. 38, and in any case it leads to the same
observable quantities such as the polarizability in Eq. (23).

C. Boundary conditions on a finite domain

It is instructive to consider the behavior of Eq. (20) far away
from the atom or molecule. In this case, since the potential and
kernel terms, as well as the occupied orbitals, all go to zero at
infinity, the equation reduces to

(εi ± ω + iη −
1
2
∇2)ψ(±)

i (r, ω) ≈ 0. (24)

In the limit η → 0+, this equation means that the TDRSH
or TDLRSH ionization energy from the occupied orbital i is
equal to −εi, which is also the bare RSH or LRSH ionization
energy from orbital i. When εi ± ω < 0 (below the ionization
threshold), the solutions decay exponentially fast at infinity.
When εi ± ω > 0 (above the ionization threshold), they are
oscillatory (behaving like free outgoing waves). As shown in
Appendix A for the case of atoms, this analysis can be refined
to take into account the presence of the effective long-range
Coulomb potential and find the exact asymptotic behavior of
ψ(±)

i .
Let us then consider the case where the numerical compu-

tation is truncated to a bounded spatial domain Ω ⊂ R3. Using
zero (Dirichlet) boundary conditions for ψ(±)

i on the boundary
∂Ω is clearly not appropriate when εi ± ω > 0, and indeed
will artificially discretize the electronic continuum, in turn
discretizing the photoionization spectrum. Instead, following
the general philosophy of the Dirichlet-to-Neumann approach
(see, e.g., Refs. 45 and 46), we can use frequency-dependent
boundary conditions that gives accurate results even for a rel-
atively small domain and η = 0. For this, we just need to find

analytically an approximation ψ̄(±)
i of ψ(±)

i which is valid out-
side of Ω, and then require the normal derivative of ψ(±)

i on
the interior of ∂Ω to match the normal derivative of ψ̄(±)

i on
the exterior of ∂Ω, which yields a nonlocal Robin boundary
condition of the form

∀r ∈ ∂Ω, n(r)·∇ψ(±)
i (r, ω) =

∫
∂Ω

Ki(r, r′;±ω)ψ(±)
i (r′, ω)dr′,

(25)

where n(r) is the outward normal vector to the surface ∂Ω

at point r. In the case of atoms, the Dirichlet-to-Neumann
kernel Ki(r, r′;±ω) reduces to a simple local radial form (see
Appendix A).

D. Linear-response Sternheimer equations in a basis set

Let us introduce now a finite (non-orthogonal) basis set
{χν}ν=1,...,M ⊂ H1(Ω,C) (where H1 is the first-order Sobolev
space) made of M basis functions (whose behavior on ∂Ω is
arbitrary) to expand the occupied orbitals

ϕ j(r) =

M∑
ν=1

c jνχν(r), (26)

and their first-order changes

ψ(±)
j (r, ω) =

M∑
ν=1

c(±)
jν (ω)χν(r), (27)

where c jν and c(±)
jν (ω) are (generally complex-valued) co-

efficients labeled with the composite index jν ≡ ( j, ν) ∈
~1,N/2� × ~1,M�. Integrating Eq. (20) against a basis func-
tion χ∗µ, and using the expansions of Eqs. (26) and (27), leads
directly to the basis-set Sternheimer equations in the follow-
ing block matrix form(

Λ(ω) B
B∗ Λ(−ω)∗

) (
c(+)(ω)
c(−)(ω)∗

)
= −

(
V
V∗

)
, (28)

which must be solved at each given frequency ω for c(+)(ω)
and c(−)(ω)∗ which are the column vectors of components
c(+)

jν (ω) and c(−)
jν (ω)∗, respectively. In Eq. (28), V is the col-

umn vector of components Viµ = e ·
∑M
ν=1 dµ,νciν where dµ,ν =∫

Ω
χ∗µ(r)rχν(r)dr are the dipole-moment integrals, and Λ(±ω)

and B are square matrices with elements

Λiµ, jν(±ω) = δi, j

(
hi,µ,ν(±ω) − (εi ± ω + iη)S µ,ν

)
+2

M∑
λ=1

M∑
σ=1

ciσc∗jλFµ,λ,σ,ν, (29)

and

Biµ, jν = 2
M∑
λ=1

M∑
σ=1

ciσc jλFµ,ν,σ,λ. (30)
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In Eq. (29), S µ,ν =
∫

Ω
χ∗µ(r)χν(r)dr are the overlap integrals

over the basis functions, and hi,µ,ν(±ω) are the matrix elements
of the RSH or LRSH Hamiltonian

hi,µ,ν(±ω) = ti,µ,ν(±ω) + vµ,ν (31)

+

M∑
λ=1

M∑
σ=1

Pσ,λ

(
wµ,λ,ν,σ −

1
2

wlr
µ,λ,σ,ν

)
+ vsr

µ,ν,

where ti,µ,ν(±ω) are the kinetic integrals includ-
ing the boundary condition [see Eq. (35) below],

vµ,ν =
∫

Ω
χ∗µ(r)vne(r)χν(r)dr are the nuclei-electron integrals,

Pσ,λ = 2
∑N/2

i=1 ciσc∗iλ are the elements of the density matrix,
wµ,λ,ν,σ =

∫
Ω2 χ

∗
µ(r1)χ∗λ(r2)wee(r1, r2)χν(r1)χσ(r2)dr1dr2

and wlr
µ,λ,σ,ν =

∫
Ω2 χ

∗
µ(r1)χ∗λ(r2)wlr

ee(r1, r2)χσ(r1)χν(r2)dr1dr2
are the Coulombic and long-range two-electron integrals,
respectively, and vsr

µ,ν =
∫

Ω
χ∗µ(r)vsr

xc(r)χν(r)dr are the
short-range exchange-correlation potential integrals. In
Eqs. (29) and (30), Fµ,λ,σ,ν are the matrix elements of the
Hartree-exchange-correlation kernel fHxc[γ0]

Fµ,λ,σ,ν =

∫
Ω4
χ∗µ(r1)χ∗λ(r2) fHxc[γ0](r1, r′1; r2, r′2) χσ(r′1)χν(r′2) dr1dr′1dr2dr′2

= wµ,λ,σ,ν −
1
2

wlr
µ,λ,ν,σ + f sr

µ,λ,σ,ν, (32)

where f sr
µ,λ,σ,ν =

∫
Ω2 χ

∗
µ(r1)χ∗λ(r2) f sr

xc[ργ0 ](r1, r2)χσ(r1)χν(r2)dr1dr2 are the short-range exchange-correlation kernel integrals.

To obtain the expression of the kinetic integrals, we start
from the kinetic contribution in Eq. (20), projected on the ba-
sis function χ∗µ, and perform an integration by parts

−
1
2

∫
Ω

χ∗µ(r)∇2ψ(±)
i (r, ω)dr =

1
2

∫
Ω

∇χ∗µ(r) ·∇ψ(±)
i (r, ω)dr

−
1
2

∫
∂Ω

χ∗µ(r) n(r)·∇ψ(±)
i (r, ω)dr.

(33)

Using the boundary condition in Eq. (25), the surface term can
then be expressed as

−
1
2

∫
∂Ω

χ∗µ(r) n(r)·∇ψ(±)
i (r, ω)dr =

−
1
2

∫
∂Ω2

χ∗µ(r)Ki(r, r′;±ω)ψ(±)
i (r′, ω)drdr′. (34)

After expanding ψ(±)
i in the basis set, we thus obtain the ex-

pression of the kinetic integrals

ti,µ,ν(±ω) =
1
2

∫
Ω

∇χ∗µ(r) · ∇χν(r)dr (35)

−
1
2

∫
∂Ω2

χ∗µ(r)Ki(r, r′;±ω)χν(r′)drdr′.

In the limit of a complete basis set, this correctly imposes
Eq. (25) on ψ(±)

i .
To see this, it is instructive to consider the simplified

problem of solving the one-dimensional differential equa-
tion −ψ′′(x) + V(x)ψ(x) = F(x) on the interval (−1, 1), for
some real-valued potential V and source term F, and bound-
ary conditions ψ′(±1) = K± ψ(±1). Solving this prob-
lem is equivalent to requiring that ψ satisfies the variational
equation

∫ 1
−1 χ

′(x)ψ′(x)dx − [χ(1)K+ψ(1) − χ(−1)K−ψ(−1)] +∫ 1
−1 χ(x)V(x)ψ(x)dx =

∫ 1
−1 χ(x)F(x)dx for all χ ∈ H1(−1, 1).

Choosing for χ a function that is zero on (−1, 1 − 1/n) and

ramps up linearly to 1 at x → 1, we obtain by passing to the
limit n → ∞ in the variational equation that ψ′(1) = K+ψ(1).
Similarly, we can choose the function χ so that ψ′(−1) =

K−ψ(−1).
The Sternheimer matrix equations in Eq. (28) have essen-

tially the same form as the well-known TDDFT Casida equa-
tions3,47 except that the latter are normally written in the or-
thogonal basis of the occupied and virtual orbitals whereas
the present Sternheimer matrix equations are written in an ar-
bitrary non-orthogonal basis set.

Finally, in the basis set, the dipole polarizability takes the
form

α(ω + iη) = −
1
3

∑
a∈{x,y,z}

M∑
µ=1

M∑
ν=1

(
P(+)
µ,ν(ω)dν,µ + P(−)

µ,ν(ω)∗d∗ν,µ
)
· ua,

(36)

where P(±)
µ,ν(ω) = 2

∑N/2
i=1 c(±)

iµ (ω)c∗iν.

E. B-spline basis set for atoms

We specialize now in the case of atoms with radial ground-
state densities. Spherical symmetry permits to write the occu-
pied orbitals as

ϕi(r) =
Ri(r)

r
Ymi
`i

(θ, φ), (37)

with radial functions Ri and spherical harmonics Ymi
`i

. For a
dipole interaction with a z-polarized electric field, i.e. v(1)

ext =

r · uz, the corresponding first-order orbital changes are of the
form

ψ(±)
i (r, ω) =

∑
`∈Li

R(±)
i,` (r, ω)

r
Ymi
`

(θ, φ), (38)

with Li = {`i − 1, `i + 1} for `i ≥ 1 and Li = {`i + 1} for `i = 0.
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We expand the radial functions in a basis set of Ms B-spline
functions48,49 {Bν}ν=1,...,Ms of order ks

Ri(r) =

Ms∑
ν=1

ciνBν(r), (39)

R(±)
i,` (r, ω) =

Ms∑
ν=1

c(±)
iν,`(ω)Bν(r). (40)

To completely define a basis of B-spline functions, a non-
decreasing sequence of Ms + ks knot points {rp}p=1,...,Ms+ks

(some knot points are possibly coincident) must be given. The
B-spline function Bν(r) is non zero only on the supporting in-
terval [rν, rν+ks ] (containing ks + 1 consecutive knot points)
and is a piecewise function composed of polynomials of de-
gree ks − 1 (one polynomial in between two consecutive non-
coincident knot points) with continuous first ks−m−1 deriva-
tives across each knot of multiplicity m. We have followed
the standard choice of taking the first and the last knots to be
ks-fold degenerate, i.e. r1 = r2 = · · · = rks = rmin = 0 and
rMs+1 = rMs+2 = · · · = rMs+ks = rmax, while the multiplicity of
the other knots is unity. We thus need ks ≥ 3 in order to have
basis functions with at least C1 regularity. The spatial grid
spacing was chosen to be constant in the whole radial space
between two consecutive non-coincident points and is given
by ∆r = rmax/(Ms − ks + 1).

At r = 0, the appropriate boundary conditions are Ri(r =

0) = 0 and R(±)
i,` (r = 0, ω) = 0, which can be easily imposed

by removing the first B-spline function which is the only one
non vanishing at r = 0. At r = rmax, for the occupied or-
bitals, which decay exponentially fast at infinity, we can also
use zero boundary conditions, i.e. Ri(r = rmax) = 0, which can
be imposed by just removing the last B-spline function in the
ground-state calculation. For the first-order orbital changes
R(±)

i,` , as shown in Appendix A, the radial symmetry simplifies
the nonlocal boundary condition in Eq. (25) to the local Robin
boundary condition

dR(±)
i,` (r, ω)

dr

∣∣∣∣∣∣∣
r=rmax

= bi,`(±ω)R(±)
i,` (rmax),

and the kinetic integrals [Eq. (35)] for R(±)
i,` become

ti,`,µ,ν(±ω) =
1
2

∫ rmax

0

dBµ(r)
dr

dBν(r)
dr

dr

+
1
2

∫ rmax

0
Bµ(r)

`(` + 1)
r2 Bν(r)dr

−δµ,Msδν,Ms

bi,`(±ω)
2

BMs (rmax)2, (41)

where we have used the fact that only the last B-spline ba-
sis function is non zero at rmax. The complex-valued function
bi,` is given in Eqs. (A11), (A12), and (A13). In this way, the
boundary condition is imposed without modification of the ba-
sis set. This method is somewhat simpler than the procedure
to impose boundary conditions described in Refs. 7 and 35,
but conceptually similar to the procedure described in Refs. 12
and 17 for grid-based TDDFT and in Refs. 50–53 in the con-
text of the R-matrix method.

F. Further computational details

We apply the present theory to the Be atom (N = 4) in
the ground-state configuration 1s22s2. We use Ms = 50 B-
spline basis functions of order ks = 8 and a maximal radius
of rmax = 25 bohr. The occupied orbitals are of symmetry s
(`i = 0, mi = 0) and the perturbed orbitals are of symmetry pz
(` = 1).

Radial integrals over B-spline functions are calculated us-
ing a Gauss-Legendre quadrature49. We use the integration-
cell algorithm54 to calculate the Coulomb two-electron in-
tegrals, and an extension of it29 for the long-range two-
electron integrals. For the case of LRSH, having a position-
dependent range-separation parameter in the long-range two-
electron integrals does not introduce any complications since
the integration-cell algorithm uses a Gaussian quadrature.
Thanks to the locality of the B-spline basis functions, the
construction of the matrices Λ(ω) and B in Eq. (28) scales
as O(N2M2

s ), instead of the straightforward scaling O(N2M4)
that would be obtained for an arbitrary basis set. The Stern-
heimer equations are usually solved iteratively7,36,38. How-
ever, we found that the simple iterative scheme of Ref. 7 start-
ing from the bare response, i.e. fHxc[γ0] = 0, works well for
TDLDA but often does not converge for TDHF because the
bare HF response is too bad an approximation to the TDHF
response. Although this could be cured with more sophis-
ticated iterative methods, on this simple system we found it
expedient to simply solve Eq. (28) using a standard dense LU-
decomposition linear solver.

Having a non-zero imaginary-shift parameter η is neces-
sary to obtain a non-zero absorption cross section for bound
states38. However, it is not necessary for the continuum part
of the spectrum. Indeed, the imaginary part of the dipole po-
larizability involved in the photoionization cross section in
Eq. (22) is not zero in any case due to the complex-valued
function b introduced when imposing the boundary condition
in Eq. (41). Moreover, since we are interested in obtaining
the precise lineshape of the core resonances, we use η = 0 to
avoid artificially broadening these resonances.

As shown in Appendix A, the use of the accurate boundary
conditions in Eq. (41) is essential to obtain photoionization
cross section without spurious oscillations even with the rel-
atively small rmax that we use. Moreover, in Appendix B we
show that the present Sternheimer approach with appropriate
boundary conditions is far superior than the straightforward
Casida method with zero boundary condition of Ref. 29.

III. RESULTS AND DISCUSSION

We now show and discuss the results on the Be atom.

A. Orbital energies

Figure 1 shows the RSH and LRSH 1s and 2s orbital en-
ergies as a function of the adimensional range-separation pa-
rameter µ̃. Also indicated are the opposite of the experimental
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FIG. 1. RSH and LRSH 1s and 2s orbital energies of the Be atom
as a function of the adimensional range-separation parameter µ̃. As
references, the opposite of the experimental IP (9.323 eV) and of the
1s ionization edge (123.64 eV)55 are indicated, as well as the KS
EXX 1s and 2s orbital energies (112.24 eV and 8.422 eV)56 and the
exact KS 1s orbital energy (122.29 eV)57.

ionization potential (IP) (9.323 eV) and of the 1s ionization
edge (123.64 eV)55, as well as the KS exact exchange (EXX)
1s and 2s orbital energies (112.24 eV and 8.422 eV)56 and the
exact KS 1s orbital energy (122.29 eV)57.

For µ̃ = 0, both RSH and LRSH reduce to the standard
KS scheme. If we were to use the exact exchange-correlation
potential, assuming that it exists (it can be rigorously de-
fined within the Moreau-Yosida regularization of KS density-
functional theory58), the exact KS 2s orbital energy would be
exactly the opposite of the experimental IP. The exact KS 1s
orbital energy is not equal to the opposite of the experimental
1s ionization edge but can be considered as an approximation
to it57. Here, due to the use of the LDA for the exchange-
correlation potential, the 1s and 2s orbital energies at µ̃ = 0
are too high by 17.4 and 3.7 eV, respectively. Too high or-
bital energies are often attributed to the self-interaction error
of the LDA. We see, however, that even KS EXX (which is
without self-interaction error) gives 1s and 2s orbital energies
that are too high by 10.1 and 0.9 eV, respectively, with respect
to exact KS. The latter errors are of course due to the missing
KS correlation potential. For µ̃ → ∞, both RSH and LRSH
reduce to standard HF. In comparison with the experimental
values, the HF 2s orbital energy is too high by 0.9 eV and the
HF 1s orbital energy is too low by 5.2 eV. In the context of
Green-function theory, the latter errors are due to the miss-
ing correlation self-energy contribution. Interestingly, we see
that KS EXX and HF give nearly identical 2s orbital energies.
Recalling the fact that KS EXX and HF are identical for two
electrons in a single orbital, this likely means that the two va-
lence electrons can be considered as nearly independent from
the core electrons for calculating the 2s orbital energy. By
contrast, the KS EXX and HF give quite different 1s orbital
energies, differing by as much as 16.5 eV. This must mean
that the valence electrons cannot be neglected in the mean-

field potential for calculating the 1s orbital energy.
For µ̃ , 0, even if we were to use the exact short-range

exchange-correlation potential, assuming that we can rigor-
ously define such a quantity, the RSH and LRSH 2s orbital en-
ergies would not be exactly equal to the opposite of the exper-
imental IP, since long-range correlation effects are missing in
the RSH and LRSH schemes. Also, the RSH and LRSH 1s or-
bital energies with the exact short-range exchange-correlation
potential should not be expected to be exactly equal to the op-
posite of the experimental 1s ionization edge. However, with
the present approximate RSH or LRSH potentials and kernels,
we know that the RSH or LRSH ionization energy from each
occupied orbital i is the opposite of the orbital energy, −εi, and
is identical to the TDRSH or TDLRSH ionization energy from
this orbital i [see Eq. (24)]. In order to obtain correct ioniza-
tion energies in TDRSH or TDLRSH we can thus choose the
adimensional range-separation parameter µ̃ so that the oppo-
site of the RSH or LRSH occupied orbital energies are as close
as possible to the experimental ionization energies. This is the
idea behind the so-called optimally tuned range-separated hy-
brids24,59,60. Since for µ̃ & 0.4 the RSH and LRSH 2s orbital
energies are not very sensitive to the value of µ̃ and since we
are mostly interested in this work in the photoionization spec-
trum near the 1s ionization edge, we decide to adjust the value
of µ̃ so that the RSH and LRSH 1s orbital energies are equal
to opposite of the experimental 1s ionization edge. This gives
µ̃RSH = 1.608 for RSH and µ̃LRSH = 0.478 for LRSH.

Since the range-separation parameter µ represents an in-
verse electron-electron distance [see Eq. (6)], for general
atoms we expect the parameter µ̃RSH optimized for the 1s RSH
orbital energy to be approximately proportional to the nuclear
charge Z, i.e. µ̃RSH ≈ O(Z). In contrast, since for a 1s orbital
we have |∇ρ|/ρ ≈ O(Z), we expect the LRSH optimal param-
eter µ̃LRSH to be roughly independent from Z [see Eq. (9)].

In Section III B, we show the TDRSH and TDLRSH pho-
toionization spectra using the optimal adimensional range-
separation parameters µ̃ as determined above. Note that al-
though we fit the single parameter µ̃ to adjust the position of
the 1s ionization edge, we make predictions for the whole pho-
toionization spectrum.

B. Photoionization spectrum

Figure 2 reports the photoionization cross section cal-
culated by TDLDA, TDHF, TDRSH, and TDLRSH (using
the optimal adimensional range-separation parameters deter-
mined in Section III A). We will just comment on the main
features of these spectra, without trying to compare with ex-
perimental spectra61–65. Indeed, the experimental spectra dis-
play many more peaks and structures due to double and higher
excitations, which are not taken into account in the level of
theory that we use.

The TDLDA photoionization spectrum starts at a too low
ionization threshold (the same value as the opposite of the
LDA 2s orbital energy) and the cross section is zero at the
threshold, just like for the He atom29. There is a large peak
just above the TDLDA threshold, roughly in the energy range
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FIG. 2. Photoionization cross section of the Be atom calculated by (a) TDLDA and TDHF, and by (b) TDRSH and TDLRSH (using the optimal
adimensional range-separation parameters determined in Section III A, i.e. µ̃RSH = 1.608 for TDRSH and µ̃LRSH = 0.478 for TDLRSH). The
vertical dashed lines correspond to the experimental IP (9.323 eV) and the 1s ionization edge (123.64 eV)55.
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FIG. 3. Core resonance 1s → 2p of the Be atom calculated by (a) TDLDA, (b) TDHF, (c) TDRSH, and (d) TDLRSH (using the optimal
adimensional range-separation parameters determined in Section III A, i.e. µ̃RSH = 1.608 for TDRSH and µ̃LRSH = 0.478 for TDLRSH). The
dashed lines are fits using Eq. (42) with the parameters given in Table I.

that should correspond to the 2s→3p transition, followed by
a minimum where the cross section vanishes, which is remi-
niscent of the well-known Cooper minimum66,67 (the present
minimum may originate from the fact that the 2s orbital has a
radial node, see e.g. Ref. 68). We have verified that this mini-
mum is not present in the bare LDA photoionization spectrum
and appears when the Hartree kernel is taken into account.
The TDLDA 1s ionization edge occurs at a much too low en-
ergy, in fact exactly the same value as the opposite of LDA
1s orbital which means that the Hartree-exchange-correlation
kernel does not affect this value. The TDLDA photoionization
spectrum contains only the first 1s→2p core resonance, the
other core single-excited resonances (1s→3p, 1s→4p, etc...)
having dissolved into the continuum beyond the 1s ionization
edge, due to the exponentially decaying exchange-correlation
LDA potential.

The TDHF photoionization spectrum starts at a slightly too
low ionization threshold (again the same value as the opposite
of the HF orbital 2s energy) and the cross section is very small
but not zero (about 0.07 Mb) at the threshold (not shown). The
TDHF 1s ionization edge occurs at a too high energy, again
the same value as the opposite of HF 1s orbital which means

that the HF kernel does not affect this value. In contrast to
TDLDA, the TDHF photoionization spectrum not only con-
tains the 1s→2p core resonance but also a series of single-
excited core resonances to Rydberg states (1s→3p, 1s→4p,
etc...) converging toward the 1s ionization edge. We note
that our TDHF photoionization spectrum is in good agree-
ment with previous non-relativistic and relativistic TDHF cal-
culations69–71 (note that linear-response TDHF is also called
random-phase approximation with exchange).

The TDRSH and TDLRSH photoionization spectra (using
the optimal adimensional range-separation parameters deter-
mined in Section III A) display roughly the same features.
They both start at a slightly too low ionization threshold. In
both cases, the 1s ionization edge is positioned at the exact
value, as expected since it corresponds to the opposite of the
1s orbital energy which has been adjusted at the exact value
by tuning the adimensional range-separation parameter. Sim-
ilar to TDHF, both the TDRSH and TDLRSH photoioniza-
tion spectra display a series of core resonances, the TDLRSH
resonances being systematically at higher energies than the
TDRSH resonances. In comparison to TDRSH, TDLRSH
gives smaller cross sections in the 2s continuum region (near
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TABLE I. Resonance energy ER, resonance width Γ, Fano asymmetric parameter q, total background cross section σ0, background ratio
parameter ρ2, background linear drift a, and maximum value of the cross section at the resonance energy σ(ER) for the 1s→2p and 1s→3p
core resonances of the Be atom calculated by TDLDA, TDHF, TDRSH, and TDLRSH (using the optimal adimensional range-separation
parameters determined in Section III A, i.e. µ̃RSH = 1.608 for TDRSH and µ̃LRSH = 0.478 for TDLRSH). In some cases, the background linear
drift a was fixed to exactly zero in order to obtain convergence. As references, we also report experimental values72 and accurate results from
R-matrix73,74, SPCR75, and CMRCI76 calculations.

ER (eV) Γ (meV) q σ0 (Mb) ρ2 a σ(ER) (Mb)
resonance 1s→2p [configuration 1s2s22p 1P]
TDLDA 103.0 2.347 228.3 0.081 0.998 -7.73 ·10−5 4.22 ·103

TDHF 118.3 0.211 -1239.4 0.081 0.995 0 1.22 ·105

TDRSH 113.3 0.171 2059.1 0.111 0.941 0 5.23 ·104

TDLRSH 114.8 0.079 -1797.2 0.087 1.000 -7.33 ·10−7 2.78 ·105

R-matrixa 115.7
R-matrixb 115.6 44
SPCRc 115.5 37
CMRCId 115.5 48
Experimente 115.5

resonance 1s→3p [configuration 1s2s23p 1P]
TDHF 126.4 0.022 -1279.4 0.069 1.000 5.77 ·10−7 1.14 ·105

TDRSH 121.3 0.052 802.7 0.071 1.000 -1.35 ·10−6 4.60 ·104

TDLRSH 121.4 0.011 -1791.6 0.076 1.000 -2.15 ·10−8 2.43 ·105

R-matrixa 121.5
SPCRc 121.4 50
Experimente 121.4
aFrom Ref. 73.
bFrom Ref. 74.
cFrom Ref. 75.
dFrom Ref. 76.
eFrom Ref. 72.
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FIG. 4. Resonance energy ER, width Γ, and Fano asymmetric parameter q for the 1s→2p core resonance of the Be atom calculated by TDRSH
and TDLRSH as a function of the adimensional range-separation parameter µ̃.

20 eV) and larger cross sections in the 1s continuum region
(above the 1s ionization edge).

C. Core resonances

The core resonances (1s→2p, 1s→3p, etc...) are sharp
Feshbach resonances, which can be understood as bound
states embedded in a continuum turned into quasi-bound
states with finite lifetimes due to electron-electron interac-
tions. Figure 3 shows the first 1s→2p resonance obtained
with TDLDA, TDHF, TDRSH, and TDLRSH. In all cases, the
cross section follows a characteristic asymmetric Fano line-

shape which can be fitted to the analytical expression7,77

σ = σ0(1 + aε)
[
ρ2 (q + ε)2

1 + ε2 − ρ
2 + 1

]
, (42)

where

ε =
ω − ER

Γ/2
. (43)

Here, ER is the resonance energy, Γ is the resonance width (or
inverse lifetime), q is the asymmetry Fano parameter, σ0 is the
total background cross section, a is a coefficient for the total
background linear drift, and ρ2 is the ratio between the back-
ground cross section for transitions to continuum states that
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interact with the discrete resonant state and the total back-
ground cross section. The fitted parameters for the 1s→2p
and 1s→3p resonances are given in Table I. For the fitting
procedure, the cross section at the resonance energy σ(ER)
was included in the data as the asymmetry parameter q is very
sensitive to the value of the cross section at the peak. Further-
more, we have verified that, for each resonance, the complex
energy ωR = ER − iΓ/2 is a solution of the non-Hermitian
linear-response equation [Eq. (28)] without external perturba-
tion (

Λ(ωR) B
B∗ Λ(−ωR)∗

) (
c(+)

R
c(−)∗

R

)
=

(
0
0

)
, (44)

with the ωR-dependent kinetic integrals in Eq. (41) which im-
pose the boundary condition in Eq. (A9). For complex ωR
with Im[ωR] < 0, this is indeed a Siegert-type boundary con-
dition selecting resonant states that exponentially diverge at
infinite distance (see, e.g., Refs. 78 and 79).

As references, we have included in Table I, the experimen-
tal resonance energies72, as well as accurate results obtained
with the R-matrix method73,74, the saddle-point complex-
rotation (SPCR) method75, and the complex-scaled multiref-
erence configuration-interaction (CMRCI) method76. These
three theoretical methods are all essentially configuration-
interaction-type approaches including many electronic con-
figurations and where the description of continuum states is
done by using proper boundary conditions in the R-matrix
method, or bypassed using complex scaling in the SPCR and
CMRCI methods. In addition, we note that reference 1s→2p
and 1s→3p resonance cross-section profiles obtained with the
SPCR method can be found in Fig. 2 of Ref. 75.

The TDLDA 1s→2p resonance occurs at a much too low
energy (by 12.5 eV), stemming from the fact that the LDA
1s orbital energy is at a too high energy, as discussed in
Sec. III A. The TDHF 1s→2p and 1s→3p resonances occur
at too high energies (by 2.8 eV and 5.0 eV), which is con-
sistent with the fact that the HF 1s orbital energy is at a too
low energy. The positions of the TDHF resonances (118.3
and 126.4 eV) turn out to be in almost perfect agreement with
the values obtained by TDHF calculations using a fairly small
Slater basis set80, showing that the determination of only the
positions of these resonances does not in fact require a large
basis set capable of describing continuum states. For compar-
ison, we point out that linear-response time-dependent exact
exchange (TDEXX) gives much too low 1s→2p and 1s→3p
resonance positions, estimated at about 109 and 111 eV, re-
spectively81 (see also Ref. 11 for EXX results). Both TDRSH
and TDLRSH give more accurate 1s→2p and 1s→3p reso-
nance positions than TDLDA and TDHF, slightly underesti-
mated by 2.2 eV and 0.1 eV for TDRSH and by 0.7 eV and
0.03 eV for TDLRSH.

The resonance widths Γ and Fano asymmetric parameters q,
which determined the shape of the resonances, are very sensi-
tive to the method employed. All the present TDDFT/TDHF-
type methods give much too small resonance widths Γ, by
about one to three orders of magnitude. This must be due
to the neglect of double electronic excitations. Indeed, it is
known72,75 that the 1s→np resonance (for n = 2, 3) in the

Be atom predominantly decays through the Auger process
1s2s2np 1P→ 1s2np + e, the last configuration corresponding
to a double excitation with respect to the ground-state config-
uration 1s22s2. Thus, we cannot expect the present methods
to give physical resonance widths for the Be atom. Among
the present methods, TDLDA gives a 1s→2p resonance with
the largest width Γ and a positive Fano parameter q. We
note that a similar resonance shape is also obtained when
employing more accurate asymptotically corrected exchange-
correlation potentials8,11 or the EXX potential and its adia-
batic kernel11,81. TDHF gives a sharper 1s→2p resonance
with a width Γ an order of magnitude smaller and a large
negative Fano parameter q. The TDHF 1s→3p resonance
is even sharper. We note that the shape of the TDHF reso-
nances that we obtain are in agreement with previous rela-
tivistic TDHF calculations71. TDRSH gives quite sharp reso-
nances with large positive Fano parameters q. TDLRSH gives
even sharper resonances with large negative Fano parameters
q.

Finally, Figure 4 shows how the resonance energy ER,
width Γ, and Fano asymmetry parameter q of the 1s→2p res-
onance calculated by TDRSH and TDLRSH vary with the
adimensional range-separation parameter µ̃, going from the
TDLDA limit (µ̃ = 0) to the TDHF limit (µ̃ → ∞). For both
TDRSH and TDLRSH the resonance energy increases with µ̃,
until it saturates at the TDHF value. For both TDRSH and
TDLRSH, the resonance width does not vary monotonically
with µ̃. In particular, there is a value of µ̃ (around µ̃ ≈ 2.5
and 0.2 for TDRSH and TDLRSH, respectively) for which
the resonance width vanishes. Within the Fano model anal-
ysis82, it means that the coupling between the discrete state
corresponding to the resonance and the continuum states van-
ishes. In this case, the resonance state becomes a truly bound
state (with infinite lifetime) embedded in the continuum. At
the same critical value of µ̃, the Fano parameter q jumps from
a large positive value to a large negative value. Again, within
the Fano model analysis, this may be interpreted as a change
of sign of the coupling between the discrete state and the con-
tinuum states.

IV. CONCLUSION

In this work, we have continued the systematic exploration
of linear-response range-separated TDDFT for the calcula-
tion of photoionization spectra. We have considered two vari-
ants of range-separated TDDFT, namely TDRSH which uses
a global range-separation parameter and TDLRSH which uses
a local range-separation parameter, and compared with stan-
dard TDLDA and TDHF. We have shown how to calculate
photoionization spectra with these methods using the Stern-
heimer approach formulated in a non-orthogonal B-spline ba-
sis set and using appropriate boundary conditions. We have
illustrated these methods on the photoionization spectrum of
the Be atom, focusing in particular on the core resonances.

When the adimensional range-separation parameter is ad-
justed on the 1s ionization edge, both the TDRSH and
TDLRSH photoionization spectra constitute a large im-
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provement over the TDLDA photoionization spectrum and
a more modest improvement over the TDHF photoioniza-
tion spectrum. In particular, TDRSH and TDLRSH im-
prove the accuracy of core resonance energies, with a slightly
greater accuracy in favor of TDLRSH. Neither TDRSH
nor TDLRSH compete in terms of accuracy with sophisti-
cated configuration-interaction-type approaches such as the
R-matrix, SPCR, or CMRCI methods, in particular for cal-
culating resonance widths. However, TDRSH and TDLRSH
have the advantage of being much simpler methods that can
potentially be applied to large molecular systems.

In future works, the TDRSH and TDLRSH methods, as
well as possibly other range-separated TDDFT variants, could
be improved by adding the effect of the double excitations
through a frequency-dependent long-range correlation ker-
nel83. Also, the Sternheimer formulation of these methods
should be extended to open-shell atomic systems, and, in a
second step, to arbitrary molecular systems. This last goal
requires to implement general nonlocal Robin boundary con-
ditions. Finally, in order to calculate nonlinear optical proper-
ties, a time-propagation version of the present approach could
be designed by generalizing the boundary conditions to the
time domain.
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Appendix A: Boundary conditions for atoms

In this Appendix, we explain how we impose appropriate
boundary conditions at r = rmax for atoms.

We first need to study the large-r asymptotic behaviors of
the radial solutions R(±)

i,` [Eq. (38)] of the Sternheimer equa-
tions. For sufficiently large r, R(±)

i,` behaves as

R(±)
i,` (r, ω) ∼

r→∞
R̄(±)

i,` (r, ω), (A1)

where R̄(±)
i,` are radial asymptotic solutions of the Sternheimer

equations [Eq. (20)] which satisfy hydrogen-like Schrödinger

equations(
−

1
2

d2

dr2 +
`(` + 1)

2r2 −
Zeff

r

)
R̄(±)

i,` (r, ω)

= (εi ± ω + iη)R̄(±)
i,` (r, ω), (A2)

with effective charge Zeff = Z − N + ζ. In the expression of
Zeff, the nucleus charge Z and the electron number N come of
course from the nucleus-electron potential vne and the Hartree
potential vH, respectively, in the RSH Hamiltonian h[γ0]. The
contribution ζ comes from the long-range HF exchange ker-
nel f lr,HF

x and we have ζ = 1 for a non-zero range-separation
parameter, i.e. µ̃ , 0 for the RSH/LRSH scheme. In the LDA
limit (µ̃ = 0), we have ζ = 0. The general solution of Eq. (A2)
may be written as, for ω ≥ 0,

R̄(±)
i,` (r, ω) = c1 fi,`(r,±ω) + c2gi,`(r,±ω), (A3)

where c1 and c2 are two arbitrary complex-valued coefficients,
and the functions fi,` and gi,` are defined as, for a general fre-
quency variable z ∈ C,

fi,`(r, z) = F`(−Zeff/ki(z), ki(z)r), (A4)

gi,`(r, z) = G`(−Zeff/ki(z), ki(z)r), (A5)

where F` and G` are the regular and irregular Coulomb func-
tions84, and ki(z) =

√
2(εi + z + iη) is the complex-valued mo-

mentum. The asymptotic behavior of the Coulomb functions
are

fi,`(r, z) ∼
r→∞

sin θi,`(r, z), (A6)

gi,`(r, z) ∼
r→∞

cos θi,`(r, z), (A7)

with

θi,`(r, z) = ki(z)r +
Zeff

ki(z)
ln(2ki(z)r) −

1
2
`π + σi,`(z), (A8)

and σi,`(z) = arg Γ(`+ 1− iZeff/ki(z)). As r → ∞, θi,`(r,±ω) ∼
ki(±ω)r and due to the fact that Im[ki(±ω)] > 0 (for η > 0),
we see that the general solution R̄(±)

i,` in Eq. (A3) R̄(±)
i,` does not

diverge as r → ∞ only for the coefficient ratio c1/c2 = i, so
we have

R̄(±)
i,` (r, ω) = c2

[
i fi,`(r,±ω) + gi,`(r,±ω)

]
, (A9)

and then R̄(±)
i,` (r, ω) ∼

r→∞
c2 exp(i θi,`(r,±ω)).

We can thus impose a Robin boundary condition for the
radial part R(±)

i,` of the solutions of the Sternheimer equations
[Eq. (20)] at r = rmax of the form

d ln R(±)
i,` (r, ω)

dr

∣∣∣∣∣∣∣
r=rmax

= bi,`(±ω), (A10)

with bi,`(±ω) = d ln R̄(±)
i,` (r, ω)/dr|r=rmax . Even though this ex-

pression of bi,`(±ω) works for both R(+)
i,` and R(−)

i,` and for any
ω, it is insightful to further look at the physical content of
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FIG. 5. TDHF photoionization cross section of the Be atom calcu-
lated with different boundary conditions: plane wave [Eq. (A15)],
approximate Coulomb wave [Eq. (A14)], and exact Coulomb wave
[Eq. (A9)].

the asymptotic behavior of R(+)
i,` and R(−)

i,` , separately, in the
limit η → 0+. As regards R(+)

i,` , for ω ≥ −εi, we have
ki(ω) = Re[ki(ω)] =

√
2(εi + ω), and the asymptotic solution

R̄(+)
i,` is an outgoing spherical wave. In this case, the explicit

expression of bi,`(ω) that we use is

bi,`(ω) =
i d fi,`(r, ω)/dr + dgi,`(r, ω)/dr

i fi,`(r, ω) + gi,`(r, ω)

∣∣∣∣∣∣
r=rmax

,

if ω ≥ −εi. (A11)

For ω < −εi, we have ki(ω) = i Im[ki(ω)] = i
√
−2(εi + ω),

and the asymptotic solution R̄(+)
i,` decays exponentially. Instead

of using Eq. (A11), we can more simply use

bi,`(ω) = 0, if ω < −εi, (A12)

which corresponds to imposing Neumann boundary condition
at r = rmax. Similarly, for R(−)

i,` , since we always have εi −ω <
0 (because εi < 0 for occupied orbitals), we have ki(−ω) =

i Im[ki(−ω)] = i
√
−2(εi − ω), thus the asymptotic solution

R̄(−)
i,` decays exponentially, and we can use again

bi,`(−ω) = 0. (A13)

For a neutral system such as like the Be atom, we have
Zeff = 1 for the TDHF method and using the exact Coulomb-
wave (ECW) boundary condition in Eq. (A9) for ω ≥ −εi
proves crucial to obtain converged results with a modest max-
imal radius rmax. To show this, we compare in Figure 5 two
alternative types of boundary conditions for the same maxi-
mal radius of rmax = 25 bohr. First, we can keep the correct
long-range behavior but make the asymptotic approximation
in Eqs. (A6)-(A8), valid for ki(ω)r � 1, resulting in the ap-
proximate Coulomb-wave (ACW) boundary condition

R̄(+)
i,ACW(r, ω) = c2 exp

[
i
(
ki(ω)r +

Zeff

ki(ω)
ln (2ki(ω)r)

)]
.

(A14)

At the scale of the plot, the part of the spectrum corresponding
to the 2s ionization is barely affected, but this creates oscilla-
tions beyond the 1s ionization edge. A more drastic approxi-
mation is to further ignore the Coulomb potential, i.e. setting
Zeff = 0. In this case, we get the plane-wave (PW) boundary
condition

R̄(+)
i,PW(r, ω) = c2 exp (iki(ω)r) . (A15)

This creates strong and rapid oscillations near both ionization
thresholds. However, far from the ionization thresholds, the
effect is less pronounced. In particular, the 1s→2p resonance
is still well reproduced. This is because this resonance results
from the interaction of a bound state with continuum states
at a relatively large energy, which behave almost like plane
waves. This can be understood from Eq. (A8), which implies
that the plane-wave approximation is reasonable when

ki(ω)2rmax � Zeff ln(2ki(ω)rmax), (A16)

i.e. when the wavelength of the outgoing wave is small com-
pared to

√
rmax/Zeff. In both cases, these oscillations can be re-

duced by either increasing the computational box size rmax or
by using a non-zero broadening factor η. The former increases
the computational effort while the latter may lead to a loss
of features in the spectrum. The use of the exact Coulomb-
wave boundary condition removes these oscillations without
the need of increasing rmax or using a non-zero η.

In the case of TDLDA, we use the boundary condition
in Eq. (A9) with Zeff = 0, giving a free spherical outgoing
wave (the Coulomb functions reduce to the Riccati-Bessel
functions). This is a better boundary condition than using
the plane-wave approximation in Eq. (A15), the latter giving
slight oscillations for TDLDA.

Finally, we use the boundary condition in Eq. (A9) with
Zeff = erf(µrmax) for TDRSH and with Zeff = erf(µ(rmax)rmax)
for TDLRSH, which goes smoothly from Zeff = 0 for µ �
1/rmax or µ(rmax) � 1/rmax to Zeff = 1 for µ � 1/rmax or
µ(rmax) � 1/rmax.

Appendix B: Comparison with the Casida approach with
zero boundary condition

In this Appendix, we compare the present Sternheimer
method with appropriate boundary condition with the straight-
forward Casida method using zero boundary condition used in
Ref. 29.

In the Casida method of Ref. 29, one diagonalizes the
linear-response equations in the orthogonal occupied/virtual
orbital basis using a zero boundary condition at r = rmax. One
obtains a discrete set of excitation energies ωn and oscillator
strengths fn. The photoionization spectrum is then approxi-
mated as a set of cross sections at frequencies ωn ≥ IP

σn =
2π2

c
f̃n, (B1)

where the renormalized oscillator strengths f̃n = ρDOS(ωn) fn
takes into account the density of states (DOS) ρDOS(ωn) at the
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FIG. 6. TDHF photoionization cross section of the (a) He atom and (b) Be atom calculated with the present Sternheimer method with the exact
Coulomb-wave (ECW) boundary condition and calculated with the Casida method with zero boundary condition (ZBC) of Ref. 29.

excitation energy ωn, which is estimated by finite differences
as ρDOS(ωn) = 2/(ωn+1 − ωn−1).

Figure 6 reports the TDHF photoionization cross section for
the He and Be atoms calculated with the present Sternheimer
method with the exact Coulomb-wave boundary condition and
calculated with the Casida method with zero boundary condi-
tion. In all cases, we use the same computational parameters:
Ms = 50 B-spline basis functions and a maximal radius of
rmax = 25 bohr. For the He atom, we see that the Casida
method works correctly. However, for the Be atom, for the
current computational parameters, the Casida method is only
able to give the low-energy part of the spectrum correspond-
ing to the 2s ionization, and is completely unable to reproduce
the core resonances and the spectrum beyond the 1s ionization
edge.

This is easily understood from the structure of the excitation
spectrum in both cases. In the He atom, there is only one oc-
cupied orbital (1s). The finite computational domain yields a
regular sampling of the continuum states in momentum space
and therefore in energy space. The excitations energies ωn are
regularly spaced, and so the renormalization scheme above is
able to yield a smooth curve. In the Be atom, however, be-
yond the 1s ionization threshold, the cross-section contains
contributions from two channels (1s and 2s); as a result the
excitation energies ωn are irregularly spaced (being the su-
perposition of two regularly spaced set of energies), and the
two distinct densities of states cannot be approximated by fi-
nite differences. The renormalization scheme is also unable
to account for resonances, which originate from a hybridiza-
tion of bound and continuum states. This clearly demonstrates
the superior efficacy of the present Sternheimer method with
appropriate boundary condition, which reproduces all these
features.
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J. Chem. Phys. 138, 194106 (2013).
31A. V. Krukau, G. E. Scuseria, J. P. Perdew and A. Savin, J. Chem. Phys.

129, 124103 (2008).
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