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The minimization of Frobenius angles between functional subspaces spanned by different sets of
atomic functions is employed to determine the values of orbital exponents ξ characterizing minimum
atomic parameters/Moscow-Aachen-Paris (MAP) basis sets providing the best representation of two
Hartree-Fock based atomic basis sets: that of Bunge et al. available for elements H–Xe and that of
Koga and Thakkar spanning H to Lr (Z = 103). So-extracted values of exponents follow piecewise
linear laws as functions of the nuclear charge Z resembling the prescriptions set by Slater’s rules for
the orbital exponents. In details, however, the rules proposed by Slater are not precisely followed,
neither for effective principal quantum numbers n∗ nor screening increments σ. Nevertheless, the
linear pieces of the ξ vs Z follow the structure of the Periodic Table being specific for the segments
corresponding to p-, d- (transition) and f - (Lanthanides and Actinides) elements, respectively.

I. INTRODUCTION AND THEORY

Today we dispose of many different basis sets to de-
scribe orbitals and electron densities in atoms, molecules
and solids1,2. For numerical efficiency, most are of Gaus-
sian type, even if the parameters, exponents and expan-
sion coefficients individually do not have any physical
meaning. In 1993, Bunge et al published3 sets of linear
combinations of Slater monomials of the form

r(k−1)e−ξr (1)

with different powers (k − 1) and orbital exponents ξ.
These orbitals hereinafter called “Bunge” are very close to
numerical orbitals,4,5 and are the simplest ones in terms
of the number of employed parameters. Still, the in-
dividual parameters of these orbitals are physically not
meaningful. In previous articles6,7 we reconsidered there-
fore an original idea proposed by Fock8 of representing
atomic orbitals using only one single exponent ξn` per
each atomic subshell n`, multiplied with a polynomial
to ensure orthogonality between different shells of same
angular momentum. The physical meaning of this pa-
rameter can be linked to the ionization potential PIn`
according to Refs. 9,10 as

ξn` ≈
√
2PIn`. (2)

For each atomic orbital we write the radial function
Rn`(r) as

Rn`(r) ∝ (2ξn`r)
`
Pn`(2ξn`r) exp (−ξn` r) (3)

where Pn`(x) is a polynomial of degree n−`−1. Starting
with P`+1,` ≡ 1, the successive polynomials, as para-

metric functions of the exponents, ensure orthogonal-
ity for a common `.The orthonormality conditions re-
sult in a system of linear equations to determine unam-
bigously all coefficients of the polynomials. This scheme
is called MAP as Moscow–Aachen–Paris, or Minimal
Atomic Parameters.6

The exponents are determined by minimizing the total
Hartree-Fock energy of the atomic ground state configu-
rations following the Aufbau principle11. For the orbital
exponents of the elements H – Xe (i.e. Z = 1 ... 54) we
found7 piece-wise linear relations of the form

ξn`(Z) = an` Z + bn`. (4)

Slopes an` and cutoffs bn` are specific for the segments of
the Periodic Table where subshells with quantum num-
bers n` are respectively being filled (open) or are closed
(belong to the core).

Energy minimization leads to stable values for the ex-
ponents, however in a long and tedious simplex proce-
dure, loosing about 3% of the total energy with respect
to Bunge or numerical orbitals.

Much easier seems to maximize the overlap of MAP
orbitals with Bunge (or any other) orbitals with respect
to exponents. A convenient numerical instrument for this
is provided by the Frobenius angle between the spaces
spanned by corresponding orbital sets.

Let {|β 〉} and {|µ 〉} be two orbital sets. We define
then operators (respectively, matrices) acting in the L2

Hilbert space as

M =

m∑
µ=1

|µ〉〈µ| ; B =

b∑
β=1

|β〉〈β| . (5)

Linear operators form a linear spapce since their sum
and product with (complex) numbers are themselves op-
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erators. The trace of the product tr(C†D) of the ma-
trix representations of any pair of linear operators C and
D defines a scalar product of operators. This Frobenius
product has all qualities of a scalar product – it is bilin-
ear, positive definite for C = D, and zero in this case if
and only if C (= D) is the zero operator.

Applying the definition of the Frobenius product to
matrices Mλκ = 〈λ |M|κ〉 and similarly to B we get

tr
(
M†B

)
=
∑
κλ

∑
µ

∑
β

〈κ|µ〉〈µ |λ〉 〈λ|β〉〈β |κ〉

=
∑
µ

∑
β

〈β
∑
κ

|κ〉 〈κ|︸ ︷︷ ︸
=I

µ〉〈µ
∑
λ

|λ〉 〈λ|︸ ︷︷ ︸
=I

β〉

=
∑
µ

∑
β

|〈β|µ〉| 2 (6)

where we used an expansion:

I =
∑
κ

|κ〉 〈κ| =
∑
λ

|λ〉 〈λ|

of identity operator I over a complete basis of the Hilbert
space and the definition of the Frobenius operator norm
as the square root of the product of a matrix with itself
|C| =

√
tr(C†C) we may define a Frobenius angle be-

tween the two subspaces spanned by the sets {|β 〉} and
{|µ 〉} as

cosϕMB =
tr
(
M†B

)
|M| |B|

=

∑
µβ |〈β|µ〉|

2√∑
µµ′ |〈µ|µ′〉| 2

√∑
ββ′ |〈β|β′〉| 2

=

∑m
µ=1

∑b
β=1 |〈β|µ〉|

2

√
m
√
b

(7)

We see that this cosine is always positive (angles between
0 and π

2 only) which we can interpret as a probability —
the probability of an electron, described by an orbital
expanded in set M , to be found in the space spanned by
the set B and vice versa.

MAP orbitals are fully defined through the set of expo-
nents. These parameters can now be used to optimize not
the total energy, but the Frobenius angle (or maximize
its cosine) between Bunge and MAP orbital sets.

We re-determined in this way all MAP exponents for
atoms Z = 1÷ 54 i.e. H–Xe (see Ref. 12), finding cosines
> 0.96 for all values of Z. In the present contribution
we will extend the approach to elements Cs – Lr, with
Z ranging from 55 to 103 taking the Koga orbitals13 for
given and optimizing the Frobenius angles between them
the MAP orbitals with respect to exponents. We will try
to derive again simple rules between exponents and the
nuclear charge Z.

Table I: Parameters of the fits of the exponents as functions
of Z for variable intervals, found from the condition of the
minimum Frobenius angle with the Bunge orbitals according
to eq. (7) with their errors δ and values of the R2 criterium
and Slater parameters n∗

n`, σn`.
n` Z an` bn` δ

(
an`

)
δ
(
bn`

)
R2 n∗n` σn`

1s 2: He-Xe 1.0143 –0.45 0.0010 0.03 0.999951 0.986

2s 3:10 Li-Ne 0.3674 –0.36 0.0009 0.01 0.999967 1.973 0.27510: Ne-Xe 0.5069 –1.64 0.0008 0.03 0.999909

3s 11:18 Na-Ar 0.3034 –2.34 0.0048 0.07 0.998491 3.083 0.06419: K-Xe 0.3243 –2.81 0.0023 0.09 0.998235

4s 20:30 Ca-Zn 0.05414 0.24 0.0013 0.03 0.994975 3.733 0.798
30: Zn-Xe* 0.2679 –6.03 0.0032 0.14 0.996895

5s 38:48 Sr-Cd* 0.0591 –0.76 0.0032 0.14 0.976638 4.038 0.76148: Cd-Xe 0.2477 –9.78 0.0078 0.40 0.995013

2p 5:10 B-Ne 0.2943 –0.31 0.0053 0.04 0.998712 1.960 0.42310: Ne-Xe 0.5102 –2.30 0.0006 0.02 0.999938

3p 13:18 Al-Ar 0.2622 –2.22 0.0064 0.10 0.997603 3.022 0.20819: K-Xe 0.3309 –3.70 0.0027 0.10 0.99766

4p 31:36 Ga-Kr 0.2550 –6.35 0.0102 0.34 0.993685 3.814 0.02737: Rb-Xe 0.2622 –6.51 0.0049 0.22 0.994449
5p 49: In-Xe 0.2390 –9.95 0.0107 0.55 0.992118 4.185

3d 21:30 Sc-Zn 0.2171 –2.32 0.0058 0.15 0.994392 2.641 0.42730: Zn-Xe 0.3787 –7.13 0.0029 0.12 0.998638

4d 39:45 Y-Rh 0.2535 –7.70 0.0108 0.46 0.990943 3.247 0.17746: Pd-Xe 0.3080 –10.47 0.0039 0.19 0.998893
* without Palladium (Z = 46).

II. RESULTS AND DISCUSSION

First we consider as in Ref. 12 exponents obtained from
the comparison with Bunge orbitals for elements Z =
1 ÷ 54. Their dependence upon Z, shown in Fig. 1, is
resumed in form of parameters in Table I. Either guided
by the eye or by calculating R2, the exponents seem to
follow perfectly linear relations. The only exception is the
palladium atom (Pd, Z = 46), for which the ground state
configuration does not contain the 5s orbital – and thus
the dimensions of the projector spaces between Bunge
and MAP differ.

The R2 values in Table I as validity criterion confirm
the linear rules. In this way the numbers an` and bn`,
although similar to the energy-optimized ones in Ref. 7,
differ beyond confidence intervals (an` ± 3δ (an`)) and
similarly for bn`). This is not further surprising as quite
different methods are employed for their determination.

As in Ref. 7, we may borrow some help from Slater’s
second rule:14

an` =
1

n∗n`
×

{
1− σn` open shell (incomplete)

1 closed shell (complete)

where n∗n` represents an effective principal quantum num-
ber, and σn` a screening of the nucleus for each electron
due to the presence of the other electrons on the same
or inner subshells. As seen from Table I, values n∗n` co-
incide with n for n = 1 ÷ 3 as prescribed by Slater’s
rules. For n > 3 the effective principal numbers n∗n` are
less than n, their values are as well close to those pro-
posed by Slater. We see thus that MAP exponents from
orbital fits are following the same trends as those from
Hartree-Fock energy optimizations.

This success encouraged us to maximize the overlap
cosϕMK between the atomic orbitals proposed by Koga
et al. and our MAP construction, for all atoms with Z =
1 ÷ 103. Figure 2 shows the defect – the quantity (1 −
cosϕMK) – as a function of Z. Clearly, in all cases, the
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Figure 1: The dependence of the exponents of the Bunge orbitals on the nuclear charge Z (atomic number) determined for the
subshells n` Top line: 1 s-3s - left; 4s-5s - right; bottom line: 2p-5p - left; 3d-4d - right.
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Figure 2: Defect, that is the quantity 1− cosϕMK as a func-
tion of Z for the Koga orbitals in the range Z = 1 ÷ 103.

defect does not exceed 0.05 and is mainly around 0.03 or
between 0.25 and 0.35. In Ref. 12 we observed similar
trends comparing MAP and Bunge orbitals for elements
with Z = 1 ÷ 54. Thus with use of the MAP orbitals
we could verify the similarity of Bunge and Koga orbital
spaces.

The dependence of the exponents on the nuclear charge
Z, obtained here from the optimization of the Frobenius
angle with the Koga orbital sets, is shown in Figure 3.
Their coefficients – eq. (4) – are collected in Table II.
For determining the quantities an` and bn`, the points
which deviate from the linear branches have been ex-
cluded. This refers to the outer ns shells where only
two points are available, and similarly the outlyers like
Z = 46 (Pd) and Z = 57, 58, 64 (La, Ce, Gd), are ex-

cluded from the fit.
In Figure 3 we clearly see that the exponents follow

the generalized Slater rules: slopes an` are smaller for the
subshells being filled (open ones), and larger for the al-
ready filled (closed core) shells. Also, for transition met-
als and Lanthanoides/Actinoides the exponents of outer
ns (n = 4 ÷ 7) shells change only little with Z (rows 6,
8, 10, 13, 14, 16, 17, 25 of Table II). This is as well in
agreement with generalized Slater rules since electrons
of these subshells in the respective segments of Z are
strongly screened from the nuclei by the lower lying d or
f subshells.

In general, it should be noted that shell structures are
easily seen from the dependence of the exponents with Z:
two linear branches meet with one single change in slope,
going from an open-shell situation to a closed-shell one.
There are two exceptions from this rule: one concerns nsp
shells (n = 5, 6) which exhibit not two, but several dis-
tinct slopes due to the presence of the transition elements
as well as Lanthanoides and the Actinoides. The other
is the 4p shell where we see only one single branch (Fig.
3, middle-left panel). The numerical values of the two
expected slopes are identical with respect to the interval
of confidence (rows 22 and 23 of Tab. II).

Parameters n∗n` of the Slater rules determined from the
data of Table II show to remain very close to the principal
number n for shells with n ≤ 4 (in all cases differences are
less than 0.05, see Table II). Slater’s suggestion propos-
ing an effective principal number of 3.7 for n = 4 cannot
be confirmed from the exponents extracted from Koga
orbitals. In contrast to this Slater’s effective principal
number of 3.7 seems to be confirmed by the data ex-
tracted from Bunge orbitals (remarkably, the differences
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Table II: Parameters for the fits of the exponents as functions of Z for different intervals Z as extracted from the minimum of
the Frobenius angles of with the Kogae orbitals, according to eq. (7) with their errors δ and the values of the R2 criterion and
the Slater parameters n∗

n` and σn`. Column “sup” contains a “+” if the confidential interval for an`, bn` determined from the
Bunge orbitals (Table I) and from the Koga ones (this Table) overlap and “–” if not. This cell remains empty if the necessary
information is missing in Table I.

n` row Z an` bn` δ (an`) δ (bn`) R2 sup n∗
n` σn`

1s 1 2: He-Lr 1.0070 –0.32 0.0002 0.01 0.999995 – 0.9931

2s 2 3:10 Li-Ne 0.3674 –0.36 0.0009 0.01 0.999967 + 1.9821 0.2718

3 10: Ne-Lr 0.5045 –1.60 0.0003 0.02 0.999975 + 0

3s 4 11:18 Na-Ar 0.3034 –2.34 0.0048 0.07 0.998491 + 2.9833 0.0948

5 19: K-Lr 0.3352 –3.19 0.0006 0.04 0.999782 – 0

4s 6 20:28 Ca-Ni 0.0562 0.18 0.0040 0.10 0.965494 + 4.0297 0.7734

7 31: Ga-Lr 0.2481 –5.20 0.0008 0.06 0.999222 – 0

5s

8 39:48 Y-Cd 0.0372 0.15 0.0100 0.44 0.696613 +

3.8993

0.8245

9 49:57 In-La 0.2766 –11.25 0.0164 0.87 0.982779 –0.3038

10 59:68 Pr-Er 0.0812 –0.16 0.0004 0.03 0.999832 0.6173

11 72:80 Hf-Hg 0.1889 –7.64 0.0038 0.29 0.997136 0.1096

12 81: Tl-Lr 0.2121 –9.21 0.0036 0.33 0.993951 0

6s

13 56:70 Ba-Yb 0.0143 0.69 0.0003 0.02 0.996536

3.6659

0.9474

14 72:77 Hf-Ir 0.0614 –2.51 0.0013 0.10 0.998132 0.7748

15 80:90 Hg-Th 0.2728 –19.47 0.0069 0.59 0.99426 0

16 91: Pa-Lr 0.0731 –1.58 0.0044 0.42 0.962348 0.7320

7s 17 89:102 Ac-No 0.0062 1.18 0.0024 0.23 0.385791 – –

2p 18 5:10 B-Ne 0.2943 –0.31 0.0053 0.04 0.998712 + 1.9728 0.4193

19 11: Na-Lr 0.5069 –2.21 0.0001 0.0 0.999994 – 0

3p 20 13:18 Al-Ar 0.2622 –2.22 0.0064 0.10 0.997603 + 2.9574 0.2246

21 19: K-Lr 0.3381 –3.96 0.0005 0.04 0.999788 + 0

4p 22 31:36 Ga-Kr 0.2550 –6.35 0.0102 0.34 0.993701 4.0152 0.0233

23 37: Rb-Lr 0.2491 –5.91 0.0009 0.07 0.999065 + 0

5p

24 49:57 In-La 0.2578 –10.91 0.0065 0.34 0.995587 +

3.7190

0.0412

25 59:70 Pr-Yb 0.0642 0.04 0.0005 0.03 0.999503 0.7614

26 71:80 Lu-Hg 0.1914 –8.83 0.0021 0.16 0.999009 0.2882

27 81:89 Tl-Ac 0.2689 –14.81 0.0012 0.11 0.99985 0

28 89: Ac-Lr 0.1870 –7.48 0.0014 0.13 0.999316 0.3045

6p 29 81:89 Tl-Ac 0.2565 –18.81 0.0063 0.53 0.995854 3.6659† 0.0596

30 89: Ac-Lr 0.0597 –1.20 0.0039 0.37 0.94795 0.7811

3d 31 21:28 Sc-Ni 0.2291 –2.64 0.0147 0.36 0.975764 + 2.8579 0.3452

32 29: Cu-Lr 0.3499 –5.92 0.0009 0.06 0.999523 – 0

4d

33 39:45 Y-Rh 0.2296 –6.81 0.0194 0.82 0.965571 +

3.7350

0.1426

34 46:56 Pd-Ba 0.3175 –11.00 0.0048 0.25 0.997912 -0.1860

35 57:71 La-Lu 0.2080 –4.93 0.0068 0.45 0.989369 0.2229

36 71: Lu-Lr 0.2677 –8.87 0.0009 0.09 0.999621 0

5d
37 71:77 Lu-Ir 0.2528 –15.27 0.0128 0.94 0.987415

3.4821
0.1197

38 78:88 Pt-Ra 0.2872 –18.24 0.0039 0.32 0.998335 0

39 89: Ac-Lr 0.1582 –6.41 0.0113 1.09 0.937314 0.4490

6d 40 89: Ac-Lr 0.0153 1.46 0.0154 0.42 0.705118 – –

4f

41 58:70 Ce-Yb 0.1760 -5.63 0.0038 0.25 0.995303

3.2224

0.4328

42 71:90 Lu-Th 0.2868 -13.27 0.0020 0.17 0.999131 0.0757

43 91: Pa-Lr 0.2785 -11.91 0.0010 0.10 0.999852 0.1025

44 71: Lu-Lr 0.3103 -15.09 0.0030 0.26 0.997181 0

5f 45 91: Pa-Lr 0.1885 -12.31 0.0057 0.55 0.990095 – –

† if n∗
6p is set equal to n∗

6s.
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Figure 3: Dependencies of exponents ξn` extracted from Koga orbitals on nuclear charge Z (atomic number) for subshells n`.
Upper line: 1s-3s – left; 4s-7s – right; middle line: 2p-4p – left; 5p-6p – right; bottom line: 3d-6d - left; 4f -5f – right.

between the Bunge and Koga sets appear in the rows of
Table II containing “–” and these latter appear only in
the rows referring to the core subshells). We explain this
discrepancy by the larger number of data points available
for Koga orbitals.

For principal quantum numbers n ≥ 5 the linear de-
pendencies of ξn` from Z are seen in the respective seg-
ments. However, the values cannot be explained as sim-
ply as for n ≤ 4. The 5s subshell has the most compli-
cated, but still understandable form of dependence of ξ5s
on Z. Although, formally, starting with Z = 55 (Cs – the
first element of the 6-th period) it is a core shell, depen-
dence of its orbital exponent has a complex structure.

Indeed, for Z ≥ 55 the segments of Z referring to
Lanthanoids, 5d transition elements, 6p-elements and, fi-
nally, Actinoids. It is difficult to select the segment where
5s orbital truely belongs to the core. For the subshells

with smaller n (≤ 4) the core orbital is always one with
the maximal slope an`. For the 5s orbital two segments
with similar slopes: for elements 5p (row 9 Tab. II) and
elements 6p (row 12 Tab. II) which, respectively, yield
the values of n∗5s of 3.6163 and 3.8993 can be found. The
first option is not perfectly good, since e.g. the segments
of p-elements for n ≤ 4 are not ascribed to the core. Tak-
ing the last segment for the true core one, we obtain a
set of values σ5s given in Tab. II (rows 8–12). Of these
values ony that for 5p elements is negative. Purely the-
oretically, it is not impossibile to have negative σn`: this
simply means that the interaction of electron with oth-
ers within the subshell (being filled) is stronger than that
with others in the lower lying subshells (already filled).

As for 5p shell, for it the unique possibility to select
the segment, where it belongs to the core, is to accept for
that the segment of 6p elements (row 27 Tab. II). Under
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this assumption we obtain the value of n∗5p close to n∗5s
and the entire set of positive values of σ5p, although, with
a very small value for the 5p elementis themselves (row
24 Tab. II).

For the 6s subshell no segment can be safely selected,
where it would belong to the core. Making notice that
for the 5s subshell the slopes in the segments of Z for
elements 5p and 6p are similar, we assume the 6s sub-
shell to belong to the core in the segment of 6p elements.
Under this assumption we obtain the value of n∗6s which
is much smaller than 6, and the whole set of positive val-
ues of σ6s (in the segments of Lanthanoids, 5d transition
elements and Actinoids).

As for subshell 6p, there is no sufficient datae to deter-
mine the value of n∗6p reliably. As we have already seen
n∗5p to be close to n∗5s, we set n∗6p equal to n∗6s and this
way find the values σ6p for the 6p elements and equalliy
for Actinoids (row 29, 30 Tab. II).

As for nd subshells (n = 3 ÷ 5), the dependencies of
their exponents on Z look out fully regular (Fig. 3 bot-
tom line, left). It is to be noted that efficient quantum
numbers n∗nd are always smaller that respective n’s and
most of all for n = 5, which are even much smaller than
4. The reason for this is not clear for the moment.

The slopes a4f in the segments Lu–Th and Ac–Lr are
close. Even their confidential intervals marginally inter-
sect. Thus we determine the common value of the slope
for the both intervals and used it to determine the effi-
cient number n∗4f (row 44 Tab. II).

Meanwhile, the general observation deduced from
datae of Tables I, II relative to the subshells 5s, 5p, 6s,
(and eventually 6p) is that the efficient principal quan-
tum numbers are not only smaller, but much smaller than
principal quantum numbers n’s, that is, n∗n` are smaller
than 4. This requires some explanation, but we postpone
it for future publications.

Above, we have considered the dependencies of ξn` and
Z in general; the structure of the Periodic Table is re-
flected in these dependencies. Of course, it should be
noted that there is a similarity between the dependencies
of ξn` on Z in Fig. 3 of the present article and Figure 9
of Ref. 15 showing

√
PIn` as a function of Z. Period-

icity, however, as understood chemically, manifests itself
differently (see for example Ref. 15,16).

In order to study this we reorder the linear dependen-
cies ξn` on Z to make clear the periodic structure of open
subshells. Actualy, in each segment corresponding to fill-
ing of some subshell with quantum numbers n`, it con-
tains Z−Zn` electrons,1 where Zn` is the atomic number
immediately precedent to the beginning of the filling of
the n` subshell (at Z = Zn` the subshell n` contains yet
no electrons2). In the Periodic Table of the longest form

1 Previously, the dependency on Z−Zn` had been used in Ref. 17
for analyzis of the properties of Lanthanoids and Actinoids.

2 An example is the segment of transition elements: for the sub-

Table III: Characteristic values of atomic numbers Zn+`;Zn

of the first appearence of electron with the given values (n+ l)
or n with the help of Klechkowski’s function to calculate and
symbols of elements and the respective configurations.

n+ `;n
Zn+`

Zn

1 1 H 1s1

2 3 Li [He]2s1

3 5 B [Be]2p1

11 Na [Ne]3s1

4 13 Al [Mg]3p1

19 K [Ar]4s1

5 21 Sc [Ca]3d1

37 Rb [Kr]5s1

6 39 Y [Cd]4d1

55 Cs [Xe]6s1

7 57 La [Ba]5d1

87 Fr [Rn]7s1

8 89 Ac [Ra]6d1

(that with 32 columns, see e.g. Ref. 15,16) the elements
with equal values Z−Zn` belong to the same group: for-
maly stand in the same column. The definition of the
Zn` numbers through the numbers of columns in Peri-
odic Table looks out to be overly formal. It, however, is
not such. Curiousely, it is possible to take for Zn`’s the
numbers immediately, preceeding the numbers Zn+`, at
with an electron with a given value n + ` first appears
according to the (n+ `, n)-rule18 i.e. Zn` = Zn+` − 1.
Although in Ref. 15 it is repeatedely stressed that the
(n+ `, n)-rule18 is only valid in the books written for stu-
dents, and that even some chemist enjoy the idea that
this rule cannot be derived from laws of physics, both
statements are not completely true. As for the (n+ `)-
part of this rule, Klechkowskij has strictly shown,19 cal-
culating the number of states referring to the given value
of (n+ `), the number Zn+` can be represented by sim-
plisic (Kletchkowskij) function:

K(y) =
y3

6

{
−y6 for y odd

+y
3 for y even

(8)

namely, Zn+` = K(n + `) + 1 and the sought number
Zn` simply equals to K(n+ `), where one has to chose a
suitable combination of n and `. Similarly, the function
K gives the values Zn = K(n + 1) − 1 at which electron
with quantum number n (and thus ` = 0) appears for
the first time, correctly in all cases, by this indicating
the boundaries of the periods of the Table of Elements.
Both numbers are collected in Table III which shows that
neutral atoms perfectly follow the (n+ `)-rule.

Exceptions from the (n+ `, n)-rule touch only its n-
pars. Those occurring in rows (n+ `) = 7, 8 refer only

shell 3d Z3d = 20 since Ca is the last element preceeding this
segment.
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Figure 4: Dependence of selected orbital exponents in MAP setting f - (to the left), d- (middle) and p-elements (to the right)
on the reduced nuclear charge which makes Z − Zn`.

to the order in which 4f and 5d (5f and 6d) orbitals
are being filled, not the value Zn+` where electrons with
(n+ `) = 7, 8 appear for the first time.

These exceptions do not seem to be relevant. Indeed,
deviations from the n-(sub)rule of the general (n+ `, n)-
rule, as observed in experiments, can depend on inter-
actions (correlations) of electrons or be a manifestation
of relativism. Neither can be reproduced by computing
numbers of states with those or others quantum num-
bers (as Kletchkowskij did it). On the other hand, Koga
orbitals determined for Lanthanoids and Actinoids im-
plicitely contain some information related to correlations
or/and relativism. This happens since the ground states
of the atoms for which the orbitals are determined, are
"manū propriā" of the authors13 selected in agreement
with experiments. Thus in Fig. 4 we present dependen-
cies ξn` on Z − Zn` in the segments corresponding to f -,
d- ans p-elementis (where f -, d- and p-subshells are open
ones). The result shows perfectly that which one could
expect.

Namely, the data related to f -elements (Lanthanoids
and Actinoids – Fig. 4 left) are the simplest to interpret.
As it is seen from Figure 4, the values of the exponents ξ4f
and ξ5f and similarly to ξ6s and ξ7s, respectively, almost
coincide for Lanthanoids and Actinoids. Even more, the
exponents ξns, n = 6, 7 almost do not depend on Z−Zn`.
By contrast, although the exponents ξ4f and ξ5f for equal
Z − Zn` almost coincide, their values notably increase
quasi-linearly with the efficient core charge. A simplest
physically or chemically relevant conclusion from that is:
atomic radii of Lanthanoids and Actinoids (i.e., true radii
of atoms which are determined by the outermost sub-
shells) coincide (following the datae condensed in Koga
bases of these atoms) and, moreover, on Z − Zn` do not
depend. By contrast, ionic radii of the 3+ ions of these
elements, whose outermost subshells are nf, decrease with
increase of efficient core charge Z − Zn`, since they are
inversely proprtional to increasing ξnf by this showing
Lanthanoid (and eventually Actinoid) contraction. To
add, we note that since exponents for quantum numbers
n = 6, 7 for s-orbitals and those with quantum numbers
n = 4, 5 for f -orbitals, respectively coincident, the unique
possibility to reproduce whatever difference between Lan-

tanoids and Actinoids remains in the difference of the
numbers of nodes they, respectively, have. This conclu-
sion as well derives from the data condensated in Koga
bases.

The picture completely changes when we consider nsp
subshells (Fig. 4 right). There the exponents ns or np
grow almost linearly with Z − Zn`. Most remarkably,
the slopes for s- and p-orbitals almost coincide with only
two exceptions. One is the intersection dependencies of
exponents of Z −Zn` for 2p and 3p subshells (two lower
lines in Fig. 4 right), which are too much close to pro-
vide whatever interpretation to their intersection. An-
other one is the relatively strong dependence of the ξ2s
(!) exponents which grow with Z − Zn` much faster and
intersect respective lines, depicting the dependencies of
the exponents 5p, 4p et 3s. Beyond the mentioned ex-
ceptions the orbital exponents ξns and ξnp increase in
parallel with increaing Z − Zn`, but show a noticeable
dependency on n which absent in the segments of Lan-
thanoids and Actinoids.

Transition elements, as Fig. 4 (middle) shows, takes
an intermediate position between nf and nsp. In re-
spective segments the orbital exponents for ns slightly
grow remaining in a narrow corridor with, meanwhile,
a visible increment between n = 4 and n = 6 whereas
those for n = 5, 7 almost not differ. Orbital exponents
nd (n = 3 ÷ 5) grow almost linearly, but their spread
around a hypothetical strait line remains noticeable. A
minimal difference between the exponents’ values for 3d
and 4d subshells against a notable increment to them for
5d also is to be noted.

Generally the dependences of ξn` on Z−Zn` extracted
from the data condensed in the Koga basis sets confirm
the observations of Refs. 15,16 opposing the orbitals
(subshells) sp and df. As well, the way of variation of
the MAP-exponents with Z − Zn` is clearly seen to co-
incide with the quasi-linear Pearson’s electroneganvity
dependencies shown in Fig. 22 of Ref. 15.

The data extracted from the Koga orbitals extend to
the principal quantum number n = 7 which is the num-
ber of periods in the Mendelejew Table covered by the
Koga orbital basis sets. One may expect periodicity in
a chemical sense to manifest itself in the that abundant
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information. That’s what it looks like this in the data
shown in Fig. 4. According to them the periodicity in
the case of f -elements is perfect, since the exponents for
atoms with equal values Z − Zn` simply coincide: the
formal characteristic of periodic functions. Similarly, ns
exponents for atoms of transitive elements with equal
Z − Zn` are closest and so do the nd exponents.

For the p-elements chemical periodicity condensed in
Koga basis sets seems to appear differently. The expo-
nents of the orbitals 2 and 3p nearly coincide and simi-
larly 4 and 5 p which acquire a few growth with respect
to n = 2, 3. The exponents for the orbitals 6p through a
constant increase they differ from those for 5p.

With regard to the energy gap observed in Ref. 15,16
between the subshells np and (n+ 1) s, we do not see
it in the data drawn from the Koga basis sets. Indeed,
ξ2p (Z − Z2p = 6) (end of the 2-nd period) is larger rather
than smaller than ξ3s (Z − Z3p = 1) which in turn should
be larger than ξ3s (Z − Z3s = 1) (beginning of the 3-rd
period). Under the hypothesis eq. (2) this means that
the gap 2p–3s is negative. The same holds for the pair of
subshells 3p–4s. Only for the pairs 4p–5s and 5p–6s we
can expect for a positive gap if we rely on information
derived from the Koga basis sets.

One also could expect to find signs of the double peri-
odicity20 for that extended data set. This hope, however,
does not seem to be justifiable. According to the previous
discussion, the exponents for the p-orbitals are grouped
in the dyads with sequential values of n, n+1 = 2k, 2k+1
in such a way that a kind of double periodicity appears.
It should be noted, however, that the aggregation pro-
posed in Ref. 20 applies not to the sequential (even
with odd) but for alternate (even versus odd) periods.
Therefore, although, there is certain aggregation of ele-
ments with respect to n, additional to the common one,
which arises from the dependencies of the exponents ξn`
on Z−Zn`, it does not conform with the original hypothe-
sis Ref. 20. Curiously, aggregation of subsequent periods
in dyads (even and odd) is as well explained through the
Klechkowski function which differently behaves for even
and odd values of argument. All this requires a deeper
investigation, which we will postpone for the future.

III. CONCLUSIONS

1. Frobenius products eq. (6) of the matrices of the
form eq. (5) built of vectors of sets {|β〉} and {|µ〉}
or Frobenius angle eq. (7) between respective or-
bital subspaces show these to be useful to compare
different vector sets.

2. The MAP form of the orbitals eq. (3) is one which
needs a minimum number of parameters while keep-
ing the correct number of orbital nodes.

3. With use of Frobenius products we derived the
MAP orbital exponents optimally representing the
Bunge orbitals for elements H – Xe (Z = 1...54)
and Koga orbitals for H – Lr (Z = 1...103).

4. This way one can analyze properties of all atomic
orbital sets. Indeed, Frobenius angles between
Bunge/Koga and optimal MAP orbital sets are of
the order of 15 degrees which corresponds to a loss
of 3 – 5 % of the number of electrons upon projec-
tion from one orbital set to the other.

5. Generally, both orbital sets i.e. Bunge and Koga
ones show regular dependencies on Z of the MAP
orbital exponents derived from them. By this we
show that the idea to represent atomic orbitals in
the MAP form was not useless since by this we
could study (in)consistency of various orbital sets.

6. The orbital exponents of the MAP functions ex-
tracted by the minimization of the Frobenius an-
gles show to a high precision linear relations with
the atomic number Z as Slater’s rules predict, and
reproduce the general structure of the Periodic Ta-
ble. The most notable differences are (i) for n ≤ 4
effective principal numbers n∗ are closest to n it-
self (Slater proposes however n∗ = 3.7 instead of
n = 4); (ii) for n ≥ 5 the generated n∗ values are
much smaller than n, and in fact even less than 4.

7. Tracing MAP exponents ξn` against respective ef-
fective core charges (or chemical group numbers)
Z − Zn`, where the Zn` are determined by the re-
duced (n+ `, n)-rule or the Klechkowski function,
prove the perfect periodicity of the sequential ar-
rangement of the chemical elements suggested first
by Mendelejew.
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