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The structure of the double-layer formed at the surface of carbon electrodes is governed by the interactions
between the electrode and the electrolyte species. However, carbon is notoriously difficult to simulate accurately,
even with well-established methods such as electronic Density Functional Theory and Molecular Dynamics.
Here we focus on the important case of a lithium ion in contact with the surface of graphite, and we perform a
series of reference Quantum Monte Carlo calculations that allow us to benchmark various electronic Density
Functional Theory functionals. We then fit an accurate carbon–lithium pair potential, which is used in
molecular Density Functional Theory calculations to determine the free energy of the adsorption of the ion on
the surface in the presence of water. The adsorption profile in solution differs markedly from the gas phase
results, which emphasize the role of the solvent on the properties of the double-layer.

I. INTRODUCTION

Carbon materials play a very important role in many
chemistry fields, ranging from catalysis to electrochem-
istry. In energy storage applications, carbon is used as
an electrode in the form of graphite for Li-ion batteries,1
of hard carbon for Na-ion batteries,2 and of nanoporous
materials for supercapacitors.3 In all these examples, the
carbon materials are put in contact with a charged elec-
trolyte, and the interfacial structure and dynamics play
a crucial role in the operation of the devices.4,5 In order
to optimize the performance, molecular simulations can
play an important role,6 but they need to accurately ac-
count for the interactions between the ions and the carbon
surface.
Over the years, a large number of electronic density

functional theory (eDFT) and molecular dynamics (MD)
simulations were devoted to the study of electrochemical
interfaces between carbon and ions or liquid electrolytes.
Although they provide qualitatively similar results, some
discrepancies may be observed when analyzing quantita-
tive properties, such as adsorption energies, preferential
“binding” distances or adsorption profiles. For example,
as reported by Valencia et al.7, in the case of bare lithium
adsorption on graphite surface, eDFT calculations always
display binding energies larger than 1 eV with a prefer-
ence for the center of the C6 hexagonal rings (hollow sites)
with respect to adsorption above C atoms (top sites) or
C–C bonds (bridge sites).7 The lithium atom loses a va-
lence electron which is entirely transferred to the carbon
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surface. Yet, the adsorption energy may differ by more
than 0.5 eV when changing the exchange-correlation func-
tional.8 In particular, the inclusion of dispersion effect
further increases the binding energy of the lithium ion.9

Similar problems arise in classical MD simulations due
to the choice of different interaction potentials. On the
one hand, the choice of the electrostatic model for the
electrode atoms, which can be treated using fixed-charges
or the constant potential method,10 will impact the local-
ization of the charge induced by the ions on the carbon.
On the other hand, several force fields may be used for
the short-range repulsion and dispersion interactions.
Important discrepancies were already reported in the

case of the adsorption of water molecules on carbon sur-
faces.5 In two studies on carbon nanotubes11 and other
carbon nanostructures12, Michaelides and co-workers com-
pared the results of eDFT calculations using a large set
of exchange-correlation functionals with diffusion Monte
Carlo (DMC) calculations. DMC is a Quantum Monte
Carlo (QMC) method, which explicitly accounts for elec-
tronic correlation and exchange. Although for fermions
the fixed node error prevent DMC from being exact, it
is more accurate than eDFT and belongs to the class of
variational methods that can be systematically improved
with enough effort. This method is much more costly than
conventional eDFT in terms of computational time, but
it is expected to capture with a high accuracy the inter-
molecular interactions. It can thus be viewed as a good
reference for benchmarking purposes. Based on these
results11,12, it appears that the choice of the exchange-
correlation (XC) approximation in eDFT is crucial but
also that it is difficult to predict the accuracy since the
adsorption energy results from a subtle balance of the
interactions, especially at medium range.
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In this work we follow a similar approach for the adsorp-
tion of lithium on graphite. The choice of the system was
made based on its relevance for energy applications and
because the lithium ions has a small number of valence
electrons, thus allowing the cost of the reference DMC
calculations. We computed the adsorption profiles on hol-
low, top and bridge sites by varying the distance between
the lithium and the carbon material. DMC results are
then compared with several XC approximations.

Yet, knowing the adsorption energy of a single ion may
not be enough. Indeed, the solvent molecules within the
electrolyte will also interact strongly both with the surface
and with the ions, which can result in large variations
of the adsorption properties under realistic conditions.13
The main quantity to be determined is then the free
energy of adsorption profile, which should be obtained
by sampling the whole liquid degrees of freedom. This
quantity is not accessible to electronic structure methods
due to their large computational cost, and it is necessary
to resort to classical mechanics-based methods instead.
Classical MD is usually the method of choice for such
purposes, but it suffers from high inefficiency for systems
studied under large dilution conditions. In such cases, it
may conveniently be replaced by molecular DFT (MDFT).
MDFT describes a liquid by its density field, and a func-
tional of this density is introduced to account for entropic,
external and solvent-solvent interactions. The external
contribution arises from the species in contact with the
liquid, which are the graphite electrode and the lithium
ion in the present study. The equilibrium density and its
related free energy are computed through a variational
procedure, which reduces the computational cost by sev-
eral orders of magnitude w.r.t atomistic MD. Recently, we
have extended the MDFT method to account for constant
potential electrodes, and we showed it was providing the
correct structure and thermodynamics for liquid water in
contact with graphite electrodes.14

In the second step of the present work, we build upon
these developments to study the adsorption of lithium on
graphite, in the presence of liquid water. The lithium–
carbon interaction is parameterized using the electronic
DFT calculations benchmarked on DMC. We show that
the energy minimum observed in vacuum vanishes in the
presence of solvent, and that the lithium ion does not
show anymore a preferred binding distance close to the
surface due to the presence of water molecules.

II. COMPUTATIONAL METHODS

A. Quantum Monte Carlo

QMC simulations are a set of stochastic computational
methods for the evaluation of observables of quantum
systems. The fundamental idea behind these techniques is
that expectation values of physical quantities of quantum

systems can be written as

〈A〉 =

∫
dRΨ∗(R)ÂΨ(R) (1)

where Â is a generic observable, Ψ(R) is the (normalized)
wave function for the quantum system under analysis ,
and R represents the 3N -dimensional electronic coordi-
nate. The integral in Equation 1 can then be evaluated
using a Monte Carlo sampling15. A Markov chain Monte
Carlo simulation consists in sampling a collection of con-
figurations of the system used to estimate configurational
integrals such as the one in Equation 1.

In order to obtain meaningful information on the phys-
ical system it is important to use a proper wave function.
Since the exact ground state for physical systems of in-
terest is unknown it is necessary to guess the form of the
ground state wave functions. A large variety of QMC
methods exists, implementing different strategies. In this
study two QMC techniques were used: Variational Monte
Carlo (VMC) and DMC, using the fixed-node approxima-
tion.
In VMC we approximate the ground state of the sys-

tem by defining a trial wave function ΨT (p;R), which is
then plugged in Equation 1; the resulting integral is then
computed using a generalised Metropolis sampling. The
trial wave function has a functional form that is chosen
by taking into account the physical features of the system,
and depends on a set of variational parameters p, which
are optimized to obtain an approximation of the exact
ground state. To optimize the trial wave function we
use the variational principle in quantum mechanics: for
any given Hamiltonian the ground state has by definition
the lowest possible energy. What is done in practice is
computing the energy using the trial wave function

Ep =

∫
dRΨ∗T (p;R)ĤΨT (p;R) =

=

∫
dR |ΨT (p;R)|2Eloc(p;R)

(2)

where we used the local energy Eloc(p;R) defined as

Eloc(p;R) =
ĤΨT (p;R)

ΨT (p;R)
; (3)

By varying the parameters p we can minimize the energy
Ep, thus finding an approximation of the exact ground
state within the chosen class the trial functions. Another
property that is used in wave function optimization is
the zero-variance principle: for a given Hamiltonian, the
energy variance of each energy eigenstate is zero. In
order to use both the variational and the zero-variance
principles the quantity that is optimized in practice is a
linear combination of the energy and its variance.

While VMC allows estimates of ground state properties
starting from a relatively simple trial wave function, VMC
results are typically not realistically accurate. In order
to improve these results projection methods have to be
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used. Projection methods are a class of QMC methods
that use imaginary time evolution to filter out excited
states contribution from the trial wave function, allowing
accurate computation of ground state properties. While
in principle projection techniques are exact, the fermionic
sign problem in practice prevents the exact evaluation of
quantum observables; to avoid the sign problem the fixed-
node approximation is used. With this approximation
the results will still be approximate, but they will remain
variational, and significantly more accurate than the ones
obtained with VMC (i.e. the computed energies and
energy variance will be lower).
Several different projection QMC methods exist.

Among those, one of the most commonly used in elec-
tronic structure calculations is DMC. If we consider a
wave function Ψ(R), a Hamiltonian with a potential en-
ergy term U(R) and we define the imaginary time as
τ = it in atomic unit we have

ĤΨ(R) = −1

2
∆Ψ(R) + U(R)Ψ(R) =

∂Ψ(R)

∂τ
; (4)

the basic idea at the foundation of DMC is that there is a
strong analogy between the imaginary time Schrödinger
equation and a diffusion equation (coming from the ki-
netic part of Ĥ) with an additional branching term (from
U(R)). It is thus possible to simulate the imaginary
time propagation by using the process of diffusion and
branching of classical random walkers, initially distributed
according to a trial wave function (obtained via the op-
timization procedure described above). The practical
details of the implementation of DMC can be found in
literature16,17. The important things to stress here is
that accuracy of fixed-node DMC result depends on the
accuracy of the nodal surface of the trial wave function,
and that the results are variational with respect to the
nodal location.
All QMC computations in the present work were per-

formed using the QMCpack software18. We used QMC
calculations to determine the adsorption energy of Li
atom adsorbed on a graphite substrate as a function of
the separation between the Li atom from the surface. If
z is the distance between the Li atom and the carbon
surface the adsorption energy profile Eads(z) is defined as

Eads(z) = ELi+C(z)− (ELi + EC) (5)

where ELi+C(z) is the energy of a system made of a
graphite substrate with a Li atom at a distance z and ELi

and EC are the energy of the isolated atom and graphite
respectively. The latter is modeled using two graphene
layers made of 50 C atoms each, with an AB stacking
(which corresponds to a 5×5×1 supercell). The energy
profile was computed for three different setups: with the
Li atom lying above the centre of a C hexagon (hollow
site), above a C atom (top site) and above a C–C bond
(bridge site).

All simulations were done using a simulation box with

cell parameters (in Å)12.336 0.000 0.000
6.168 10.683 0.000
0.000 0.000 30.000


The height of the simulation box was selected after sys-
tematically testing the convergence of the total energy
as a function of the amount of vacuum between periodic
images in the z direction of the graphite bi-layer using
eDFT (Section S1 of the Supporting Information) using
the PBE functional. Dispersion corrections19 were then
used to relax the carbon bilayer structure for the selected
box height of 30 Å, yielding a distance between the two
planes of 3.47 Å which was used for the QMC computa-
tions. This value is slightly larger than the one provided
in previous QMC studies (3.43 Å),20,21 but this should not
impact the computed adsorption energies. Previous inves-
tigations systematically studied convergence with the size
of the supercell and the number of twists for single and
a bilayer systems20–22. Here for computational reasons,
we assumed the mentioned 5x5x1 supercell and we used
a 4x4x1 twist grid (corresponding to eight nonequivalent
twists)23 based on the convergence of the corresponding
DFT energy. Although convergence of the DFT total en-
ergy with twist grid is reached only for a 8x8x1 k-points
grid, the residual effect is less than 1mHa. Moreover in
the property we are aiming, namely the absorption energy
of the Lithium atom, size effects should largely cancel
since the same simulation cell and twist grid were used
in all the simulations, including the ones of the isolated
atom and substrate.
In all VMC and DMC simulations we used trial wave

function with a Slater–Jastrow form

ΨT (p;R) = J(p;R)D(R) (6)

where J(p;R) is a Jastrow term describing electronic
correlation, with one and two body terms, and D(R) is a
Slater determinant, ensuring the correct fermionic anti-
symmetry. The single particle orbitals used in the Slater
determinant were evaluated using DFT with a PBE24

functional. The orbital calculations were performed us-
ing the Quantum ESPRESSO software25,26. In the
DFT calculations a plane wave basis set was used, with
a cutoff at 150 Ry, using norm conserving pseudopoten-
tials for both the Li and C atoms. In QMC simulations
the Burkatzki–Dolg–Filippi set of pseudopotentials was
used27. Wave function optimization is performed using
the Linear method28, and iterated until the optimized
energy converges. Only the Jastrow part of the trial wave
function is optimized. More information on the Jastrow
part of the trial wave function can be found in section S2
of the Supporting Information. We report DMC results
obtained using an imaginary time step of τ = 0.01 Ha−1
and a population of 12000 to 16000 random walkers. Pre-
vious QMC simulations of a similar system22 shown that
using these parameters leads to energies converged to a
few mHa per atom. We also note that we are performing
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QMC simulations for a system whose size was deemed
large enough to give an accurate description of Li in prox-
imity of carbon. Size consistent, non local T–moves29 are
used, as well as the ZSGMA branching scheme30.

B. Electronic Density functional theory

Electronic DFT calculations were performed using the
Quantum ESPRESSO electronic structure code.25,26
To be consistent with the QMC result, an identical sim-
ulation cell was considered, consisting of one hundred
carbon atoms divided amongst two graphite layers with
AB stacking (which corresponds to a 5×5×1 supercell).
A kinetic energy cutoff of 40 Ry was used.

We compared the adsorption energy profiles for two
series of XC functionals. In the first series we used the
LDA,31 PBE24 and BLYP32,33 which neglect the London
dispersion interaction. Then we included the latter using
either the D2 correction parameterized by Grimme,34
or through the use of the vdW-DF-C09 functional35–37
implemented in the Libxc library.38 Rappe-Rabe-Kaxiras-
Joannopoulos ultrasoft (rrkjus) pseudopotentials39 were
used for both carbon and lithium atoms.
Several uniform Monkhorst-Pack grids of 1×1×1,

2×2×1, 3×3×1 and 5×5×1 k-points were tested for a
single Li distance of 2.4 Å from the graphite surface (see
Supporting Information Section S3). The difference be-
tween the total energy of the 1×1×1 and 2×2×1 grids is
roughly 26 meV and thus the 1×1×1 grid was used for
the calculations throughout this work. Additionally, an
extended system consisting in four carbon layers instead
of two was simulated to check the effect of the number
of graphite layers; almost no difference was observed for
the absorption energy profile as shown in Section 4 of the
Supporting Information.
Like for the QMC calculations, the lithium atom was

systematically above the three adsorption sites. The en-
ergies were converged at each step to an accuracy of
1 × 10−6 Ry. To align the various curves, the non-
interacting systems (i.e. graphite and lithium atom sepa-
rately) were computed for each XC functional, and the
binding energy was obtained according to Equation 5.

C. Molecular Density Functional Theory

Solvation free energies were computed with
MDFT14,40,41 while the polarisability of the graphite
sheets was handled using fluctuating Gaussian charges
method14,42,43. MDFT is a flavor of classical density
functional theory (cDFT) developed to study the
solvation properties of molecular solutes into molecular
solvents such as water or acetonitrile. The solvent is
described by its density field ρ(r,ω) which measures the
average number per unit volume of molecules with an
orientation ω at a given position r. The solute acts a
perturbation through an external potential Vext(r,ω)

causing the solvent to deviate from the homogeneous
bulk fluid.
According to the cDFT principles44,45, there exists a

unique functional, F , of the solvent density, ρ, that is
equal to the solvation free energy at its minimum which
is reached for the equilibrium solvent density. To find
an expression for the functional, a common practice is to
start by splitting it into the following sum

F [ρ(r,ω)] = Fid[ρ(r,ω)] + Fexc[ρ(r,ω)]

+

∫∫
ρ(r,ω)Vext(r,ω)drdω. (7)

In Equation 7, the first term of the rhs is called ideal
and corresponds to the entropic contribution of a non-
interacting fluid with the same density. The second term
is due to solvent-solvent interaction and is often called the
excess term while the last term is due to solute-solvent
interaction and thus called the external term.

Exact expressions exist for the ideal and external func-
tionals that can be computed numerically. The excess
part, however, requires approximations. It can be ex-
pressed as an infinite Taylor expansion around the homo-
geneous bulk solvent density ρb,

Fexcess[ρ] =− kBT

2

∫∫∫∫
∆ρ(r,ω)c(2)(r − r′,ω,ω′)

∆ρ(r′,ω′)drdωdr′dω′ + FB [ρ].

(8)

In Equation 8, ∆ρ(r,ω) = ρ(r,ω)− ρb, kB is the Boltz-
mann constant, T is the temperature and c(2) is the
two-body direct correlation function of bulk solvent. FB

is so-called bridge functional that collects all the terms
higher than quadratic, involving many-body direct corre-
lation functions of the bulk solvent. A common way to
approximate the excess functional is to ignore the bridge
functional, i.e. FB = 0, resulting to the “HNC” functional
because it is equivalent to using the hypernetted chain
(HNC) closure for the solute-solvent correlations in the
molecular Ornstein-Zernike equation41. In this work, we
use a very simple bridge functional46,47 based on weighted
density approximation that is known to correct well for
the dramatic pressure overestimation of the HNC approx-
imation. Water is modeled with the SPC/E force field
while the external potential Vext is created by the graphite
electrodes and the lithium ion whose interactions are de-
scribed as the sum of Lennard-Jones and electrostatic
interactions. The Lennard-Jones and charge parameters
of the 4 types of atoms involved are collected in Table
I. For the carbon atoms, the choice of the force field of
Werder et al.48 was made based on a previous QMD study,
in which it was shown to provide a good estimate of the
energy of adsorption of a water molecule on a graphene
surface.11
The electrode charges are represented with Gaussian

charge distributions with a width of 0.40 Å. These partial
charges are calculated by enforcing a uniform potential
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Atoms σ (Å) ε (kJ/mol) charge (e)
O 3.166 0.65 -0.8476
H 0 0 0.4238
Li49 2.216 0.07648 1
C48 3.214 0.2364 Fluctuating

TABLE I: Force-field parameters used in the MDFT
simulations. Mixed parameters are computed using the
Lorentz-Berthelot rules (except for the C-Li interaction,

which does not affect the MDFT results).

within the whole carbon electrode, with an overall elec-
troneutrality constraint (hence forcing the total charge
on the carbon to be equal to -1).42. Electrode charges are
optimized self consistently with the functional minimiza-
tion through an iterative scheme14. In the first step, the
functional of Equation 7 is minimized with no charges on
the lithium and the carbon atoms. Then, carbon charges
are optimized in the presence of the inhomogeneous water
charge density and of the lithium cation. The functional
is minimized again but in the presence of lithium charge
and the previously determined electrode charges. The
process is repeated until it converges, with a convergence
criterion of 5× 10−4 on the relative change in solvation
free energy between two consecutive steps.
MDFT calculations were performed using an in-house

Fortran code and electrode charges are optimized us-
ing the constant potential molecular dynamics software
MetalWalls50. We use a 24.672× 21.366× 40 Å3 simula-
tion box (the unit cell used in QMC is replicated twice in
x and y directions) with 74× 64× 120 grid nodes and an
angular grid of 196 orientations per grid node. We run
calculations for a distance z between the electrode plane
and the lithium varying between z = 1.0 Å and z = 10 Å
with an increment of 0.2 Å between 1 Å and 6 Å and of
0.5 Å otherwise.

III. RESULTS AND DISCUSSION

A. Benchmark of the DFT functionals with QMC

We first discuss the QMC results for the three adsorp-
tion sites. QMC total energies and adsorption energies
are reported in Table II.
From Table II, it appears clearly that the adsorption

energies are larger for the top and bridge sites than for
the hollow site for distances of 1.5 and 2.0 Å in good
agreement with previous eDFT results from the literature
and from the current study. At a larger distance of 3.0 Å
the three sites display similar energies, which shows that
the difference between them has a short-range character.
Due to the high computational cost of DMC, further
lithium-carbon distances were only considered for the
hollow site. We obtained a binding energy Eb of -1.08 eV
for a lithium-surface distance of 1.8 Å. We also observe a

EV MC (Ha) EDMC (Ha) Eads (eV)
Graphite -567.2021(4) -568.531(1) –
Li atom -0.198050(9) -0.198314(3) –

Hollow site
1.0 -567.3573(5) -568.693(1) 0.98(4)
1.5 -567.4297(4) -568.763(1) -0.92(5)
1.8 -567.4341(4) -568.769(1) -1.08(5)
2.0 -567.4313(5) -568.768(1) -1.06(4)
3.0 -567.4006(5) -568.742(1) -0.35(4)
4.0 -567.4011(4) -568.741(1) -0.32(5)
8.0 -567.3935(4) -568.730(2) -0.03(6)

Top site
1.5 -567.3663(4) -568.705(2) 0.65(5)
2.0 -567.4226(4) -568.761(1) -0.87(4)
3.0 -567.4005(5) -568.740(2) -0.31(4)

Bridge site
1.5 -567.3799(4) -568.716(2) 0.36(4)
2.0 -567.4251(4) -568.760(1) -0.83(3)
3.0 -567.3999(4) -568.742(1) -0.35(3)

TABLE II: QMC energies for the adsorption of lithium
on graphite, for the three different sites for several

lithium-carbon distances reported in the first column (in
Å). Second column are VMC results while third column
are DMC results. The last column are the adsorption

energies computing with DMC using equation 5.

somewhat peculiar behavior since the adsorption energy
is rather similar for distances of 3 and 4 Å. By analyzing
the corresponding electronic densities as shown on Figure
1A, we observe that this correspond to the region in which
the electron transfer occurs. For distances lower than 3 Å
the energies correspond to the adsorption of a lithium ion
on a polarized carbon surface while for distances greater
than 4 Å the system corresponds to neutral lithium atom
and carbon material.
The adsorption profiles obtained for the hollow site

for the LDA, BLYP, PBE, BLYP+D2, PBE+D2 and
dW-DF-C09 functionals are compared with the DMC
benchmark on Figure 1B. The LDA results in a strong
overbinding, which is expected. The comparison with the
other functionals is more surprising. The QMC results lie
between the BLYP and the BLYP+D2, while all the other
functionals predict too low adsorption energies. However,
as noted by Valencia et al., the binding energy (defined
as the minimum of the adsorption energy profile) should
be approximately given by7

Eb ≈ Eb(Li+)− (IP [Li]−Wf [Graphite]) (9)

where Eb(Li+) is the binding energy of the lithium ion,
IP its ionization potential and Wf the work function
of graphite. The observed variation may therefore be
due to different values for IP and Wf from the various
functionals.

By visualizing the electronic density of the system using
various DFT functionals (Supplementary Figure S6), we
also observe that they yield similar results as the QMC
calculations up to 3 Å while some discrepancies are ob-
served at a larger distance of 4 Å. In the present work, we
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FIG. 1: A) Electron density around a Li atom adsorbed on a graphite substrate, computed via quantum Monte Carlo,
for different atom–substrate distances. The densities were obtained by computing the overall electronic density of a
system with a Li atom adsorbed on graphite, and subtracting the density of the isolated substrate, in absence of the

adsorbed atom. All shown isosurfaces correspond to a density of 6 · 10−4 electrons/Å3. B) Comparison of the
adsorption energies obtained with various DFT functionals and DMC for the adsorption of the lithium on the hollow

site of graphite. C) Same as B) but substracting the adsorption energy at a distance of 3 Å.
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FIG. 2: Comparison of the fitted potential with the QMC and vdW-DF-C09 energies.

are mostly interested in developing an accurate potential
for the adsorption of the lithium ion. Consequently, we
performed a second comparison of the various functionals
in which the energy at z = 3 Å is subtracted. The results
are shown on Figure 1C. The discrepancy between the var-
ious functionals is somewhat lower. The best agreement
is now obtained with BLYP, PBE and the vdW-DF-C09
functionals, while the others predicts overbinding. For
the two former approximations, the good agreement may

be fortuitous since they do not account for the dispersion
effects. However, this points towards an overestimation
of the dispersion effects when using the D2 correction.
Indeed, in the case of the lithium ion, only two semi-core
electrons take part in the interaction, which should result
in a very weak dispersion term. The vdW-DF-C09 func-
tional, which accounts for these effect explicitly and not
through a parameterised term, seems to better catch the
interactions.
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B. Fitting the carbon–lithium potential

In order to incorporate solvent effects, it is necessary to
develop accurate classical interaction potentials. It is not
possible to fit them directly on the QMC calculations due
to the limited number of data. Instead, we pick the most
accurate functional, vdW-DF-C09, and calculate the Li–
graphite binding energy for a large number of distances.
The intermolecular interaction should in principle account
for four different effects: electrostatics, polarization, short-
range repulsion and dispersion. In our electrostatic model,
the two former effects are explicitly introduced through
the use of a +1 point charge on the lithium and of the
calculation of partial (Gaussian) charges on the carbon
atoms. These partial charges are calculated for each
lithium-carbon distance using the same methodology as
described in II C.

Concerning the short-range repulsion and the dispersion
effects, the two main potentials used in the literature are
the Lennard-Jones and the Born-Huggins-Mayer (BHM)
ones. However, it appears that the electrostatic interac-
tion was sufficient to account for the attractive part of the
binding energy, as shown on Figure 2. The fitted potential
should therefore add very few, if no contribution for the
dispersion interaction, which agrees with the previous
observation on the use of dispersion-corrected functionals.
A well-known drawback of the Lennard-Jones potential is
that it is not possible to fit the short-range repulsion and
the dispersion term separately since they both involve
the same parameters. We have therefore chosen a BHM
potential instead, which analytical form is:

VBHM(r) = A exp (−br)− C6

r6
(10)

where A, b are the parameters describing the intensity
and the range of the repulsion interaction, while C6 is
the dipole-dipole dispersion interactions. In principle
higher order terms could be included for dispersion, but
as discussed above this term is almost negligible in the
case of the lithium ion. The fitted potential reproduces
with a very high accuracy the vdW-DF-C09 for the three
types of adsorption sites as shown on Figure 2. It also
matches very well with the BLYP (not shown on the
figure) as well as the QMC results (on which it was not
fitted) adsorption curves. The corresponding parameters
are A = 91.17, b = 2.518 and C6 = 1.107 (all numbers
are given in atomic units).

C. Adsorption of the lithium ion in the presence of water

The fitted potential can directly be used in any classical
molecular simulation, such as MD. Since we focus here on
the adsorption free energy of the lithium ion on the carbon
surface we prefer to use MDFT which is a computationally
more efficient alternative. The solvation free energy of a
single system can be computed within a few minutes on
a single CPU while it would require tens of CPU hours
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FIG. 3: A) Adsorption free energy for a lithium ion on
the graphite surface in the presence of water, computed
using MDFT, for the three adsorption sites. The energy

variation in the absence of water is also shown for
comparison. B) Contributions to the total free energy for
the hollow adsorption site in the MDFT calculation.

with MD. The free energy profile obtained for the three
adsorption sites in the presence of liquid water are shown
on Figure 3A. The profiles are very different from the
gas phase results. The minimum at ≈ 1.8 Å completely
disappears and is replaced by a strongly repulsive wall.
This shows that there is no preferential adsorption of
lithium on the graphite surface in aqueous phase.

This result is in qualitative agreement with a recent MD
study on the adsorption of hydrated ions on graphene,51
which provided a repulsive free energy profile over the
whole range of considered distances. Yet, the latter study
did not include any Coulombic interaction between the
ion and the carbon surface, which is the main driving
force for adsorption in the gas phase as discussed above.
It is thus interesting to examine the various contributions
to the total free energy, which are provided on Figure
3B. We observe that the electrostatic attraction between
Li and C is in fact counterbalanced by the solvation free
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energy. The latter contains the electrostatic interactions
of the water molecules with both the lithium and the
graphite surface, which results in strong screening effect.
The extent of this screening effect was studied in details
in a recent study focused on gold surfaces:52 The presence
of the water molecules strongly impacts the polarization
of the surface. Consequently, the total free energy is
almost equal to the BHM contribution over the whole
range of distances, except between 2 and 5 Å where the
solvation free energy overcomes the ion-surface Coulombic
interaction, resulting in a more repulsive potential.
The effect of the solvent can be further analyzed by

plotting the density profiles for various distances between
the ion and the surface (Figure 4). At z = 8 Å, two
regions with larger densities emerge, corresponding to the
surface adsorbed water molecules at a distance of 3 Å
from the surface14 on the one hand and to the lithium ion
first solvation shell on the other hand. At a distance of
5 Å the solvation shell starts to overlap with the adsorbed
layer at close contact to the electrode, which results in
small depletion zones in the latter. These depletion zones
remain observable at smaller distances, but the impact on
the free energy becomes negligible w.r.t the large short-
range repulsion between the carbon and the lithium.

IV. CONCLUSION

Two main results were obtained in this work. Firstly,
we provide an accurate set of benchmark energies for
the adsorption of lithium on a graphite surface, using
an accurate QMC approach. This data can be used
in future works to test the accuracy of XC functionals
for such important problems in surface science, or to
parameterize new force fields between the two species.
Here we obtained a very good agreement using a BHM
potential, but different approaches may be proposed in
the future. Secondly, we used the parameterized force
field in order to compute the free energy profile for the
adsorption of a lithium ion at the graphite surface in
the presence of water as a solvent. MDFT was preferred
over classical MD for this calculation due to its much
lower computational cost. We showed that the low energy
minimum obtained in the gas phase completely vanishes,
resulting in an overall repulsive profile over the whole
range of studied lithium–carbon distances. This is due
to the screening of the attractive Coulombic term by the
water molecules on the one hand, and on the other hand
to the interferences between the densities corresponding
to the first adsorbed layer on carbon and to the first
solvation shell of the cation.
The proposed multi-scale approach may be extended

to a large variety of systems in the future. In particular,
it would be interesting to study how adsorption varies
within the alkali and alkali-earth cationic series. The
study of larger organic ions would be very useful for the
scope supercapacitors devices, but this would require
additional work to account accurately for the flexibility of

the ion. Finally, the study of more polarizable electrode
materials such as gold or platinum would be relevant in
the context of catalysis. Changing metal would lead to
very different adsorption properties for the solvent, so
that one can expect large differences in the adsorption
free-energy profiles of ions at electrodes.
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