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Abstract: Electrochemical quartz crystal microbalance (EQCM) and ac-electrogravimetry methods
were employed to study ion dynamics in carbon nanotube base electrodes in NaCl aqueous electro-
lyte. Two types of carbon nanotubes, Double Wall Carbon Nanotube (DWCNT) and Multi Wall
Carbon Nanotube (MWCNT) were chosen due to their variable morphology of pores and structure
properties. The effect of pore morphology/structure on the capacitive charge storage mechanisms
demonstrated that DWCNT base electrodes are the best candidates for energy storage applications
in terms of current variation and specific surface area. Furthermore, the mass change obtained via
EQCM showed that DWCNT films is 1.5 times greater than MWCNT films at the same potential
range. In this way, the permselectivity of DWCNT films showed cation exchange preference at cath-
ode potentials while MWCNT films showed anion exchange preference at anode potentials. The
relative concentration obtained from ac-electrogravimetry confirm that DWCNT base electrodes are
the best candidates for charge storage capacity electrodes, since they can accommodate higher con-
centration of charged species than MWCNT base electrodes.

Keywords: carbon nanotubes; DWCNT, MWCNT; electrochemical quartz crystal microbalance;
EQCM,; electrode/electrolyte interface; ion transfer.

1. Introduction

The development of energy storage systems (supercapacitors/batteries) to decrease
the energy consumption coming from fossil fuels is a way towards a more environmen-
tally friendly society. However, the efficiency of these electrochemical devices depends
on the elements constituting them such as the electrode material, which plays an im-
portant role to achieve better supercapacitor performances [1, 2].

In supercapacitors, the charge storage is based on a reversible adsorption of electro-
lyte ions towards the surface of electrodes [3-8]. Therefore, the selection of the electrode
materials is important due to a certain number of parameters such as: specific surface area,
porosity, structure, electrical conductivity, surface wettability, and electrochemical stabil-
ity to improve the performance of electrodes [2, 9-12]. In this way, carbon nanotubes have
been used for supercapacitors due to their novel properties such as high electrical conduc-
tivity, high charge transport capability, unique pore structure and high specific surface
area where the charges are continuously distributed [13, 14].

However, the ion dynamics studies at the interfaces are experimentally difficult be-
cause there are not many appropriate electrochemical or physico-chemical methods that
provide direct access to this kind of information.

Electrochemical quartz crystal microbalance (EQCM) has been extensively used to
investigate the charge storage mechanisms in porous materials. EQCM is a powerful in
situ technique to measure ionic fluxes at the electrode interfaces, which current responses
(Al) and global gravimetric changes (Am) at the electrode/electrolyte interface are moni-
tored during the electrochemical process. Over the past decade, Levi, M. D, et al. have
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widely employed EQCM to study the charge-compensation mechanism in carbon mi-
cropores and particularly, the effect of specific adsorption of ions with different sizes [15-
20]. Continuing these achievements, EQCM was also used to investigate the charge com-
pensation mechanism between electrode/electrolyte interface [21]and the hydration/solv-
ation effect on the capacitive performance [22, 23]. Recently, EQCM has been employed
to study the electrolyte concentration effect on the capacitive behavior as well as the com-
positional changes in porous films [24]. Finally, EQCM combined with nuclear magnetic
resonance (NMR) has been employed to understand in a deep manner the charge mecha-
nism in the electrical double layer [25].

Another interesting aspect of the EQCM, is the capability to estimate mass and charge
variations simultaneously which provides to access to the derivation of the global mass
per mole of electrons (MPE) exchanged at the electrochemical interface. By this way the
MPE corresponds to its molar mass when one specie is exchanged but if multiple ion
transfer occurs, EQCM remains limited to interpret the contribution of different species
[22, 24]. In order to identify the contribution of different species EQCM equations were
developed incorporating Donnan type electrical double layer models [26]. Furthermore,
EQCM with dissipation monitoring (EQCM-D) can be used to study the viscoelastic prop-
erties e.g. formation of a solid electrolyte interface (SEI) layer as well as the complex mass
changes of the electrodes [27-30]. This acoustic technique permits to identify the effect of
several parameters such as the nature of the electrolytes/ions or the binder on the structure
change of the electrodes [31].

Here, an alternative electrochemical and gravimetric method called ac-electrogra-
vimetry was used to complement the EQCM based methods in the energy storage domain.
Ac-electrogravimetric methodology has been used to study the charge compensation
mechanisms in carbon nanotubes, [32, 33] reduced graphene oxide [34, 35], pseudocapac-
itive metal oxide-based electrodes [25, 36] and nanocomposite electrodes [34, 37]. Re-
cently, it has been employed to investigate the ion insertion mechanisms in aqueous pro-
ton-based batteries [38]. Ac-electrogravimetry is a multi-scale coupled electrogravi-
metric method (quartz crystal microbalance and electrochemical impedance) through
which it provides relevant information concerning: (i) identification and kinetic of elec-
troadsorption/desorption of species at the electrode/electrolyte interface, (ii) separation of
the charged and non-charged species involved at the electrode/electrolyte interface , and
(iii) the relative concentration variations of the species within the material. Therefore, the
ac-electrogravimetric methodology was proposed here to study/compare the capacitive
behavior in different types of carbon nanotube electrodes.

2. Materials and Methods

2.1. Materials
Double Wall CNT (755141-1G, length: 3 um and diameter: 3.5 nm) and Multi Wall
CNT (75517-1G, length: 1 pm and diameter: 9.5) were acquired at Sigma Aldrich Com-

pany.

2.2. CNT Thin Films Electrode Preparation

CNT films were prepared according to the method described in previous papers
[32, 34, 39]. A solution containing 90% carbon (9 mg) CNT powder and 10% (1 mg) poly(vi-
nylidene fluoride-hexafluoropropylene) (PVDEF-HEP) polymer binder in 10 mL of N-me-
thyl-2-pyrrolidone was prepared to elaborate CNT films. Around 8L of this solution was
deposited through “drop-casting “method on a gold electrode which has an effective sur-
face area of 0.20 cm? and keeps connected to a quartz crystal resonator (9 MHz-AWS, Va-
lencia, Spain). After that, the carbon films followed a heat treatment with a heating rating
of ~5°C min! until 120°C for 30 min. This treatment was necessary to eliminate the residual
solvent and improve the linkage of films on QCM electrode. The deposited mass was cal-
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culated by using the Sauerbrey equation, Afn = —ksAm where Afn is the microbalance fre-
quency change, ks is the experimental calibration constant (16.3 x 107 Hz/g-cm2) and Am
corresponds to the mass change. It was got by measuring Af, microbalance frequency
change before and after deposition.

2.3. Morphological and Physical Characterizations

The CNT powders were characterized by Brunauer-Emmett-Teller methods (BET),
X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-
TEM). Details about the characteristics and selected parameters of these equipment are
described in a previous paper [33].

Field emission gun scanning electron microscopy (FEG-SEM) (Zeiss, Supra 55) was
also employed to investigate the surface morphology of the CNT films. In our experi-
ments, FEG-SEM (Field Emission Gun — Scanning Electron Microscope) provides a very
highest resolution imaging compared to regular SEM. The samples were previously pre-
pared onto an aluminum stub with a conductive carbon tape and sputter-coated with gold
(JEOL JEC-1300 Auto fine coater).

2.4. EQCM and ac-electrogravimetric characterization

EQCM measurements were carried out in NaCl aqueous solutions and using a three-
electrode configuration. A lab-made QCM device (Miller oscillator) was employed to
measure frequency shift (Af) of the quartz crystal resonators. A gold electrode of the
quartz resonator was used as the working electrode. Platinum grid and Ag/AgCl (3M KClI)
was used as counter and reference electrode, respectively (See Figure 1). The gravimetric
regime was assured by keeping film thickness acoustically thin (<200 nm).

Potentiostat

RE CE WE
Aux

O O ’

Oscillator Frequency
Circuit Counter

=

|

Quartz Resonator

Electrochemical
Cell

Figure 1. Experimental set-up of an EQCM

A QCM set-up connected to a four-channel frequency response analyzer (FRA, So-
lartron 1254) and a lab-made potentiostat (SOLETEM-PGSTAT) were employed to get ac-
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electrogravimetric measurements. The QCM measurements were carried out under dy-
namic regime, following the potential modulation operating at various frequencies, the
electrochemical system being polarized at selected potentials.

In order to get a dynamic regime a sinusoidal small amplitude potential perturba-
tion was superimposed. The frequency intervals were since 63 KHz until 10 mHz. The ac
response, Al, of the electrochemical system and the mass change, Am, of the working elec-
trode were simultaneously measured, which resulted in the electrogravimetric TF,
(Am/AE(m)) and the electrical TF (AE/Al(®)). These transfer functions were obtained sim-
ultaneously at a given potential and frequency modulation, f (pulsation, ® = 2zf). The
working principle and ac-electrogravimetric measurement setup have been detailed pre-
viously [34, 36, 40, 41].

3. Results and Discussion

3.1. Material characteristics

DWCNTs and MWCNTs constituting the composite electrodes were characterized
by HRTEM. The images in Figures 2A and C indicate that the diameter of the DWCNTs
and MWCNTs is between: about ~ 4 nm and ~8 nm respectively. Nitrogen sorption meas-
urements and XRD were used to characterize the specific surface area and crystallinity of
the CNTs. The Brunauer—-Emmett-Teller (BET) specific surface area of the DWCNTs and
MWCNTs were estimated to be 552 m?-g~! and 300 m2.g respectively and the crystallinity
attributed to the hexagonal graphitic structure [42] were observed on (002) and (001) re-
flections (See Figures SI.1 and SI.2). Then, the CNT electrodes were deposited on the gold
patterned quartz resonators. For that, the PVDF-HFP was used as a binder polymer to
adherer the CNT on the gold quartz resonator. Figures 2B and D show a FEG-SEM image
of the DWCNT and MWCNT film electrodes, which reveal a high-density of CNTs bun-
dles.

DWCNT

Diameter: ~ 4 nm

Figure 2. HRTEM images of the DWCNTSs (A) MWCNTs (C) and FEG-SEM images
of, DWCNT (B), MWCNT (D) based thin films deposited on the gold patterned quartz
resonator.
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EQCM study of CNTs in 0.5 M NaCl

The EQCM results of CNT thin films obtained in aqueous electrolytes of 0.5 M NaCl
are shown in Figure 3. A growing capacitive current is observed when the scan rate in-
creases (Figure 3A and B) for all the films. Besides, DWCNT films show a higher capacitive
current than MWCNT films and even more than SWCNT described in previous paper
[32]. This difference in current is probably due to the pore structure of the materials and
its accessibility to the electrolyte ions which is contradictory with the specific surface area
determined on the CNT powder but not with the CNTs films. In this study, DWCNT and
MWCNT films show quasi-rectangular shaped responses indicating that the charge stor-
age capacity is mainly due to the reversible adsorption/desorption of electrolyte ions. The
slight distortion from a perfect rectangular shape is attributed to the presence of a slight
faradaic contribution to the charge storage as already mentioned [32, 33].
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Figure 3. EQCM results of DWCNT (A), and MWCNT (B) measured in 0.5 M NaCl
aqueous electrolyte. The average molecular weight values of the species involved in the
electrochemical process showed as a function of the potential obtained from the reduc-

tion branch of EQCM data are presented in panels C-D.

Regarding the mass changes, the DWCNT and MWCNT follow the same order as the
current values, i.e., Ampwent>Amumwent. Also, the reversibility of the mass response is better
appreciated in DWCNT than in MWCNT (Figure 3A and B) where a large hysteresis was
observed in MWCNT. For the DWCNT, the mass change is higher at cathodic potentials
than at anodic potentials while in MWCNT, the mass change is slightly more significant
at anodic potentials than at cathodic potentials. It is also observed that the PZC is shifted
slightly towards more cathodic potentials (Figure 3B). The PZC or PZM is the point where
the charge/masse is equal to zero and these corresponds to the potentials of 0.075+0.25 V
for DWCNT and -0.075£0.25 V for MWCNT follow the following order: PZMpwent<
PZMwmwent. In other words, DWCNT films show cations exchange preference while
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MWCNT films show anions exchange preference at same potential range. Also, the V-
shape observed in the mass changes (Figure 3A and B) is due to the selective adsorp-
tion/desorption of cationic and anionic species in the potential range [32, 43].

The average molecular weight values, i (= FE&x l), of the species involved in the
dq dat i

electrochemical process showed as a function of the potential are obtained from the re-
duction branch of EQCM data presented in Figure 3A and B.

Figure 3C and D show the average molecular weight values of the electroadsorbed
species if only one ion is transferred. The values are calculated as a function of the applied
potential in the NaCl electrolyte. The values vary in the range of 50 to -35 g.mol* and 180
to-70 g.mol", for the DWCNT and MWCNT thin films, respectively. From the two Figures
3C and D, it should be noted that for anodic potentials, positive Fdm/dq values are esti-
mated which corresponds to anion contribution. As for cathodic potentials, negative
Fdm/dg values were calculated indicating the cation contribution. In all the cases, higher
or lower atomic weight compared to Na* or Cl- ions are found which indicates a complex
ion transfer behavior associated with solvent contribution. The observed higher values
further indicate that the ions are hydrated and/or accompanied by free solvent molecules
during their transfer in the same direction. Particularly in MWCNT, higher values at an-
odic potentials are observed which could correspond to anions accompanied by free sol-
vent molecules.

3.3. Ac-electrogravimetric study of CNT thin film electrodes in 0.5 M NaCl.

Analysis of ac-electrogravimetric responses of DWCNT and MWCNT film electrodes
are presented in Figure 4 in a comparative manner at a selected potential (-0.4V) in the
cathodic part.

A
First, the charge/potential transfer functions (TFs), é (@), permit a suitable separa-

tion of the ionic contributions, however, without any possibility to identify the ionic spe-
cies involved.

In figures 4A and C for DWCNT and MWCNT films respectively a one big loop is
observed which can be assigned to only one specie. However, two species can be also
assigned regarding that the time constants of ions are not really different from each other.

Am
To clarify these ideas, the mass /potential transfer functions, AE (@), is used. Figures

4B and D show a big loop in the third quadrant from 100 to 1 Hz which is characteristic
of cation and free solvent molecules in the same flux directions, as described previ-
ously[40, 41].

The experimental TFs in Figure 4 were fitted using the Equations A2-A3 (Appendix
A): firstly, the number of species intervening and their respective Ki and Gi parameters

AE A
were estimated from E(a)) or —q(a)) . These two key parameters were also used for

AE

Am
the fitting of the experimental AE () TF. Then, identification of the involved species was

Am
achieved by fitting the experimental data with the theoretical AE () TF which is shown

in equation A4 where the molar masses of the species (M) intervene in this equation. Here,
for two films, the molar masse represents H* (c1) and Na*H20 (c2) for cations and free
solvent (s) molecules in the same flux direction (Figure4). Furthermore, at selected poten-
tial (-0.4V), there is no anion contributions which is coherent in this potential region [32,
33].
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The presence of two different cationic species and the free solvent molecules contri-
bution estimated by simulating the experimental data was further confirmed by a fair
analysis of the partial electrogravimetric transfer functions, for example, by removing the

ds
c2 contribution and calculating A_EJ ((D) , by removing the c1 contribution and calculating
th

c2s
;—‘;‘ (@, (Equations (A5) and (A6), no anion contribution at -0.4 V). The fitting results
th

concerning the partial electrogravimetric transfer functions are given in Figure SL.3. A
good fit also appears for the partial TFs including the same group of parameters, reinforc-
ing the hypothesis of the different ion contributions (Table 1).

Table 1. K (kinetics of transfer), and Gi (inverse of the transfer resistance), Rti (transfer
resistance) values extracted from the fitting results from ac-electrogravimetric measure-
ments in aqueous 0.5 M NaCl at -0.4 V vs. Ag/AgCl for DWCNT and MWCNT films.

Mi (g.mol?) Species Ki Gi Rti=1/FGi
identification (cm.s™) (mol. s'.cm2.V-1) ohm.cm?
DWCNT
c2 23+18 Na*.H,O 2.89x10°3 4.65 x 10 2.22
S 18 H.O 6.28 x 10 9.11x 107 11.37
cl 1 H* 3.64 x 10° 1.39x 108 745.52
MWCNT
c2 23+18 Na*".H.O 5.66 x 10°® 1.10x 10 9.42
S 18 H.O 5.03 x 10* 5.23x 10°® 1.98
cl 1 H* 2.39 x 10* 3.58x 10° 2894.61

In addition, the species contribution was seen previously using electrochemical mod-
ulation showing different kinetics of transfer [44] e.g. Hillman et al. monitored the kinetic
of species in nickel hydroxide thin films by combining EQCM and probe beam deflection
(PBD) [45-47].

Figure 4 shows the ac-electrogravimetric results at - 0.4V vs. Ag/AgCl. In fact, it was
measured from -0.45 V to 0.45 V vs. Ag/AgCl to have a complete electrochemical explora-
tion of our system. The nature of the species (Mi) and the corresponding Ki and Gi con-
stants were estimated as a function of potential [34, 36, 48].

Figure 5 shows the variation of the constant transfer kinetics, Ki, of the species as a
function of the applied potential. Based on the Ki values presented in Figure 5A and B, the
Na*H20 and Cl-ions are the fastest of all species for SWCNT and MWCNT films. Here,
the number of water molecule associated to the sodium ions is found to be n=1 for all the
potentials. Furthermore, the transfer kinetics of free water molecules are somewhat close
to the values of the chlorine ions at anode potentials. In addition, these water molecules
accompany the transfer of Na*.H20 and CI, most likely due to an electrodragging phe-
nomena [32, 33].
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276 Finally, the H* ion is the slowest species at cathodic potentials for DWCNT and
277 MWCNT films (Figures 5A and B ) showing similar order of magnitude of Ki values which
278 is coherent with their substantially lower concentration in the media.
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Figure 5. Kinetic constants of interfacial transfer, Ki DWCNT (A), MWCNT (B) esti-
mated from the fitting of the ac-electrogravimetric data and measured in aqueous 0.5M
NaCl.
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In order to quantify the role of each species, ==

AC;
metric fitting. Figure 6 shows the integration of A_EI against potential gives the rel-

w—0

ative concentration change, (Ci-Co) of the charged and non-charged species. For MWCNTs
(Figure 6B), the (Ci-Co) values of the H20 are higher than the (Ci-Co) values of the Na*.H:0O,
Cl- and H~.
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Figure 6. Evolution of the relative concentration, Ci-Co, for DWCNT (A), MWCNT
(B) of the charged and non-charged species over the applied potential and measured in
aqueous 0.5M NaCl

In contrast to MWCNT, in DWCNTs, the evolution of relative concentration of spe-
cies presents a different trend. In comparison with the other species, the (Ci-Co) values of
the Na*.H20 are higher than the (Ci-Co) values of H* and H20 at cathode potentials (Figures
6A). In conclusion, these results indicate that DWCNTSs appear to be the best candidate
for charge storage capacity electrodes, since it can accommodate higher concentration of
charged species in DWCNTS than in MWCNTs.
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4. Conclusions

Carbon nanotubes (CNTs) of “double-walled” (DWCNT), and “multi-walled”
(MWCNT) films were elaborated on gold electrodes of microbalance and tested in NaCl
aqueous electrolyte. The effect of pore morphology/structure but also roughness or hy-
drophilicity over the classical electrochemical responses demonstrated that DWCNT are
better candidates for energy storage applications than MWCNT base electrodes in terms
of current/mass variation and permselectivity of cations. The mass change obtained via
EQCM showed that DWCNT films is 1.5 times greater than MWCNT films at the same
range of potential. In this way, the permselectivity of DWCNT films showed cation ex-
change preference at cathode potentials while MWCNT films showed anion exchange
preference at anode potentials. The relative concentration obtained from ac-electrogra-
vimetry confirm that DWCNT base electrodes are the best candidates for polarizable elec-
trodes, since they can accommodate higher concentration of charged species than
MWCNT and even more than SWCNT base electrodes described in previous paper [32].

Appendix A

AC;
For different types of CNT films, the concentration transfer function, A_El (w), of
th

cationl (c1), cation 2 (c2), anion (a) and free solvent (s)) were calculated through:

AC;

gl (@) =5 (A1)

jwdf+ K;

where w =27tfis the pulsation, dris the film thickness , Ki represents the kinetics trans-
fer, whereas Gidescribes the ease/difficulty of ionic species (c1 and c2) to be transferred at
the electrode/electrolyte interface. Also, the transfer resistance, Rf; can determined
through Gi using the following expression: Rti= 1/FGi where F is the Faraday number [38-
40].

AE
The experimental data of the electrochemical impedance a7 (w) and the
th

charge/potential TF (w), were fitted using theoretical transfer functions given in

Aq
§ E|th
Equations (A2) and (A3). In this case, two cations, c¢I and c2 and anion, 4, are involved in
the charge compensation process.

-1
AE . G G G
—| () = |jwdf (——+ —FT2——-—"1 (A2)
Al'lgn Jwdf+Kcq Jwdfr+Kco Jwdf+Kq
A G G G
2l (w) = dgF ( 42 _ ) (A3)
AEltpn jwdg+Keq Jwdg+Kco jwdr+Kq

. . . . A .
The theoretical electrogravimetric transfer function, £| (w), can be estimated,
th

taking into account the charged/uncharged species contribution:

Am G 1 GCZ Ga GS
— w)=df | Mgy ———+ M, ,—————+M M
AE ltp ( ) f( c1 jwdg+Kcq + €2 jwdg+Kca + €z jwdf+Ka + Sjwdf+Ks

) Ay

In Equation (A4), Mc1, M2, Mo and M are the atomic weight of involved species.
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From the theoretical overall electrogravimetric transfer function (Equation A4), it is

possible to calculate the theoretical partial transfer functions by removing the c2 contri-

Am|c€las Am|€2as

bution, calculating v (w) ; or the c1 contribution, calculating; v (w); or the
t t

clc2s
(w), as shown in the following equations:

anion contribution calculating; 5

Am clas

AE |y
Gs

S jwdg+Ks

Ga
Jwds+Kqg

(@) = dy (Mo = Me2) 722+ (Mo — M)

jwds+Kc
(A5)

c2as Gen

jwdf+Kcz

Am

AE

@) = dp (M — M)
Gs

Tor) (49

@) = dp ((Mer = Me) 7o+ (Mep = Mer) i

clc2s
Gs

+ (Mg MCl)def—ma +

Am
AE

]wdf+K ]wdf+l(cz
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