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Invasion fronts and adaptive dynamics in a model for the growth of

cell populations with heterogeneous mobility

T. Lorenzi∗ B. Perthame† X. Ruan†

March 17, 2022

Abstract

We consider a model for the dynamics of growing cell populations with heterogeneous mobility
and proliferation rate. The cell phenotypic state is described by a continuous structuring variable
and the evolution of the local cell population density function (i.e. the cell phenotypic distribution
at each spatial position) is governed by a non-local advection-reaction-diffusion equation. We report
on the results of numerical simulations showing that, in the case where the cell mobility is bounded,
compactly supported travelling fronts emerge. More mobile phenotypic variants occupy the front
edge, whereas more proliferative phenotypic variants are selected at the back of the front. In order to
explain such numerical results, we carry out formal asymptotic analysis of the model equation using
a Hamilton-Jacobi approach. In summary, we show that the locally dominant phenotypic trait (i.e.
the maximum point of the local cell population density function along the phenotypic dimension)
satisfies a generalised Burgers’ equation with source term, we construct travelling-front solutions
of such transport equation and characterise the corresponding minimal speed. Moreover, we show
that, when the cell mobility is unbounded, front edge acceleration and formation of stretching fronts
may occur. We briefly discuss the implications of our results in the context of glioma growth.

2010 Mathematics Subject Classification. 35R09; 35Q92; 35B40; 35C07; 35F21
Keywords and phrases. Heterogeneous cell populations; Heterogeneous mobility; Invasion fronts;
Adaptive dynamics; Non-local advection-reaction-diffusion equations

1 Introduction

Background Mathematical models formulated as reaction-diffusion equations with non-local reac-
tion terms have been increasingly used to achieve a more in-depth theoretical understanding of the
mechanisms underlying the spatial spread and the phenotypic evolution of populations with hetero-
geneous motility [4, 9, 10, 11, 13, 46].

In these models, the phenotypic state of each individual is described by a continuous structuring
variable, and the model itself consists of a balance equation for the local population density function
(i.e. the phenotypic distribution of the individuals at each spatial position). As is the case for
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the classical Fisher-KPP model [20, 31], individuals are assumed to undergo undirected, random
movement, which translates into a linear diffusion term. Additionally, intrapopulation variability
of individual motility is taken into account by letting the diffusion coefficient be a function of the
structuring variable. Moreover, possible changes in individual motility are conceptualised as transitions
between phenotypic states, which are modelled through an integral or a differential operator. Finally,
in analogy with the non-local version of the Fisher-KPP model [8, 27], most of these models rely on the
assumption that the population undergoes logistic growth at a rate that depends on the local number
density of individuals (i.e. the integral of the solution with respect to the structuring variable), which
is described via a non-local reaction term.

Among these models, the model for the cane toad invasion presented in [7] has received consid-
erable attention from the mathematical community over the last few years. Analysis of this simple
yet effective model has made it possible to find a robust mechanistic explanation for the empirical
observation that highly motile individuals are, as such, more likely to be found at the edge of the
invasion front, and has helped elucidate the way this form of spatial sorting can promote acceleration
of the invasion front [41, 42, 43, 47]. In particular, the existence of travelling-front solutions and the
occurrence of spatial sorting in the case of bounded motility has been studied in [10, 11, 12, 46], while
front acceleration in the case of unbounded motility has been investigated in [9, 11, 13]. Furthermore,
an evolution equation for the dynamic of the maximum point of the local population density function
along the phenotypic dimension (i.e. the dominant phenotypic trait) at the edge of the front has been
formally derived in [11].

Content of the paper We consider a model for the dynamics of growing cell populations with
heterogeneous mobility and proliferation rate. In analogy with the models considered in the afore-
mentioned studies, intra-population heterogeneity is here captured by a continuous structuring variable
representing the cell phenotypic state and the model consists of a balance equation for the local cell
population density function. However, in contrast to the aforementioned studies, such a balance equa-
tion takes the form of a non-local advection-reaction-diffusion equation whereby the velocity field and
the reaction term are both functions of the structuring variable and of the local cell density. This
leads to the emergence of invasion fronts with compact support and brings about richer spatio-temporal
dynamics of the dominant phenotypic trait throughout the front.

Outline of the paper The remainder of the paper is organised as follows. In Section 2, we describe
the model and the main underlying assumptions. In Section 3, we present the results of numerical
simulations, which were obtained using the numerical methods detailed in Appendix A. In Section 4,
we carry out formal asymptotic analysis of the model in order to provide an explanation for such nu-
merical results. In Section 5, we discuss the main results of numerical simulations and formal analysis.
Moreover, we briefly explain how these mathematical results may shed light on the interplay between
spatial sorting and natural selection that underpins tumour growth and the emergence of phenotypic
heterogeneity in glioma. Finally, we provide a brief overview of possible research perspectives.

2 Statement of the problem

A model for the dynamics of heterogeneous growing cell populations We consider a
mathematical model for the dynamics of a growing population of cells structured by a variable
y ∈ [0, Y ] ⊂ R+, which represents the phenotypic state of each cell and takes into account intra-
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population heterogeneity in cell proliferation rate and cell mobility (e.g. the variable y could represent
the level of expression of a gene that controls cell proliferation and cell mobility). The population
density at position x ∈ R and time t ∈ [0,∞) is modelled by the function n(t, x, y), the evolution of
which is governed by the following non-local partial differential equation (PDE)

∂tn− αµ(y) ∂x (n∂xρ(t, x)) = R(y, ρ(t, x))n+ β ∂2
yyn,

ρ(t, x) :=

∫ Y

0
n(t, x, y) dy,

(x, y) ∈ R× (0, Y ), (1)

subject to zero Neumann boundary conditions at y = 0 and y = Y .

The second term on the left-hand side of the non-local PDE (1) represents the rate of change of the
population density due to the tendency of cells to move toward less crowded regions (i.e. to move
down the gradient of the cell density ρ(t, x)) [3, 14]. The function αµ(y), with α > 0, models the
mobility of cells in the phenotypic state y. Without loss of generality, we consider the case where
higher values of y correlate with higher cell mobility and, therefore, we let µ(y) be a smooth function
that satisfies the following assumptions

µ(0) > 0,
dµ(y)

dy
> 0 for y ∈ (0, Y ]. (2)

Moreover, the first term on the right-hand side of the non-local PDE (1) represents the rate of
change of the population density due to cell proliferation and death. The function R(y, ρ(t, x)) models
the fitness (i.e. the net proliferation rate) of cells in the phenotypic state y at time t and position x
under the local environmental conditions given by the cell density ρ(t, x). We let R(y, ρ) be a smooth
and bounded function that satisfies the following assumptions

R(Y, 0) = 0, R(0, ρM ) = 0, ∂ρR(·, ρ) < 0, ∂yR(y, ·) < 0 for y ∈ (0, Y ], (3)

with 0 < ρM < ∞ being the local carrying capacity of the cell population. Here, the assumption on
∂ρR corresponds to saturating growth, while the assumption on ∂yR models the fact that more mobile
cells may be characterised by a lower proliferation rate due to the energetic cost of migration [1, 2,
22, 23, 24, 25, 26, 28, 34, 39]. In particular, we will focus on the case where

R(y, ρ) := r(y)− ρ with r(Y ) = 0, r(0) = ρM ,
dr(y)

dy
< 0 for y ∈ (0, Y ], (4)

with r(y) being a smooth and bounded function that models the proliferation rate of cells in the
phenotypic state y.

Finally, the second term on the right-hand side of the non-local PDE (1) models the effects of
spontaneous, heritable phenotypic changes [29], which occur at rate β > 0.

Object of study Focussing on a biological scenario whereby cell movement occurs on a slower time
scale compared to cell proliferation and death, while spontaneous, heritable phenotypic changes occur
on a slower time scale compared to cell movement [18, 44, 49], we introduce a small parameter ε > 0
and let

α := ε and β := ε2.
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Furthermore, in order to explore the long-time behaviour of the cell population (i.e. the behaviour of
the population over many cell generations), we use the time scaling t → t/ε in (1), which gives the
following non-local PDE for the population density function n( tε , x, y) ≡ nε(t, x, y)

ε ∂tnε − ε µ(y) ∂x (nε ∂xρε(t, x)) = R(y, ρε(t, x))nε + ε2 ∂2
yynε,

ρε(t, x) :=

∫ Y

0
nε(t, x, y) dy,

(x, y) ∈ R× (0, Y ). (5)

3 Numerical simulations

In this section, we report on numerical solutions of the non-local PDE (5) in the case where R(y, ρε)
is defined via (4). We choose the following initial condition

nε(0, x, y) = C e−x
2
e−

(y−a)2

ε with C s.t. C

∫ Y

0
e−

(y−a)2

ε dy = 1 and a ∈ (0, Y ), (6)

which satisfies nε(0, x, y) ⇀ [ε→ 0]∗ρ(0, x) δȳ0(x)(y), with ρ(0, x) = e−x
2

and ȳ0(x) ≡ a. Such an initial
condition models a biological scenario whereby y = a is the locally dominant phenotypic trait at every
position x at time t = 0. We use uniform discretisations of steps ∆t, ∆x and ∆y of the intervals
(0, T ], (0, X) and (0, Y ), respectively, as computational domains of the independent variables t, x and
y. The implicit finite volume scheme employed to solve numerically (5) complemented with (6) and
subject to zero-flux/Neumann boundary conditions at x = 0 (we expect a constant step), y = 0 and
y = Y is described in Appendix A. All numerical computations are performed in Matlab.

Travelling fronts The plots in Figure 1 summarise the numerical results obtained in the case where

Y := 1, µ(y) := y2 + 0.01, r(y) := 1− y2, ρM := 1. (7)

The above definitions of µ(y) and r(y) are such that assumptions (2) and (4) are satisfied.

The left panel of Figure 1 displays the plots of the normalised cell population density function
nε(t, x, y)/ρε(t, x) at three successive time instants (i.e. t = 4, t = 6 and t = 8). These plots indicate
that for all x ∈ supp(ρε) the normalised population density function nε(t, x, y)/ρε(t, x) is concentrated
as a sharp Gaussian with maximum at a point ȳε(t, x) [i.e. nε(t, x, y)/ρε(t, x) ≈ δȳε(t,x)(y) for all
x ∈ supp(ρε)], and the maximum point ȳε(t, x) behaves like a compactly supported and monotonically
increasing travelling front that connects y = 0 to y = Y .

The right panel of Figure 1 displays the plots of the cell density ρε(t, x) (solid blue lines) and
the function r(ȳε(t, x)) (dashed cyan lines) at three successive time instants (i.e. t = 4, t = 6
and t = 8). These plots indicate that ρε(t, x) behaves like a one-sided compactly supported and
monotonically decreasing travelling front that connects ρM to 0. Moreover, there is an excellent
quantitative match between ρε(t, x) and r(ȳε(t, x)), which means that if ρε(t, x) > 0 then the relation
R(ȳε(t, x), ρε(t, x)) = 0 holds.

The inset of the right panel of Figure 1 displays the plots of x1ε(t) (blue squares), x2ε(t) (red
diamonds) and x3ε(t) (black stars) such that ρε(t, x1ε(t)) = 0.2, ρε(t, x2ε(t)) = 0.6 and ρε(t, x3ε(t)) =
0.8. These plots show that x1ε(t), x2ε(t) and x3ε(t) are straight lines of slope ≈ 2.5, which supports the
idea that ρε behaves like a travelling front of speed c ≈ 2.5. Such a value of the speed is coherent with
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Figure 1: Travelling fronts. Plots of the normalised cell population density function
nε(t, x, y)/ρε(t, x) (left panel) and the cell density ρε(t, x) (right panel, solid blue lines) at three succes-
sive time instants (i.e. t = 4, t = 6 and t = 8). The dashed cyan lines in the right panel highlight the
corresponding values of r(ȳε(t, x)), with ȳε(t, x) being the maximum point of nε(t, x, y) at x ∈ supp(ρε),
while the inset of the right panel displays the plots of x1ε(t) (blue squares), x2ε(t) (red diamonds)
and x3ε(t) (black stars) such that ρε(t, x1ε(t)) = 0.2, ρε(t, x2ε(t)) = 0.6 and ρε(t, x3ε(t)) = 0.8. These
results were obtained solving numerically (5) with ε := 0.01 under assumptions (4), (6) with a = 0.2,
and (7). Moreover, T = 8, X = 25, ∆t = 0.01, ∆x = 0.01 and ∆y = 0.02.
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the condition on the minimal wave speed c∗ given by (28). In fact, inserting into (28) the numerical
values of ȳε(8, x) in place of ȳ(z) and the numerical values of ∂2

yyuε(8, x, ȳε(8, x)) with uε = ε log(nε)
in place of ∂2

yyu(z, ȳ(z)) gives c∗ ' 2.5.

Front edge acceleration and stretching fronts The plots in Figure 2 summarise the numerical
results obtained in the case where

Y := 20, µ(y) := 0.01 + y4, r(y) := 1− y

1 + y
, ρM := 1. (8)

The above definitions of µ(y) and r(y) are chosen so that assumptions (2) and (4) are satisfied for
Y →∞, and condition (29) is met (see details below).

Figure 2: Front edge acceleration and stretching fronts. Plots of the normalised cell population
density function nε(t, x, y)/ρε(t, x) (left panel) and the cell density ρε(t, x) (right panel, solid blue
lines) at three successive time instants (i.e. t = 4, t = 6 and t = 8). The dashed cyan lines in the
right panel highlight the corresponding values of r(ȳε(t, x)), with ȳε(t, x) being the maximum point of
nε(t, x, y) at x ∈ supp(ρε), while the inset of the right panel displays the plots of x1ε(t) (blue circles),
x2ε(t) (red squares), x3ε(t) (black diamonds) and x4ε(t) (pink stars) such that ρε(t, x1ε(t)) = 0.1,
ρε(t, x2ε(t)) = 0.25, ρε(t, x3ε(t)) = 0.45 and ρε(t, x4ε(t)) = 0.8. These results were obtained solving
numerically (5) with ε := 0.01 under assumptions (4), (6) with a = 0.2, and (8). Moreover, T = 8,
X = 200, ∆t = 0.002, ∆x = 0.1 and ∆y = 0.05.

The left panel of Figure 2 displays the plots of the normalised cell population density function
nε(t, x, y)/ρε(t, x) at three successive time instants (i.e. t = 4, t = 6 and t = 8). Similarly to
the case of Figure 1, these plots show that for all x ∈ supp(ρε) the normalised population density
function nε(t, x, y)/ρε(t, x) is concentrated as a sharp Gaussian with maximum at a point ȳε(t, x) [i.e.
nε(t, x, y)/ρε(t, x) ≈ δȳε(t,x)(y) for all x ∈ supp(ρε)], and the maximum point ȳε(t, x) is a monotonically
increasing function of x with minimal value 0 for all t ∈ [0, 8]. However, in contrast to the case of
Figure 1, here ȳε(t, x) has a jump discontinuity and its maximal value increases as t increases.
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The right panel of Figure 2 displays the plots of the cell density ρε(t, x) (solid blue lines) and
the function r(ȳε(t, x)) (dashed cyan lines) at three successive time instants (i.e. t = 4, t = 6 and
t = 8). Similarly to the case of Figure 1, these plots indicate that ρε(t, x) is a monotonically decreasing
function of x with maximal value ρM and minimal value 0 for all t ∈ [0, 8]. Furthermore, there is an
excellent quantitative match between ρε(t, x) and r(ȳε(t, x)), which means that if ρε(t, x) > 0 then
the relation R(ȳε(t, x), ρε(t, x)) = 0 holds. However, in contrast to the case of Figure 1, we have that
ρε(t, x) behaves like a stretching front, which suggests that the speed of the front edge increases with
t.

Coherently with this, the plot of x1ε(t) (blue circles) such that ρε(t, x1ε(t)) = 0.1 displayed in the
inset of Figure 2 shows that the value of x1ε undergoes super linear growth, which supports the idea
that front edge acceleration occurs. This is also coherent with the fact that, in the case where µ(y)
and r(y) are defined via (8), we have that condition (29) is met and, therefore, the minimal wave
speed c∗ tends to ∞ as Y →∞.

4 Formal asymptotic analysis

In this section, we undertake formal asymptotic analysis of the non-local PDE (5) in order to provide
an explanation for the numerical results presented in Section 3.

Building on the Hamilton-Jacobi approach presented in [6, 17, 33, 36, 37], we make the real phase
WKB ansatz [5, 19, 21]

nε(t, x, y) = e
uε(t,x,y)

ε , (9)

which gives

∂tnε =
∂tuε
ε
nε, ∂xnε =

∂xuε
ε

nε, ∂2
yynε =

(
1

ε2
(∂yuε)

2 +
1

ε
∂2
yyuε

)
nε.

Substituting the above expressions into the non-local PDE (5) gives the following Hamilton-Jacobi
equation for uε(t, x, y)

∂tuε − µ(y)
(
∂xuε ∂xρε + ε ∂2

xxρε
)

= R(y, ρε) + (∂yuε)
2 + ε ∂2

yyuε, (x, y) ∈ R× (0, Y ). (10)

Letting ε → 0 in (10) we formally obtain the following equation for the leading-order term u(t, x, y)
of the asymptotic expansion for uε(t, x, y)

∂tu− µ(y) ∂xρ ∂xu = R(y, ρ) + (∂yu)2 , (x, y) ∈ R× (0, Y ), (11)

where ρ(t, x, y) is the leading-order term of the asymptotic expansion for ρε(t, x, y).

Constraint on u Consider x ∈ R such that ρ(t, x) > 0, that is, x ∈ supp(ρ), and let ȳ(t, x) be a
nondegenerate maximum point of u(t, x, y), that is, ȳ(t, x) ∈ arg max

y∈[0,Y ]
u(t, x, y) with ∂2

yyu(t, x, ȳ) < 0.

Since R(y, ρε) satisfies assumptions (3), we have that ρε(t, x) <∞ for all ε > 0. Hence, letting ε→ 0
in (9) formally gives the following constraint for all t > 0

u(t, x, ȳ(t, x)) = max
y∈[0,Y ]

u(t, x, y) = 0, x ∈ supp(ρ), (12)

which also implies that

∂yu(t, x, ȳ(t, x)) = 0 and ∂xu(t, x, ȳ(t, x)) = 0, x ∈ supp(ρ). (13)
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Remark 4.1 The system defined by (11) and (12) is a constrained Hamilton-Jacobi equation and
ρ(t, x) > 0 can be regarded as a Lagrange multiplier associated with constraint (12).

Relation between ȳ(t, x) and ρ(t, x) Evaluating (11) at y = ȳ(t, x) and using (12) and (13) we
find

R(ȳ(t, x), ρ(t, x)) = 0, x ∈ supp(ρ). (14)

The monotonicity assumptions (3) ensure that ρ 7→ R(·, ρ) and ȳ 7→ R(ȳ, ·) are both invertible.
Therefore, relation (14) gives a one-to-one correspondence between ȳ(t, x) and ρ(t, x).

Transport equation for ȳ Differentiating (11) with respect to y, evaluating the resulting equation
at y = ȳ(t, x) and using (12) and (13) yields

∂2
ytu(t, x, ȳ)− µ(ȳ) ∂xρ ∂

2
yxu(t, x, ȳ) = ∂yR(ȳ, ρ), x ∈ supp(ρ). (15)

Moreover, differentiating (13) with respect to t and x we find, respectively,

∂2
tyu(t, x, ȳ) + ∂2

yyu(t, x, ȳ) ∂tȳ(t, x) = 0 ⇒ ∂2
ytu(t, x, ȳ) = −∂2

yyu(t, x, ȳ) ∂tȳ(t, x)

and
∂2
xyu(t, x, ȳ) + ∂2

yyu(t, x, ȳ) ∂xȳ(t, x) = 0 ⇒ ∂2
yxu(t, x, ȳ) = −∂2

yyu(t, x, ȳ) ∂xȳ(t, x). (16)

Substituting the above expressions of ∂2
ytu(t, x, ȳ) and ∂2

yxu(t, x, ȳ) into (15) and using the fact that
∂2
yyu(t, x, ȳ) < 0 gives the following transport equation for ȳ(t, x)

∂tȳ − µ(ȳ) ∂xρ ∂xȳ =
1

−∂2
yyu(t, x, ȳ)

∂yR(ȳ, ρ), x ∈ supp(ρ), (17)

which is a generalised Burgers’ equation with source term since ȳ(t, x) and ρ(t, x) are related through
(14).

Travelling-wave problem Substituting the travelling-wave ansatz

ρ(t, x) = ρ(z), u(t, x, y) = u(z, y) and ȳ(t, x) = ȳ(z) with z = x− c t, c > 0

into (11)-(14) and (17) gives

−
(
c+ µ(y)ρ′

)
∂zu = R(y, ρ) + (∂yu)2, (z, y) ∈ R× (0, Y ), (18)

u(z, ȳ(z)) = max
y∈[0,Y ]

u(z, y) = 0, ∂yu(z, ȳ(z)) = 0, ∂zu(z, ȳ(z)) = 0, z ∈ supp (ρ), (19)

R(ȳ(z), ρ(z)) = 0, z ∈ supp (ρ), (20)

−
(
c+ µ(ȳ)ρ′

)
ȳ′ =

1

−∂2
yyu(z, ȳ)

∂yR(ȳ, ρ), z ∈ supp (ρ). (21)

We consider travelling-front solutions ȳ(z) that satisfy (21) subject to the following asymptotic con-
dition

lim
z→−∞

ȳ(z) = 0, (22)

so that, since R(0, ρM ) = 0 [cf. assumptions (3)], relation (20) gives lim
z→−∞

ρ(z) = ρM .
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Monotonicity of travelling-front solutions Differentiating (20) with respect to z gives

∂yR(ȳ(z), ρ(z))ȳ′(z) + ∂ρR(ȳ(z), ρ(z))ρ′(z) = 0, z ∈ supp (ρ). (23)

Substituting the expression of ρ′ given by (23) into (21) yields

−c ȳ′ + µ(ȳ)
∂yR(ȳ, ρ)

∂ρR(ȳ, ρ)

(
ȳ′
)2

=
1

−∂2
yyu(z, ȳ)

∂yR(ȳ, ρ),

that is,

ȳ′ =
−∂yR(ȳ, ρ)

c

(
1

−∂2
yyu(z, ȳ)

+
µ(ȳ) (ȳ′)2

−∂ρR(ȳ, ρ)

)
, z ∈ supp (ρ). (24)

Since ∂2
yyu(z, ȳ) < 0 and ∂yR(y, ·) < 0 for y ∈ (0, Y ] [cf. assumptions (3)], using (24) and the

expression of ρ′ given by (23) we find

ȳ′(z) > 0 and ρ′(z) < 0, z ∈ supp (ρ). (25)

Position of the front edge Relation (20) and monotonicity results (25) along with the fact that
R(Y, 0) = 0 [cf. assumptions (3)] imply that the position of the edge of a travelling-front solution ȳ(z)
that satisfies (21) subject to asymptotic condition (22) coincides with the unique point ` ∈ R such
that ȳ(`) = Y .

Minimal wave speed Differentiating both sides of (18) with respect to y gives

−
(
c+ µ(y)ρ′

)
∂2
yzu(z, y)− dµ(y)

dy
ρ′ ∂zu(z, y) = ∂yR(y, ρ) + 2 ∂yu(z, y) ∂2

yyu(z, y).

Evaluating the above equation at y = ȳ(z) using (19) yields(
c+ µ(ȳ)ρ′(z)

)
∂2
yzu(z, ȳ) + ∂yR(ȳ, ρ) = 0. (26)

Moreover, (16) implies that

∂2
yzu(z, ȳ) = −∂2

yyu(z, ȳ) ȳ′

and substituting into the latter equation the expression of ȳ′ given by (23) we find

∂2
yzu(z, ȳ) = ∂2

yyu(z, ȳ)
∂ρR(ȳ, ρ)

∂yR(ȳ, ρ)
ρ′(z).

Inserting the above expression of ∂2
yzu(z, ȳ) into (26) gives

µ(ȳ) ∂2
yyu(z, ȳ) ∂ρR(ȳ, ρ)

(
ρ′
)2

+ c ∂2
yyu(z, ȳ) ∂ρR(ȳ, ρ) ρ′ + (∂yR(ȳ, ρ))2 = 0.

In the case where R(y, ρ) is defined via (4), we have that

∂ρR(·, ρ) = −1 and ∂yR(ȳ, ·) =
dr(ȳ)

dy
.
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Hence, the latter equation becomes

µ(ȳ) ∂2
yyu(z, ȳ)

(
ρ′
)2

+ c ∂2
yyu(z, ȳ) ρ′ −

(
dr(ȳ)

dy

)2

= 0. (27)

Coherently with (25), the real roots of (27) seen as a quadratic equation for ρ′ are negative. Further-
more, the following condition has to hold for the roots to be real

2

∣∣∣∣dr(ȳ)

dy

∣∣∣∣
√

µ(ȳ)∣∣∂2
yyu(z, ȳ)

∣∣ ≤ c.
This indicates that there is a minimal wave speed c∗, which satisfies the following condition

c∗ ≥ sup
z∈supp(r(ȳ))

2

∣∣∣∣dr(ȳ(z))

dy

∣∣∣∣
√

µ(ȳ(z))∣∣∂2
yyu(z, ȳ(z))

∣∣ , (28)

where we have used the fact that, when R(y, ρ) is defined via (4), relation (20) gives

ρ(z) ≡ r(ȳ(z)), z ∈ supp (ρ).

Condition (28) implies that if ∣∣∣∣dr(Y )

dy

∣∣∣∣√µ(Y ) −→∞ as Y →∞ (29)

then c∗ →∞ as Y →∞.

5 Discussion, biological implications and research perspectives

Discussion of the main results In this paper, we have reported on the results of numerical
simulations of the non-local PDE (5) complemented with (2) and (4), and subject to zero Neumann
boundary conditions at y = 0 and y = Y . These numerical results indicate that

if nε(0, x, y) ⇀ [ε→ 0]∗ρ(0, x) δȳ0(x)(y) then nε(t, x, y) ⇀ [ε→ 0]∗ρ(t, x) δȳ(t,x)(y), (30)

with ρ(t, x) and ȳ(t, x) such that if ρ(t, x) > 0 then the relation R(ȳ(t, x), ρ(t, x)) = 0 holds. These
numerical results also indicate that in the case where Y ∈ R∗+ (i.e. when µ(Y ) <∞ and, therefore, the
cell mobility is bounded), ρ(t, x) in (30) behaves like a one-sided compactly supported and monoton-
ically decreasing travelling front ρ(z) ≡ ρ(x− ct) that connects ρM to 0, while ȳ(t, x) in (30) behaves
like a compactly supported and monotonically increasing travelling front ȳ(z) ≡ ȳ(x−ct) that connects
0 to Y . Furthermore, we have provided numerical evidence for the fact that front edge acceleration
and formation of stretching fronts may occur in the case where Y → ∞ (i.e. when µ(Y ) → ∞ and,
therefore, the cell mobility is unbounded).

In order to explain such numerical results, we have undertaken formal asymptotic analysis of the non-
local PDE (5) complemented with (2) and (3) in the asymptotic regime ε→ 0 using a Hamilton-Jacobi
approach. In particular, we have shown that ȳ(t, x) satisfies a generalised Burgers’ equation with source
term [see transport equation (17)] and ρ(t, x) = R(ȳ(t, x), ρ(t, x))−1(0) [see relation (14)]. Moreover,
we have shown that travelling-front solutions ȳ(z) of such transport equation which connect 0 to Y
are monotonically increasing, whilst the corresponding ρ(z) = R(ȳ(z), ρ(z))−1(0) is monotonically
decreasing and connect ρM to 0 [see the monotonicity results given by (25)]. Finally, in the case where
R(y, ρ) is defined via (4), we have characterised the minimal speed c∗ of such travelling-front solutions
[see the result given by (28)] and derived sufficient conditions under which c∗ → ∞ as Y → ∞ [see
condition (29)].
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Biological implications of the main results From a biological point of view, ȳ(t, x) represents
the dominant phenotypic trait at position x and time t and the transport equation for ȳ(t, x) can be
seen as a generalised canonical equation of adaptive dynamics [16, 17], which describes the spatio-
temporal evolution of the dominant phenotypic trait. Furthermore, the fact that ρ(t, x) behaves like
a monotonically decreasing travelling front ρ(z) that connects ρM to 0 represents the formation of an
invasion front of cells that expands into the surrounding environment [35]. Hence, the fact that ȳ(t, x)
behaves like a monotonically increasing travelling front ȳ(z) that connects 0 to Y has the following
biological implications. First, the fact that the front ȳ(z) is monotonic indicates that cells with different
phenotypic characteristics populate different parts of the invasion front – i.e. phenotypic heterogeneity
is dynamically maintained throughout the front. Secondly, since larger values of y correlate with a
lower proliferation rate and a higher mobility, the fact that the front ȳ(z) is increasing indicates that
more mobile/less proliferative phenotypic variants occupy the front edge, whereas less mobile/more
proliferative phenotypic variants are selected at the back of the front. This recapitulates previous
theoretical and experimental results on glioma growth, which indicate that the interior of the tumour
consists mainly of proliferative cells while the tumour border comprises mainly cells that are more
mobile and less proliferative – see, for instance, [2, 15, 24, 25, 26, 48, 50] and references therein.

Research perspectives Building upon the results presented in this paper, a number of generali-
sations of the mathematical model given by the non-local PDE (1) could be considered in order to
investigate the role of the concerted action between evolutionary and mechanical processes in tis-
sue development and tumour growth. For example, a natural generalisation is the one given by the
following non-local PDE

∂tn− µ(y)∇x · (n∇xP (t,x)) = R(y, P (t,x))n+ β ∂2
yyn,

P ≡ Π(ρ), ρ(t,x) :=

∫ Y

0
n(t,x, y) dy,

(x, y) ∈ Rd × (0, Y ) (31)

subject to zero Neumann boundary conditions at y = 0 and y = Y . Here, d = 1, 2, 3 depending on
the biological problem considered, and the function P (t,x) is the pressure exerted by cells at position
x and time t, which is defined via the barotropic relation Π(ρ) that satisfies suitable assumptions.

On the basis of the knowledge we have here acquired on the behaviour of the solutions to the
non-local PDE (1), under asymptotic scenarios relevant to applications we may expect n(t,x, y) to
converge to a singular measure of the form ρ(t,x)δȳ(t,x)(y). Moreover, depending on the choices of
Y , µ(y), R(y, P (t,x)) and Π(ρ), the cell density ρ(t,x) may develop into an invading front or it may
exhibit interface instabilities [30, 32, 40, 45]. Finally, when the following definition of Π is considered

Π(ρ) := Kγ ρ
γ , Kγ > 0, γ > 1,

which was proposed in [38] in order to capture key aspects of tumour and tissue growth while ensuring
analytical tractability of the model equation, one finds that P (t,x) satisfies a porous medium-type
equation. Hence, free-boundary problems may emerge in the asymptotic regime γ → ∞ (i.e. the
asymptotic regime whereby cells are regarded as an incompressible fluid). These are lines of research
that we will be pursuing in the near future.
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A Numerical methods

Since ρε(t, x) might develop into a stiff travelling front, solving the non-local PDE (5) via an explicit
finite volume scheme would result in a severe CFL constraint on t. In order to overcome such a
limitation, we carried out numerical simulations using the implicit finite volume scheme presented
here. For simplicity of notation, throughout this appendix we drop the subscript ε.

Time splitting Adopting a time-splitting approach, which is based on the idea of decomposing
the original problem into simpler subproblems that are then sequentially solved at each time-step, we
decompose the non-local PDE (5) posed on Ω := (0, T ] × (0, X) × (0, Y ) into two parts – viz. the
diffusion-advection part corresponding to the following non-local PDE

∂tn− ∂x(µ(y)n∂xρ) = ε ∂2
yyn,

ρ :=

∫ Y

0
n dy

(32)

and the reaction part corresponding to the following integro-differential equation
ε ∂tn = R(y, ρ)n,

ρ :=

∫ Y

0
n dy.

(33)

We complement (32) with zero-flux/Neumann boundary conditions at x = 0 (we expect a constant

step), y = 0 and y = Y . Note that making the ansatz n(t, x, y) = e
u(t,x,y)

ε , as similarly done in
Section 4, the integro-differential equation (33) can be rewritten in the following alternative form

∂tu = R(y, ρ),

ρ :=

∫ Y

0
e

u(t,x,y)
ε dy.

(34)

Preliminaries and notation We denote by [[k1, k2]] the set of integers between k1 and k2. We
discretise Ω via a uniform structured grid of steps ∆t, ∆x, ∆y whereby th = h∆t and the (j, k)-th
cell is

Kj− 1
2
,k− 1

2
= (xj−1, xj)× (yk−1, yk) with xj = j∆x, yk = k∆y, (35)

where j ∈ [[1,mx]] and k ∈ [[1,my]], ∆x = X
mx

, ∆y = Y
my

and mx,my ∈ N. Moreover, we let Nh
j− 1

2
,k− 1

2

be the numerical approximation of the average of n(th, x, y) over the cell Kj− 1
2
,k− 1

2
and we consider

the following first-order approximation of the average of ρ(th, x) over the interval (xj−1, xj)

ρh
j− 1

2

= ∆y

my∑
k=1

Nh
j− 1

2
,k− 1

2

.
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Finally, we introduce the notation

nh =
(
Nh
j− 1

2
,k− 1

2

)T
∈ R(mx+1),(my+1), ρh =

(
ρh
j− 1

2

)T
∈ Rmx (36)

with j ∈ [[1,mx]] and k ∈ [[1,my]].

Numerical scheme Step 1 We first solve numerically (32) by using the following implicit scheme

N∗
j− 1

2
,k− 1

2

−Nh
j− 1

2
,k− 1

2

∆t
− 1

∆x

[
F ∗
j,k− 1

2

− F ∗
j−1,k− 1

2

]
= ε

N∗
j− 1

2
,k+ 1

2

− 2N∗
j− 1

2
,k− 1

2

+N∗
j− 1

2
,k− 3

2

∆y2
, (37)

where F ∗
j,k− 1

2

represents the numerical flux at the boundary ∂Kj− 1
2
,k− 1

2
∩ {x = xj}, which is given by

the following upwind approximation

F ∗
j,k− 1

2

= µk− 1
2

[
−(δxρ

∗
j )−N

∗
j− 1

2
,k− 1

2

+ (δxρ
∗
j )+N

∗
j+ 1

2
,k− 1

2

]
. (38)

Here, µk− 1
2

= µ(yk− 1
2
),

δxρ
∗
j =

(
ρ∗
j+ 1

2

− ρ∗
j− 1

2

)
∆x

with ρ∗
j− 1

2

= ∆y

my∑
k=1

N∗
j− 1

2
,k− 1

2

,

and (·)− and (·)+ are, respectively, the negative and positive part of (·). Analogous considerations hold
for F ∗

j−1,k− 1
2

. We complement (37) with boundary conditions corresponding to zero-flux/Neumann

boundary conditions at x = 0 (we expect a constant step), y = 0 and y = Y .

Step 2 We solve numerically (34) using the following implicit scheme

Uh+1
j− 1

2
,k− 1

2

− U∗
j− 1

2
,k− 1

2

∆t
= R

(
yk− 1

2
, ρh+1
j− 1

2

)
, (39)

where U∗
j− 1

2
,k− 1

2

= ε ln
(
N∗
j− 1

2
,k− 1

2

)
and N∗

j− 1
2
,k− 1

2

is obtained via (37). Since

ρh+1
j− 1

2

= ∆y

my∑
k=1

exp

Uh+1
j− 1

2
,k− 1

2

ε



= ∆y

my∑
k=1

exp

U
∗
j− 1

2
,k− 1

2

+ ∆tR

(
yk− 1

2
, ρh+1
j− 1

2

)
ε

 , (40)

in the case where the function R is defined via (4) the value of ρh+1
j− 1

2

can be found by solving (40).

The value of ρh+1
j− 1

2

so obtained is substituted into (39), which is then solved in order to find Uh+1
j− 1

2
,k− 1

2

,

whose value is finally used to compute Nh+1
j− 1

2
,k− 1

2

via the formula

Nh+1
j− 1

2
,k− 1

2

= exp

Uh+1
j− 1

2
,k− 1

2

ε

 .
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Properties of the numerical scheme (37) Due to the the strong coupling between n(t, x, y) and
ρ(t, x) in the non-local PDE (32), it remains an open problem to prove existence and uniqueness of the
solution to the corresponding initial-boundary value problem. Similarly, proving unique solvability of
the nonlinear, nonlocal, implicit scheme (37) remains an open problem.

Here, assuming solvability of (37), we prove that such a numerical scheme preserves nonnegativity
of n, maximum principle on ρ and monotonicity of ρ (cf. Proposition A.1).

Proposition A.1 Consider the scheme (37) only. If the numerical scheme (37) is uniquely solvable,
then the following properties hold:

(i) [nonnegativity]
if nh ≥ 0 then n∗ ≥ 0;

(ii) [maximum principle on ρ]
if 0 ≤ ρh ≤ ρM then 0 ≤ ρ∗ ≤ ρM ;

(iii) [monotonicity of ρ]
if ρh is monotonically decreasing then ρ∗ is monotonically decreasing.

Proof. (i) The implicit scheme (37) can be rewritten as

−a∗j−1,kN
∗
j− 3

2
,k− 1

2

+b∗j,kN
∗
j− 1

2
,k− 1

2

− c∗j+1,kN
∗
j+ 1

2
,k− 1

2

+ (41)

ε
∆t

(∆y)2

(
−N∗

j− 1
2
,k− 3

2

+ 2N∗
j− 1

2
,k− 1

2

−N∗
j− 1

2
,k+ 1

2

)
= Nh

j− 1
2
,k− 1

2

, (42)

where

a∗j,k =
∆t

∆x
µk− 1

2
(δxρ

∗
j )− ≥ 0, c∗j,k =

∆t

∆x
µk− 1

2
(δxρ

∗
j−1)+ ≥ 0,

b∗j,k = 1 +
∆t

∆x
µk− 1

2

[
(δxρ

∗
j−1)+ + (δxρ

∗
j )−
]

= 1 + a∗j,k + c∗j,k.

The system of equations (41) can be written in matrix form as

M∗n∗ = nh,

where M∗ is a matrix containing the terms a∗j,k’s, b
∗
j,k’s and c∗j,k’s with j ∈ [[1,mx]], k ∈ [[1,my]].

Since the matrix M∗ is strictly diagonally dominant by columns, it is invertible and all elements of
(M∗)−1 are positive. This ensures that n∗ is nonnegative if nh is nonnegative.

(ii) Summing (37) over all k ∈ [[1,my]], we find

ρ∗
j− 1

2

− ρh
j− 1

2

∆t
− 1

∆x

[
< µk− 1

2
N∗,upwind

j,k− 1
2

> δxρ
∗
j− < µk− 1

2
N∗,upwind

j−1,k− 1
2

> δxρ
∗
j−1

]
= 0, (43)

where δxρ
∗
j =

(
ρ∗
j+ 1

2

− ρ∗
j− 1

2

)
/∆x, < µk− 1

2
N∗,upwind

j,k− 1
2

>= ∆y
∑my

k=1 µk− 1
2
N∗,upwind

j,k− 1
2

and

N∗,upwind

j,k− 1
2

=

N
∗
j− 1

2
,k− 1

2

if δxρ
∗
j < 0,

N∗
j+ 1

2
,k− 1

2

if δxρ
∗
j ≥ 0.

(44)
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For simplicity of notation, we define d∗j =
∆t

∆x2
< µk− 1

2
N∗,upwind

j,k− 1
2

>. Notice that d∗j ≥ 0. Then, the

system of equations (43) can be rewritten as

(1 + d∗j−1 + d∗j )ρ
∗
j− 1

2

− d∗j−1ρ
∗
j− 3

2

− d∗jρ∗j+ 1
2

= ρh
j− 1

2

. (45)

Assume that ρ∗
j0− 1

2

= min
j
{ρ∗

j− 1
2

}, we claim that ρ∗
j0− 1

2

≥ 0. In fact, if ρ∗
j0− 1

2

< 0, we have

ρh
j0− 1

2

= ρ∗
j0− 1

2

+ d∗j0−1(ρ∗
j0− 1

2

− ρ∗
j0− 3

2

) + d∗j0(ρ∗
j0− 1

2

− ρ∗
j0+ 1

2

) ≤ ρ∗
j0− 1

2

< 0, (46)

which is a contradiction. Hence, ρ∗ ≥ 0. Similarly, one can prove that ρ∗ ≤ ρM .

(iii) Introducing the notation w∗j = ρ∗
j+ 1

2

− ρ∗
j− 1

2

, we rewrite (45) as

ρ∗
j− 1

2

+ d∗j−1w
∗
j−1 − d∗jw∗j = ρh

j− 1
2

. (47)

Changing all subscripts in (47) from j to j + 1, after a little algebra we find

(1 + 2d∗j )w
∗
j − d∗j−1w

∗
j−1 − d∗j+1w

∗
j+1 = whj . (48)

Writing the system of the equations (48) in matrix form and using arguments similar to those used in
part (i), it is possible to prove that w∗ ≤ 0 if wh ≤ 0.

Properties of the numerical scheme (39) The numerical scheme (39) satisfies the properties
established by Proposition A.2.

Proposition A.2 Consider the scheme (39) only. If R(y, ρ) satisfies assumptions (3) and n∗ ≥ 0,
then the following properties hold:

(i) [existence and uniqueness and nonnegativity]
the scheme (39) admits a unique solution such that nh+1 ≥ 0;

(ii) [maximum principle on ρ]
if 0 ≤ ρ∗ ≤ ρM , then 0 ≤ ρh+1 ≤ ρM .

Proof. (i) It is sufficient to prove existence and uniqueness of ρh+1
j− 1

2

. Let

f(ρ) = ρ−∆y

my∑
k=1

exp

(
U∗
j− 1

2
,k− 1

2

+ ∆tR(yk− 1
2
, ρ)

ε

)
.

Since f ′(ρ) > 0, f(0) < 0 and lim
ρ→∞

f(ρ) =∞, equation (40) has a unique positive root, which is ρh+1
j− 1

2

.

From this, existence, uniqueness and nonnegativity of Nh+1
j− 1

2
,k− 1

2

immediately follow.

(ii) Noticing that f ′(ρ) > 0, f(0) < 0 and

f(ρM ) ≥ ρM −∆y

my∑
k=1

exp

(
U∗
j− 1

2
,k− 1

2

ε

)
= ρM − ρ∗j− 1

2

≥ 0, (49)
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we conclude that equation (40) has a unique solution in the interval [0, ρM ]. This implies that 0 ≤
ρh+1 ≤ ρM .
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Benôıt Perthame. Composite waves for a cell population system modeling tumor growth and
invasion. In Partial Differential Equations: Theory, Control and Approximation, pages 401–429.
Springer, 2014.

[46] Olga Turanova. On a model of a population with variable motility. Mathematical Models and
Methods in Applied Sciences, 25(10):1961–2014, 2015.

[47] Mark C Urban, Ben L Phillips, David K Skelly, and Richard Shine. A toad more traveled: the het-
erogeneous invasion dynamics of cane toads in australia. The American Naturalist, 171(3):E134–
E148, 2008.

[48] Shervin D Wang, Prakash Rath, Bachchu Lal, Jean-Philippe Richard, Yunqing Li, C Rory Good-
win, John Laterra, and Shuli Xia. Ephb2 receptor controls proliferation/migration dichotomy of
glioblastoma by interacting with focal adhesion kinase. Oncogene, 31(50):5132–5143, 2012.

[49] Shizhen Emily Wang, Peter Hinow, Nicole Bryce, Alissa M Weaver, Lourdes Estrada, Carlos L
Arteaga, and Glenn F Webb. A mathematical model quantifies proliferation and motility effects
of tgf-β on cancer cells. Computational and Mathematical Methods in Medicine, 10(1):71–83,
2009.

[50] Qian Xie, Sandeep Mittal, and Michael E Berens. Targeting adaptive glioblastoma: an overview
of proliferation and invasion. Neuro-oncology, 16(12):1575–1584, 2014.

19


	Introduction
	Statement of the problem
	Numerical simulations
	Formal asymptotic analysis
	Discussion, biological implications and research perspectives
	Numerical methods

