
HAL Id: hal-03614648
https://hal.sorbonne-universite.fr/hal-03614648

Submitted on 21 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Configuration of Genetic Algorithms by
Tuning for Anytime Performance

Furong Ye, Carola Doerr, Hao Wang, Thomas Back

To cite this version:
Furong Ye, Carola Doerr, Hao Wang, Thomas Back. Automated Configuration of Genetic Algorithms
by Tuning for Anytime Performance. IEEE Transactions on Evolutionary Computation, 2022, 26 (6),
pp.1526 - 1538. �10.1109/TEVC.2022.3159087�. �hal-03614648�

https://hal.sorbonne-universite.fr/hal-03614648
https://hal.archives-ouvertes.fr


1

Automated Configuration of Genetic Algorithms by
Tuning for Anytime Performance
Furong Ye, Carola Doerr, Hao Wang, and Thomas Bäck, Fellow, IEEE

Abstract—Finding the best configuration of algorithms’ hy-
perparameters for a given optimization problem is an important
task in evolutionary computation. We compare in this work the
results of four different hyperparameter optimization approaches
for a family of genetic algorithms on 25 diverse pseudo-Boolean
optimization problems. More precisely, we compare previously
obtained results from a grid search with those obtained from
three automated configuration techniques: iterated racing, mixed-
integer parallel efficient global optimization, and mixed-integer
evolutionary strategies.

Using two different cost metrics, expected running time and the
area under the empirical cumulative distribution function curve,
we find that in several cases the best configurations with respect
to expected running time are obtained when using the area under
the empirical cumulative distribution function curve as the cost
metric during the configuration process. Our results suggest that
even when interested in expected running time performance, it
might be preferable to use anytime performance measures for
the configuration task. We also observe that tuning for expected
running time is much more sensitive with respect to the budget
that is allocated to the target algorithms.

Index Terms—Evolutionary Computation, Algorithm Configu-
ration, Black-Box Optimization, Performance Measures

I. INTRODUCTION

Mutation and crossover are two key operators of genetic
algorithms (GAs), and there is a long debate about the ef-
fectiveness of the two operators and their combinations [33],
[39].

Mutation can maintain the population diversity of the GA,
and it allows the GA to exploit promising search areas by
using small mutation rates. In the early years of evolutionary
computation, evolution strategies [37] concentrated on muta-
tion and showed their power with adaptive mutation rates for
optimization [4].

Classic GAs, on the other hand, used crossover as their
main variation operator [3], [12], [20]. Intuitively speaking,
the key idea of crossover is to create offspring by recombining
information from two or more “parents”. As is the case for
mutation operators [14], [53], novel types of crossover keep
being developed [44], [45], [46].

Several works study the synergy of mutation and crossover,
both by empirical and by theoretical means, see [12], [18],
[26], [34] and [42], respectively, as well as references men-
tioned therein. However, most of these results focus on specific

Furong Ye (E-mail: f.ye@liacs.leidenuniv.nl), Hao Wang (E-
Mail: h.wang@liacs.leidenuniv.nl), and Thomas Bäck (E-Mail:
t.h.w.baeck@liacs.leidenuniv.nl) are with Leiden Institute of Advanced
Computer Science, Leiden University, Leiden, Netherlands.

Carola Doerr is with Sorbonne Université, CNRS, LIP6, Paris, France. E-
mail: Carola.Doerr@lip6.fr.

algorithms and problems. Widely accepted guidelines for their
deployment are sparse, leading to a situation in which users
often rely on their own experience. To reduce the bias inherent
to such manual decisions, a number of automated algorithm
configuration techniques have been developed, to assist the
user with data-driven suggestions. To deploy these techniques,
one formulates the operator choice and/or their intensity as a
meta-optimization problem, widely referred to as the algorithm
configuration (AC) or the hyperparameter optimization (HPO)
problem.

The AC problem was classically addressed by standard
search heuristics such as mixed-integer evolution strategies [2],
[21], [30]. More specific AC tools have been developed
in recent years, among them surrogate-based models (e.g.,
SPOT [5], SMAC [24], MIP-EGO [47]), racing-based meth-
ods (Irace [31], F-race [6]) and optimization-based methods
(ParamILS [25]).

Summary of Our Contributions. In this work, we study
the effects of automated algorithm configuration on a genetic
algorithm (GA) framework, applied to 25 diverse pseudo-
Boolean optimization problems. We compare the results of
four different configuration techniques. Our main interest is in
analyzing the influence of the cost metric that is used to score
different configurations on the quality of the configuration
suggested by the AC methods. We consider two different
cost metrics: minimizing the expected running time (ERT)
and maximizing the area under the empirical cumulative
distribution function curve of running times (AUC). While
minimizing ERT favors the average first hitting time of a single
fixed-target, maximizing the AUC metric aims at optimizing
anytime performance, which is measured across a whole set
of (budget, target value) pairs. We show that in several cases
tuning for AUC yields configurations that have smaller ERT
values than those that were obtained when directly tuning for
ERT.

Concretely, we build on our previous work [55] in which
we analyzed a configurable framework of (µ + λ) GAs that
scales the relevance of mutation and crossover by means of
the crossover probability pc ∈ [0, 1]. The framework creates
new solution candidates by applying either mutation (with
probability 1−pc) or crossover (with probability pc). This way,
it can separate the influence of these operators from each other.
While we have studied several operator choices in [55] via
plain grid search, we consider here only one type of crossover
(uniform crossover) and one type of mutation (standard bit
mutation), to keep the search space manageable and to better
highlight our key findings.

We compare in this work the results from [55] with those

ar
X

iv
:2

10
6.

06
30

4v
2 

 [
cs

.N
E

] 
 1

7 
M

ar
 2

02
2



2

obtained from three different types of automated algorithm
configuration methods, one based on iterated racing (we
use Irace [31]), one surrogate-assisted technique (we use
the mixed-integer parallel efficient global optimization MIP-
EGO [47]), and a classic heuristic optimization method (we
use the mixed-integer evolutionary strategies MIES suggested
in [30]). Our testbed are the 25 functions from the pseudo-
Boolean optimization (PBO) test suite, suggested in [16],
[55] and available in the IOHprofiler benchmarking environ-
ment [15].

Compared to the (1 + 1) EA and to the configura-
tions obtained by the grid search in [55], we observe that
(1 + λ) mutation-only GAs perform well on ONEMAX,
LEADINGONES, and most of their so-called W-model exten-
sions (see Sec. 3.7 in [16]), and on Ising-Models, whereas the
(µ+λ) GA benefits from using crossover and different muta-
tion rates on the more complex optimization problems. Thanks
to its ability to handle conditional configuration spaces, Irace is
the only method that finds configurations of (1+λ) mutation-
only GAs for problems on which these are efficient. We also
observe that, on some problems, the automatic configurators
cannot obtain hyperparameter settings that are as good as those
provided by a simple grid search. However, our key finding is
that the configuration methods can find better configurations in
terms of the ERT by using AUC as the cost metric, compared
to directly using ERT instead. This advantage is particularly
pronounced when the budget of the GAs is small compared
to the ERT obtained by the best possible configuration. In this
case, ERT cannot reflect the differences among the configura-
tions, and the anytime performance provides more information
to guide the configuration process.

Related Work. Automated algorithm configuration for im-
proving the anytime performance of algorithms has been ap-
plied in several works, both with respect to classical CPU time
(e.g., for the traveling salesman problem [7], for a MAX-MIN
ant system [32], and for mixed-integer programming ibid) and
for the here-considered function evaluation budgets (see [1]
for a recent example). Sensitivity of algorithm configuration
approaches with respect to the cutoff time (i.e., the budget
of function evaluations for which algorithms are evaluated)
has been studied in [23], [22]. In particular, [22] provides
an example in which tuning for fixed-budget performance
can be preferable under small cutoff times than tuning for
optimization time, even if the latter is the original objective.
We are not aware of any works using anytime performance
measures with the objective to identify configurations that
minimize ERT values.

Availability of Data and Source Code. All our data is
publicly available at [54] and at the public repository of
IOHanalyzer, accessible via https://iohanalyzer.liacs.nl/. Users
interested in an interactive evaluation of our data can find
our data by selecting ‘PBO’ as dataset source and ‘2021-
mlga’ as dataset. After loading the data from the repository,
various statistics and visualizations are available for further
investigation, see [50] for an overview. The source code of
our experiments is available at https://github.com/FurongYe/
Configuration-of-Genetic-Algorithms.

For readers’ convenience, we provide in the supplementary

material fixed-target charts for each of the 25 functions, similar
to the one presented in Fig. 1.

Paper Organization. Sec. II describes the configurable (µ+
λ) GA, the benchmark problems, and the cost metrics used to
evaluate the algorithms. In Sec. III we present results for the
three selected AC methods, evaluate their performance against
the (1 + 1) EA, and discuss the impact of the cost metrics for
the AC methods. We conclude our work and discuss directions
for future research in Sec. IV.

II. PRELIMINARIES

In this section, we describe our (µ + λ) GA framework
(Sec. II-A), the benchmark problems (Sec. II-B), and the per-
formance measures used to evaluate the algorithms (Sec. II-C).

Notational conventions: Throughout this paper, we study
the maximization of so-called pseudo-Boolean functions, i.e.,
functions of the type f : {0, 1}n → R, mapping length-n bit
strings to real numbers. In particular, we always denote by n
the dimension of the problem. For each positive integer k, we
abbreviate [k] = {j ∈ N | 1 ≤ j ≤ k} and [0..k] = [k] ∪ {0}.

A. A Family of (µ+ λ) Genetic Algorithms
To study how mutation, crossover, and their combinations

can be beneficial for GAs, we investigate a configurable
genetic algorithm framework that can switch from mutation-
only GAs towards crossover-only GAs by tuning the crossover
probability pc. Details of the framework can be found in
Alg. 1, and we refer to it as the (µ+λ) GA in the following.

The (µ + λ) GA initializes the population uniformly at
random (u.a.r.) and terminates when the optimum is found
or when the cutoff time (i.e., the maximal number of fitness
evaluations that the algorithm may perform) is reached. For
each iteration, the (µ + λ) GA creates λ offspring. Each
offspring is created by applying either mutation or crossover.
More precisely, crossover is applied with probability pc and
mutation is used otherwise. Consequently, the (µ+λ) GA with
pc = 0 refers to a mutation-only GA, and the (µ+λ) GA with
pc = 1 refers to a crossover-only GA. After each iteration, the
best µ points out of the combined set of µ parents and λ
offspring form the next set of parents (“plus selection”).

For this work, we consider uniform crossover and standard
bit mutation with mutation rate pm. These two variation oper-
ators are briefly described as follows. Note that the framework
can easily be extended to include other operators.
• Uniform crossover: Each bit of the offspring is copied

either from the first or from second parent, chosen
independently and u.a.r. for each position.

• Standard bit mutation: The offspring is created by first
copying the parent and then flipping ` distinct bits that are
chosen u.a.r. The value ` is called the mutation strength.
It is sampled from a conditional binomial distribution
Bin>0

(n, pm), which assigns to each k ∈ [n] a probability
of
(
n
k

)
pkm(1−pm)n−k/(1− (1−pm)n). Compared to the

classic textbook description of standard bit mutation, this
version avoids sampling copies of the parents, by allo-
cating the probability of sampling ` = 0 proportionally
to all positive values ` ∈ [n]; see [9] for a discussion of
this “resampling” strategy.

https://iohanalyzer.liacs.nl/
https://github.com/FurongYe/Configuration-of-Genetic-Algorithms
https://github.com/FurongYe/Configuration-of-Genetic-Algorithms


3

Algorithm 1: A Family of (µ+λ) Genetic Algorithms

1 Input: Population sizes µ, λ, crossover probability pc,
mutation rate pm, cutoff time B;

2 Initialization: for i = 1, . . . , µ do
3 Sample x(i) ∈ {0, 1}n u.a.r.;
4 Evaluate f(x(i))

5 Set P = {x(1), x(2), ..., x(µ)};
6 Optimization: for t = 1, 2, 3, . . . do
7 P ′ ← ∅;
8 for i = 1, . . . , λ do
9 Sample r ∈ [0, 1] u.a.r.;

10 if r ≤ pc then
11 Select two individuals x, y ∈ P u.a.r. (with

replacement);
12 z(i) ← Crossover(x, y);
13 if z(i) /∈ {x, y} then evaluate f(z(i))
14 else Infer f(z(i)) from parent;
15 else
16 Select an individual x ∈ P u.a.r.;
17 z(i) ← Mutation(x);
18 if z(i) 6= x then evaluate f(z(i))
19 else Infer f(z(i)) from parent;

20 P ′ ← P ′ ∪ {z(i)};
21 P is updated by the best µ points in P ∪ P ′ (ties

broken u.a.r.);
22 Terminate the algorithm if the optimum is found

or if the number of evaluations (at line 13 and
line 18) exceeds the given cutoff time.

B. The IOHprofiler Problem Suite PBO

The PBO problem suite suggested in [16], [55] and available
in the IOHprofiler benchmarking environment [15] contains
25 pseudo-Boolean optimization problems. The definitions of
these problems is available in the supplementary material.
We provide here only a short summary: F1 is ONEMAX,
F2 is LEADINGONES, F3 is a linear function with harmonic
weights, F4-10 and F11-17 are so-called W-model extensions
of F1 and F2, respectively,1 F18 is the Low Autocorrelation
Binary Sequences (LABS) problem, F19-21 are Ising Model
problems, F22 is an instance of the Maximum Independent
Vertex Set (MIVS) problem, F23 is the N-Queens problem
(NQP), F24 is a Concatenated Trap (CT) problem, and F25 is
a randomly chosen NK Landscape instance.

Our algorithms are unbiased in the sense of Lehre and
Witt [29], i.e., they are invariant under reordering of the
bit string and under XOR of the solution candidates with
arbitrary strings. They are also comparison-based, making
them invariant with respect to strictly motononic transforma-
tions of the function values. We can therefore restrict our

1The W-model transformations were suggested in [52], [51] and later ex-
tended in [16]. In a nutshell, these transformations introduce dummy variables
that do not impact the quality of a solution (“dummy” transformation), perturb
the fitness values (“ruggedness”), reduce the string size by partitioning the bit
string and applying a majority vote within each substring (“neutrality”), or
map substrings to different ones (“epistasis”).

experiments to a single problem instance, and do not make
use of IOHprofiler’s option to transform the instances into
problems with isomorphic fitness landscape and/or translated
fitness values. More precisely, we tune on the first instance of
each problem in the PBO suite.

C. Algorithm Performance Measures

As mentioned in the introduction, we use two main per-
formance criteria: expected running time (ERT) and the area
under the curve representing the empirical cumulative dis-
tribution function (AUC). While the ERT concerns only the
hitting time for a single “final” target, AUC considers a set of
targets. The formal definitions are as follows.

Definition 2.1 (ERT: Expected Running Time): Given a
target value φ for a problem P , the ERT of algorithm A for
hitting φ is

ERT(A,P, φ) =

∑r
i=1 min{ti(A,P, φ), B}∑r
i=1 1{ti(A,P, φ) <∞}

, (1)

where r is the number of independent runs of A, B is the
cutoff time (i.e., the maximal number of solution candidates
that algorithm A may evaluate in one run), ti(A,P, φ) ∈ N ∪
{∞} is the running time (for finite values, the running time
is the number of function evaluations that the i-th run of A
on problem P uses to hit the target φ and ti(A,P, φ) = ∞
is used if none of the solutions is better than φ), and 1(E)
is the indicator function returning 1 if event E is true and 0,
otherwise. If the algorithm hits the target φ in all r runs, the
ERT is equal to the average hitting time (AHT).

Definition 2.2 (ECDF: empirical cumulative distribution
function of the running time): Given a set of targets Φ =
{φi ∈ R | i ∈ [m]} for a real-valued problem P and a set
of budgets T = {tj ∈ [B] | j ∈ [z]} for an algorithm A, the
ECDF value of A at budget tj is the fraction of (run, target)-
pairs (s, φi) that satisfy that in run s of algorithm A at least
one of the first tj evaluated solutions has fitness at least as
good as φi.

Definition 2.3 (AUC: area under the ECDF running time
curve): Given a set of targets Φ = {φi ∈ R | i ∈ [m]} and
a set of budgets T = {tj ∈ [B] | j ∈ [z]}, the AUC ∈ [0, 1]
(normalized over B) of algorithm A on problem P is the
area under the ECDF curve of the running time over multiple
targets. For maximization, it reads,

AUC(A,P,Φ, T ) =

r∑
h=1

m∑
i=1

z∑
j=1

1{φh(A,P, tj) ≥ φi}

rmz
,

where r is the number of independent runs of A and
φh(A,P, t) denotes the value of the best solution that A
evaluated within its first t evaluations of the run h.

III. ALGORITHM CONFIGURATION FOR BENCHMARKING

To explore promising configurations of the (µ+λ) GA, we
study its associated algorithm configuration problem:

Definition 3.1 (Algorithm Configuration (AC) Problem):
Given a problem P , a parametrized algorithm A with param-
eter space Θ, and a cost metric c : Θ×P → R that is subject



4

TABLE I
Target values used to compute the ERT metric on each problem.

funcId 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Target 100 100 5 050 50 90 33 100 51 100 100 50 90 33 7 51 100 100 4.216 98 180 260 42 9 17.196 -0.297

to minimization, the objective of the AC problem is to find a
configuration θ∗ ∈ arg min

θ∈Θ
c(θ, P ).

Note that this definition is adjusted to our setting in which
we tune for a single problem instance. It therefore ignores
aggregation over multiple problem instances, hence the devia-
tion from other common definitions as, for example, available
in [17], [40].

A. Algorithm Configurators Utilized

We apply three AC methods to configure the (µ+ λ) GA:
Irace [31], a mixed-integer parallel efficient global optimiza-
tion (MIP-EGO [49]), and the mixed-integer evolution strategy
(MIES [30]), which we briefly describe in the following
paragraphs. All configurators work with a user-defined con-
figuration budget, which is the maximal number of algorithm
runs that the AC method is allowed to perform before recom-
mending its final outcome.

Irace [31] is a so-called iterated racing method designed
for hyperparameter optimization. The main steps of Irace are
(1) sampling hyperparameter values from distributions that
evolve over time, (2) evaluating the configurations across a
set of instances, (3) applying a racing method (i.e., statistical
tests) to select the configurations that are not further evaluated
in the subsequent rounds, and (4) updating the sampling
distributions. At the end of the configuration process, one
or several elite configurations are returned to the user, along
with their performance observed during the configuration. The
distributions from which the hyperparameters are sampled are
independent of each other, unless the user specifies constraints
and/or other requirements.

Efficient global optimization (EGO), also known as
Bayesian optimization, is designed to solve costly-to-evaluate
global optimization problems. For our configuration problem,
we use an EGO-variant called mixed-integer parallel EGO
(MIP-EGO [49]) capable of handling mixed-integer search
space. EGO starts with an initial set of solution candidates
{θ1, θ2, ...} and evaluating their fitness {c1, c2, ...}. From
these observations, EGO learns a predictive distribution of the
fitness value for each unseen configuration using stochastic
models, e.g., random forests or Gaussian processes. Aiming at
balancing the trade-off between the accuracy and uncertainty
of this predictive distribution, EGO uses a so-called acquisition
function to decide which solution candidates to sample next.
Common acquisition functions are expected improvement and
probability of improvement; see [38], [19] for an overview.
For this work, we use the moment-generating function of
improvement (MGFI) [49], which is defined as the weighted
combination of all moments of the predictive distribution. For
the weights, we used the setting recommended in [48]. To
learn the predictive distribution, we choose a random forest

model as it deals with the mixed-integer/categorical search
space more naturally than Gaussian processes.

The mixed-integer evolution strategy (MIES) uses prin-
ciples from evolution strategies for handling continuous, dis-
crete, and nominal parameters by using self-adaptive mutation
operators for all three parameter types [30]. MIES starts
with a randomly initialized parent population of size µ. In
each iteration it generates λ offspring, by recombining two
randomly selected parents and then mutating the solution
resulting from their recombination, after which (µ, λ) selection
is applied to the offspring population, i.e., the µ best of the λ
offspring form the parent population of the next iteration.

B. Experimental Setup

Each AC method is granted a budget of 5 000 target runs,
where each target run corresponds to ten independent runs of
the (µ + λ) GA using the configuration that the AC method
wishes to evaluate. As previously mentioned, we use ERT and
AUC as performance metric, and these values are computed
from the ten independent runs.

Irace requires a set of instances for the tuning process.
We imitate these instances by the independent runs of the
(stochastic) solvers. This is in line with previous approaches,
suggested, for example, in [11]. MIP-EGO starts with 10 initial
candidates by the default setting of the package [49]. We use
a (4, 28)-MIES, following the parameter settings suggested
in [30].

To obtain a useful baseline against which we can compare
other algorithms, we configure the (µ+ λ) GA on each PBO
problem separately. We focus on the problems in dimension
n = 100.

Once the optimized parameter settings are obtained from
the algorithm configuration, we perform 100 independent
validation runs with the suggested parameter settings. This
is to have a fair comparison, as the number of algorithm
evaluations may differ quite drastically between the config-
urators and between different runs of the same configurator.
All performance comparisons discussed in this paper are made
with respect to these validation runs.

For evaluating GA candidates during the configuration
process, the ERT values are calculated with respect to the
targets listed in Tab. I and to the cutoff time of 50 000
function evaluations. This is half the budget used in [55], but,
according to the results presented there, our cutoff time is still
larger than the number of function evaluations needed to hit
the corresponding targets – except for F18, which is a very
challenging problem.

For the AUC, the set of targets are 100 values, equally
spaced in the interval [φmin, φmax], where φmax is equal to
the ERT targets listed in Tab. I and φmin is equal to 0 except
for the following functions: φmin = −19 590 for function F22,



5

φmin = −3 950 000 for function F23, and φmin = −1 for
function F25. We evaluate the AUC at each budget, i.e., in the
notation of Definition 2.3 we use T = [50 000].

The configuration space of the AC problem is Θ =
{µ, λ, pc, pm}, where µ ∈ [100] is the parent population
size, λ ∈ [100] is the offspring population size, pc ∈ [0, 1]
is the crossover probability, and pm ∈ [0.005, 0.5] is the
mutation rate. A positive crossover probability pc > 0 requires
µ > 1; the configuration is considered infeasible otherwise.
The results for the grid search are based on our work [55],
where we used µ ∈ {10, 50, 100}, λ ∈ {1, µ/2, µ}, pc ∈
{0, 0.5}, and pm = 0.01. Note that this is a considerably
smaller search space, whose full enumeration requires only 18
different configurations, which is much less than the budget
allocated to the automated configuration techniques. We will
nevertheless observe that for some problems none of the
automated configurators could find hyperparameter settings
that are equally good as those provided by this small grid
search.

C. Results Obtained by Automated Configuration
The (1 + 1) EA with pm = 1/n has shown competitive

results in [16] for the PBO problems, so we use it as the
baseline against which we compare the GAs obtained by
the configurators. Note that this algorithm is part of the GA
framework in Alg. 1 and could therefore be identified by the
configuration methods.

Tab. II lists the configurations of the (µ+λ) GA obtained by
the grid search and by the three AC methods. Tab. III compares
the performance of these configurations, by listing the ERT
and AUC values of the (1 + 1) EA and the corresponding
relative deviations of the configured GAs. More precisely,
the ERT and AUC values of the AC methods result from
using ERT and AUC as the cost metric, respectively. The
relative improvement of ERT is computed as (ERT(1+1) EA
- ERT) / ERT(1+1) EA, and the relative improvement of AUC
is computed as (AUC - AUC(1+1) EA) / AUC(1+1) EA.

1) ERT Results: For the ONEMAX-based problems F1 and
F4-F6, configurations of the (µ + λ) GA using crossover
outperform the mutation-only GA with µ ≥ 10 [55]. However,
according to the values in Tab. III, the (1+1) EA outperforms
the configurations with pc > 0, relatively large µ, and also
relatively large λ. This observation matches our expectation
because our previous study has shown that the (1 + 1) EA is
efficient on ONEMAX. Meanwhile, we observe an interesting
configuration with pm < 0.01, µ = λ = 2, and pc > 0 that
achieves competitive ERT values against the (1 + 1) EA for
F1. This configuration ties well with the results on different
(µ + 1) GAs that were shown to outperform the (1 + 1) EA
(and any mutation-based algorithm, in fact) in a series of recent
works [9], [10], [41].

On F4, F6, F7, F13, F15-F17, and F19-22, none of the
configurations returned by the AC methods was able to out-
perform the (1 + 1) EA, whereas on F9-10, F14, F18, F24,
all AC methods find configurations that perform much better
than the (1 + 1) EA.

On LEADINGONES, a slightly better result compared to
the ERT value 5 574 of the (1 + 1) EA is found by MIES.

This result is quite sensitive with respect to the mutation rate.
When changing it from the MIES-suggestion of pm = 0.005
to pm = 0.01 we obtain an ERT value of 5 829. MIES
also obtains an improvement on F11, which corresponds to a
(2 + 2) GA with pm = 0.0245. On F14, we already observed
in [55] that mutation-only GAs with pm = 1/n are inferior
to other GA configurations with a larger offspring population
size and higher mutation rate. As expected, all three methods
easily suggest configurations that outperform the (1 + 1) EA
by a great margin.

On F18 and F24, all configurators unanimously suggest
fairly small values for the crossover probabilities. For F25,
however, GAs with pc > 0.8 show the (by far) best perfor-
mance.

2) AUC results: Since we evaluate the AUC at each budget
[50 000], the AUC values tend to be very close to 1, especially
for the GAs that require much fewer than 50 000 evaluations
to find an optimal solution.

On 13 out of the 25 problems, none of the configuration
methods is able to identify a hyperparameter setting that yields
better AUC values than those of the (1 + 1) EA. In some, but
clearly not all of these cases, the achieved AUC values are
not much worse than those of the (1 + 1) EA. The largest
improvements are obtained on functions F10, F14, F17, F18,
F24, and F7 (in this order). In most of these cases all four
configuration techniques found improvements over the (1 +
1) EA except for F17, where Irace is the only method finding
an improvement and except for F7, where all three automated
configuration techniques find an improvement but not the grid
search (the inverse is true on F23 but the advantage of the
grid search is fairly small, not statistically significant, and the
algorithm a mutation-only (10+1) GA with pm = 1/n, which
is very close to the (1 + 1) EA).

We next discuss the results for the functions for which large
improvements over the (1 + 1) EA were obtained.

40 50 60 70 80 90 100

1

10

100

1e+3

1e+4

1e+5

1e+6

(1+1)-EA Grid Search-AUC Grid Search-ERT Irace-AUC
Irace-ERT MIES-AUC MIES-ERT MIP-EGO-AUC MIP-EGO-ERT

Best-so-far f(x)-value

Fu
nc

tio
n 

Ev
al

ua
tio

ns

Fig. 1. Fixed-target ERT values of the configurations suggested for F10. The
suffix “-ERT/AUC” indicates which cost metric was used during the tuning.

On F10, large crossover probabilities seem beneficial; all
three automated configuration techniques return settings with
pc > 0.98. The mutation rate seems to have less impact
on the results, and the suggested settings vary from 8.5/n
(Irace) to 41.3/n (MIES, which achieves the best AUC value).



6

TABLE II
Configurations of the (µ+ λ) GA obtained by grid search, Irace, MIP-EGO, and MIES. C indicates the cost metric used by the configurators. Results for

maximizing AUC are obtained independently from those obtained for minimizing ERT.

F C Grid Search Irace MIP-EGO MIES
µ λ pm pc µ λ pm pc µ λ pm pc µ λ pm pc

1 ERT 10 1 0.01 0.5 15 5 0.007 0.782 3 4 0.024 0.774 2 2 0.006 0.778
AUC 10 1 0.01 0.5 1 1 0.006 0 3 11 0.006 0.208 2 2 0.005 0.521

2 ERT 10 1 0.01 0.5 1 39 0.006 0 2 9 0.006 0.008 2 3 0.005 0.026
AUC 10 1 0.01 0 1 34 0.013 0 22 5 0.009 0.461 2 1 0.008 0.005

3 ERT 10 1 0.01 0.5 4 32 0.006 0.867 3 24 0.009 0.391 2 3 0.005 0.357
AUC 10 1 0.01 0.5 4 23 0.011 0.550 2 3 0.007 0.511 2 1 0.006 0.203

4 ERT 10 1 0.01 0.5 1 1 0.013 0 2 3 0.022 0.655 2 2 0.024 0.198
AUC 10 1 0.01 0.5 1 1 0.013 0 12 9 0.052 0.668 2 1 0.055 0.614

5 ERT 10 5 0.01 0.5 3 17 0.005 0.415 4 2 0.026 0.294 2 3 0.006 0.321
AUC 10 1 0.01 0.5 8 8 0.012 0.882 11 20 0.008 0.318 2 2 0.006 0.358

6 ERT 10 10 0.01 0 30 23 0.104 0.849 3 11 0.031 0.033 24 12 0.135 0.908
AUC 10 10 0.01 0.5 1 1 0.033 0 2 1 0.032 0.424 2 3 0.059 0.236

7 ERT 50 50 0.01 0 45 22 0.460 0.887 95 46 0.018 0.971 54 18 0.268 0.907
AUC 10 10 0.01 0 1 58 0.028 0 2 20 0.016 0.082 23 27 0.025 0.672

8 ERT 10 10 0.01 0.5 25 48 0.014 0.643 78 7 0.087 0.991 5 9 0.009 0.507
AUC 10 10 0.01 0.5 3 6 0.015 0.441 11 12 0.007 0.499 21 25 0.011 0.800

9 ERT 100 50 0.01 0.5 64 90 0.056 0.938 76 10 0.488 0.977 54 32 0.013 0.643
AUC 50 25 0.01 0.5 46 40 0.029 0.815 6 7 0.020 0.158 18 25 0.025 0.505

10 ERT 100 50 0.01 0.5 95 69 0.325 0.978 87 84 0.478 0.962 79 17 0.056 0.320
AUC 100 1 0.01 0.5 99 13 0.085 0.982 76 16 0.321 0.986 92 32 0.413 0.989

11 ERT 10 1 0.01 0 1 72 0.031 0 4 57 0.031 0.004 2 2 0.025 0.000
AUC 10 1 0.01 0 1 13 0.035 0 2 1 0.040 0.003 2 1 0.042 0.016

12 ERT 10 1 0.01 0 1 32 0.006 0 4 1 0.012 0.016 2 1 0.005 0.000
AUC 10 1 0.01 0 1 29 0.010 0 2 1 0.017 0.016 2 1 0.014 0.005

13 ERT 10 10 0.01 0 1 10 0.044 0 10 19 0.032 0.282 2 5 0.032 0.008
AUC 10 10 0.01 0 1 1 0.044 0 2 4 0.038 0.023 3 8 0.047 0.036

14 ERT 100 100 0.01 0.5 1 60 0.343 0 57 34 0.077 0.988 57 23 0.028 0.012
AUC 100 50 0.01 0 48 83 0.409 0.812 5 80 0.456 0.287 54 9 0.481 0.480

15 ERT 10 10 0.01 0 5 64 0.014 0.042 5 15 0.008 0.018 6 67 0.011 0.023
AUC 10 10 0.01 0 21 71 0.020 0.165 3 9 0.016 0.078 2 3 0.011 0.024

16 ERT 10 10 0.01 0 6 34 0.011 0.025 2 2 0.006 0.069 2 4 0.005 0.002
AUC 10 10 0.01 0 1 1 0.010 0.000 22 66 0.009 0.138 2 3 0.007 0.001

17 ERT 10 10 0.01 0.5 60 57 0.133 0.512 79 62 0.345 0.430 2 3 0.006 0.003
AUC 10 10 0.01 0 1 1 0.019 0 2 5 0.012 0.007 2 4 0.019 0.034

18 ERT 100 50 0.01 0 50 44 0.006 0.010 13 77 0.019 0.002 26 21 0.006 0.002
AUC 10 5 0.01 0 20 10 0.005 0.031 2 22 0.006 0.011 23 83 0.006 0.010

19 ERT 10 10 0.01 0.5 98 94 0.174 0.324 2 5 0.014 0.286 2 12 0.006 0.061
AUC 50 50 0.01 0 1 5 0.005 0 7 18 0.014 0.834 2 7 0.005 0.133

20 ERT 50 50 0.01 0 1 32 0.008 0 6 53 0.007 0.012 5 66 0.005 0.033
AUC 10 10 0.01 0 1 30 0.013 0 5 7 0.011 0.483 6 75 0.006 0.095

21 ERT 10 5 0.01 0 1 86 0.014 0 7 52 0.009 0.144 5 66 0.009 0.077
AUC 10 10 0.01 0 4 33 0.006 0.412 7 9 0.006 0.833 2 3 0.005 0.219

22 ERT 100 100 0.01 0 16 48 0.025 0.783 18 12 0.019 0.820 2 3 0.005 0.270
AUC 10 10 0.01 0.5 1 1 0.020 0 2 3 0.007 0.250 2 2 0.010 0.088

23 ERT 10 1 0.01 0 62 39 0.006 0.252 10 40 0.013 0.010 5 1 0.006 0.006
AUC 10 5 0.01 0 29 25 0.005 0.016 4 4 0.006 0.170 8 16 0.005 0.038

24 ERT 100 50 0.01 0 53 85 0.025 0.004 58 45 0.031 0.077 21 75 0.060 0.014
AUC 10 5 0.01 0 7 86 0.026 0.776 8 3 0.032 0.277 8 33 0.045 0.273

25 ERT 50 1 0.01 0 13 52 0.296 0.170 68 91 0.024 0.801 98 40 0.009 0.941
AUC 10 10 0.01 0 26 53 0.028 0.790 4 3 0.023 0.107 9 1 0.021 0.535

Interestingly, also two of the three configurations tuned for
minimizing ERT have large crossover probabilities, with the
exception of the one returned by MIES (pc = 0.32). The
performances of all these configurations are very similar, as
we can see in Fig. 1.

On F14, the best improvement is obtained by a mutation-
only (100+50) GA using pm = 1/n, closely followed by the
Irace result, which is a (48+83) GA using crossover probability
pc = 0.812 and pm ≈ 41/n. We cannot observe any clear
pattern in the results, and the four suggested configurations
all differ quite a bit.

For F17, as mentioned, only Irace finds a better configu-
ration, which is also a (1+1) EA, but using a slightly larger

mutation rate of pm = 1.9/n instead of 1/n.
For F18, all configurators return settings with small

crossover probability pc < 0.031 and small mutation rate
pm < 0.01, which indicates that local search methods may be
more suitable for this problem than globally searching GAs.
Interestingly, the performance of randomized local search is
not very good (see [16] for details), which suggests that a
positive probability for escaping local optima via small jumps
in the search space or via crossover are needed to be efficient
on this problem.

For F24, no clear pattern can be observed in the suggested
configurations, and also the crossover probabilities differ
widely, from 0 for the grid search, values around 0.27 for



7

TABLE III
Absolute ERT and AUC values for the (1 + 1) EA and relative improvement of ERT and AUC for the configurations suggested by the four configuration

methods, in comparison against the (1 + 1) EA values. Compared to the ERT and AUC values of the (1 + 1) EA on each problem (indicated by “EA”), the
relative improvement obtained from the automated configuration are shown for each AC method, where both measures are calculated from hitting times of
100 validation runs for (1 + 1) EA and AC methods. We also indicate the statistical significance in the empirical distributions of the hitting time (∗∗∗∗ for
p < 0.001, ∗∗∗ for p < 0.01, ∗∗ for < 0.01, and ∗ for p < 0.05) for each pair of the AC result and that of the (1 + 1) EA. The Mann–Whitney U test is

applied with the Benjamini and Hochberg method for all 120 pairwise comparisons to control the false discovery rate. Runs are cut off at 50 000
evaluations if it does not hit the final target. The significant comparisons are colour-coded with respect to the relative improvement, where a darker colour

signifies a more considerable improvement.

F Relative improvement of ERT using ERT as the cost metric Relative improvement of AUC using AUC as the cost metric
EA GridSearch Irace MIP-EGO MIES EA GridSearch Irace MIP-EGO MIES

1 665 -0.54∗∗∗∗ -0.47∗∗∗∗ -0.34∗∗∗∗ 0.01 0.9987 -0.11∗∗∗∗ -0.49∗∗ -1.21∗∗∗∗ -0.70
2 5574 -0.64∗∗∗∗ -0.12∗∗∗∗ -0.03 0.05 0.9514 -1.37∗∗∗∗ -0.51∗∗∗∗ -4.64∗∗∗∗ 0.25
3 694 -0.62∗∗∗∗ -0.53∗∗∗∗ -0.78∗∗∗∗ 0.03 0.9989 -0.11∗∗∗∗ -1.12∗∗∗∗ -0.57 -0.50
4 344 -0.87∗∗∗∗ -0.04 -0.30∗∗∗∗ -0.11∗ 0.999 -0.06∗∗∗∗ -0.66 -1.20∗∗∗∗ -0.73∗∗∗∗
5 598 -0.50∗∗∗∗ -0.41∗∗∗∗ -0.55∗∗∗∗ 0.04 0.9987 -0.11∗∗∗∗ -1.17∗∗∗∗ -1.90∗∗∗∗ -0.68∗∗
6 271 -1.96∗∗∗∗ -0.91∗∗∗∗ -0.58∗∗∗∗ -7.66∗∗∗∗ 0.9993 -0.11∗∗∗∗ -0.43 -1.32∗∗∗∗ -0.54∗∗∗
7 Inf — — — Inf 0.8995 -0.33 1.69 0.70 0.24
8 7926 0.78∗∗∗∗ 0.77∗∗∗∗ -0.01∗∗∗∗ 0.86∗∗∗∗ 0.9938 0.25∗∗∗∗ -0.37∗∗∗∗ -0.65∗∗∗∗ -0.75∗∗∗∗
9 22670 0.85∗∗∗∗ 0.85∗∗∗∗ 0.15∗∗∗∗ 0.77∗∗∗∗ 0.9877 0.60∗∗∗∗ 0.42∗∗∗∗ 0.50∗∗∗∗ 0.41∗∗∗∗

10 Inf Inf∗∗∗∗ Inf∗∗∗∗ Inf∗∗∗∗ Inf∗∗∗∗ 0.6362 54.86∗∗∗∗ 55.60∗∗∗∗ 55.50∗∗∗∗ 55.73∗∗∗∗
11 2071 -0.29∗∗∗∗ -0.35∗∗∗∗ -0.45∗∗∗∗ 0.12∗∗ 0.9807 -0.36∗∗∗∗ -1.05 -0.89 -0.93
12 4691 -0.45∗∗∗∗ -0.11∗∗∗ -0.12∗∗∗ 0.06∗ 0.9601 -1.51∗∗∗∗ -0.64∗∗∗ -0.15∗ 0.13
13 997 -0.83∗∗∗∗ -0.14∗ -0.70∗∗∗∗ -0.05 0.9902 -0.57∗∗∗∗ -0.8 -0.99 -1.26∗∗∗∗
14 8171 0.98∗∗∗∗ 0.99∗∗∗∗ 0.98∗∗∗∗ 0.96∗∗∗∗ 0.596 47.69∗∗∗∗ 47.29∗∗∗∗ 36.75∗∗∗∗ 41.05∗∗∗∗
15 6668 -1.46∗∗∗∗ -1.17∗∗∗∗ -0.50∗∗∗∗ -1.23∗∗∗∗ 0.9404 -7.04∗∗∗∗ -8.98∗∗∗∗ -2.05∗∗∗∗ -0.88∗∗∗∗
16 9520 -2.05∗∗∗∗ -0.97∗∗∗∗ -0.43∗∗∗∗ -0.23∗∗∗∗ 0.9174 -17.54∗∗∗∗ 0.41 -12.97∗∗∗∗ -1.78∗∗∗∗
17 45964 -Inf∗∗∗∗ -Inf∗∗∗∗ -Inf∗∗∗∗ -0.96∗∗∗∗ 0.6698 -48.43∗∗∗∗ 2.45∗∗∗ -14.40∗∗∗∗ -7.93∗∗∗∗
18 130863 0.85∗∗∗∗ 0.80∗∗∗∗ 0.69∗∗∗∗ 0.85∗∗∗∗ 0.9432 1.86∗∗∗ 1.32 0.06 1.26∗∗∗∗
19 9467 -525.05∗∗∗∗ -Inf∗∗∗∗ -1.72∗∗∗∗ -0.72∗∗∗∗ 0.9899 -6.19∗∗∗∗ 0.00 -4.96∗∗∗∗ -0.37∗∗
20 1460 -9.77∗∗∗∗ -0.83∗∗∗∗ -2.16∗∗∗∗ -2.47∗∗∗∗ 0.9956 -1.26∗∗∗∗ -0.20∗∗∗∗ -0.25∗∗∗∗ -0.68∗∗∗∗
21 948 -12.75∗∗∗∗ -3.37∗∗∗∗ -3.66∗∗∗∗ -3.95∗∗∗∗ 0.9965 -0.40∗∗∗∗ -0.56∗∗∗∗ -0.42∗∗∗∗ -0.04∗∗∗∗
22 3366 -2.60∗∗∗∗ -0.11∗∗∗∗ -0.57∗∗∗∗ -0.15 0.9993 -0.02∗∗∗∗ -0.05∗∗∗∗ -0.06 -0.02∗∗∗∗
23 3066 0.08∗∗∗ -1.00∗∗∗∗ -0.68∗∗∗∗ -1.03∗ 0.9993 0.01∗∗ -0.12∗∗∗∗ -0.40∗∗∗ -0.23∗∗∗∗
24 Inf Inf∗∗∗∗ Inf∗∗∗∗ Inf∗∗∗∗ Inf∗∗∗∗ 0.9545 1.11∗∗ 1.42∗∗∗∗ 0.90 1.71∗∗∗∗
25 48946 0.22∗ -Inf∗∗∗∗ 0.66∗∗∗∗ 0.56∗∗∗∗ 0.6953 0.07∗∗ -0.00∗∗∗∗ 0.04 -0.03∗∗

#improvements 8 6 6 13 - 8 9 7 8

MIP-EGO and MIES, to 0.7 for Irace.
On F7, the configuration obtained by Irace (which achieves

the best improvement) is a (1+λ) EA with pm ≈ 3/n, the one
obtained by MIP-EGO is a (2 + 20) GA with small crossover
probability pc = 0.082, and the one obtained by MIES is a
(23+27) GA with crossover probability pc = 0.672. These
results indicate that the fraction of configurations achieving
better AUC value than the (1 + 1) EA may be fairly large.

On the LEADINGONES problem F2, the (2 + 1) GA with
pm = 0.008 and pc = 0.005, found by MIES, yields a (small)
improvement over the (1 + 1) EA, whereas the configurations
found by the other methods perform worse.

All in all, we find that on several problems the suggested
configurations differ widely, far more than we would have
expected and this across all four parameters. Analyzing the
landscape of the AC problem suggests itself as an interest-
ing follow-up study, e.g., using similar approaches to those
suggested in [36], [43].

D. Discussions on the Configurators’ Performance

We now compare the performance of the three automated
AC methods. The last row of Tab. III summarizes for how
many settings each method was able to find configurations
that outperform the (1 + 1) EA. These numbers are rather
balanced between the different methods, with the notable
exception of the minimizing ERT objective, for which MIES
suggested 13 improvements, compared to 6-8 improvements

found by the other methods. MIES also suggested the best
configurations in most of the cases, but, for several of these,
the improvements over the (1 + 1) EA are rather minor. This
shows that barely counting such cases does not do justice to the
complex behavior observed in Tab. III, from which we cannot
derive a clear winning configurator. We can nevertheless make
a few observations.

1) Handling conditional parameter spaces: We easily see
from Tab. II that Irace is the only method that obtains
mutation-only GAs, and in all of these cases it returns a
(1 + λ) EA. We recall that setting µ = 1 requires to set
pc = 0; the configuration is infeasible otherwise. This ad-
vantage of Irace lies in its handling of conditional parameters:
Irace samples non-conditional parameters first, and samples
conditional parameters only if the condition is satisfied. MIP-
EGO and MIES, in contrast, sample parameter values from
independent distributions and give penalties to infeasible set-
tings. With this strategy, the two methods can avoid infeasible
candidates, but the probability of sampling feasible conditional
candidates may be too small. For example, MIP-EGO can
find a configuration with µ = 2 and pc = 0.0065 on F16 in
Tab. II, but it cannot obtain the competitive configuration of
(1+λ) mutation-only GA because the probability of sampling
µ = 1 and pc = 0 simultaneously is too small.

2) Impact of the cost metric: We have already observed that
MIES obtains better configurations for more problems when
using ERT as the cost metric. For AUC, in contrast, Irace



8

−1.0

−0.5

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Problem ID

R
e
la

ti
v
e
 E

R
T

Irace MIES MIP−EGO

Fig. 2. Relative ERT values of the GAs obtained by Irace, MIES, and MIP-EGO using ERT as the cost metric compared to the ERT of the GAs obtained by
the same method when using AUC as the cost metric during the configuration process. Plotted values are (ERTusing ERT-ERTusing AUC)/ERTusing AUC, capped
at −1 and 1. Positive values therefore indicate that configurator obtains better results when configuring AUC.

13 16 19 22 23 28 30 323334363738
Instances evaluated

1

12
42

17
35

23
93

34
51

40
20

43
49

45
79

47
40

48
18

48
54

49
37

49
54

49
63

Candidate evaluations

10 2

100

102

104

Re
la

tiv
e 

de
vi

at
io

n

regular config.
elite config.

final elite config.
best found config.

iteration
iteration (restart)

median iteration
median elites

Fig. 3. The relative deviation from the best-known ERT value of the GAs
obtained during the configuration process of Irace for tuning the (µ+λ) GA
for ONEMAX in dimension n = 100, with the objective to minimize the ERT
for the optimum f(x) = 100. The maximal number of configurations that
can be tested by Irace is set to 5 000. The figure is produced by the acviz
tool, and illustrations for the details of plot representation can be found in
Sec. 3 of [13].

finds more configurations that improve over the (1 + 1) EA,
which can be explained as follows. In the first few iterations,
AUC is able to differentiate the performance of two poor
configurations if both fail to find the final target, whereas the
ERT value will be infinite and thereby incomparable in this
case. Hence, using AUC as the cost metric, Irace could learn
to avoid evaluating those poor configurations in the following
iterations. It is worth noting that such an observation is also
supported by a case study of Irace [35], in which the authors
discovered that Irace would spend too much time on poor
configurations if the mean running time is taken as the cost
metric. As a solution, the adaptive capping strategy [25] is
introduced to Irace in this work. Interestingly, this discussion
connotes that the AUC metric realizes a similar effect as
with adaptive capping for minimizing the running time of an
optimization algorithm. This behavior also indicates that the

choice of the cost metric might be a factor to consider when
choosing which AC technique to apply.

For an algorithm that cannot hit the target in all runs, the
variance of its ERT values can be high due to the uncertain
success rate. Besides, ERT cannot distinguish algorithms that
cannot hit the target in any runs, even though their perfor-
mance may differ in terms of results for other targets. This
shortcoming is mitigated when tuning for large AUC, since
this performance metric also takes into account the hitting
times for easier targets.

Fig. 3 plots the relative deviations from the best-known ERT
value of the configurations obtained during one run of Irace
when using ERT as the cost metric. We observe that many
configurations show large relative deviation values, which stem
from GAs that cannot hit the optimum within the given budget.
These configurations do not provide much useful information,
since they all look equally bad for the configurator.

E. The Choice of the Cost Metric

We now evaluate how well configurations that are obtained
by tuning for the AUC cost metric perform in terms of
ERT. Fig. 2 summarizes these result, by plotting the relative
advantage of the configurations tuned for AUC, compared to
those that were explicitly tuned for ERT. More precisely, we
plot (ERTusing ERT-ERTusing AUC)/ERTusing AUC, so that positive
values indicate that tuning for AUC gave better ERT values
than the configurations obtained when tuning for ERT. We see
that this is the case for 13, 12, and 9 out of the 25 problems
when using Irace, MIP-EGO, and MIES, respectively.

We now zoom into the results obtained by Irace. We
abbreviate by “Irace-ERT” (“Irace-AUC”) the configurations
obtained when using ERT (AUC) as the cost metric. For
the problems on which the ERT of Irace-AUC was worse
than that of Irace-ERT, we plot in Fig. 4 violin plots for
the running times of the 100 validation runs. We observe
that F15 is the only problem where Irace-ERT significantly
outperforms Irace-AUC. On F2-3, F5, and F20, we observe
that the result of most runs of Irace-AUC and Irace-ERT are



9

Fig. 4. Violin plots of first hitting times for the configurations found by
Irace when tuning for ERT and AUC, respectively. Only showing results for
problems on which Irace-ERT outperforms Irace-AUC. Results are from
the 100 independent validation runs. Targets are listed in Tab. I, and the
configurations of the GAs can be found in Tab. II. For each run, values are
capped at the budget 50 000 if the algorithm cannot find the target.

close, but the variances of the results of Irace-AUC are higher
than for Irace-ERT. On the remaining problems, we observe
high variances for the result of both Irace-ERT and Irace-AUC.
Irace-ERT finds the configurations with fewer unsuccessful
runs, which makes sense because the number of unsuccessful
runs significantly affects the ERT value. However, AUC does
not only consider the evaluations needed to hit the final target,
so we observe more unsuccessful runs and competitive partial
runs for Irace-AUC, i.e., in cases of F21 and F24.

Although Irace-AUC does not obtain better ERT values than
Irace-ERT, it can still provide valuable insights concerning the
resulting configurations and performance profiles. Fig. 6 plots
the fixed-target ERT values of the GAs obtained by Irace-ERT
and Irace-AUC for F21. We observe that the result of Irace-
ERT outperforms the result of Irace-AUC for the final target
f(x) = 260. However, for the long period when f(x) < 258,
Irace-AUC performs better.

We plot in Fig. 5 the violin plots of the running times
for the problems where Irace-AUC obtains better ERT values
than Irace-ERT. The advantage of Irace-AUC is significant on
several problems, i.e., F1, F6, F11, F16, and F22. Moreover,

Fig. 5. Violin plots of first hitting times for the configurations found by
Irace when tuning for ERT and AUC, respectively, for problems on which
Irace-AUC outperforms Irace-ERT. Results are from the 100 independent
validation runs. Targets are listed in Tab. I, and the configurations of the GAs
can be found in Tab. II. For each run, values are capped at the budget 50 000
if the algorithm cannot find the target.

Irace-ERT cannot find the final targets of F7, F17, F19, and
F25 within the cutoff time, whereas Irace-AUC hits the targets
in some (F7, F17, and F25) or all (F19) of the runs.

Fig. 7 plots the fixed-target result of different GAs on F8.
Compared to Irace-ERT, we observe that Irace-AUC outper-
forms the other algorithm at the final target and also exhibits
advantages over other algorithms in most of the optimization
process. Fig. 8 plots the fixed-target result of different GAs
on F7. The figure shows that Irace-AUC is the only one that
hits the optimum f(x) = 100, and the best-found fitness of
Irace-ERT is less than 90. We observe that none of the GAs
shown in the figure hits the optimum in all runs (because the
ERT values are larger than the cutoff time of 50 000 function
evaluations).

The results of Irace-AUC and Irace-ERT on the PBO
problems reveal the questions of how the cost metric affects



10

Fig. 6. Fixed-target ERT values of the GAs listed in Tab. II for F21.

Fig. 7. Fixed-target ERT values of the GAs listed in Tab. II for F8.

the performance of Irace for different configuration tasks for
future study. We study in the following the impact of the
cutoff time concerning the behavior of Irace on ONEMAX
and LEADINGONES.

1) Sensitivity with respect to the cutoff time: Inspired by
the result in Fig. 8, we study the sensitivity of ERT and AUC
with respect to the cutoff time of the GAs. To this end, we
consider the set {(0.5 + 0.1t) × ERT(1 + 1) EA | t ∈ [0..15]}
of 16 different cutoff times. For each of these cutoff time, for
each of the two cost metrics (AUC and ERT), and for each
of F1 and F2, we run Irace 20 independent times with the
same configuration budget of 5 000 target runs (where each
target run corresponds again to ten independent runs of the
respective (µ+λ) GA configuration). Fig. 9 plots ERT values
of the GAs obtained this way (as before, each ERT value is
based on 100 independent validation runs). For comparison,
the red line indicates the performance of the (1 + 1) EA.

On ONEMAX, we observe that Irace-ERT cannot find
promising configurations when the cutoff time of the GAs
is too small to hit the optimum. This is the case for cutoff
times smaller than 665. However, Irace-AUC can work with
small budgets that are not sufficient to hit the optimum. Even
with cutoff times larger than 665, Irace-AUC still obtains
better ERT values than Irace-ERT. Similarly, the result for
LEADINGONES shows that Irace-ERT cannot find promising
configurations with insufficient cutoff times. Still, Irace-AUC
performs well across all cutoff times.

Overall, we thus see that tuning with respect to AUC is
much less sensitive with respect to the cutoff time.

Fig. 8. Fixed-target ERT values of the GAs listed in Tab. II for F7.

600

800

1000

1200

33
2

39
9

46
5

53
2

59
8

66
5

73
1

79
8

86
4

93
0

99
7

10
64

11
30

11
97

12
63

13
30

Budget of GAs for OneMax

E
R

T
Irace−AUC Irace−ERT

6000

8000

10000

27
87

33
44

39
01

44
59

50
16

55
74

61
31

66
88

72
46

78
03

83
61

89
18

94
75

10
03

3

10
59

0

11
14

8

Budget of GAs for LeadingOnes

E
R

T

Irace−AUC Irace−ERT

Fig. 9. ERT values (y-axis) of the GAs obtained by Irace for ONEMAX
and LEADINGONES in dimension n = 100, for different cutoff time B that
the GAs can spend to find the optimum (x-axis). Showing results for B ∈
{(0.5 + 0.1t)ERT(1+1) EA | t ∈ [0..15]}. For comparison, the ERT values
of the (1+1) EA are plotted by horizontal red lines. Results are for the best
found configurations obtained from r = 20 independent runs of Irace, and
each of the ERT values is with respect to 100 independent validation runs.

2) Sensitivity with respect to the configuration budget of
Irace: We also analyze the sensitivity of the results with
respect to the configuration budget, i.e., the number of target
runs that the configurator can perform before it suggests a
configuration. We use Irace for this purpose. Fig. 10 plots
the ERT values of the configurations suggested by Irace, for
8 selected problems from the PBO suite. Interestingly, the
ERT values are not monotonically decreasing, as one might
have expected, at least for the configurations that are explicitly
tuned for small ERT. Tuning for AUC gave the best ERT values
for F1, 8, 19, 20, and 21.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have analyzed the performance of a family
of (µ+ λ) GAs in which offspring are generated by applying
either crossover (with probability pc) or mutation (probability
1−pc). Four different configuration methods have been applied
for finding promising configurations of GAs: grid search and
three automated techniques.



11

0

300

600

900

1200

2
5
0
0

3
7
5
0

5
0
0
0

6
2
5
0

7
5
0
0

E
R

T

Irace−AUC Irace−ERT

(a) F1

0

2500

5000

7500

2
5
0
0

3
7
5
0

5
0
0
0

6
2
5
0

7
5
0
0

E
R

T

Irace−AUC Irace−ERT

(b) F2

0

500

1000

1500

2
5
0
0

3
7
5
0

5
0
0
0

6
2
5
0

7
5
0
0

E
R

T

Irace−AUC Irace−ERT

(c) F8

0

2000

4000

6000

2
5
0
0

3
7
5
0

5
0
0
0

6
2
5
0

7
5
0
0

E
R

T

Irace−AUC Irace−ERT

(d) F9

0

5000

10000

15000

20000

2
5
0
0

3
7
5
0

5
0
0
0

6
2
5
0

7
5
0
0

E
R

T

Irace−AUC Irace−ERT

(e) F10

1e+01

1e+03

1e+05

2
5
0
0

3
7
5
0

5
0
0
0

6
2
5
0

7
5
0
0

E
v
a

lu
a

ti
o

n
s

Irace−AUC Irace−ERT

(f) F19

0

1000

2000

3000

4000

2
5
0
0

3
7
5
0

5
0
0
0

6
2
5
0

7
5
0
0

E
R

T

Irace−AUC Irace−ERT

(g) F20

0

3000

6000

9000

2
5
0
0

3
7
5
0

5
0
0
0

6
2
5
0

7
5
0
0

E
R

T

Irace−AUC Irace−ERT

(h) F21

Fig. 10. ERT values (y-axis) of the GAs obtained by Irace with different
configuration budgets BT (the number of configurations that Irace can test,
x-axis). Results are for BT ∈ {(0.5 + 0.25t)5 000 | t ∈ [0..4]}. Each ERT
value is for the 100 validation runs of the configuration suggested by Irace
after a single run, i.e., one for each budget.

The experimental results show that mutation-only GAs usu-
ally benefit from small parent population size. On the contrary,
crossover-based GAs require sufficient population sizes. On
our PBO problem set, the (1 + 1) EA outperforms the other
tested GAs on ONEMAX, LEADINGONES, and some of their
W-model extensions. However, crossover can be beneficial
for the W-model extensions with epistasis and ruggedness,
concatenated trap, and NK-landscapes.

We have also investigated the performance of the AC
methods, Irace, MIP-EGO, and MIES. Irace is the only method
that could find (1 + λ) mutation-only GAs, highlighting the
importance of handling conditional parameter spaces appro-
priately.

We also observed that the cost metric used as tuning
objective has a major impact on the performance of the AC
methods. When using ERT, the AC methods cannot obtain
useful information from configurations that cannot hit the
optimum. But not only for these cases we observed that tuning
for AUC gave better ERT values than when directly tuning for
ERT.

Our results raise several interesting topics for future re-

search. Apart from analyzing more closely the configurations
obtained for each problem, and the sensitivity of the perfor-
mance with respect to the different parameters, we also plan
to study in what sense our observation that tuning for AUC
can help finding better configurations for ERT generalizes
to other algorithm families and/or problems. A bi-objective
(or even multi-objective, if considering different performance
measures) optimization process might be able to balance
advantages of the different cost metrics. Such an approach
would tie well with recent works in the context of algorithm
selection [8], [27], [28].

Our results have also demonstrated that none of the AC
methods clearly outperforms all others, suggesting to either
combine them or to develop guidelines that can help users
select the most suitable configuration technique for their con-
crete problem at hand. Finally, we have also observed that in
several cases none of the techniques could find configurations
that outperform or perform on par with the (1+1) EA, which
may indicate improvement potential for these configuration
methods.

ACKNOWLEDGMENTS

We thank Manuel López-Ibáñez for pointing us to the acviz
tool [13]. We thank Thomas Weise for pointing out a mistake
in the previous definition of the Ising model problems F19-21.

Our work was supported by the Chinese scholarship council
(CSC No. 201706310143), by the Paris Ile-de-France Region,
by ANR-11-LABX-0056-LMH (LabEx LMH), and by COST
Action CA15140.

REFERENCES

[1] A. Aziz-Alaoui, C. Doerr, and J. Dréo. Towards large scale auto-
mated algorithm design by integrating modular benchmarking frame-
works. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’21), pages 1365–1374. ACM, 2021.

[2] T. Bäck. Parallel optimization of evolutionary algorithms. In In Proc.
of Parallel Problem Solving from Nature (PPSN’94), pages 418–427.
Springer, 1994.

[3] T. Bäck. Evolutionary algorithms in theory and practice: Evolution
strategies, evolutionary programming, genetic algorithms. Oxford Uni-
versity Press, Inc., USA, 1996.

[4] T. Bäck, F. Hoffmeister, and H.-P. Schwefel. A survey of evolution
strategies. In Proc. of International Conference on Genetic Algorithms
(ICGA’91). Citeseer, 1991.

[5] T. Bartz-Beielstein, C. W. Lasarczyk, and M. Preuß. Sequential param-
eter optimization. In Proc. of Congress on Evolutionary Computation
(CEC’05), pages 773–780. IEEE, 2005.

[6] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-race and iterated
f-race: An overview. In Experimental Methods for the Analysis of
Optimization Algorithms, pages 311–336. Springer, 2010.

[7] J. Bossek, P. Kerschke, and H. Trautmann. Anytime behavior of inexact
TSP solvers and perspectives for automated algorithm selection. In Proc.
of Congress on Evolutionary Computation (CEC’20), pages 1–8. IEEE,
2020.

[8] J. Bossek, P. Kerschke, and H. Trautmann. A multi-objective perspective
on performance assessment and automated selection of single-objective
optimization algorithms. Applied Soft Computing, 88:105901, 2020.

[9] E. Carvalho Pinto and C. Doerr. A simple proof for the usefulness
of crossover in black-box optimization. In Proc. of Parallel Problem
Solving from Nature (PPSN’18), pages 29–41. Springer, 2018.

[10] D. Corus and P. S. Oliveto. Standard steady state genetic algorithms
can hillclimb faster than mutation-only evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 22(5):720–732, 2018.

[11] N. Dang and C. Doerr. Hyper-parameter tuning for the (1 + (λ, λ))
GA. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’19), pages 889–897. ACM, 2019.



12

[12] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, Ann Arbor, MI, USA,
1975.

[13] M. de Souza, M. Ritt, M. López-Ibáñez, and L. P. Cáceres. Acviz: A
tool for the visual analysis of the configuration of algorithms with irace.
Operations Research Perspectives, 8:100186, 2021.

[14] B. Doerr, H. P. Le, R. Makhmara, and T. D. Nguyen. Fast genetic algo-
rithms. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’17), pages 777–784. ACM, 2017.

[15] C. Doerr, H. Wang, F. Ye, S. van Rijn, and T. Bäck. IOHprofiler:
A benchmarking and profiling tool for iterative optimization heuristics.
arXiv e-prints:1810.05281, Oct. 2018.

[16] C. Doerr, F. Ye, N. Horesh, H. Wang, O. M. Shir, and T. Bäck.
Benchmarking discrete optimization heuristics with IOHprofiler. Applied
Soft Computing, 88:106027, 2020.

[17] K. Eggensperger, M. Lindauer, and F. Hutter. Pitfalls and best practices
in algorithm configuration. Journal of Artificial Intelligence Research,
64:861–893, 2019.

[18] S. M. Elsayed, R. A. Sarker, and D. L. Essam. Multi-operator based
evolutionary algorithms for solving constrained optimization problems.
Computers & Operations Research, 38(12):1877 – 1896, 2011.

[19] P. I. Frazier. A tutorial on Bayesian optimization. arXiv preprint
arXiv:1807.02811, 2018.

[20] D. E. Goldberg. Genetic algorithms in search, optimization and machine
learning. Addison-Wesley Longman Publishing Co., Inc., USA, 1st
edition, 1989.

[21] J. J. Grefenstette. Optimization of control parameters for genetic
algorithms. IEEE Transactions on Systems, Man, and Cybernetics,
16(1):122–128, 1986.

[22] G. T. Hall, P. S. Oliveto, and D. Sudholt. Analysis of the performance
of algorithm configurators for search heuristics with global mutation
operators. In Proc. of the Genetic and Evolutionary Computation
Conference (GECCO’20), pages 823–831, 2020.

[23] G. T. Hall, P. S. Oliveto, and D. Sudholt. On the impact of the
performance metric on efficient algorithm configuration. Artif. Intell.,
303:103629, 2022.

[24] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In Proc. of Learning
and Intelligent Optimization (LION’11), pages 507–523. Springer, 2011.

[25] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS:
An automatic algorithm configuration framework. Journal of Artificial
Intelligence Research, 36:267–306, 2009.

[26] Hyun-Sook Yoon and Byung-Ro Moon. An empirical study on the syn-
ergy of multiple crossover operators. IEEE Transactions on Evolutionary
Computation, 6(2):212–223, April 2002.

[27] A. D. Jesus, A. Liefooghe, B. Derbel, and L. Paquete. Algorithm
selection of anytime algorithms. In Proc. of Genetic and Evolutionary
Computation Conference (GECCO’20), pages 850–858. ACM, 2020.

[28] A. D. Jesus, L. Paquete, and A. Liefooghe. A model of anytime
algorithm performance for bi-objective optimization. J. Glob. Optim.,
79(2):329–350, 2021.

[29] P. K. Lehre and C. Witt. Black-box search by unbiased variation.
Algorithmica, 64:623–642, 2012.

[30] R. Li, M. T. Emmerich, J. Eggermont, T. Bäck, M. Schütz, J. Dijkstra,
and J. H. Reiber. Mixed integer evolution strategies for parameter
optimization. Evolutionary Computation, 21(1):29–64, 2013.

[31] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle. The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives, 3:43–58, 2016.

[32] M. López-Ibánez and T. Stützle. Automatically improving the anytime
behaviour of optimisation algorithms. European Journal of Operational
Research, 235(3):569–582, 2014.

[33] M. Mitchell, J. H. Holland, and S. Forrest. When will a genetic algorithm
outperform hill climbing? In Proc. of Neural Information Processing
Systems Conference (NIPS’93), pages 51–58, 1993.

[34] T. Murata and H. Ishibuchi. Positive and negative combination effects
of crossover and mutation operators in sequencing problems. In Proc.
of Congress on Evolutionary Computation (CEC’96), pages 170–175,
May 1996.

[35] L. Pérez Cáceres, M. López-Ibáñez, H. Hoos, and T. Stützle. An
experimental study of adaptive capping in irace. In Proc. of International
Conference on Learning and Intelligent Optimization (LION’17), pages
235–250. Springer, 2017.

[36] Y. Pushak and H. Hoos. Algorithm configuration landscapes. In Prof.
of Parallel Problem Solving from Nature (PPSN’18), pages 271–283.
Springer, 2018.

[37] I. Rechenberg. Evolution strategy: Nature’s way of optimization. In
Optimization: Methods and applications, possibilities and limitations,
pages 106–126. Springer, 1989.

[38] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas.
Taking the Human Out of the Loop: A review of Bayesian optimization.
Proc. of the IEEE, 104(1):148–175, 2016.

[39] W. M. Spears. Crossover or mutation? In Proc. of Foundations of genetic
algorithms (FOGA’93), pages 221–237. Elsevier, 1993.

[40] T. Stützle and M. López-Ibáñez. Automated Design of Metaheuristic
Algorithms, pages 541–579. Springer, Cham, 2019.

[41] D. Sudholt. How crossover speeds up building block assembly in genetic
algorithms. Evolutionary computation, 25(2):237–274, 2017.

[42] D. Sudholt. The benefits of population diversity in evolutionary
algorithms: A survey of rigorous runtime analyses. In B. Doerr and
F. Neumann, editors, Theory of Evolutionary Computation: Recent
Developments in Discrete Optimization, pages 359–404. Springer, 2020.

[43] R. Tanabe. Analyzing adaptive parameter landscapes in parameter
adaptation methods for differential evolution. In Proc. of the Genetic and
Evolutionary Computation Conference (GECCO 20’), pages 645–653,
2020.

[44] D. Thierens and P. A. Bosman. Optimal mixing evolutionary algo-
rithms. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’11), pages 617–624, 2011.

[45] R. Tinós, D. Whitley, F. Chicano, and G. Ochoa. Partition crossover
for continuous optimization: ePX. In Proc. of Genetic and Evolutionary
Computation Conference (GECCO’21), pages 627–635. ACM, 2021.

[46] R. Tinós, L. D. Whitley, and F. Chicano. Partition crossover for pseudo-
boolean optimization. In Proc. of Foundations of Genetic Algorithms
(FOGA’15), pages 137–149. ACM, 2015.

[47] B. van Stein, H. Wang, and T. Bäck. Automatic configuration of deep
neural networks with parallel efficient global optimization. In Proc. of
International Joint Conference on Neural Networks (IJCNN’19), pages
1–7. IEEE, 2019.

[48] H. Wang, M. Emmerich, and T. Bäck. Cooling Strategies for the
Moment-Generating Function in Bayesian Global Optimization. In Proc.
of Congress on Evolutionary Computation (CEC’18), pages 1–8. IEEE,
2018.

[49] H. Wang, B. van Stein, M. Emmerich, and T. Bäck. A new acquisition
function for Bayesian optimization based on the moment-generating
function. In Proc. of International Conference on Systems, Man, and
Cybernetics (SMC’17), pages 507–512. IEEE, 2017.

[50] H. Wang, D. Vermetten, F. Ye, C. Doerr, and T. Bäck. IOHanalyzer:
Performance analysis for iterative optimization heuristic. ACM Trans-
actions on Evolutionary Learning and Optimization, 2022.

[51] T. Weise, Y. Chen, X. Li, and Z. Wu. Selecting a diverse set of
benchmark instances from a tunable model problem for black-box
discrete optimization algorithms. Applied Soft Computing, 92:106269,
2020.

[52] T. Weise and Z. Wu. Difficult features of combinatorial optimization
problems and the tunable w-model benchmark problem for simulating
them. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’18, Companion Material), pages 1769–1776. ACM, 2018.

[53] F. Ye, C. Doerr, and T. Bäck. Interpolating local and global search
by controlling the variance of standard bit mutation. In Proc. of IEEE
Congress on Evolutionary Computation (CEC’19), pages 2292–2299.
IEEE, 2019.

[54] F. Ye, C. Doerr, H. Wang, and T. Bäck. Data sets for the study ”Au-
tomated Configuration of Genetic Algorithms by Tuning for Anytime
Performance”. https://doi.org/10.5281/zenodo.4823492, May 2021.

[55] F. Ye, H. Wang, C. Doerr, and T. Bäck. Benchmarking a (µ + λ)
genetic algorithm with configurable crossover probability. In Proc.
of Parallel Problem Solving from Nature (PPSN’20), pages 699–713.
Springer, 2020.

https://doi.org/10.5281/zenodo.4823492


13

Furong Ye, is a PostDoc at the Leiden Institute
of Advanced Computer Science (LIACS), after fin-
ishing his PhD study at LIACS. His PhD topic
is “Benchmarking discrete optimization heuristics:
From building a sound experimental environment
to algorithm configuration”. He is part of the core
development team of IOHprofiler, with a focus on
the IOHexperimenter. His research interests are the
empirical analysis of algorithm performance and
(dynamic) algorithm configuration.

Carola Doerr, formerly Winzen, is since 2013 a
permanent CNRS researcher at Sorbonne Université
in Paris, France. Carola’s main research activities
are in the mathematical analysis of randomized
algorithms, with a strong focus on evolutionary
algorithms and other sampling-based optimization
heuristics. She is also interested in all aspects of
benchmarking these algorithms. Carola obtained her
PhD in Computer Science from Saarland University
and the Max Planck Institute for Informatics in
2011 and she successfully defended her habilitation

(HDR) at Sorbonne Université in 2020.
She is associate editor of IEEE Transactions on Evolutionary Computation,

of ACM Transactions on Evolutionary Learning and Optimization, editorial
board member of the Evolutionary Computation journal, advisory board
member of the Springer Natural Computing Book Series, and guest editor
of a special issue in TEVC and two special issues in Algorithmica. She
is a founding and coordinating member of the Benchmarking Network, an
initiative created to consolidate and to stimulate activities on benchmarking
sampling-based optimization heuristics.

Hao Wang is an assistant professor of computer
science in Leiden University since September 2020,
focusing black-box optimization, Bayesian optimiza-
tion, multi-objective optimization, and variational
quantum algorithms. Hao obtained his Ph.D. (cum
laude) at Leiden University in 2018, followed by
two postdoctoral appointments: at Leiden University
(2018.05 – 2019.12) and LIP6, Sorbonne Université,
Paris, France (2020.01 – 2020.08). He served as the
proceedings chair for the PPSN 2020 conference and
will be organizing the EMO (Evolutionary Multi-

Objective Optimization) 2023 international conference as one of the general
co-chairs. He received the best paper award at the PPSN (Parallel Problem
Solving from Nature) 2016 conference for proposing new measures to
understand the difficulties of multi-objective optimization problems.

Thomas Bäck, is Full Professor of Computer Sci-
ence at the Leiden Institute of Advanced Computer
Science (LIACS), Leiden University, The Nether-
lands, since 2002. He received the Diploma degree
in computer science in 1990 and the PhD degree
in 1994, both from the University of Dortmund,
Germany. His research interests include evolutionary
computation, machine learning, and their real-world
applications, especially in sustainable smart industry
and health.

In 2021, Thomas has been elected as member of
the Royal Netherlands Academy of Aarts and Sciences (KNAW). He was a
recipient of the IEEE Computational Intelligence Society (CIS) Evolutionary
Computation Pioneer Award in 2015, was elected as Fellow of the Interna-
tional Society of Genetic and Evolutionary Computation in 2003, and received
the best PhD thesis award from the German society of Computer Science
(Gesellschaft für Informatik, GI) in 1995.

He currently serves as an Associate Editor for the IEEE Transactions
on Evolutionary Computation and Artificial Intelligence Review journals,
and as area editor for the ACM Transactions on Evolutionary Learning
and Optimization. He is co-editor of the Natural Computing Book Series,
Handbook of Evolutionary Computation, Handbook of Natural Computing,
and author of Evolutionary Computation in Theory and Practice.

https://sites.google.com/view/benchmarking-network/


14

FIGURE CAPTIONS AND TABLE CAPTIONS

Fig. 1. Fixed-target ERT values of the configurations
suggested for F10. The suffix “-ERT/AUC” indicates which
cost metric was used during the tuning.

Fig. 2. Relative ERT values of the GAs obtained by Irace,
MIES, and MIP-EGO using ERT as the cost metric compared
to the ERT of the GAs obtained by the same method when
using AUC as the cost metric during the configuration process.
Plotted values are (ERTusing ERT-ERTusing AUC)/ERTusing AUC,
capped at −1 and 1. Positive values therefore indicate that
configurator obtains better results when configuring AUC.

Fig. 3. The relative deviation from the best-known ERT
value of the GAs obtained during the configuration process
of Irace for tuning the (µ + λ) GA for ONEMAX in
dimension n = 100, with the objective to minimize the
ERT for the optimum f(x) = 100. The maximal number
of configurations that can be tested by Irace is set to 5 000.
The figure is produced by the acviz tool, and illustrations for
the details of plot representation can be found in Sec. 3 of [13].

Fig. 4. Violin plots of first hitting times for the configurations
found by Irace when tuning for ERT and AUC, respectively.
Only showing results for problems on which Irace-
ERT outperforms Irace-AUC. Results are from the 100
independent validation runs. Targets are listed in Tab. I,
and the configurations of the GAs can be found in Tab. II.
For each run, values are capped at the budget 50 000 if the
algorithm cannot find the target.

Fig. 5. Violin plots of first hitting times for the configurations
found by Irace when tuning for ERT and AUC, respectively,
for problems on which Irace-AUC outperforms Irace-ERT.
Results are from the 100 independent validation runs. Targets
are listed in Tab. I, and the configurations of the GAs can
be found in Tab. II. For each run, values are capped at the
budget 50 000 if the algorithm cannot find the target.

Fig. 6. Fixed-target ERT values of the GAs listed in Tab. II
for F21.

Fig. 7. Fixed-target ERT values of the GAs listed in Tab. II
for F8.

Fig. 8. Fixed-target ERT values of the GAs listed in Tab. II
for F7.

Fig. 9. ERT values (y-axis) of the GAs obtained by
Irace for ONEMAX and LEADINGONES in dimension
n = 100, for different cutoff time B that the GAs can
spend to find the optimum (x-axis). Showing results for
B ∈ {(0.5 + 0.1t)ERT(1+1) EA | t ∈ [0..15]}. For comparison,
the ERT values of the (1+1) EA are plotted by horizontal red
lines. Results are for the best found configurations obtained
from r = 20 independent runs of Irace, and each of the
ERT values is with respect to 100 independent validation runs.

Fig. 10. ERT values (y-axis) of the GAs obtained by Irace
with different configuration budgets BT (the number of
configurations that Irace can test, x-axis). Results are for
BT ∈ {(0.5 + 0.25t)5 000 | t ∈ [0..4]}. Each ERT value is
for the 100 validation runs of the configuration suggested by
Irace after a single run, i.e., one for each budget.

Table. 1. Target values used to compute the ERT metric on
each problem.

Table. 2. Configurations of the (µ+ λ) GA obtained by grid
search, Irace, MIP-EGO, and MIES. C indicates the cost
metric used by the configurators. Results for maximizing
AUC are obtained independently from those obtained for
minimizing ERT.

Table. 3. Absolute ERT and AUC values for the (1+1) EA and
relative improvement of ERT and AUC for the configurations
suggested by the four configuration methods, in comparison
against the (1 + 1) EA values. Compared to the ERT and
AUC values of the (1 + 1) EA on each problem (indicated by
“EA”), the relative improvement obtained from the automated
configuration are shown for each AC method, where both
measures are calculated from hitting times of 100 validation
runs for (1 + 1) EA and AC methods. We also indicate the
statistical significance in the empirical distributions of the
hitting time (∗∗∗∗ for p < 0.001, ∗∗∗ for p < 0.01, ∗∗ for
< 0.01, and ∗ for p < 0.05) for each pair of the AC result and
that of the (1 + 1) EA. The Mann–Whitney U test is applied
with the Benjamini and Hochberg method for all 120 pairwise
comparisons to control the false discovery rate. Runs are cut
off at 50 000 evaluations if it does not hit the final target. The
significant comparisons are colour-coded with respect to the
relative improvement, where a darker colour signifies a more
considerable improvement.


	I Introduction
	II Preliminaries
	II-A A Family of (+) Genetic Algorithms
	II-B The IOHprofiler Problem Suite PBO
	II-C Algorithm Performance Measures

	III Algorithm Configuration for Benchmarking
	III-A Algorithm Configurators Utilized
	III-B Experimental Setup
	III-C Results Obtained by Automated Configuration
	III-C1 ERT Results
	III-C2 AUC results

	III-D Discussions on the Configurators' Performance
	III-D1 Handling conditional parameter spaces
	III-D2 Impact of the cost metric

	III-E The Choice of the Cost Metric
	III-E1 Sensitivity with respect to the cutoff time
	III-E2 Sensitivity with respect to the configuration budget of Irace


	IV Discussion and Conclusions
	References
	Biographies
	Furong Ye,
	Carola Doerr,
	Hao Wang
	Thomas Bäck,


