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Limits of Mahler measures in multiple variables

François Brunault, Antonin Guilloux, Mahya Mehrabdollahei, Riccardo Pengo

March 22, 2022

Abstract

We prove that certain sequences of Laurent polynomials, obtained from a fixed Laurent polynomial P by monomial substitu-
tions, give rise to sequences of Mahler measures which converge to the Mahler measure of P. This generalizes previous work of
Boyd and Lawton, who considered univariate monomial substitutions. We provide moreover an explicit upper bound for the error
term in this convergence, generalizing work of Dimitrov and Habegger, and a full asymptotic expansion for a family of 2-variable
polynomials, whose Mahler measures were studied independently by the third author.

1 Introduction
Let P ∈ Z[z1] be a monic polynomial with integer coefficients, and write P(z1) = ∏

d
j=1(z1−α j) for its complex factorization.

Then, for every k ∈N the polynomials P(k)(z1) := ∏
d
j=1(z1−αk

j ) have integer coefficients, and one can experimentally see that if
p∈N is a prime number, the integer P(p)(1)∈Z is often prime itself. This observation, first made by Pierce [51], led Lehmer [42]
to study the growth of the sequence {P(k)(1)}+∞

k=1. In particular, he showed that |P(k+1)(1)/P(k)(1)| → exp(m(P)) as k→+∞, if
no root α j lies on the unit circle. Here, m(P) ∈ R stands for the logarithmic Mahler measure, which is defined as:

m(P) :=
∫
[0,1]n

log|P(e2πit1 , . . . ,e2πitn)|dt1 · · ·dtn

for every non-zero Laurent polynomial P ∈ C[z±1
1 , . . . ,z±1

n ]\{0}. In particular, m(P)≥ 0 whenever P has integer coefficients.
Lehmer’s discovery lead him to wonder whether there exist polynomials P ∈ Z[z1] with arbitrarily small, positive Mahler

measure, which would lead to slowly increasing sequences {P(k)(1)}+∞

k=1. This seemingly simple question is open to this day,
and the Mahler measure of Lehmer’s polynomial z10

1 + z9
1− z7

1− z6
1− z5

1− z4
1− z3

1 + z1 + 1 ∈ Z[z1] is still the smallest, non-zero
Mahler measure of a polynomial P ∈ Z[z1]\{0} which has been computed (see [59] for a survey).

One of the most interesting strategies to attack Lehmer’s problem has been proposed by Boyd [7]. He observed that if the set:

M :=
+∞⋃
n=1

m(Z[z±1
1 , . . . ,z±1

n ]\{0})⊆ R≥0

is closed, then indeed there exists m0 > 0 such that for each P ∈ Z[t] either m(P) = 0 or m(P) ≥ m0. This observation follows
from the fact that each Mahler measure m(P) of a multivariate polynomial P ∈ Z[z±1

1 , . . . ,z±1
n ]\{0} is the limit of a sequence of

Mahler measures of univariate polynomials. More precisely, Boyd shows that:

lim
a1→+∞

· · · lim
an→+∞

m(P(ta1 , . . . , tan)) = m(P)

where each limit is taken independently. It seems natural to ask what kind of monomial substitutions in the variables of P give
the same convergence. Indeed, for a Laurent polynomial P ∈ C[z±1

1 , . . . ,z±1
n ] and a matrix A = (ai, j) ∈ Zm×n, one can consider

the polynomial PA, in m variables, given by:

PA(z1, . . . ,zm) = P(z
a1,1
1 · · ·zam,1

m , . . . ,z
a1,n
1 · · ·zam,n

m ).

The substitutions appearing in the previous limit proven by Boyd are the special case of the row-matrix A = (a1, . . . ,an). In order
to generalize Boyd’s result, Lawton [40] considered the quantity ρ(A) associated to the matrix A defined as the smallest `∞-norm
of an integer vector in the kernel of A:

ρ(A) := min{‖v‖∞ : v ∈ Zn \{0}, A · v = 0}.

Lawton showed that if Ad is a sequence of row-matrices, with ρ(Ad)→ ∞, then we have:

lim
d→∞

m(PAd ) = m(P).
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Recently, Dimitrov and Habegger [20, Theorem A.1] have given an upper bound on the rate of convergence which is a negative
power of ρ(A). Strikingly, the exponent depends only on the number of non-vanishing coefficients in P. The constant involved
depends also on the degree of P and the number n of variables.

Moreover, Smyth [60] used Lawton’s result to show that the set M can be written as a nested ascending union of closed
subsets of R. In fact, Smyth proves more generally that for every Laurent polynomial P ∈ C[z±1

1 , . . . ,z±1
n ]\{0}, the set:

M (P) :=
+∞⋃

m=1

{m(PA) : A ∈ Zm×n such that PA 6= 0} (1)

is closed. Smyth shows moreover that M is the nested ascending union of the sets M
(

∑
n
j=1 z2 j−1− z2 j

)
for n→+∞ (see [60,

Proposition 14]).
With this context in mind, it seems natural to understand sequences m(PAd ) and their convergence when Ad is a sequence of

m× n-matrices, and not only of row-matrices. The present paper aims at initializing a systematic study of these sequences. To
do so, first of all we devote Section 3 to the proof of the following theorem (see Theorem 3.1) which very naturally generalizes
the theorems of Boyd and Lawton to the multivariate setting:

Theorem 1.1. For every non-zero Laurent polynomial P ∈ C[z±1
1 , . . . ,z±1

n ]\ {0}, and every sequence of integer m×n-matrices
{Ad}d∈N ⊆ Zm×n such that lim

d→+∞
ρ(Ad) = +∞, we have that lim

d→+∞
m(PAd ) = m(P).

We then proceed in Section 4 to obtain an upper bound for the error term |m(PA)−m(P)|, which generalizes the bound proved
by Dimitrov and Habegger [20, Theorem A.1]. In fact, our proof of Theorem 4.1, which occupies the entirety of Section 4, follows
a strategy similar to the one of Dimitrov and Habegger. More precisely, we proceed, as they do, by regularizing the function
log|P|, and we bound separately the error terms for the regularizations (see Corollary 4.14) and the integrals of the differences
between log|P| and the regularized functions (see Proposition 4.10). However, our regularization proceeds by using the smooth
functions 1

2 log(|P|2 + ε), which extend holomorphically to a neighbourhood of the unit torus (see Proposition 4.11), whereas
the regularization carried out in [20] uses functions which are not smooth in general. Let us point out as well that our proof
of Proposition 4.10 relies on an estimate of Dobrowolski [22, Theorem 1.3] (see also Lemma 4.6), which is similar to [20,
Lemma A.3] (see Remark 4.9 for a comparison). Along the proof, we show furthermore that if a polynomial P does not vanish
on the unit torus Tn, then m(PA) tends to m(P) exponentially fast as ρ(A)→+∞ (see Corollary 4.4).

Section 5 gives some insight on which optimal rate of convergence and even on what kind of asymptotic expansion one can
expect for the convergence of m(PA) towards m(P). For the case of 1-variable Mahler measures converging to 2-variable ones,
the question of asymptotic expansion has been studied by Condon [17]. His work, which we review in Section 5.1, shows that for
a large class of 2-variable polynomials, the rate of convergence for the limit m(P(z1,zd

1))→m(P) is an integer power of 1/d, and
a full asymptotic expansion for the error term can be obtained. Note that this rate of convergence is much better than the bounds
provided by [20, Theorem A.1] and by Theorem 4.1. Moreover, Condon proceeds in giving experimental evidences for other
polynomials, exhibiting what seems to be a rate of convergence comparable to a rational power of 1/ρ(A). The full description
of the rate of convergence, even in this particular case, is still open.

However, we exhibit in Section 5.2 the example of the 4-variate polynomial P∞(z1, . . . ,z4) = (1−z1)(1−z2)−(1−z3)(1−z4)
and a sequence Ad of 2×4 integer matrices, such that the polynomials PAd are intimately related to the sequence:

Pd(z1,z2) := ∑
0≤i+ j≤d

zi
1z j

2

and in particular m(PAd ) = m(Pd). The sequence of Mahler measures m(Pd) was thoroughly studied by the third named author
of the present paper in [47], where she proved that m(Pd)→−18 ·ζ ′(−2) as d→+∞. We use Theorem 3.1 to give a new proof
of this convergence, using the equality −18ζ ′(−2) = m(P∞), which is due to D’Andrea and Lalín [18, Theorem 7]. We then
provide a complete asymptotic expansion for the error term |m(Pd)−m(P∞)| as d→+∞ in Theorem 5.1. In particular, we prove
that:

|m(Pd)−m(P∞)| ∼d→∞

log(ρ(Ad))

ρ(Ad)2 .

The logarithmic term represents a different behavior than what Condon studied and proved and is still much better than our
general bound. So, this example shows how far we are from fully understanding the optimal rate of convergence and asymptotic
expansion of m(PAd ) to m(P) in a general multivariate setting.

1.1 Historical remarks
We devote this subsection to a short historical overview of the existing results using and generalizing the work of Boyd [6, 7]
and Lawton [40]. First of all, Boyd himself [6] used an earlier version of this theorem to characterize those Laurent polynomials
P ∈ Z[z±1] \ {0} such that m(P) = 0. Moreover, Lawton’s result has been used by Schinzel [54] to provide an explicit bound
on the Mahler measure of a polynomial, which generalizes a classical result of Gonçalves [30] (see also [28, Theorem 1.22]).
Furthermore, the work of Boyd and Mossinghoff [9], later generalized by Otmani, Rhin and Sac-Épée [50], used Lawton’s result
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as a starting point for an investigation of the genuine limit points in the set M . On the other hand, Dobrowolski [21] used
Lawton’s limit formula to answer a question of Schinzel. Moving on, Dubickas and Jankauskas [25] used Lawton’s theorem
to construct many non-reciprocal univariate polynomials whose Mahler measures lie in the interval [m(z3

1− z1− 1),m(1+ z1 +
· · ·+ zn)], whereas Dobrowolski and Smyth [23], as well as Akhtari and Vaaler [1], used the theorem of Lawton to study Mahler
measures of polynomials with a bounded number of monomials. Finally, Dubickas [24] and Habegger [34] used Lawton’s result
in their investigations of sums of roots of unity, whereas, as we already mentioned, Smyth [60] used Lawton’s limit formula to
prove that the sets M (P) defined in (1) are closed.

Let us point out that Lawton’s result has found applications also outside number theory. First of all, Lind, Schmidt and Ward
[43] used it to provide a lower bound for the entropy of the dynamical system associated to a Laurent polynomial in terms of its
Mahler measure. Moreover, the work of Silver and Williams [55, 56], later generalized by Raimbault [53] and Lê [41], applied
Lawton’s result to knot theory, in order study the convergence of Mahler measures of Alexander polynomials, and the growth
of homology, under surgery operations. Staying in the realm of knot theory, the work of Champanerkar and Kofman [15, 16],
later generalized by Cai and Todd [12], used Lawton’s theorem to study Mahler measures of Jones polynomials. Moving to the
world of von Neumann algebras, Deninger [19, Theorem 17] proved a continuity result for Fuglede-Kadison determinants on
the space of marked groups, which implies Lawton’s result under the strong assumption that P does not vanish on the torus Tn.
Note that Deninger’s result is reminiscent of the classical theorem of Szegö [19, Theorem 1], which approximates univariate
Mahler measures in terms of Toepliz determinants. A multivariate analogue of Szegö’s result has been recently found by Hajli
[35]. Finally, Lawton’s result has been used by Lück in functional analysis, to study spectral density functions [45] and twists of
L2-invariants [46].

To conclude this subsection, let us mention some existing generalizations and improved versions of Lawton’s result. First
of all, Champanerkar and Kofman prove in [16, Lemma 3.3] that one can perform signed monomial substitutions. Moreover,
Duke [26, Theorem 6] provides the first term in the asymptotic expansion of the difference m(zn

1 + zm
1 + 1)−m(z1 + z2 + 1) as

(n,m)→+∞. Furthermore, Lalín and Sinha [39] mention a generalization of Lawton’s theorem [39, Theorem 30] to the multiple
Mahler measure, introduced in previous work of Kurokawa, Lalín and Ochiai [38]. Such a generalization was rigorously proved
by Issa and Lalín [36], who dealt also with the generalized Mahler measures defined by Gon and Oyanagi [29]. On the other
hand, Carter, Lalín, Manes, Miller and Mocz [14, Proposition 1.3] recently proved a weak generalization of Lawton’s result to
dynamical Mahler measures (introduced in [14, Definition 1.1]).

In addition to the previously mentioned results, Dobrowolski [22] generalized a crucial estimate of Lawton [40, Theorem 1]
on the measure of the set of points z ∈ Tn where a polynomial is small. Similar bounds have been provided by Lück [45,
Proposition 2.1], Habegger [34, Lemma A.4], and Dimitrov and Habegger [20, Lemma A.3] (see Remarks 4.8 and 4.9 for a
comparison). Finally, Gu and Lalín [31, Proposition 8] have recently proved a multivariate convergence of Mahler measures,
which can be obtained as a corollary of Theorem 1.1, for one particular family of polynomials (see for more details Remark 5.4).

2 Notation and conventions
For the reader’s convenience, we collect in this section the notation that we most frequently use in the rest of the paper.

2.1 Generalities
We let N = {0,1, . . .} denote the natural numbers, Z denote the integers, R denote the real numbers, C denote the complex ones,
and C× = C\{0}. For any n ∈ N, we denote by zn = (z1, . . . ,zn) the coordinates of Cn, and by

Tn := {zn ∈ Cn : |z1|= · · ·= |zn|= 1}

the n-dimensional real-analytic unit torus. Moreover, for every p ∈R≥1, we let ‖·‖p : Cn→R≥0 denote the `p-norm, defined for
every zn ∈ Cn by:

‖zn‖p :=

(
n

∑
j=1
|z j|p

)1/p

and we let ‖·‖∞ : Cn→ R≥0 denote the `∞-norm, defined by ‖zn‖∞ := max{|z1|, . . . , |zn|}. Finally, for any natural number n and
any real number δ > 0, we define the annulus

Cδ :=

{
zn ∈ (C×)n :

n

∑
i=1
|log|zi|| ≤ δ

}
(2)

which is a closed neighbourhood of the torus Tn in (C×)n.

2.2 Matrices
Fix a matrix A = (ai, j) ∈ Zm×n. We denote by d(A) the dimension of the linear subspace ker(A)⊆Rn, and by κA := ker(A)∩Zn

the integer lattice within this subspace. Moreover, we define:

ρ(A) := min{‖v‖∞ : v ∈ κA, v 6= 0} (3)
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which is the first successive minimum of the lattice κA with respect to the `∞-norm. By convention, we put ρ(A) = +∞ when
κA = {0}.

Finally, we consider the monomial substitution:

zA
m := (z

a1,1
1 · · ·zam,1

m , . . . ,z
a1,n
1 · · ·zam,n

m ) (4)

and for any Laurent polynomial P ∈C[z±1
1 , . . . ,z±1

n ], we define PA ∈C[z±1
1 , . . . ,z±1

m ] by setting PA(z1, . . . ,zm) := P(zA
m). In partic-

ular, we consider vectors v = (v1, . . . ,vn) ∈ Zn as column matrices, so that zv
n = zv1

1 · · ·zvn
n is a monomial.

2.3 Measure theory

For every n ∈ N, we denote by µn := 1
(2πi)n

dz1
z1
∧ ·· ·∧ dzn

zn
the probability Haar measure on Tn. More generally, for every matrix

A = (ai, j) ∈ Zm×n, we let µA be the probability measure on Tn defined as the push-forward of µm along the map Tm→ Tn given
by zm 7→ zA

m. Note in particular that µIdn = µn. Finally, for every non-zero Laurent polynomial P ∈ C[z±1
n ]\{0}, we let:

m(P) :=
∫

Tn
log|P(zn)|dµn(zn) ∈ R (5)

denote the logarithmic Mahler measure of P.

2.4 Fourier coefficients
For every integrable function f : Tn→ C, and every vector v ∈ Zn, we denote by:

cv( f ) :=
∫

Tn

f (zn)

zv
n

dµn(zn)

the corresponding Fourier coefficient. In particular, if P ∈C[z±1
1 , . . . ,z±1

n ] is a Laurent polynomial, then P(zn) = ∑v∈Zn cv(P) · zv
n.

2.5 Polynomials
Fix a non-zero Laurent polynomial P ∈ C[z±1

1 , . . . ,z±1
n ]. We denote by NP ⊆ Rn its Newton polytope, which is the convex hull in

Rn of the support set supp(P) := {v ∈ Zn : cv(P) 6= 0}, and by k(P) := |supp(P)| the number of non-zero monomials appearing
in P. Moreover, we denote by diam(P) the diameter of P, which is the smallest d ∈N such that NP is contained inside a translate
of [0,d]n. We also write L1(P) := ∑v∈Zn |cv(P)| for the length of P, and L∞(P) := maxv∈Zn |cv(P)| for the modulus of P.

Furthermore, we let VP ↪→Gn
m be the hypersurface defined by P, so that VP(C) := {zn ∈ (C×)n : P(zn) = 0}. We also define

the conjugate reciprocal of P by:
P∗(zn) := P(z−1

n ) = ∑
v∈Zn

cv(P) · z−v
n . (6)

Finally, for every t ≥ 0 we define the set S(P, t) := {z ∈ Tn : |P(z)| ≤ t} ⊆ Tn.

2.6 Constants
For every non-zero Laurent polynomial P ∈ C[z±1

n ]\{0} we define a constant:

ρ0(P) := max

{
diam(P)+1, 7

(
diam(P)

n

)2

, exp(5 · k(P) ·n2)

}
∈ R>0, (7)

and a further family of constants:

δε(P) := min
( √

ε

diam(P)L1(P)
,

log(4/3)
diam(P)

)
∈ R>0 (8)

depending on a positive real number ε > 0.

3 A higher dimensional analogue of Lawton’s theorem
The aim of this section is to show that the Mahler measure m(P) :=

∫
Tn log|P(zn)|dµn(zn) of any non-zero Laurent polynomial

P(zn) ∈ C[z±1
n ] \ {0} can be approximated by suitable sequences of “lower-dimensional” Mahler measures, as specified in the

following theorem (see also Theorem 1.1).

Theorem 3.1. Let n ∈ N be an integer, and P(zn) ∈ C[z±1
n ]\{0} be a non-zero Laurent polynomial. Then, for every sequence of

matrices Ad ∈ Zmd×n such that lim
d→+∞

ρ(Ad) = +∞, we have the convergence lim
d→+∞

m(PAd ) = m(P).
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3.1 Convergence of measures and integrals
In order to prove Theorem 3.1, we start by relating the growth of ρ(A) to the weak convergence of the push-forward measures
µA:

Lemma 3.2. Fix n ∈ Z≥1, and let Ad ∈ Zmd×n be a sequence of integral matrices, with fixed number of columns, such that
ρ(Ad)→+∞ as d→+∞. Then the sequence of measures µAd on Tn converges weakly to the measure µIdn .

Proof. This result is classical. We follow the lines of [6, Lemma 1], which treats the case when md = 1 for every d. By the
definition of weak convergence and push-forward of measures, and by Weierstraß approximation, it is sufficient to prove that:

lim
d→+∞

(∫
Tmd

Q(zAd
md
)dµmd (zmd

)

)
=
∫

Tn
Q(zn)dµn(zn) (9)

for every Laurent polynomial Q(zn) ∈ C[z±1
n ]. We see now immediately that for every d ∈ N, the following identities hold true:∫

Tmd
Q(zAd

md
)dµmd (zmd

) = ∑
v∈Zn

cv(Q) ·
∫

Tmd
zAd ·v

md
dµmd (zmd

) = ∑
v∈Zn

Ad ·v=0

cv(Q) = ∑
v∈κAd

cv(Q) (10)

Now, set R := max{‖v‖∞ : v ∈ supp(Q)}. If ρ(A j) > R, then the only vector v ∈ κA j for which it may happen that cv(Q) 6= 0 is
the null vector v = 0. In this case, we have the identity:

∑
v∈κAd

cv(Q) = c0(Q) =
∫

Tn
Q(zn)dµIdn(zn)

which, combined with (10), shows (9), because the sequence on the left is eventually constantly equal to the right hand side.

Weak convergence of measures implies the convergence of integrals of any continuous function. Unfortunately, we would
like a convergence of integrals of log |P|, which is singular. However, uniform estimates on L2-norms are enough to guarantee
that the weak-convergence of measures implies convergence of integrals, as shown in the following general Lemma 3.3. In this
lemma, we choose to work with continuous functions possibly having +∞-values, for which the integral for any measure on the
torus is naturally defined (possibly +∞), as explained for instance in [52, Chapter 1].

Lemma 3.3. Let νk be a sequence of probability measures on Tn, which converges weakly to some probability measure ν∞.
Let f : Tn → R∪{+∞} be a continuous function, which is uniformly L2 for the family {νk : k ∈ N∪{∞}}. Then we have the
convergence

∫
Tn f dνk→

∫
Tn f dν∞ as k→+∞.

Proof. By assumption, there exists a positive real number C ∈ R>0 such that
∫

Tn | f |2dνk ≤C for every k ∈ N∪{∞}. Fix ε > 0
and let λ = C

ε
. Define the set Sλ = {t ∈ Tn : | f (t)|> λ}. The L2-bounds yield, for any k ∈ N∪{∞}:∣∣∣∣∫Sλ

( f −λ )dνk

∣∣∣∣≤ ∣∣∣∣∫Sλ

f dνk

∣∣∣∣≤ ∫Sλ

| f | | f |
λ

dνk ≤
1
λ

∫
Tn
| f |2dνk ≤

C
λ

= ε. (11)

Now, let f̃ be the continuous function min( f ,λ ), which is bounded from above by λ . For every z ∈ Tn, we have the equality
f (z) = f̃ (z)+( f (z)−λ ) ·χSλ

(z), where χSλ
denotes the characteristic function of Sλ . Hence, for all k ∈ N we have the bound:∣∣∣∣∫Tn

f dνk−
∫

Tn
f dν∞

∣∣∣∣≤ ∣∣∣∣∫Tn
f̃ dνk−

∫
Tn

f̃ dν∞

∣∣∣∣+ ∣∣∣∣∫Sλ

( f −λ )dνk

∣∣∣∣+ ∣∣∣∣∫Sλ

( f −λ )dν∞

∣∣∣∣ . (12)

The last two terms on the right hand side of (12) are bounded by ε , thanks to (11). For k big enough, by the convergence νk→ ν∞,
the first one is less than ε . So we have proven that, for k big enough, we have:∣∣∣∣∫Tn

f dνk−
∫

Tn
f dν∞

∣∣∣∣≤ 3ε

which shows that
∫

Tn f dνk→
∫

Tn f dν∞ as k→+∞.

3.2 Uniform L2-bounds and convergence of Mahler measures
Our goal is to prove that m(PA) =

∫
Tn log |P|dµA converges to m(P) =

∫
Tn log |P|dµA. From the previous results we know that

an uniform L2-bound for this functions would grant the convergence. The following estimate is essentially obtained by Dimitrov
and Habegger in [20, Appendix A], where they deal with Lawton theorem and improves the rate of convergence, see also [34].
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Proposition 3.4 (Dimitrov & Habegger). Let n,k ∈ N be two integers. Then, there exists a constant C > 0 such that, for every
non-zero Laurent polynomial P(zn)∈C[z±1

n ]\{0} with k(P)= k and L∞(P)= 1, and every matrix A∈Zm×n with ρ(A)> diam(P)
and m≤ n, the following holds:

‖ log |P|‖2
2,µA

:=
∫

Tl

∣∣log |P(zA
m)|
∣∣2 dµA ≤C and ‖ log |P|‖2

2,µn ≤C.

Proof. A direct computation, similar to the one carried out in (10), proves that, for any matrix A ∈ Zm×n, we have:

P(zA
m) = ∑

v∈Zn
cv(P)zA·v

m = ∑
w∈Zm

 ∑
v∈Zn

A·v=w

cv(P)

zw
m. (13)

Two vectors v,v′ ∈ Zn contribute non-trivially to the same monomial in the above sum if and only if cv(P) 6= 0, cv′(P) 6= 0 and
A · v = A · v′, or equivalently v− v′ ∈ κA. By definition of diam(P) (see Section 2.5), in this case, we have ‖v− v′‖∞ ≤ diam(P).
We see that if ρ(A) > diam(P) the only possibility is v− v′ = 0. In other terms, each monomial of PA comes from a single
monomial of P(zA

m) with the same coefficient and no compensations.
So, for any A with ρ(A) > diam(P), the polynomial PA = P(zA

m) has m ≤ n variables, k(PA) = k(P) = k non-vanishing
coefficients, and L∞(PA) = L∞(P) = 1. Our proposition comes then directly from the estimates of Dimitrov and Habegger. They
show in [20, Lemma A.3] 1 that for every l,k ∈ Z≥1, there exists a constant Cl,k > 0 such that for any Laurent polynomial
Q ∈ C[z±1

l ], with k(Q) = k and L∞(Q) = 1, we have:∫
Tl
(log |Q|)2dµl ≤Cl,k.

Thanks to the considerations in the previous paragraph, this bound applies both to Q = P and to Q = PA, hence we can take
C := max{Cm,k : m≤ n}.

Theorem 3.1 is now an easy consequence of the other results proved in this section:

Proof of Theorem 3.1. We first make an easy reduction: up to multiplying P by a constant a, we may and will assume that
L∞(P) = 1. Indeed, we have, for all a ∈ C∗, both m(aP) = log |a|+m(P) and m(aPA j) = log |a|+m(PA j). So the problem of
convergence is equivalently solved for P or aP. Observe moreover that, for every d ∈ N, we have the following identities:

m(PAd ) =
∫

Tmd
log |P(zAd

md
)|dµmd =

∫
Tn

log |P|dµAd .

Let d0 ∈ N be such that, for d ≥ d0, we have ρ(Ad) ≥ diam(P). From Proposition 3.4, we know that the function log |P| is
uniformly L2 for the family {µAd ,d ≥ d0}∪{µn}. Moreover, we know from Lemma 3.2 that the family µAd converges weakly to
µn as d→+∞. Thus, we have:

lim
d→+∞

m(P(zAd
md
)) = lim

d→+∞

∫
Tn

log |P|dµAd =
∫

Tn
log |P|dµn = m(P)

thanks to Lemma 3.3.

We will see an example of application of Theorem 3.1 in Section 5.2. Meanwhile, we analyze more carefully in the next
section the convergence, to obtain an upper bound on its rate.

4 An error term in the convergence
The aim of this section is to improve Theorem 3.1 by providing an explicit upper bound for the error term |m(PA)−m(P)|, where
P∈C[z±1

n ]\{0} is a non-zero Laurent polynomial, and A∈Zm×n is an integral matrix. We will assume without loss of generality
that P is not a monomial (i.e. k(P) > 1), and that n ≥ 2, because otherwise m(PA) = m(P) for every non-zero integral matrix
A ∈ Zm×n. Then, we obtain the following result, which generalizes [20, Theorem A.1] to higher dimensions:

Theorem 4.1. Fix two integers k,n ∈ Z≥2. Let P ∈ C[z±1
n ] be a Laurent polynomial with k(P) = k non-zero coefficients, and let

ρ0(P) be the constant defined in (7). Then, for every m ∈ Z≥1 and every matrix A ∈ Zm×n such that ρ(A)≥ ρ0(P), the following
inequality holds:

|m(PA)−m(P)| ≤ 7 · k2 · (3nn) · log(ρ(A)) ·
(

diam(P)
ρ(A)

) 1
n(k−1)

. (14)

1The first version of the paper [20] contains a slight error in the proof of this Lemma, that will be corrected in a forthcoming second version
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4.1 An explicit exponential convergence for polynomials without toric points
The aim of this section is to show that, for a Laurent polynomial P ∈ C[z±1

n ] which does not vanish on the unit torus Tn, the
convergence m(PA)→ m(P) as ρ(A)→ +∞ is exponentially fast, and its speed can be explicitly bounded, as we will see in
Corollary 4.4. This result follows easily from the more general Theorem 4.2 (which we will use later on in the case P is
arbitrary). Its proof uses crucially the standard fact that the Fourier coefficients of a holomorphic function on a neighborhood of
the torus Tn decay exponentially. Recall from Section 2.2 that for any matrix A ∈ Zm×n, we set d(A) := dim(ker(A)).

Theorem 4.2. Fix two natural numbers n,m ≥ 1, an open U ⊆ Cn containing Tn, and a holomorphic function f : U → C.
Then, for every real number δ > 0 such that U contains the annulus Cδ defined in (2), and every matrix A ∈ Zm×n such that
ρ(A)≥ 2d(A)

3δ
, the following estimate holds:∣∣∣∣∫Tn

f (z)dµA(z)−
∫

Tn
f (z)dµn(z)

∣∣∣∣≤ (d(A)+1)3d(A) ·
maxCδ

| f |
exp(δρ(A))

. (15)

Proof. Let r = eδ and κA = ker(A)∩Zn, as in Section 2.2. For any v ∈ Zn, write cv( f ) :=
∫

Tn f (z)z−vdµn(z) for the v-th Fourier
coefficient of f , as in Section 2.4. Since f is holomorphic on U , the Fourier series ∑v∈Zn cv( f )zv converges normally to f on Tn,
and the dominated convergence theorem gives

∫
Tn

f (z)dµA(z)−
∫

Tn
f (z)dµn(z) =

(
∑

v∈Zn
cv( f )

∫
Tn

zvdµA(z)

)
− c0( f ) =

(
∑

v∈κA

cv( f )

)
− c0( f ) = ∑

v∈κA\{0}
cv( f ). (16)

To bound the Fourier coefficients cv( f ), we use the holomorphicity of f on U . To be more precise, let us associate to every vector
h = (h1, . . . ,hn) ∈ Rn the torus Th := {z ∈ Cn : |z j| = eh j , ∀ j ∈ {1, . . . ,n}}. Then, for every v ∈ Zn\{0} and every h ∈ Rn such
that ‖h‖1 ≤ δ , the homotopy invariance of integrals of holomorphic functions implies

cv( f ) =
∫

Th

f (z)z−vdµn(z) (17)

because Th ⊆ Cδ ⊆U by assumption. Now let j0 ∈ {1, . . . ,n} be any integer such that ‖v‖∞ = |v j0 |, and take h ∈ Rn to be the
vector with h j := 0 for any j ∈ {1, . . . ,n}\{ j0}, and h j0 := δ · v j0/|v j0 |. Then, using (17) we see that:

|cv( f )| ≤max
Cδ

| f | · r−‖v‖∞ . (18)

Combining (16) and (18), we get∣∣∣∣∫Tn
f (z)dµA(z)−

∫
Tn

f (z)dµn(z)
∣∣∣∣≤ ∑

v∈κA\{0}
|cv( f )| ≤max

Cδ

| f | ∑
v∈κA\{0}

r−‖v‖∞ . (19)

The only remaining step to prove the theorem is to bound the sum appearing in the right-hand-side of (19). It is an independent
estimate, which we state separately in Lemma 4.3. Note that we fulfill its assumptions: κA is a lattice of full rank inside the
vector space ker(A) of dimension d(A). Moreover, its first successive minimum with respect to the `∞-norm is by definition
ρ(A). Eventually, we have by assumption ρ(A) log(r) = ρ(A)δ ≥ 2d(A)/3, so we can use the bound (21) of the following
Lemma 4.3.

Lemma 4.3. Fix a real vector space V of finite dimension d ∈ Z≥1, and a norm ‖·‖ : V → R≥0. Let Λ ⊆ V be a lattice of full
rank, and denote by ρ := λ1(Λ,‖·‖) := min{‖λ‖ : λ ∈ Λ\{0}} its first successive minimum with respect to the norm ‖·‖. Then,
we have the following estimate:

∑
v∈Λ

r−‖v‖ ≤ 3dd!
rρ

d

∑
k=0

1
(d− k)!

( 2
3ρ log(r)

)k
(r > 1). (20)

In particular, if ρ log(r)≥ 2d/3, we have

∑
v∈Λ

r−‖v‖ ≤ (d +1)3d

rρ
(r > 1). (21)

Proof. First of all, set B(x,q) := {y ∈V : ‖y− x‖< q} and Nq := |B(0,q)∩Λ| for every x ∈V and q≥ 0. Now, observe that:

∑
v∈Λ

r−‖v‖ =
+∞

∑
q=1
|{v ∈ Λ : ‖v‖= q}| · r−q =

+∞

∑
q=1

(Nq−Nq−1) · r−q =

=−
Nρ−1

rρ−1 + log(r)
∫ +∞

ρ−1

Nbtc
rt dt =− 1

rρ
+ log(r)

∫ +∞

ρ

Nbtc
rt dt

(22)

7
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as follows from Abel’s summation formula (see [2, Theorem 4.2]), since Nq = 1 if q≤ ρ−1. Moreover, note that the inclusion

⊔
x∈B(0,q)∩Λ

B
(

x,
ρ

2

)
⊆ B(0,q+ρ/2) (q > 0)

provides the bound

Nq ≤
vol
(
B
(
0,q+ ρ

2

))
vol
(
B
(
0, ρ

2

)) =

(
2q
ρ

+1
)d

(q≥ 0) (23)

(see [4, Theorem 2.1] for more details). Applying the bound (23) to (22), we get:

∑
v∈Λ

r−‖v‖ ≤− 1
rρ

+
log(r)

ρd

∫ +∞

ρ

(2t +ρ)d

rt dt =− 1
rρ

+
2drρ/2

(ρ log(r))d

∫ +∞

3ρ log(r)/2
ude−udu, (24)

where the last equality follows from the change of variables 2u = (2t + ρ) log(r). Putting x = 3ρ log(r)/2, we recognize the
incomplete gamma function [27, § 9.2.1]:

Γ(d +1,x) =
∫ +∞

x
ude−udu = d!e−x

d

∑
k=0

xk

k!
.

The inequality (20) in the Lemma follows. Now under the assumption x≥ d, the right hand side of (20) is bounded by

3dd!
rρ

d

∑
k=0

1
(d− k)!dk ≤

3dd!
rρ

d

∑
k=0

1
d!
≤ (d +1)3d

rρ
.

To conclude this section, let us see how to deduce the exponential convergence of m(PA)→ m(P) as ρ(A)→ +∞ from the
previous Theorem 4.2. Note that if a polynomial P does not vanish on the torus Tn, then there is some δ > 0 such that it does not
vanish on the annulus Cδ defined in (2).

Corollary 4.4. Let P ∈ C[z±1
n ] be a Laurent polynomial that does not vanish on the torus Tn. Then there exist r > 1 and C > 0

such that for every matrix A ∈ Zm×n with the property that ρ(A)≥ 2d(A)/3log(r), we have the following estimate:

|m(PA)−m(P)| ≤ C
rρ(A)

. (25)

More precisely, one can take r = eδ , where δ > 0 is any real number such that P does not vanish on the annulus Cδ .

Proof. Let P∗ be the conjugate reciprocal of P, introduced in Section 2.5. Note that for z = (z1, . . . ,zn) ∈ Tn, we have

|P(z)|2 = P(z1, . . . ,zn)P(z1, . . . ,zn) = P(z1, . . . ,zn)P(z1, . . . ,zn) = P(z1, . . . ,zn)P
( 1

z1
, . . . ,

1
zn

)
= PP∗(z).

This shows that PP∗ = |P|2 on the torus Tn. Fix δ > 0 such that P does not vanish on the annulus Cδ . Since the invo-
lution (z1, . . . ,zn) 7→ (z−1

1 , . . . ,z−1
n ) preserves Cδ , the polynomial P∗ also does not vanish on Cδ . So, the differential form

ω := 1
2 d log(PP∗) = d(PP∗)/(2PP∗) is holomorphic on some open U ⊆ Cn containing Cδ . Moreover, the restriction of ω

to the torus is equal to d log |P|, hence is exact.
Now, for U ⊇ Cδ small enough, each loop γ ⊆U is homologous to a loop γ ′ ⊆ Tn. This implies that

∫
γ

ω =
∫

γ ′ d log|P|= 0.
Thus, de Rham’s comparison theorem shows that there exists a unique holomorphic function f : U → C such that ω = d f on U
and f = log |P| on Tn. Hence |m(PA)−m(P)|= |

∫
Tn f dµA−

∫
Tn f dµn|, and we can apply Theorem 4.2 because f is holomorphic

on U ⊇ Cδ . This yields the bound (25), where we set C := (n+1)3n ·maxCδ
| f |.

Remark 4.5. For a given Laurent polynomial P ∈ C[z±1
n ] \ {0} which does not vanish on Tn, one can find an explicit δ > 0,

depending on minTn |P|, such that P does not vanish on Cδ . We will carry out this computation for a specific type of polynomial
in Proposition 4.11.

4.2 An explicit error term in the general case
Let P ∈ C[z±1

n ] be a Laurent polynomial in n variables, which is not a monomial. Given a matrix A ∈ Zm×n, we wish to prove
Theorem 4.1, which gives a precise estimate for the error |m(PA)−m(P)|. In order to do so, we approximate the function:

f : Tn→ R∪{−∞}
z 7→ log|P(z)|

8
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which is singular when P vanishes on Tn, with the smooth functions fε(z) = 1
2 log(|P(z)|2 + ε). Then, one has that:

|m(PA)−m(P)| ≤
∣∣∣∣∫Tn

1
2

log(|P|2 + ε)− log |P|dµA

∣∣∣∣+ ∣∣∣∣∫Tn

1
2

log(|P|2 + ε)− log |P|dµn

∣∣∣∣
+

∣∣∣∣∫Tn
fε(z)dµA−

∫
Tn

fε(z)dµn(z)
∣∣∣∣ (26)

and we proceed by bounding each integral separately. We will show in Proposition 4.11 that fε is holomorphic on a neighborhood
of the torus, so the results of the previous section apply to the last integral. However, two phenomena are competing here. On the
one hand, you need to take ε small enough to make the first two integrals small. On the other hand, the annulus Cδ on which fε

is holomorphic becomes smaller and smaller when ε→ 0, which weakens the bound for the third integral given by Theorem 4.2.
Thus, the proof of Theorem 4.1 will consist in choosing a suitable value of ε , depending on the quantity ρ(A), which balances
these two phenomena.

In order to bound the first two integrals, we rely on an explicit estimate for the measure of the set of points z∈Tn where |P(z)|
is small. This estimate is expressed in the following Lemma 4.6, which is an immediate consequence of a result of Dobrowolski
[22, Theorem 1.3].

Lemma 4.6 (Dobrowolski). For any Laurent polynomial P ∈ C[z±1
n ] \ {0} with k = k(P) ≥ 2 non-vanishing coefficients, the

following bound:

µn(S(P, t))≤ 6 · (k−1) ·n ·
(

t
L∞(P)

) 1
n(k−1)

(27)

holds for every t ≥ 0, where L∞(P) := maxv∈Zn |cv(P)| and S(P, t) := {z ∈ Tn : |P(z)| ≤ t}, as we defined in Section 2.5.

Proof. Replacing (P, t) by (P/L∞(P), t/L∞(P)) if necessary, we may assume without loss of generality that L∞(P) = 1. Under
this assumption, we can further assume that t ≤ 1, since µn(S(P, t))≤ 1 for every t ≥ 0. Now, for every integer j ∈ {1, . . . ,n}, let
k j = k j(P) be the number of non-zero terms of P seen as a polynomial in z j. Then, Dobrowolski’s work [22, Theorem 1.3] gives
us the bound:

µn({z ∈ Tn : |P(z)| ≤ t})≤ (C(k1)+ · · ·+C(kn)) · t
1

∑
n
j=1(k j−1)

where C(x) := (x−1)
(

12
√

2
π

) x−2
x−1

for x > 1, and C(1) = 0. Since clearly k j ≤ k, and t ≤ 1 by assumption, we see that t
1

∑
n
j=1(k j−1) ≤

t
1

n(k−1) and C(k1)+ · · ·+C(kn)≤ n ·C(k). To conclude, it suffices to observe that 12
√

2≤ 6π , which implies that C(x)≤ 6(x−1)
for every x > 1.

Remark 4.7. Note that the estimate ∑
n
j=1(k j(P)−1)≤ n(k(P)−1), used in the proof of Lemma 4.6, is quite rough. In fact, for

a Laurent polynomial P ∈ C[z±1
n ] which is generic (in a suitable sense), the quantity k(P) is rather comparable to the product

k1(P) · · ·kn(P). However, for every A ∈ Zm×n with m ≤ n we have that m(k(PA)− 1) ≤ n(k(P)− 1), whereas it is not clear in
general how to compare ∑

m
j=1(k j(PA)−1) and ∑

n
j=1(k j(P)−1).

Remark 4.8. We note that Lück [45, Proposition 2.1] provided another estimate for the measure µn(S(P, t)). However, this bound
depends on the width wd(P), which is a quantity defined in [45, § 1.2] that turns out to be comparable with diam(P). In particular
wd(PA)→+∞ as ρ(A)→+∞, which makes Lück’s bound not adapted to our purposes. More precisely, if we used Lück’s bound
in the proof of Proposition 4.10, we would get an estimate for the first two integrals appearing in (26) which would diverge as
ρ(A)→+∞.

Remark 4.9. We note that Habegger [34, Lemma A.4] and Dimitrov and Habegger [20, Lemma A.3] stated another estimate for
µn(S(P, t)), where the exponent 1/(n(k−1)) appearing in (27) is replaced with 1/(2(k−1)). However, there is a slight mistake
in the proof of [34, Lemma A.4] that will be corrected in the second version (to appear) of [20, Lemma A.3]. We choose in this
paper to work with Dobrowolski’s bound in order to obtain estimates of the constants appearing. However, if no explicit estimates
of the constants are needed, our method with Dimitrov-Habegger’s bound readily gives an exponent 1

2(k−1) in Theorem 4.1, as
discussed in Remark 4.15. The quality of this last exponent in the bound (14) is better than the one obtained in [20, Theorem A.1]
for m = 1, noting that the authors explicitly remark that they do not strive to get optimal exponent.

The crucial property of the bound provided by (27) is that the constants involved remain bounded if we replace P by PA, for
any matrix A ∈ Zm×n. Under the additional assumptions that L∞(P) = 1 and m≤ n, this suffices to bound the first two integrals
appearing in (26), as we show in the following Proposition 4.10. This proposition follows from Lemma 4.6 by a Tauberian
estimate, similar in spirit to the ones considered in [61]. Note that the aforementioned assumptions are harmless, as we will
explain at the beginning of the proof of Theorem 4.1.

Proposition 4.10. Fix two natural numbers k ∈ Z≥2 and n ∈ Z≥1. Let P ∈ C[z±1
n ] be a Laurent polynomial such that k(P) = k

and L∞(P) = 1. Let A be a matrix in Zm×n such that ρ(A)> diam(P) and m≤ n. Then, for every ε > 0 the following inequalities
hold:

0≤
∫

Tn

1
2

log(|P|2 + ε)− log |P|dµA ≤ 12 · (k ·n)2 · ε
1

2n(k−1) .
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Proof. Let ν be the measure on R≥0 defined as the push-forward of µA along the (measurable) function |P| : Tn→ R≥0. More-
over, let us define the functions φ(t) := 1

2 log
(

1+ ε

t2

)
and ψ(s) :=

√
ε

e2s−1 , so that ψ(φ(x)) = φ(ψ(x)) = x for every x > 0.
Writing χS for the characteristic function of a subset S⊆ R, we have the following identities:∫

Tn

1
2

log(|P|2 + ε)− log |P|dµA =
∫ +∞

0
φ(t)dν(t) =

∫ +∞

0

(∫ +∞

0
χ[0,φ(t)](s)ds

)
dν(t)

=
∫ +∞

0

(∫ +∞

0
χ[0,ψ(s)](t)dν(t)

)
ds =

∫ +∞

0
ν([0,ψ(s)])ds.

(28)

Now, thanks to Lemma 4.6, we have that:
ν([0, t])≤ 6 · k ·n · t

1
n(k−1) (29)

for every t ∈ R>0. Indeed, this estimate clearly holds if t ≥ 1, because ν([0, t])≤ 1 for every t ∈ R>0. Moreover, the assumption
ρ(A) > diam(P) implies that k(PA) = k(P) = k and L∞(PA) = L∞(P) = 1, as we explained at the beginning of the proof of
Proposition 3.4. Hence, for 0 < t < 1 we see from Lemma 4.6 that:

ν([0, t]) := µA({z ∈ Tn : |P(z)|< t}) = µm({z ∈ Tm : |PA(z)|< t})≤ 6 · (k(PA)−1) ·m · t
1

m(k(PA)−1) ≤ 6 · k ·n · t
1

n(k−1) .

Combining (29) with the identities provided by (28), we get the bound:∫
Tn

1
2

log(|P|2 + ε)− log |P|dµA =
∫ +∞

0
ν([0,ψ(s)])ds≤

(
6kn ·

∫ +∞

0

(
e2u−1

)− 1
2n(k−1) du

)
· ε

1
2n(k−1) .

The last integral can be computed by substituting t = e2u−1 and by using Cauchy’s residue theorem (see [13, p. 107]):

∫ +∞

0

(
e2u−1

)− 1
2n(k−1) du =

1
2

∫ +∞

0

t−
1

2n(k−1)

(t +1)
dt =

π

2 · sin
(

π

2n(k−1)

) .
To conclude, we observe that 2sin(x)≥ x when 0≤ x≤ π/2.

We now tackle the last term in (26). We wish to bound it using Theorem 4.2. To this end, we must show that the function
1
2 log(|P|2 + ε), defined on the torus Tn, can be extended to a holomorphic function on a neighborhood of Tn. Following the
idea used to prove Corollary 4.4, we use the Laurent polynomial PP∗, which is equal to |P|2 on Tn, and we consider the function
1
2 log(PP∗ + ε). The following proposition shows that this function is well-defined and holomorphic on an explicit annulus
containing Tn.

Proposition 4.11. Fix n ∈ N, a Laurent polynomial P ∈ C[z±1
n ] \ {0}, and ε > 0. Let P∗ be the conjugate reciprocal of P,

introduced in Section 2.5. Let δ := δε(P) be the constant defined in (8). Then the function fε := 1
2 log(PP∗+ ε), defined using

the principal branch of the logarithm, is holomorphic on an open neighborhood of the annulus Cδ defined in (2).

Proof. Denote by Q the Laurent polynomial PP∗. Since Q = |P|2 on the torus, the image Q(Tn) is a segment contained in R≥0.
We will show that Q(Cδ ) is contained in the half-plane {w ∈ C : Re(w)>−ε}, so that we may consider the principal branch of
the logarithm of Q+ ε on Cδ . Our strategy is to fix a point u = (u1, . . . ,un) on Tn, and to bound from below the real part of Q
near u in radial directions. We therefore write z = (eh1u1, . . . ,ehnun), and consider the function gu : Rn→ C defined by

gu(h) = Q(eh1u1, . . . ,ehn un).

Note in particular that gu(0) = Q(u) ∈ R≥0. Let us apply the multivariable Taylor theorem to gu at the origin:

gu(h) = gu(0)+
n

∑
i=1

∂gu

∂hi
(0) ·hi +Ru(h)

where the remainder is given in Lagrange’s form by

Ru(h) =
1
2

n

∑
i, j=1

∂ 2gu

∂hi∂h j
(αh h) ·hih j (0 < αh < 1).

Lemma 4.12. The partial derivatives ∂gu/∂hi(0), 1≤ i≤ n, are purely imaginary.

Proof. From the definition of Q, we have Q(z1, . . . ,zn)=Q(1/z1, . . . ,1/zn) for every z∈ (C×)n. Substituting z=(eh1u1, . . . ,ehnun)

gives gu(h) = gu(−h). Differentiating with respect to hi at 0, we get the result.
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Lemma 4.12 ensures that the real part of Q behaves quadratically in h near the torus. More precisely, we have

Re(Q(z)) = Re(gu(h)) = gu(0)+Re(Ru(h))≥ Re(Ru(h))≥−|Ru(h)|. (30)

Now, let us introduce the differential operators Dk = zk(∂/∂ zk) for every k ∈ {1, . . . ,n}. Notice that ∂gu/∂hk(h) = (DkQ)(z),
and similarly for the higher order derivatives. So it suffices to bound DiD jQ(z). Expanding this polynomial, we get

DiD jQ(z) = DiD j

(
∑

v,w∈Zn
cv(P)cw(P)zv−w

)
= ∑

v,w∈Zn
(vi−wi)(v j−w j)cv(P)cw(P)zv−w

which gives the bound

|DiD jQ(z)| ≤ ∑
v,w∈Zn

|vi−wi||v j−w j||cv(P)||cw(P)|
n

∏
k=1

e|hk||vk−wk| ≤ diam(P)2L1(P)2ediam(P)‖h‖1 . (31)

Combining (30) and (31), we obtain

Re(Q(z))≥−|Ru(h)| ≥ −
1
2

n

∑
i, j=1

∣∣∣∣ ∂ 2gu

∂hi∂h j
(αh h)

∣∣∣∣ · |hi||h j| ≥ −
1
2

diam(P)2L1(P)2ediam(P)‖h‖1 · ‖h‖2
1. (32)

Finally, if z ∈ Cδ then ‖h‖1 = ∑
n
i=1|log|zi|| ≤ δ , and the definition (8) of δ implies that the right-hand side of (32) is ≥− 2

3 ε . We
thus have Re(Q+ ε)> 0 on an open neighbourhood of Cδ , as we wanted to show.

Thanks to Proposition 4.11, we may apply Theorem 4.2 to the functions fε . However, we also need to bound fε on the
domain Cδε (P). This is the content of the following lemma.

Lemma 4.13. Let P ∈ C[z±1
n ] be a non-zero Laurent polynomial, and fix ε > 0. Let δ := δε(P) ∈ R>0 be defined as in (8), and

let fε be the function defined in Proposition 4.11. Then, we have that:

| fε(zn)| ≤ |logε|+2|logL1(P)|+3

for every zn ∈ Cδ .

Proof. Let Q = PP∗. We have fε = log(Q+ ε) = log |Q+ ε|+ iarg(Q+ ε), and by the proof of Proposition 4.11, the argument
of Q+ ε stays in ]−π/2,π/2[ on the domain Cδ . It remains to bound from below and from above the modulus of Q+ ε .

The lower bound follows from (32), since |Q(z)+ ε| ≥ Re(Q(z))+ ε ≥ ε/3 for z ∈ Cδ as seen at the end of the previous
proof. For the upper bound, let us write z = (eh1u1, . . . ,ehnun), where u = (u1, . . . ,un) ∈ Tn and h = (h1, . . . ,hn) ∈ Rn. Then, a
simple application of the triangle inequality yields:

|Q(z)| ≤ ∑
v,w∈Zn

|cv(P)||cw(P)|
n

∏
j=1

e|h j ||v j−w j | ≤ L1(P)2eδε (P)diam(P) ≤ 4
3

L1(P)2.

We deduce that:

|log(Q(z)+ ε)| ≤ |log|Q(z)+ ε||+ π

2
≤max

(∣∣∣log
ε

3

∣∣∣ , ∣∣∣∣log
(

4
3

L1(P)2 + ε

)∣∣∣∣)+
π

2
.

We conclude using the inequality | log(x+ y)| ≤ | log(x)|+ | log(y)|+ log2, valid for any x,y > 0, which is easily proved by
distinguishing the cases x≤ y and x≥ y.

Using Theorem 4.2, together with Proposition 4.11 and the bound of Lemma 4.13, we get:

Corollary 4.14. Let m,n≥ 1 be integers, and P(zn) ∈C[z±1
n ] be a non-zero Laurent polynomial. For ε > 0, let fε =

1
2 log(|P|2 +

ε), and let δε(P) ∈ R>0 be defined as in (8). Then, for every matrix A ∈ Zm×n such that ρ(A)δε(P)≥ 2d(A)/3, we have:∣∣∣∣∫Tn
fε dµA−

∫
Tn

fε dµn

∣∣∣∣≤ (d(A)+1)3d(A) · | logε|+2| logL1(P)|+3
exp(δε(P) ·ρ(A))

.

We are finally ready to prove Theorem 4.1, by choosing a suitable value of ε .

Proof of Theorem 4.1. We fix the Laurent polynomial P and a matrix A in Zm×n verifying the assumption of Theorem 4.1, that
is ρ(A)≥ ρ0(P). For this proof, we will simplify a bit the notations, by denoting k := k(P), ρ0 := ρ0(P), δε := δε(P), ρ := ρ(A)
and d = d(A). Note that d ≤ n by definition.

Since the quantity |m(P)−m(PA)| we want to bound does not change when multiplying P by a non-zero constant, we will
assume without loss of generality that L∞(P) = 1. Finally, we may assume without loss of generality that m ≤ n (compare with
[60, Theorem 4]). Indeed, let U ∈ Zm×m be a matrix with non-zero determinant such that U ·A is in row-echelon form, and write
B ∈ Zm′×n for the matrix obtained from U ·A by deleting all the zero rows. Then, m′ = rk(B) ≤ n by construction, and one has

11
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that κA = κB, which implies that ρ(A) = ρ(B). Moreover, one sees that m(PA) = m((PA)U ) = m(PU ·A) = m(PB) by combining
[58, Lemma 7] and [60, Lemma 6]. Hence, upon replacing A with B, we can and will assume without loss of generality that
m≤ n, as we claimed.

Now, let us come back to the bound provided by (26):

|m(PA)−m(P)| ≤
∣∣∣∣∫Tn

1
2

log(|P|2 + ε)− log |P|dµA

∣∣∣∣+ ∣∣∣∣∫Tn

1
2

log(|P|2 + ε)− log |P|dµn

∣∣∣∣+ ∣∣∣∣∫Tn
fε(z)dµA−

∫
Tn

fε(z)dµn(z)
∣∣∣∣

which holds for any ε > 0. The first two terms are bounded by Proposition 4.10 under some conditions, whereas the third term
is bounded by Corollary 4.14, under other assumptions. The strategy is to choose the value of ε such that we can indeed apply
these two results and, moreover, that the two upper bounds become comparable. To that end, let us fix the quantity:

ε :=
(

diam(P) ·L1(P)
n · (k−1)

· log(ρ)
ρ

)2

(33)

First of all, let us observe that the assumptions of Proposition 4.10 are fulfilled. Indeed, ρ ≥ ρ0 > diam(P) by assumption.
Moreover, we also assumed without loss of generality that L∞(P) = 1 and m≤ n.

To verify the assumptions of Corollary 4.14, we have to check that δε ρ ≥ 2d/3. To see this, note first of all that the inequalities

ρ ≥ ρ0 ≥ 7
(

diam(P)
n

)2
hold by assumption. Plugging this bound in (33), and using the elementary inequality log(ρ)

ρ
≤ 3

4
√

ρ
, we

see that
√

ε ≤ log(4/3)L1(P). Combining this with the definition of δε , given in (8), we get the equality:

δε =

√
ε

diam(P) ·L1(P)
=

1
n · (k−1)

· log(ρ)
ρ

.

Then, the desired condition δε ρ ≥ 2d/3 follows from the lower bound ρ ≥ ρ0 ≥ exp(5kn2)≥ exp(n(k−1)d).
Eventually, to use efficiently Corollary 4.14, we need an upper bound on the quantity |log(ε)|+2|logL1(P)|+3. We begin

by noting that our assumption that ρ ≥ ρ0 ≥ 7
(

diam(P)
n

)2
, and the remark 1 = L∞(P)≤ L1(P)≤ kL∞(P) = k, imply that

ε ≤
(

diam(P) ·L1(P)
n · (k−1)

)2

· 9
16ρ
≤
(

k
k−1

)2

· 9
16×7

≤ 1.

So we can further use the bound ρ ≥ ρ0 ≥ exp(5 · k ·n2)≥ exp
(

k·e3/2·n
diam(P)

)
, which holds by assumption, to obtain:

| log(ε)|+2log(L1(P))+3 = 2log

(
ne3/2(k−1)

diam(P)
· ρ

log(ρ)

)
≤ 2log(ρ).

Applying Proposition 4.10 and Corollary 4.14 together with the last estimate, we get the following bound:

|m(PA)−m(P)| ≤ 24 · (kn)2 · ε
1

2n(k−1) +(d +1)3d · 2log(ρ)
exp(δε ρ)

. (34)

We can now use our definition (33) of ε , together with the bounds L1(P)≤ k and d ≤ n, to obtain:

|m(PA)−m(P)| ≤ 24 · (kn)2 ·
(

diam(P) ·L1(P)
n · (k−1)

· log(ρ)
ρ

) 1
n(k−1)

+(d +1)3d · 2log(ρ)

ρ
1

n(k−1)

≤

(
24 · (kn)2 ·

(
diam(P) ·L1(P)

n · (k−1)

) 1
n(k−1)

+2(d +1)3d

)
log(ρ)

ρ
1

n(k−1)

≤

(
24 · (kn)2 ·

(
k

n(k−1)

) 1
n(k−1)

+2(n+1)3n

)
· log(ρ) ·

(
diam(P)

ρ

) 1
n(k−1)

≤ 7k2(3nn) · log(ρ) ·
(

diam(P)
ρ

) 1
n(k−1)

where the last inequality follows from the bounds k
n(k−1) ≤ 1 and 24(kn)2 +2(n+1)3n ≤ 7k2(3nn) for n,k ≥ 2.

Remark 4.15. As is clear from the proof of Theorem 4.1, the quality of the error term depends essentially only on the quality of
the bound (27) provided by Lemma 4.6. To see this, fix a Laurent polynomial P ∈ C[z±1

n ] with k(P)≥ 2, and a matrix A ∈ Zm×n

such that m≤ n and ρ(A)> diam(P)+1, so that k(P) = k(PA) and L∞(P) = L∞(PA). Suppose moreover that there exist a,C ∈R>0
such that the bounds:

µn(S(P, t))≤C · (t/L∞(P))a and µm(S(PA, t))≤C · (t/L∞(PA))
a (35)

12
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hold true for every t ∈ R>0. Then, going through the proof of Theorem 4.1 one sees that the following bound holds:

|m(PA)−m(P)| ≤ 2 ·max
(

C · (k(P) ·a)
a

a
,(d(A)+1) ·3d(A)

)
· log(ρ(A)) ·

(
diam(P)

ρ(A)

)a

(36)

under the additional hypothesis that ρ(A)≥max(diam(P)+1, 7(diam(P) · (k(P)−1) ·a)2, exp(5n/a)).
More precisely, the first two terms of (26) are bounded by (2C/a) · εa/2, as follows from Proposition 4.10. Note in particular

that the exponent appearing in this bound is halved with respect to the ones featured in (35), as a consequence of the square
root appearing in the function ψ(s) :=

√
ε/(e2s−1). However, Lemma 4.12 allows us to have a final bound (36) featuring the

same exponent appearing in (35). More precisely, Lemma 4.12 allows us to define δε(P) using
√

ε instead of ε . This in turn
allows us to set ε := (diam(P) ·L1(P) · a · log(ρ(A))/ρ(A))2. Then, we can bound the last term appearing in (26) by applying
Corollary 4.14, and the presence of the square in the definition of ε implies that the exponent appearing in (36) can be taken to
be the same as the one featured in (35).

5 Discussion of the speed of convergence
In this section, we study several situations where more can be said about the error term m(PA)−m(P), compared to the bounds
given in Corollary 4.4 and Theorem 4.1. In particular, we devote Section 5.1 to an experimental study of the differences
m(P(z1,zd

1))−m(P) for some two-variable polynomials P ∈ Z[z2]. A full asymptotic expansion for these sequences, under a
technical assumption on P, was provided by Condon [17], and our experiments are compatible with this result. Finally, we
devote Section 5.2 to the study of a multivariate example where not only an equivalent of the error term can be obtained, but
also a full asymptotic expansion. This example goes beyond Condon’s framework, both with respect to the number of variables
involved (as we study a family of 2-variable polynomials whose Mahler measures converge to the Mahler measure of a 4-variable
one) and the type of expansion that we get, where a logarithmic term appears.

5.1 Asymptotic expansions in the presence of toric points
When a polynomial P(zn)∈C[z±1

n ] vanishes on the torus Tn, one cannot hope that the error term |m(PA)−m(P)| decays exponen-
tially fast as ρ(A)→+∞. This is already evident when n = 2, and we take the sequence of matrices Ad := (1,d) ∈ Z1×2, which
results in the sequence of polynomials PAd (z1) := P(z1,zd

1). For P(z1,z2) = z1 + z2 + 1, the resulting sequence of polynomials
{PAd (z1) = z1 + zd

1 +1}+∞

d=1 was already studied by Boyd [6, Appendix 2], who proved that:

m(z1 + zd
1 +1)−m(z1 + z2 +1) =

c(d)
d2 +O

(
1
d3

)
where c : Z→ R is a 3-periodic function. More precisely, c(d) :=−

√
3π/6 if d ≡ 2(3), and c(d) :=

√
3π/18 otherwise. This

is reflected by the fact that the plot of m(PAd )−m(P), depicted in Figure 1a, consists of two branches. This is by no means an
isolated phenomenon: we include in Figure 1 two other examples, taken from [8, Equation (1-7)] and [8, Table 1] respectively,
of polynomials P for which the error term m(PAd )−m(P) appears to be divided into a finite number of smooth branches.

Note however that not all polynomials P(z1,z2) give rise to an error term m(PAd )−m(P) with this kind of behavior. This
is depicted in Figures 2a to 2c, which display polynomials taken from [10, Table 1], [44, Example 4.8] and [48, Equation 1]
respectively.

These different types of phenomena have been partially explained by Condon’s work [17], which provides an asymptotic
expansion for the error term m(PAd )−m(P) of an irreducible polynomial P ∈ C[z±1

2 ] such that P and ∂P/∂ z2 do not have a
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(a) P(z1,z2) = z2 +(z1 +1)
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-2e-5

-1.5e-5

-1e-5

-5e-6
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1e-5

(b) P(z1,z2) = (z1 +1)z2 +(z1−1)
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-3e-4

-2e-4

-1e-4

0
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(c) P(z1,z2) = z1z2
2 +(z2

1 + z1 +1)z2 + z1

Figure 1: Plots of m(PAd )−m(P), for Ad = (1,d), which seem to lie on finitely many smooth branches.
The SAGEMATH code we used to produce these plots is available online [32].
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(a) P = (z1 +1)4z2− (z2
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(c) P = (z1 +1)z2
2 +(z2

1 + z1 +1)z2 + z2
1 + z1

Figure 2: Plots of m(PAd )−m(P), for Ad = (1,d), which seem to lie on infinitely many smooth branches.
The SAGEMATH code we used to produce these plots is available online [32].

common root on T2. To be more precise, we need to recall some terminology introduced by [17]. First of all, a function
c : R→ R is said to be quasi-periodic if it is the sum of finitely many continuous periodic functions. Then, for every collection
of quasi-periodic functions {c j : R→ R} j∈N and every function f : N→ R we will use the notation f (d) ≈ ∑ j∈N

c j(d)
d j if, for

every J ∈ N, there exists a constant C f ,J > 0 such that the following bound:∣∣∣∣∣ f (d)− J−1

∑
j=0

c j(d)
d j

∣∣∣∣∣≤ C f ,J

dJ

holds for every d ≥ 1. This notation generalizes the usual notion of asymptotic series (see for example [5, Definition 1.3.1]),
where the coefficients c j are assumed to be constant. In particular, [17, Proposition 1] shows that, as in the classical case, any
given function f : N→ R has at most one asymptotic expansion of this kind. Then, Condon proves in [17, Theorem 1] that for
any Laurent polynomial P ∈C[z±1

2 ] such that P and ∂P/∂ z2 do not have common zeros on T2, one has an asymptotic expansion:

m(P(z1,zd
1))−m(P)≈

+∞

∑
j=2

c j(d)
d j (37)

where each c j : R→ R is an explicit quasi-periodic function, given by a linear combination of the periodic functions:

{t 7→Bk(〈θ − tϕ〉) : k ∈ {2, . . . , j}, (e2πiθ ,e2πiϕ) ∈VP(C)∩T2}

where Bk(x) denotes the k-th Bernoulli polynomial, and 〈x〉 := x−bxc denotes the fractional part of a real number x ∈ R. In
particular, if VP(C)∩T2 ⊆ µN×µN , where µN ⊆ T1 denotes the set of N-th roots of unity, each function c j is N-periodic. This is
precisely what happens for the two polynomials displayed in Figures 1a and 1b, and hence this periodicity of the coefficients c j
explains why each point (d,m(PAd )−m(P))∈R2 seems to lie on a finite union of graphs of smooth functions. On the other hand,
one can show that each of the polynomials displayed in Figure 2 has toric points whose coordinates are not roots of unity, and
this gives rise to the depicted behavior, where the points (d,m(PAd )−m(P)) ∈ R2 seem to lie on an infinite union of graphs of
smooth functions. Note finally that Figures 1c, 2b and 2c do not fall strictly within the framework of [17, Theorem 1], because in
these cases P and ∂P/∂ z2 have common roots on T2. This is related to the fact that m(PAd )−m(P) seems to decay more slowly
than 1/d2 in some cases. For instance, extensive computational evidence (already mentioned in [17, § 8.3]), shows that for the
polynomial P appearing in Figure 1c one might expect that m(PAd )−m(P)∼ c(d)/d3/2, where c : Z→ R is 6-periodic.

5.2 An asymptotic expansion with a logarithmic term

This section is dedicated to the sequence of polynomials Pd(z1,z2) := ∑0≤i+ j≤d zi
1z j

2 ∈ C[z1,z2], whose Mahler measure was
widely studied in [47] by the third author of this paper. In particular, she proved that

lim
d→+∞

m(Pd) =
9

2π2 ζ (3) =−18 ·ζ ′(−2) (38)

where ζ (s) denotes Riemann’s zeta function. This convergence is illustrated in Figure 3 and exhibits a much simpler behavior
than the examples discussed before.

We can give a new proof of (38) using Theorem 3.1. More precisely, we can write:

Pd(z2) =
1

(1− z1)(1− z2)
−
(

z1

(1− z1)(z1− z2)

)
zd+1

1 −
(

z2

(1− z2)(z2− z1)

)
zd+1

2
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Figure 3: Plot of m(Pd)−m(P∞). The SAGEMATH code we used to produce this plot is available online [32].

using the geometric series. Thus, we see that:

Pd(z2)(1− z1)(1− z2)(z1− z2) = zd+2
1 (z2−1)+ zd+2

2 (1− z1)+(z1− z2) = (1− zd+2
1 )(1− z2)− (1− z1)(1− zd+2

2 )

which implies that m(Pd) = m(P∞(z
Md
2 )), where P∞(z4) := (1− z1)(1− z2)− (1− z3)(1− z4) and Md :=

(d+2 0 1 0
0 1 0 d+2

)
∈ Z2×4.

To apply Theorem 3.1, we need to compute ρ(Md). This is elementary:

{v ∈ Z4 |Md · v = 0}=
〈( −1

0
d+2

0

)
,

( 0
d+2

0
−1

)〉
Z

so that ρ(Md) = d +2 for every d ∈ N. Thus, Theorem 3.1 shows that:

lim
d→+∞

m(Pd) = lim
d→+∞

m(P∞(z
Md
2 )) = m(P∞).

Finally, D’Andrea and Lalín [18, Theorem 7] have proved that m(P∞) = −18 · ζ ′(−2), which yields back the convergence (38)
proved by Mehrabdollahei in [47].

The proof of (38) provided in [47] proceeds along very different lines. More precisely, Mehrabdollahei uses crucially the fact
that Pd is always an exact polynomial (see [47, Definition 2.2]), which allows her to write:

m(Pd) =
3

d +1 ∑
1≤k≤d+1

(d +2−2k)
2π

·D
(

e
2πik
d+2

)
− 3

d +2 ∑
1≤k≤d

(d +1−2k)
2π

·D
(

e
2πik
d+1

)
(39)

where D(z) := arg(1− z) log|z|− Im
(∫ z

0 log(1− t) dt
t

)
denotes the Bloch-Wigner dilogarithm (see [47, Theorem p. 2]). Even if

our proof of (38) does not use (39), the latter allows us to obtain a full asymptotic expansion for the error term m(Pd)−m(P∞),
which is the content of the following theorem.

Theorem 5.1. We have the following asymptotic expansion of m(Pd)−m(P∞) as d→+∞:

m(Pd)−m(P∞)≈
1

(d +1)(d +2)

[
− log(d)

2
+

+∞

∑
k=0

αk

dk

]
(40)

where the coefficients αk ∈ R are defined as:

α0 := 6
(
ζ
′(−1)−ζ

′(−2)
)
+

log(2π)

2
−1

αk :=
12 · (−1)k

k(k+1)

bk/2c

∑
j=0

(
k+1

2 j

)
· (2

k+1−2 j−1)(2 j−1)
(2 j+1)(2 j+2)

·B2 j+2 ·ζ (2 j) (k ≥ 1)

where Bn denotes the n-th Bernoulli number.

In particular, we have that m(Pd)−m(P∞)∼−
log(ρ(Md))

2ρ(Md)2 as d→+∞.

Proof. First of all, we observe that (39) can be rewritten as:

m(Pd)−m(P∞) =
3

(d +1)(d +2)
[
−2ζ

′(−2)+(d +1)3Ed+1( f )− (d +2)3Ed+2( f )
]

(41)
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where f (x) := 1−2x
2π

D(e2πix) and Ed(F) :=
∫ 1

0 F(x)dx− 1
d

(
∑

d
j=1 F

(
j
d

))
for each integrable function F : [0,1]→ R.

Now, write h(x) := (2x−1)x log(x) and observe that the function

g(x) := f (x)− log(2π)(1−2x)2−h(x)−h(1− x)

is smooth on the closed interval [0,1]. Indeed, f (x) and g(x) are smooth on the open interval (0,1), and g(x) = g(1− x). Thus,
to see that g(x) is smooth on [0,1] it is sufficient to compute the Maclaurin series:

g(x) = (1−2x)

[
− log(2π)+(log(2π)+2)x+

+∞

∑
k=2

1
(1− k)k

· xk +
+∞

∑
m=1

ζ (2m)

m(2m+1)
· x2m+1

]
(42)

which follows from the identity d2

dθ 2 D(e2iθ ) =−2cot(θ). Moreover, (42) allows one to write the asymptotic expansion:

Ed(g)≈
3log(2π)+2

6
· 1

d2 +
+∞

∑
m=2

B2m[2m+1+2(2m−3)ζ (2m−2)]
m(2m−1)(2m−2)(2m−3)

· 1
d2m

using the classical Euler-Maclaurin summation formula [49, Equation 1].
This formula was extended by Navot to functions with a logarithmic singularity at one endpoint of the integration interval

[49, Equation 7]. Applying this generalization to h(x) we see that:

Ed(h)≈
1

12
· log(d)

d2 −
(

ζ
′(−1)+

1
12

)
· 1

d2 +2ζ
′(−2) · 1

d3 −
+∞

∑
m=2

B2m(2m+1)
(2m)(2m−1)(2m−2)(2m−3)

· 1
d2m

as follows from the Taylor expansion h(x) = (x−1)+ 5
2 (x−1)2 +∑

+∞

k=3
(−1)k+1(k+2)
k(k−1)(k−2) · (x−1)k.

Hence, observing that Ed((1−2x)2) =− 2
3 ·

1
d2 and Ed(h(x)) = Ed(h(1− x)), we get:

Ed( f )≈ 1
6
· log(d)

d2 +

(
1− log(2π)

6
−2ζ

′(−1)
)
· 1

d2 +4ζ
′(−2) · 1

d3 +4
+∞

∑
m=2

a2m ·
1

d2m (43)

where we set ak := Bkζ (k−2)
k(k−1)(k−2) ∈Q ·πk−2 for every integer k ≥ 4.

Now, combining the identities:

(d +1) log(d +1)− (d +2) log(d +2)≈− log(d)−1+
+∞

∑
k=1

(−1)k(2k+1−1)
k(k+1)

· 1
dk

1
(d +1)2m−3 −

1
(d +2)2m−3 ≈ (2m−3)

+∞

∑
j=1

(
j+2m−4

2m−3

)
(−1) j+1(2 j−1)

j
· 1

d j+2m−3

with (41) and (43) we get:

(d +1)(d +2)(m(Pd)−m(P∞))≈−
log(d)

2
+

(
6(ζ ′(−1)−ζ

′(−2))+
log(2π)

2
−1
)
+

+
+∞

∑
k=1

(−1)k(2k+1−1)
2k(k+1)

· 1
dk

+12
+∞

∑
k=2

(−1)k ·

(
k−1

∑
j=1

(
k−1
k− j

)
(2 j−1)(k− j)

j
ak− j+3

)
1
dk

which after some rearrangement, gives us (40).

Remark 5.2. The asymptotic expansion (40) has been checked numerically using the PARI/GP program Asympraw available at
[3].
Remark 5.3. We note that in the asymptotic expansion (40), the coefficients αk do not depend on d, which is in contrast to
what happened for the examples described in Section 5.1. Moreover, if k ≥ 1 we see that αk is a Q-linear combination of
1,π2,π4, . . . ,π2bk/2c, whereas α0 and π are most likely algebraically independent.
Remark 5.4. Note that [31, Proposition 8] provides another family of polynomials, in three variables, whose Mahler measures
converge to m(P∞). They correspond to the monomial substitutions provided by the matrices:

Aa,b :=

b 0 0 a
0 1 0 0
0 0 1 0

 ∈ Z3×4

taken as either a→+∞ or b→+∞, where a,b ∈ N are coprime. Since ker(Aa,b)∩Z4 = Z · (−a,0,0,b)t , we see that ρ(Aa,b) =
max(a,b), and so [31, Proposition 8] can be seen as a special case of Theorem 3.1. On the other hand, the proof provided by
Gu and Lalín uses an explicit formula (see [31, Theorem 1]) for the Mahler measures of the three-variable polynomials (P∞)Aa,b ,
which is similar to the formula (39) proved in [47] by the third named author of this paper.
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Figure 4: Plots of m(PAd )−m(P), for P = z2
1 + z2 +1.

5.3 Perspectives
We hope that the previous Sections 5.1 and 5.2 managed to convey to the reader our impression that understanding the rate of
convergence (and, even more, the asymptotic expansions) of the difference m(PA)−m(P), remains a difficult and interesting
challenge. In particular, the bound provided by Theorem 4.1 seems far from optimal, even for a general polynomial. Moreover,
the actual rate of convergence, for a fixed polynomial P, seems to depend on the geometry of the real algebraic set VP(C)∩Tn,
which can be quite complicated on its own (see [33, Example 5.2.5]). Furthermore, one should study as well the geometries of
the intersections of this real algebraic set with the sub-tori cut out by the matrices A. We also lack a rationale explaining the
logarithmic term appearing in the asymptotic expansion provided in Theorem 5.1.

To conclude, we note that the invariant ρ(A), whose divergence is sufficient to guarantee the convergence m(PA)→m(P) (as
we showed in Theorem 3.1), will not suffice to express even the first term in the asymptotic expansion of m(PA)−m(P). More
precisely, let P = z2

1 + z2 +1, and consider the two sequences of matrices Ad = (1,d) and Ad = (d,1). Then ρ(Ad) = d in both
cases, but the convergence patterns for m(PAd )→m(P), portrayed in Figure 4, are quite different, which can be rigorously proved
using Condon’s formula (37).

Acknowledgments
The authors thank Vesselin Dimitrov and Philipp Habegger for fruitful discussions around their paper, and Wadim Zudilin for
valuable comments on this work. The fourth named author would like to thank Chiara Amorino, Raphaël Ducatez, Roberto
Gualdi and Tommaso Russo for useful discussions.

Funding
The first and fourth named authors were supported by the research project “Motivic homotopy, quadratic invariants and diagonal
classes” (ANR-21-CE40-0015) operated by the French National Research Agency (ANR). This work was also performed within
the framework of the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements
d’Avenir" (ANR-11-IDEX-0007), also operated by the French National Research Agency (ANR).

References
[1] Akhtari, S., & Vaaler, J. D. (2019). Lower bounds for Mahler measure that depend on the number of monomials. International

Journal of Number Theory, 15(07), 1425–1436. doi:10.1142/S1793042119500805

[2] Apostol, T. M. (1976). Introduction to analytic number theory. Springer-Verlag, New York-Heidelberg. doi:10.1007/978-1-
4757-5579-4

[3] Belabas, K., & Cohen, H. (2021). Numerical algorithms for number theory—using Pari/GP. Mathematical Surveys and
Monographs, 254. American Mathematical Society, Providence, RI.

[4] Betke, U., Henk, M., & Wills, J. M. (1993). Successive-minima-type inequalities. Discrete & Computational Geometry, 9(2),
165–175. doi:10.1007/BF02189316

17

https://doi.org/10.1142/S1793042119500805
https://doi.org/10.1007/978-1-4757-5579-4
https://doi.org/10.1007/978-1-4757-5579-4
https://www.math.u-bordeaux.fr/~kbelabas/Numerical_Algorithms/
https://doi.org/10.1007/BF02189316


F. Brunault, A. Guilloux, M. Mehrabdollahei, R. Pengo Limits of Mahler measures in multiple variables

[5] Bleistein, N., & Handelsman, R. A. (1986). Asymptotic expansions of integrals (Second edition). Dover Publications, Inc.,
New York. ISBN:978-0486650821

[6] Boyd, D. W. (1981). Kronecker’s theorem and Lehmer’s problem for polynomials in several variables. Journal of Number
Theory, 13(1), 116–121. doi:10.1016/0022-314X(81)90033-0

[7] Boyd, D. W. (1981). Speculations concerning the range of Mahler’s measure. Canadian Mathematical Bulletin, 24(4),
453–469. doi:10.4153/CMB-1981-069-5

[8] Boyd, D. W. (1998). Mahler’s measure and special values of L-functions. Experimental Mathematics, 7(1), 37–82.
doi:10.1080/10586458.1998.10504357

[9] Boyd, D. W., & Mossinghoff, M. J. (2005). Small Limit Points of Mahler’s Measure. Experimental Mathematics, 14(4),
403–414. doi:10.1080/10586458.2005.10128936

[10] Boyd, D. W., & Rodriguez-Villegas, F. (2002). Mahler’s Measure and the Dilogarithm (I). Canadian Journal of Mathemat-
ics, 54(3), 468–492. doi:10.4153/CJM-2002-016-9

[11] Brunault, F., & Zudilin, W. (2020). Many Variations of Mahler Measures: A Lasting Symphony. Cambridge University
Press. ISBN: 978-1-108-79445-9

[12] Cai, X., & Todd, R. G. (2014). A cellular basis for the generalized Temperley–Lieb algebra and Mahler measure. Topology
and Its Applications, 178, 107–124. doi:10.1016/j.topol.2014.09.006

[13] Cartan, H. (1961). Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes. Enseignement
des Sciences. Hermann, Paris. ISBN:978-2705652159.

[14] Carter, A., Lalín, M., Manes, M., Miller, A. B., & Mocz, L. (2021). Two-variable polynomials with dynamical Mahler
measure zero. Research in Number Theory (to appear). arXiv:2110.06496.

[15] Champanerkar, A., & Kofman, I. (2005). On the Mahler measure of Jones polynomials under twisting. Algebraic & Geo-
metric Topology, 5(1), 1–22. doi:10.2140/agt.2005.5.1

[16] Champanerkar, A., & Kofman, I. (2006). On links with cyclotomic Jones polynomials. Algebraic & Geometric Topology,
6(4), 1655–1668. doi:10.2140/agt.2006.6.1655

[17] Condon, J. D. (2012). Asymptotic expansion of the difference of two Mahler measures. Journal of Number Theory, 132(9),
1962–1983. doi:10.1016/j.jnt.2012.02.022

[18] D’Andrea, C., & Lalín, M. N. (2007). On the Mahler measure of resultants in small dimensions. Journal of Pure and Applied
Algebra, 209(2), 393–410. doi:10.1016/j.jpaa.2006.06.004, arXiv:0604359

[19] Deninger, C. (2009). Mahler measures and Fuglede-Kadison determinants. Münster Journal of Mathematics, 2, 45–63.
url:https://www.uni-muenster.de/FB10/mjm/vol_2/mjm_vol_2_04.pdf

[20] Dimitrov, V., & Habegger, P. (2019). Galois orbits of torsion points near atoral sets, arXiv:1909.06051

[21] Dobrowolski, E. (2012). On a question of Schinzel about the length and Mahler’s measure of polynomials that have a zero
on the unit circle. Acta Arithmetica, 155, 453–463. doi:10.4064/aa155-4-8

[22] Dobrowolski, E. (2017). A Note on Lawton’s Theorem. Canadian Mathematical Bulletin, 60(3), 484–489.
doi:10.4153/CMB-2016-066-x

[23] Dobrowolski, E., & Smyth, C. (2017). Mahler measures of polynomials that are sums of a bounded number of monomials.
International Journal of Number Theory, 13(06), 1603–1610. doi:10.1142/S1793042117500907

[24] Dubickas, A. (2018). On sums of two and three roots of unity. Journal of Number Theory, 192, 65–79.
doi:10.1016/j.jnt.2018.03.017

[25] Dubickas, A., & Jankauskas, J. (2013). Nonreciprocal algebraic numbers of small Mahler’s measure. Acta Arithmetica,
157, 357–364. doi:10.4064/aa157-4-3

[26] Duke, W. (2007). A combinatorial problem related to Mahler’s measure. Bulletin of the London Mathematical Society,
39(5), 741–748. doi:10.1112/blms/bdm057

[27] Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1981). Higher transcendental functions. Vol. II. Robert E.
Krieger Publishing Co., Inc., Melbourne, Fla.

18

https://store.doverpublications.com/0486650820.html
https://doi.org/10.1016/0022-314X(81)90033-0
https://doi.org/10.4153/CMB-1981-069-5
https://doi.org/10.1080/10586458.1998.10504357
https://doi.org/10.1080/10586458.2005.10128936
https://doi.org/10.4153/CJM-2002-016-9
https://www.cambridge.org/core/books/many-variations-of-mahler-measures/29DB6CD1A87B356AD304DED9ECC9F4EE
https://doi.org/10.1016/j.topol.2014.09.006
https://www.editions-hermann.fr/livre/theorie-elementaire-des-fonctions-analytiques-d-une-ou-plusieurs-variables-complexes-henri-cartan
http://arxiv.org/abs/2110.06496
https://doi.org/10.2140/agt.2005.5.1
https://doi.org/10.2140/agt.2006.6.1655
https://doi.org/10.1016/j.jnt.2012.02.022
https://doi.org/10.1016/j.jpaa.2006.06.004
https://arxiv.org/abs/math/0604359
https://www.uni-muenster.de/FB10/mjm/vol_2/mjm_vol_2_04.pdf
http://arxiv.org/abs/1909.06051
https://doi.org/10.4064/aa155-4-8
https://doi.org/10.4153/CMB-2016-066-x
https://doi.org/10.1142/S1793042117500907
https://doi.org/10.1016/j.jnt.2018.03.017
https://doi.org/10.4064/aa157-4-3
https://doi.org/10.1112/blms/bdm057


F. Brunault, A. Guilloux, M. Mehrabdollahei, R. Pengo Limits of Mahler measures in multiple variables

[28] Everest, G., & Ward, T. (1999). Heights of Polynomials and Entropy in Algebraic Dynamics. Springer London.
doi:10.1007/978-1-4471-3898-3

[29] Gon, Y., & Oyanagi, H. (2004). Generalized mahler measures and multiple sine functions. International Journal of Mathe-
matics, 15(05), 425–442. doi:10.1142/S0129167X04002363

[30] Goncalves, J. V. (1950). L’inégalité de W. Specht. Universidade de Lisboa. Revista da Faculdade de Ciências. 2a Série. A:
Ciências Matemáticas, 1, 167–171.

[31] Gu, J., & Lalín, M. (2021). The Mahler measure of a three-variable family and an application to the Boyd–Lawton formula.
Research in Number Theory, 7(1), 13. doi:10.1007/s40993-021-00237-1

[32] Guilloux, A. (2021). Experimentation around speed of convergence in Boyd-Lawton theorem for Mahler measure, https:
//gitlab.inria.fr/aguillou/mahler_condon

[33] Guilloux, A., & Marché, J. (2021). Volume function and Mahler measure of exact polynomials. Compositio Mathematica,
157(4), 809–834. doi : 10.1112/S0010437X21007016

[34] Habegger, P. (2018). The norm of Gaussian periods, Q. J. Math. 69, No. 1, 153–182 doi:10.1093/qmath/hax028Zbl.

[35] Hajli, M. (2020). A new formula for Mahler’s measure. Functiones et Approximatio Commentarii Mathematici, 62(2),
165–170. doi:10.7169/facm/1753

[36] Issa, Z., & Lalín, M. (2013). A Generalization of a Theorem of Boyd and Lawton. Canadian Mathematical Bulletin, 56(4),
759–768. doi:10.4153/CMB-2012-010-2

[37] Kitano, T., Morifuji, T., & Takasawa, M. (2004). L2-torsion invariants of a surface bundle over S1. Journal of the Mathe-
matical Society of Japan, 56(2), 503–518. doi:10.2969/jmsj/1191418642

[38] Kurokawa, N., Lalín, M., & Ochiai, H. (2008). Higher Mahler measures and zeta functions. Acta Arithmetica, 135,
269–297. doi:10.4064/aa135-3-5

[39] Lalín, M., & Sinha, K. (2011). Higher Mahler measure for cyclotomic polynomials and Lehmer’s question. The Ramanujan
Journal, 26(2), 257–294. doi:10.1007/s11139-010-9278-6

[40] Lawton, W. M. (1983). A problem of Boyd concerning geometric means of polynomials. Journal of Number Theory, 16(3),
356–362. doi:10.1016/0022-314X(83)90063-X

[41] Lê, T. T. Q. (2014). Homology torsion growth and Mahler measure. Commentarii Mathematici Helvetici, 89(3), 719–757.
doi:10.4171/cmh/332

[42] Lehmer, D. H. (1933). Factorization of certain cyclotomic functions. Annals of Mathematics. Second Series, 34(3),
461–479. doi:10.2307/1968172

[43] Lind, D., Schmidt, K., & Ward, T. (1990). Mahler measure and entropy for commuting automorphisms of compact groups.
Inventiones Mathematicae, 101(1), 593–629. doi:10.1007/BF01231517

[44] Liu, H., & Qin, H. (2021). Mahler Measure of Families of Polynomials Defining Genus 2 and 3 Curves. Experimental
Mathematics, 0(0), 1–16. doi:10.1080/10586458.2021.1926014

[45] Lück, W. (2015). Estimates for spectral density functions of matrices over C[Zd ]. Annales Mathématiques Blaise Pascal,
22(1), 73–88. doi:10.5802/ambp.346

[46] Lück, W. (2018). Twisting L2-invariants with finite-dimensional representations. Journal of Topology and Analysis, 10(04),
723–816. doi:10.1142/S1793525318500279

[47] Mehrabdollahei, M. (2021). Mahler measure of Pd polynomials. arXiv:2101.07675v3

[48] Mellit, A. (2019). Elliptic dilogarithms and parallel lines. Journal of Number Theory, 204, 1–24.
doi:10.1016/j.jnt.2019.03.019

[49] Navot, I. (1962). A Further Extension of the Euler-Maclaurin Summation Formula. Journal of Mathematics and Physics,
41(1–4), 155–163. doi:10.1002/sapm1962411155

[50] Otmani, S. E., Rhin, G., & Sac-Épée, J.-M. (2019). Finding New Limit Points of Mahler’s Measure by Genetic Algorithms.
Experimental Mathematics, 28(2), 129–131. doi:10.1080/10586458.2017.1357511

[51] Pierce, T. A. (1916). The numerical factors of the arithmetic forms ∏
n
i=1(1±αm

i ). Annals of Mathematics. Second Series,
18(2), 53–64. doi:10.2307/2007169

19

https://doi.org/10.1007/978-1-4471-3898-3
https://doi.org/10.1142/S0129167X04002363
https://doi.org/10.1007/s40993-021-00237-1
https://gitlab.inria.fr/aguillou/mahler_condon
https://gitlab.inria.fr/aguillou/mahler_condon
https://doi.org/10.1112/S0010437X21007016
https://doi.org/10.1093/qmath/hax028Zbl
https://doi.org/10.7169/facm/1753
https://doi.org/10.4153/CMB-2012-010-2
https://doi.org/10.2969/jmsj/1191418642
https://doi.org/10.4064/aa135-3-5
https://doi.org/10.1007/s11139-010-9278-6
https://doi.org/10.1016/0022-314X(83)90063-X
https://doi.org/10.4171/cmh/332
https://doi.org/10.2307/1968172
https://doi.org/10.1007/BF01231517
https://doi.org/10.1080/10586458.2021.1926014
https://doi.org/10.5802/ambp.346
https://doi.org/10.1142/S1793525318500279
https://arxiv.org/abs/2101.07675v3
https://doi.org/10.1016/j.jnt.2019.03.019
https://doi.org/10.1002/sapm1962411155
https://doi.org/10.1080/10586458.2017.1357511
https://doi.org/10.2307/2007169


F. Brunault, A. Guilloux, M. Mehrabdollahei, R. Pengo Limits of Mahler measures in multiple variables

[52] Rudin, W (1986). Real and Complex Analysis, Third edition. McGraw-Hill Book Co., New York, 1987. xiv+416 pp.

[53] Raimbault, J. (2012). Exponential growth of torsion in abelian coverings. Algebraic & Geometric Topology, 12(3),
1331–1372. doi:10.2140/agt.2012.12.1331

[54] Schinzel, A. (1997). On the Mahler measure of polynomials in many variables. Acta Arithmetica, 79, 77–81.
doi:10.4064/aa-79-1-77-81

[55] Silver, D. S., & Williams, S. G. (2004). Mahler Measure of Alexander Polynomials. Journal of the London Mathematical
Society, 69(3), 767–782. doi:10.1112/S0024610704005289

[56] Silver, D. S., & Williams, S. G. (2012). Twisted Alexander invariants of twisted links. Journal of Knot Theory and Its
Ramifications, 21(11), 1250118. doi:10.1142/S0218216512501180

[57] Smyth, C. J. (1981). On measures of polynomials in several variables. Bulletin of the Australian Mathematical Society,
23(1), 49–63. doi:10.1017/S0004972700006894

[58] Smyth, C. J. (2002). An explicit formula for the Mahler measure of a family of 3-variable polynomials. Journal de Théorie
Des Nombres de Bordeaux, 14(2), 683–700. doi:10.5802/jtnb.382

[59] Smyth, C. J. (2008). The Mahler measure of algebraic numbers: A survey. In Number theory and polynomials (Vol. 352,
pagg. 322–349). Cambridge Univ. Press, Cambridge. doi:10.1017/CBO9780511721274.021

[60] Smyth, C. J. (2018). Closed sets of Mahler measures. Proceedings of the American Mathematical Society, 146(6),
2359–2372. doi:10.1090/proc/13951

[61] Wiener, N. (1932). Tauberian Theorems. Annals of Mathematics, 33(1), 1–100. doi:10.2307/1968102

Addresses
François Brunault, UMPA, ÉCOLE NORMALE SUPÉRIEURE DE LYON, 46 ALLÉE D’ITALIE, 69100 LYON, FRANCE

E-mail address: francois.brunault@ens-lyon.fr

Antonin Guilloux, IMJ-PRG AND OURAGAN, SORBONNE UNIVERSITÉ, 4 PLACE JUSSIEU, BOITE COURRIER 247, 75252
PARIS CEDEX 5, FRANCE

E-mail address: antonin.guilloux@imj-prg.fr

Mahya Mehrabdollahei, IMJ-PRG AND OURAGAN, SORBONNE UNIVERSITÉ, 4 PLACE JUSSIEU, 75252 PARIS CEDEX 5,
FRANCE

E-mail address: mahya.mehrabdollahei@imj-prg.fr

Riccardo Pengo, UMPA, ÉCOLE NORMALE SUPÉRIEURE DE LYON, 46 ALLÉE D’ITALIE, 69100 LYON, FRANCE
E-mail address: riccardo.pengo@ens-lyon.fr

20

https://doi.org/10.2140/agt.2012.12.1331
https://doi.org/10.4064/aa-79-1-77-81
https://doi.org/10.1112/S0024610704005289
https://doi.org/10.1142/S0218216512501180
https://doi.org/10.1017/S0004972700006894
https://doi.org/10.5802/jtnb.382
https://doi.org/10.1017/CBO9780511721274.021
https://doi.org/10.1090/proc/13951
https://doi.org/10.2307/1968102
mailto:francois.brunault@ens-lyon.fr
mailto:antonin.guilloux@imj-prg.fr
mailto:mahya.mehrabdollahei@imj-prg.fr
mailto:riccardo.pengo@ens-lyon.fr

	Introduction
	Historical remarks

	Notation and conventions
	Generalities
	Matrices
	Measure theory
	Fourier coefficients
	Polynomials
	Constants

	A higher dimensional analogue of Lawton's theorem
	Convergence of measures and integrals
	Uniform L2-bounds and convergence of Mahler measures

	An error term in the convergence
	An explicit exponential convergence for polynomials without toric points
	An explicit error term in the general case

	Discussion of the speed of convergence
	Asymptotic expansions in the presence of toric points
	An asymptotic expansion with a logarithmic term
	Perspectives


