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Abstract: Morphologically similar but genetically distinct species have been termed cryptic and
most have been assumed to be ecologically similar. However, if these species co-occur at a certain
spatial scale, some niche differences at finer scales should be expected to allow for coexistence.
Here, we demonstrate the existence of a disjointed distribution of cryptic bladed Bangiales along
spatial (intertidal elevations) and temporal (seasons) environmental gradients. Bladed Bangiales were
identified and quantified across four intertidal elevations and four seasons for one year, at five rocky
intertidal sites (between 39◦ S and 43◦ S) in southern Chile. Species determination was based on partial
sequences of the mitochondrial cytochrome c oxidase 1 (COI) gene amplification. To assess species
gross morphology, thallus shape, color, and maximum length and width were recorded. Hundreds
of organisms were classified into nine Bangiales species belonging to three genera (i.e., Fuscifolium,
Porphyra, and Pyropia), including five frequent (>97% of specimens) and four infrequent species. All
species, except for Pyropia saldanhae, had been previously reported along the coasts of Chile. The
thallus shape and color were very variable, and a large overlap of the maximum width and length
supported the cryptic status of these species. Multivariate analyses showed that the main variable
affecting species composition was intertidal elevation. Species such as Py. orbicularis were more
abundant in low and mid intertidal zones, while others, such as Po. mumfordii and Po. sp. FIH, were
principally observed in high and spray elevations. Despite all numerically dominant species being
present all year long, a slight effect of seasonal variation on species composition was also detected.
These results strongly support the existence of spatial niche partitioning in cryptic Bangiales along
the Chilean rocky intertidal zone.

Keywords: niche partitioning; co-occurring cryptic species; environmental gradients; Chile;
Fuscifolium; Porphyra; Pyropia

1. Introduction

The study of species co-occurring along environmental gradients allows us to improve
our mechanistic understanding of biodiversity. For instance, cryptic species are commonly
found co-occurring in organisms such as corals [1,2], nematodes [3], rotifers [4], and
red algae [5,6] living in aquatic environments subjected to strong physical or chemical
gradients (e.g., light intensity, desiccation stress, or salinity). Cryptic species have been
classically defined as genetically distinct taxa that have been erroneously classified under
a single nominal species name because they are, at least superficially, morphologically
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indistinguishable [7,8]. These cryptic taxa have been shown to be especially common in the
marine realm [9]. Cryptic species that are morphologically similar have been assumed to be
ecologically similar, which implies that they require very similar resources [7,8]. However,
if these species are actually coexisting, some niche differences would be expected [1,2,9–11].

Contemporary coexistence theory predicts that niche partitioning allows for stable
long-term coexistence of co-occurring species if their differences in competitive abilities
(i.e., “fitness differences”) are not extremely large [12,13]. Therefore, cryptic species being
truly ecologically similar and competing for the same resources should be observed in the
same habitat only transiently [14,15]. Alternatively, Hubbell’s [16] unified neutral theory of
biodiversity and biogeography posits that coexistence could be due to stochastic events of
reproduction, death, and dispersal along with speciation but without any effect of niche
partitioning or selection. Yet, such an extreme ecological equivalence between coexisting
species has proven to be elusive in nature, and minor niche differences have been shown
to underpin the slow competitive exclusion of inferior competitors (e.g., [17]). Cryptic
species, despite largely similar morphologies, have been shown to exhibit subtle differential
physiological tolerances, leading to niche partitioning and stable coexistence [4].

The rocky intertidal zone provides an ideal habitat to assess the association between
the composition of cryptic species and environmental gradients over space and time.
In the intertidal zone, stress increases with elevation, due to desiccation and sun expo-
sure, favoring rapid vertical changes in community composition [18,19]. The strength of
desiccation, jointly with other factors, such as the distribution of consumers, can affect
the temporal and spatial distribution and composition of resource species (e.g., macroal-
gae [20,21]). Moreover, intertidal habitats in temperate biogeographic zones can be exposed
to important seasonal variations in abiotic environmental conditions, affecting sessile in-
vertebrate and macroalga performance and community structure [22–26]. These sharp
environmental intertidal gradients offer a variety of environmental niches for locally co-
occurring (i.e., a few meters) species. If intertidal cryptic species are not fully ecologically
similar, therefore, we should expect a significant association between the occurrence and
abundance (i.e., community composition) of cryptic species and environmental gradients
over space and time [27].

Multiple macroalgae cryptic species have been identified co-occurring along rocky
intertidal habitats. For example, cryptic species of the genus Ectocarpus (brown algae) show
differences in attachment substrate and tidal zonation at a very small scale (i.e., a few
meters [28,29]). Regarding other groups of cryptic macroalgae, such as bladed Bangiales
(red algae), only a few studies have been performed along the intertidal gradient. In New
Zealand, nine species were recorded along a three-year study in a single location, but no
differences in seasonal growth or small-scale distribution were detected between the two
most common species [30]. In central Chile, a small-scale study conducted at Maitencillo
beach reported the presence of the two most common cryptic Bangiales (i.e., Porphyra luchea
and Pyropia variabilis) across several types of habitats, such as mid and high intertidal habi-
tats and rocky platforms [31]. However, Porphyra longissima was restricted to rock boulders
surrounded by sand in Maitencillo, a habitat where no other species were recorded, hinting
at a possible differentiation of ecological niches among bladed Bangiales [31]. This idea
is supported by the slightly distinct gene expression and ecophysiological responses of
Pyropia orbicularis and Py. variabilis to desiccation [32]. Similarly, variations in ecophys-
iological responses have been used to explain differences in species distribution among
cryptic red algae of the genus Bostrychia [33]. In addition, strong differences in the temporal
patterns of appearance and growth were detected between the seven species of bladed
Bangiales present in New Hampshire (USA), with some aseasonal species present all year
round (as Po. ‘umbilicalis’), while others were highly seasonal (as Po. ‘yezoensis’) [34]. Taken
jointly, these previous studies suggest that ecophysiological differences and/or differences
in competitive abilities could explain the long-term coexistence of groups of closely related
cryptic bladed Bangiales along temperate coasts.
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In Chile, as in other part of the word, bladed Bangiales have attracted considerable
interest because of their ecological and economical importance. Indeed, this group includes
species commonly known as “nori”, which represent the most valuable macroalgal crop,
with a market value estimated to be more than USD 1.3 billion per year in China, Japan,
and Korea [35]. In Chile, the bladed Bangiales are commonly known as “Luche”. They
are harvested and sold fresh or dry for local consumption and represent an important
economic resource for the Chilean artisanal fishermen [31,36,37]. A first genetic analysis
carried out along the southeastern Pacific coast has uncovered a high number of genetically
distinct taxa, most of them still unnamed [6]. Chilean Bangiales lack conspicuous diagnostic
morphological differences that could allow unambiguous species determination. Indeed,
even when taking into account microscopic and macroscopic traits and the developmental
features of reproductive tissues, morphology did not allow the four more common species
sampled in Maitencillo to be distinguished effectively [31]. Accurate species identification
based on morphology is extremely difficult, which explains why Chilean Bangiales have
been misidentified for decades. For example, many specimens sampled along the Chilean
coast were, for many years, incorrectly assumed to be Porphyra columbina, a species that we
now know to be endemic of the sub-Antarctic waters of New Zealand [38,39]. Moreover,
critical basic information, such as the ecological requirement for growth and reproduction,
is still lacking for these species, limiting the development of aquaculture programs for these
important resources for both human food and new bioproducts.

Here, we test the hypothesis that niche differences will lead to distinct spatiotempo-
ral patterns of several cryptic bladed Bangiales along spatial (intertidal elevations) and
temporal (seasons) environmental gradients. As an alternative hypothesis, we predict
that ecological similarity and, thus, competitive exclusion due to fitness differences gener-
ates transient patterns in the abundance of these species. Under a neutral scenario, with
species lacking major niche and fitness differences, a random distribution of cryptic bladed
Bangiales along intertidal elevations and seasons of the year is expected. To test these
hypotheses, bladed Bangiales were collected from five rocky intertidal sites (platforms
and/or boulders located between the 39◦ S and 43◦ S) across four intertidal elevations and
four seasons for one year. Cryptic species determination was based on partial sequences of
the mitochondrial cytochrome c oxidase 1 (COI) gene and we assembled a large dataset
of morphological attributes and molecular data for these key primary producers of the
Chilean intertidal zone.

2. Results

A total of 1990 individuals were sampled. No Bangiales could be observed in the
spray-elevation zone during summer in Niebla (two unsampled spray-elevation plots; five
samples each). Of these 1990 individuals, 1727 (i.e., 87%) were identified at the species level
using COI sequences. For the remaining 263 individuals, low-quantity and/or low-quality
DNA extraction did not allow for COI amplification and sequencing. Nine Bangiales
species were identified (Figure 1A). The most abundant species were Pyropia sp. CHJ
(579 individuals, 34% of the sequenced Bangiales), Pyropia orbicularis (523 individuals, 30%
of the sequenced Bangiales), Porphyra mumfordii (351 individuals, 20% of the sequenced
Bangiales), Porphyra sp. FIH (170 individuals, 10% of the sequenced Bangiales), and
Pyropia sp. CHH (66 individuals, 4% of the sequenced Bangiales). Four rare species of
Bangiales were detected in our study area: Porphyra longissima (24 individuals identified),
Porphyra luchea (7 individuals identified), Fuscifolium sp. CHA (4 individuals identified),
and Pyropia saldanhae (3 individuals identified) (Table 1).
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for each of the nine Bangiales species studied. Number of individuals measured per species: Pyropia 

sp. CHJ (n = 356), Pyropia orbicularis (n = 224), Porphyra mumfordii (n = 204), Porphyra sp. FIH (n = 63), 

Pyropia sp. CHH (n = 60), Porphyra longissima (n = 21), Porphyra luchea (n = 7), Fuscifolium sp. CHA (n 

= 4), and Pyropia saldanhae (n = 3). Only complete wet thalli were measured. See the text for more 

details. 

The first axis of the principal coordinates analysis (PCoA) separated the samples ac-

cording to intertidal elevation, with low- and mid-elevation samples located on the left 

and high- and spray-elevation samples located on the right of the axis (Figure 2). Never-

theless, a relatively high overlap between both groups was observed, in particular for the 

mid-elevation samples obtained during autumn (light-blue squares in Figure 2). Accord-

ingly, the global PERMANOVA showed an elevation by season interactive effect on spe-

cies composition (Table 2, R2 = 0.31). Pairwise comparisons indicated that species compo-

sition significantly varied along the vertical intertidal stress gradient across the year (Ta-
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tions did not vary statistically (Table 2, p = 0.339). 

Figure 1. (A) Total number of individuals identified through COI sequencing to one of the nine
Bangiales species detected in our study area. (B) Max length (mm ± SD) and max width (mm ± SD)
for each of the nine Bangiales species studied. Number of individuals measured per species: Pyropia
sp. CHJ (n = 356), Pyropia orbicularis (n = 224), Porphyra mumfordii (n = 204), Porphyra sp. FIH (n = 63),
Pyropia sp. CHH (n = 60), Porphyra longissima (n = 21), Porphyra luchea (n = 7), Fuscifolium sp. CHA
(n = 4), and Pyropia saldanhae (n = 3). Only complete wet thalli were measured. See the text for
more details.

These 4 species corresponded to less than 2.5% of the sequenced Bangiales. No clear
difference in gross morphology was detected between the nine Bangiales species for which
measures of maximum width and length largely overlapped (Figure 1B). In the most
abundant species, Po. mumfordii, Po. sp. FIH, and Py. orbicularis, thallus shape was very
variable, with specimens showing lancelolate, elongated rosette, and rosette-like blades.
Some species, such as Py. sp. CHH and Py. sp. CHJ, were characterized by more rosette-
like or elongated rosette blades. The highest homogeneity in terms of thallus shape was
observed in Po. longissima, for which 19 of the 21 measured specimens were characterized by
lancelolate blades. Most sampled specimens were of brownish color. However, thallus color
was highly variable in Po. longissima and Py. sp. CHJ, where thalli varied from red to brown,
green, and yellowish, depending on the sampled specimen (Supplementary Table S1).

The first axis of the principal coordinates analysis (PCoA) separated the samples
according to intertidal elevation, with low- and mid-elevation samples located on the
left and high- and spray-elevation samples located on the right of the axis (Figure 2).
Nevertheless, a relatively high overlap between both groups was observed, in particular
for the mid-elevation samples obtained during autumn (light-blue squares in Figure 2).
Accordingly, the global PERMANOVA showed an elevation by season interactive effect
on species composition (Table 2, R2 = 0.31). Pairwise comparisons indicated that species
composition significantly varied along the vertical intertidal stress gradient across the
year (Table 2). The exception was summer, when species composition at the mid and low
elevations did not vary statistically (Table 2, p = 0.339).
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Table 1. Raw counts of the species identified in the five sites sampled for each season.

Pyropia sp.
CHJ

Pyropia
orbicularis

Porphyra
mumfordii

Porphyra
sp. FIH

Pyropia
sp. CHH

Porphyra
longissima

Porphyra
luchea

Fuscifolium
sp. CHA

Pyropia
saldanhae Σ

Autumn

Pilolcura 28 23 2 27 4 0 0 0 0 84

Niebla 48 11 8 0 2 3 0 0 0 72

San Carlos 15 3 42 18 0 0 0 0 0 78

Los Liles 44 3 23 19 0 0 0 0 0 89

Melinka 16 13 2 13 0 0 0 0 0 44

Winter

Pilolcura 42 20 0 7 1 3 0 0 0 73

Niebla 39 18 31 0 1 3 0 0 0 92

San Carlos 53 5 15 4 0 7 0 0 1 85

Los Liles 55 2 30 8 0 0 0 0 0 95

Melinka 10 30 45 3 0 0 6 0 0 94

Spring

Pilolcura 29 48 0 11 1 0 0 0 0 89

Niebla 55 11 0 0 21 5 0 0 0 92

San Carlos 33 28 27 0 0 2 0 1 2 93

Los Liles 40 8 25 17 0 0 0 1 0 91

Melinka 0 58 37 2 0 0 0 0 0 97

Summer

Pilolcura 12 76 0 1 1 0 1 1 0 92

Niebla 23 25 1 0 35 0 0 0 0 84

San Carlos 4 64 7 20 0 0 0 0 0 95

Los Liles 31 21 14 20 0 1 0 1 0 88

Melinka 2 56 42 0 0 0 0 0 0 100

Σ 579 523 351 170 66 24 7 4 3 1727

The abundance of Py. sp. CHJ increased from low to high intertidal elevations in spring
and summer but decreased along the same environmental gradient during autumn and
winter (Figure 3; see also post-hoc comparisons in Table 3). Elevation and season accounted
for 27% of the spatial variation in the abundance of Py. sp. CHJ (R2

c = 0.27). The entire
model, including sampling sites, accounted for 40% of the variation in the abundance of this
species (R2

m = 0.40). The model significantly fit the observed data of Py. sp. CHJ abundance
(LRT: χ2

16 = 179.67, p < 0.001). Pyropia orbicularis decreased in abundance from low to spray
elevations (Figure 3). The magnitude of this variation, however, differed among seasons,
with broader variations observed during spring and summer than autumn and winter
(Figure 3; Table 3). The fixed factors accounted for 89% of the variation in Py. orbicularis
abundance and the entire model explained an 89.5% of the variation, indicating a small
effect of the differences among sites on the abundance of this species (R2

c and R2
m = 0.890

and 0.895, respectively; LRT: χ2
16 = 402.9, p < 0.001). The abundance of Po. mumfordii tended

to increase with increasing intertidal vertical environmental stress across the year (Figure 3).
These differences, however, were statistically significant only between the high and low
elevations during summer and winter (Table 3). Accordingly, R2

c and R2
m were 0.88 and

0.96, respectively (LRT: χ2
16 = 167, p < 0.001). Porphyra sp. FIH increased in abundance

from low to spray elevations (Figure 3). The species was absent at low elevations during
spring and summer and occurred with minimal abundances at low elevations during
autumn and winter (Figure 3). The statistical model significantly fit the observed data of
Porphyra sp. FIH abundance (R2

c and R2
m = 0.96 and 0.99, respectively; LRT: χ2

16 = 108.4,
p < 0.001). The comparatively low abundances of Porphyra sp. FIH resulted in statistically
significant comparisons only during autumn (Table 3). Pyropia sp. CHH occurred mainly
at low and mid elevations in spring and summer (Figure 3; R2

c and R2
m = 0.57 and 0.78,

respectively; LRT: χ2
16 = 145.73, p < 0.001). As above, the low abundances of this species

led to a statistically non-significant post-hoc test (Table 3).
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Figure 2. Principal coordinates analysis (PCoA) showing changes in species composition depending
on the elevation and season. The first two axes explain more than 89% of the total variance.

Table 2. Results of the PERMANOVA on the effects of intertidal elevation and season on Bangiales
species composition. Pairwise tests were performed within each season with the low-tide elevation
used as the reference group for the comparisons between the intertidal elevations.

Effect df F R2

Elevation 3 42.91 ** 0.19
Season 3 15.82 ** 0.07

Elevation: season 9 3.59 ** 0.05
Residuals 464 0.68

Total 479 1

Pairwise test

Season Intertidal elevation

Spring Mid **
Spring High **
Spring Spray **

Summer Mid
Summer High **
Summer Spray **
Autumn Mid **
Autumn High **
Autumn Spray **
Winter Mid **
Winter High **
Winter Spray **

df = degrees of freedom; F = F ratio; R2 = coefficient of determination; Asterisks denote statistical significance:
** p < 0.01.
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Table 3. Tukey-corrected post-hoc comparisons after the zero-inflated hierarchical generalized linear
models. All comparisons were conducted with a “treatment” contrast with low elevation as the
reference group and 462 degrees of freedom. The t-ratio of each comparison is shown.

Season Intertidal
Elevation

Pyropia
sp. CHJ

Pyropia
orbicularis

Porphyra
mumfordii

Porphyra
sp. FIH

Pyropia
sp. CHH

Spring Mid 2.40 −1.5 <−0.01 <−0.01 −1.5
Spring High 3.16 ** −6.2 *** <−0.01 <−0.01 −2.5
Spring Spray −1.31 −4.3 *** <−0.01 <−0.01 <−0.01

Summer Mid 2.3 −0.31 <−0.01 <−0.01 −0.9
Summer High 3.49 ** −4.9 *** 3.9 ** <−0.01 <−0.01
Summer Spray 0.04 <−0.01 1.5 <−0.01 <−0.01
Autumn Mid 1.25 −4.1 *** 1.6 1.7 <−0.01
Autumn High −0.35 <−0.01 0.9 3.9 ** <−0.01
Autumn Spray −4.41 *** <−0.01 −0.9 2.7 * <−0.01
Winter Mid 1.24 −3.8 ** 2.4 1.2 <−0.01
Winter High −0.33 −4.5 *** 5.0 *** 1.6 <−0.01
Winter Spray −4.31 *** <−0.01 2.7 * 1.9 <−0.01

Asterisks denote statistical significance: * p < 0.05; ** p < 0.01; *** p < 0.001.

3. Discussion

Using the molecular and morphological data of hundreds of specimens that were
collected seasonally in the southern part of the Chilean coast (39–43◦ S) for one year, we
were able to detect patterns of niche partitioning among cryptic bladed Bangiales along
the intertidal gradient. Indeed, differences in species composition according to intertidal
elevation were detected, with Pyropia orbicularis being more abundant in the low and mid
intertidal zones and Porphyra mumfordii and Porphyra sp. FIH being more abundant in
the high and spray elevations. In total, we identified nine Bangiales species belonging
to three genera (i.e., Fuscifolium, Porphyra, and Pyropia) in the study area, including five
dominant (i.e., those species accounted for >97% of the sequenced specimens) and four
infrequent species. Measurements of maximum thallus width and length showed overlap-
ping patterns of gross morphology, supporting the cryptic status of these nine Bangiales
species. Excepting Porphyra longissima, which was characterized by more lanceolate thalli,
thallus shape was highly variable between the specimens of the same species, confirming a
high intraspecific morphological variability. Even if we detected variation in community
composition between seasons, all dominant species were a-seasonal and present all year
long in our study area. As hypothesized for other cryptic species, we propose that niche
partitioning could allow for the stable long-term coexistence of morphologically similar
co-occurring species of bladed Bangiales.

3.1. Responses of Bladed Bangiales to Vertical Stress Gradients in Intertidal Habitats

Our results support the hypothesis that niche differences lead to distinct spatiotempo-
ral patterns of cryptic bladed Bangiales in the southern part of the Chilean coast. Intertidal
elevation accounted for most of the variation in species composition. Thus, and despite the
observed overlaps in species abundances, our results support the existence of spatial niche
partitioning in cryptic Bangiales along the intertidal zone.

The constant alternation of low and high tides determines that high intertidal eleva-
tions are characterized by strong physiological constraints for organisms living in intertidal
habitats in terms of desiccation [40], high temperatures [41], nutrient shortages [42], and
high UV radiation [43,44]. Thus, the upper distribution boundary of intertidal species is
related to species physiological limits. Contrastingly, the lower limit of intertidal species
distribution seems to be mainly regulated by biological interactions (e.g., consumption
and competition) [45–48]. In southern Chile, for instance, small-sized grazers have been
shown to strongly control the growth of intertidal macroalgae and sessile invertebrates
over succession [49,50]. Thus, the interplay of biotic and abiotic factors generates a sharp
gradient of environmental conditions and a broad niche space in intertidal habitats [51–53].
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Even though bladed Bangiales were morphologically very similar, some species oc-
curred at different intertidal elevations. For example, while Py. orbicularis was mainly
present at low/mid-intertidal elevations, both Po. mumfordii and Po. sp. FIH were dis-
tributed higher on the shore. These patterns were not detected in the previous studies
focusing on the center part of the Chilean coast [31,32,39,54]. The species Py. orbicularis
was first described as colonizing the upper and mid intertidal area of the Maitencillo
beach (central Chile, [39]), but the species’ abundance across intertidal elevations was not
estimated in that study. In the same site, various studies also reported Py. orbicularis as
commonly encountered in the high intertidal elevation [31,32]. It is possible that ecotypes
with distinct preferences in intertidal elevations exist within Py. orbicularis, a species for
which clear genetic differences have been detected between the samples from extreme
south, south, central and north Chile [6]. In the same way, Po. mumfordii was reported from
the low to the upper intertidal elevations in Montemar (central Chile, [54]) but without
any estimation of the species abundance. However, and confirming our results, higher
abundances of Po. mumfordii at high intertidal elevations have also been observed in the
northern hemisphere [55,56].

As for most bladed Bangiales, Chilean species have been classically described as
extremely resistant to the stressing conditions characteristic of the high intertidal zone
(e.g., desiccation, temperature, and UV; [40,44,57–59]) and the existence of species-specific
tolerance limits acting as key determinants of the upper vertical limits of the distribution in
these species is still unclear. For example, experimental studies have shown that Chilean
bladed Bangiales are highly tolerant to desiccation, being able to lose more than 90% of their
water contents and recover cellular activities after only five minutes of rehydration [59].
Moreover, these species present a low sensitivity to UV radiation and a rapid recovery
from solar stress [44]. In other coastal regions, differences in physiological response to
stress have been detected between Bangiales species occupying distinct tidal levels. Indeed,
strong differences have been detected between the high- and low-intertidal species in terms
of nutrient uptake and growth rate (northwest Atlantic; [60,61]), membrane damage (North
East Pacific; [41]), and photosynthetic activities (North West Pacific, [62]). Collectively,
these works suggest that fine-scale niche partitioning between bladed Bangiales species,
mostly due to dissimilarities in physiological tolerance to stress, can generate distinct
distribution patterns. These results have also been confirmed in filamentous Bangiales
species for which distinct adaptation to temperature and salinity could explain, at least in
part, species distribution [63]. Whether the cryptic bladed Bangiales identified in our study
respond differently to abiotic environmental factors is still an open question, and further
manipulative experiments are now needed to understand the physiological responses to
environmental stress in these species assemblages.

3.2. Seasonal Variation in Intertidal Species Assemblages

Even if the effect of seasonal variation on species composition was much weaker than
that imposed by intertidal elevation, our results show that seasonal changes affect bladed
Bangiales communities in south Chile. For example, the distribution patterns observed
for Py. sp. CHJ varied between seasons, with an increase in abundance from low to high
intertidal elevations in spring and summer but a decrease along the same environmental
gradient during autumn and winter.

Nonetheless, all the relatively abundant species observed in the study area were
present across the four seasons sampled. While we might need a multiyear sampling of
species occurrences and abundances to confirm these results, the present study suggests that
the assemblage of species is very persistent over time (i.e., there are no transient species).
The relatively strong temporal persistence of the species assemblage observed in our study
contrasts with previous studies demonstrating the existence of both persistent and tran-
sient cryptic bladed Bangiales in intertidal habitats (e.g., New Hampshire, USA [34]; New
Zealand [30]. For rare species, it is much harder to conclude on a possible persistent or tran-
sient status. However, even for species for which only a few specimens were sampled, no
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clear seasonal patterns were detected. For example, Po. longissima (24 specimens collected
in total) was observed during the four seasons, Po. luchea (6 specimens collected in total)
was observed during both winter and summer, F. sp. CHA (4 specimens collected in total)
was observed during spring and summer, and Py. saldanhae (3 specimens collected in total)
was observed during spring and winter. In northern Atlantic populations of Po. umbilicalis,
the production of spores (i.e., asexual spores or neutral spores) has been shown to be highly
seasonal, with a higher spore release from fall to early spring [57,64,65]. These results are
concordant with observations of the bladed Bangiales recruitment peak during autumn
in New Zealand [30]. It is possible that most species of Chilean bladed Bangiales also
reproduce during the colder periods, affecting the cover and biomass of Bangiales within
each site but not necessarily the structure of the entire species assemblage [65].

3.3. Diversity and Biogeography of Bladed Bangiales

In the present study, measures of maximum blade width and length exhibited an
overlap between the nine identified species. These results support the cryptic status of
these species, at least at the level of gross morphology. Similar results were obtained for
the bladed Bangiales species community located in central Chile, where only Po. longissima
could be clearly differentiated morphologically from the rest of the bladed Bangiales, due
to its long and thin blades [31]. At our study sites, Po. longissima was also characterized by
long, thin, lanceolate thalli. However, Po. longissima shared these characteristics with some
specimens from other species. A high level of variability in terms of thallus color, shape,
and size was observed within species, probably due to phenotypic plasticity. A previous
study conducted in central Chile detected clear phenotypic plasticity in Po. mumfordii, with
specimens from the high and mid intertidal habitats showing long, thin, lanceolate thalli,
while the ones from the low intertidal habitats were characterized by much wider elongated
rosettes [54]. Taken together, these results are in agreement with the previous studies that
showed that morphological characters alone could lead to inaccurate species determination
in bladed Bangiales [66–69]. In many taxa, most detected cryptic species represent recently
diverged entities that still share the same gross morphology [70]. However, molecular
studies have also revealed the existence of non-monophyletic complexes of cryptic species,
and morphological similarities in these cases have been associated with evolutionary
convergence, morphological stasis, or developmental constraints [70]. In our species
assemblage, Py. sp. CHJ and Py. orbicularis have been shown to be close genetic groups [6]
and could represent recently diverged species that have not accumulated any morphological
differences yet. However, the nine species sampled in the present study are part of three
very divergent genera (i.e., Fuscifolium, Porphyra, and Pyropia; [68]), and the evolutionary
convergence or morphological stasis linked to life in the highly stressful intertidal zone
(e.g., [71]) could be hypothesized in bladed Bangiales.

Eight of the nine species sampled in our study sites had previously been reported in
Chile, with six of them sampled along the southern part of the coast [6]. Two rare species,
F. sp. CHA and Po. luchea, were previously known only in the northern part of Chile (F.
sp. CHA was reported in Puerto Oscuro, 31◦ S and Po. luchea was reported in Maitencillo,
32◦ S and Chañaral de Aceituno, 29◦ S; [6,31]). Thus, our results demonstrate that the
distribution areas of both F. sp. CHA and Po. luchea extend well into the southern part of
the country. Another dominant and commonly encountered species, Po. mumfordii, also
presents a much wider distribution than the one proposed by Guillemin and collaborators
(i.e., reported from 39◦ S up to 41◦ S, 2016), extending between 8◦ S Salaverry, Peru [72],
and 43◦ S (Melinka, Chile, present study).

The present study is the first report of Py. saldanhae in South America, a species
considered to be endemic to the west coast of South Africa and Namibia [73–75]. Genetic
data show that Py. saldanhae forms a well-supported clade with various species of the
Falkland Islands and New Zealand, and the authors suggested that Py. saldanhae has speci-
ated along the South African coasts after a Pleistocene-Pliocene west-to-east colonization
event [75,76]. Actually, rafting-mediated transport along the Antarctic Circumpolar Current
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has been shown to favor macroalgae dispersal between isolated landmasses in the Southern
Ocean [77–79]. The presence of Py. saldanhae in south Chile, though, opens questions about
the possible origin of this population. Even if we cannot completely rule out a recent
introduction by human marine transport, the geographical position of our study region
does not link to any major South Africa to south east Pacific shipping routes and is not
located near any major Chilean harbor. It is also possible that the species is locally rare but
presents an ample distribution, including the Chile Patagonia, Falkland Islands, and South
Africa. Renewed efforts, including extensive sampling in the cold waters of the southern
hemisphere and the acquisition of a multigenic data set, are now needed to better resolve
the evolutionary history of the bladed Bangiales in the region.

4. Materials and Methods
4.1. Study Area

Samples were collected during each season in five sampling sites: San Carlos
(39◦51′46.52′′ S/73◦26′28.24′′ W), Los Liles (39◦53′31.19′′ S/73◦29′6.42′′ W), Niebla
(39◦52′6.97′′ S/73◦24′7.05′′ W), Pilolcura (39◦40′20.54′′ S/73◦21′10.72′′ W), and Melinka
(43◦53′ 56.13′′ S/73◦44′13.41′′ W). The first four sites are located in the Los Ríos region
while Melinka is located in the Aysén region (Ascension Island; Figure 4). Both regions
are separated by approximately 500 km (Figure 4).
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Abiotic environmental data were downloaded from Bio-ORACLE [80,81] (www.bio-
oracle.org, accessed on 4 January 2022; Supplementary Table S1 in the Supplementary
Materials). Present-day climate layers were obtained at a 5 armin spatial resolution. The
maximum surface current velocity ranged from 0.398 m s−1 (San Carlos and Los Liles)
to 0.095 m s−1 (Melinka, Supplementary Table S1). The maximal salinity was relatively
higher in Los Ríos (between 34.12 and 34.14 PSU) than in Aysén (33. 03 PSU). The maximal
surface seawater temperature was highest at Pilolcura (15.23 ◦C, Los Ríos) and lowest at
Melinka (13.88 ◦C, Aysén). The maximal photosynthetically active radiation (PAR) peaked

www.bio-oracle.org
www.bio-oracle.org
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at Niebla (64.02 µE m−2 d−1) and was lowest at Melinka (47.59 µE m−2 d−1; Supplementary
Table S1).

The sites in the Los Ríos region correspond to wave semi-exposed rocky shores.
However, water circulation has been reported as highly complex in the area, due to the
effect of local upwelling, freshwater plumes, and offshore eddies [82]. Two of the four
sites, San Carlos and Niebla, are located at the mouth of the Valdivia River. Los Liles and
Pilolcura, on the other hand, correspond to more open costal habitats [83].

In the Aysén region, Ascension Island is part of the large archipelago of Las Guaitecas,
an area characterized by an intricate coastline with many small islands separated by
channels. Melinka is located along the island’s coast facing the Corcovado gulf and
represents a fairly protected area from the prevailing winds, flowing from west to east (see
also Supplementary Table S1).

Rocky intertidal habitats in both study regions are dominated in terms of biomass by ses-
sile species, such as the acorn barnacles Jehlius cirratus and Notochthamalus scabrosus (high inter-
tidal), the purple mussel Perumytilus purpuratus, the red corticated alga Mazzaella laminarioides
(mid intertidal), and large brown kelps, such as Lessonia spicata, Durvillaea incurvata, and
Macrocystis pyrifera (low intertidal) [44,84–86]. The assemblage of consumers comprises macro-
grazers, such as Fissurella picta, Chiton granosus, and Scurria zebrina, and mesograzers, such as
the pulmonate gastropod Siphonaria lessoni, littorinids, and amphipods [84,86]. Mesograzers
are particularly abundant in the Los Ríos region, likely stemming from the overexploitation
and functional extinction of predators and larger grazers; consequently, mesograzers have
been demonstrated to exert a strong top-down control on the assembly of sessile communi-
ties [50,87].

The samplings were conducted between late May and early June 2020 for the autumn
season, between late July and early August 2020 for the winter season, during December
2020 for the spring season, and between late February and early March 2021 for the summer
season. A slight difference in sampling timing was due to the limited access to Ascension
Island, especially during bad weather conditions.

4.2. Bladed Bangiales Sample Collection

Samples were taken from rocky platforms and boulders within four intertidal eleva-
tions (Figure 5). The upper and lower limits of the Mazzaella laminarioides belt were used as
the major local biological markers to define the distinct intertidal levels sampled (Figure 5).
The first intertidal level, named “low”, corresponded to samples encountered mixed with
species such as Ahnfeltiopsis spp. or Sarcothalia crispata and completely embedded within
the M. laminarioides belt. These samples were located at the limit between the midlittoral
and infralittoral zones and generally corresponded to the bladed Bangiales specimens
observed lowest at the shore. The second level, named “mid”, corresponded to samples
encountered at the upper limit of the M. laminarioides belt or slightly higher. The third
level, named “high”, corresponded to samples located at the limit between the supralittoral
and midlittoral zones, where no M. laminarioides were observed. The fourth level, named
“splash zone”, corresponded to the highest elevation of the supralittoral zone where bladed
Bangiales could still be found. Samples were collected by group of five nearby specimens,
all located within a circle of 25 cm and bagged together. When possible, neighboring
specimens presenting different phenotypes (i.e., distinct color, form, or size) were collected.
For the first three levels, six samples were collected and noted A to F, corresponding to
“low”, G to L to “mid” and M to R to the “high” intertidal levels (Figure 5). For the “splash
zone” two samples were collected, noted S and T. The samples collected within the same
level were separated by at least 2 m. When available, at each season and in each locality,
100 algae specimens were collected in total (i.e., 20 samples of five specimens each).
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Algal blades were spread flat to the best of our ability and photographed jointly with
a size scale before cutting a small portion of tissue that was then stored in silica gel for
further molecular work. Only complete blades, still wet, were photographed.

4.3. Morphological Traits

Using the photographs taken of the blades spread flat, the maximum lengths and
maximum widths of the thalli were measured using the software ImageJ (version Java 1.8.0)
(http://imagej.nih.gov/ij/, accessed on 24 May 2021). Some other characteristics such as
color (brown, green, yellow, and red), and form (rosette, elongated rosette, and lanceolate
blade) were also noted.

4.4. Species Determination Based on Molecular Data

Algal material was subjected to cell disruption for 30 s in a Mini-BeadBeater (BioSpec
Inc., Bartlesville, OK, USA) and DNA was extracted using the Plant DNA kit (Omega
BIO-TEK, Norcross, GA, USA) following the provider’s protocol. Quantity and quality of
the extracted DNA was determined using a NanoDrop Lite spectrophotometer (Thermo
Scientific, Waltham, MA, USA). A fragment of the mitochondrial cytochrome c oxidase
1 (COI) gene was amplified using the primer pair GazF1 (5′-TCA ACA AAT CAT AAA
GAT ATT GG -3′) and GazR1 (5′-ACT TCT GGA TGT CCA AAA AAY CA -3′) following
the PCR protocol described by Saunders [88], with a melting temperature of 56 ◦C. The
PCR products were checked using 1.5% agarose electrophoresis gels. Sanger sequencing
was performed using the GazF1 primer in the AUSTRAL-omics Core-Facility (Univer-
sidad Austral de Chile). The sequences were checked by hand using Chromas v.2.6.6
(http://technelysium.com.au/wp/chromas/, accessed on 10 May 2021), and species iden-
tification was performed using the GenBank Basic Local Alignment Search Tool (BLAST)
to compare the newly obtained COI sequences with the ones already deposited in the
public databases in NCBI GenBank (https://www.ncbi.nlm.nih.gov/, accessed on 20 De-
cember 2021). Species determination was based on the percent identity BLAST metric and a
minimum identity threshold of 3% was used (i.e., reflecting the congeneric interspecific di-
vergences observed for Chilean bladed Bangiales for the COI) [6]. The nucleotide sequences

http://imagej.nih.gov/ij/
http://technelysium.com.au/wp/chromas/
https://www.ncbi.nlm.nih.gov/
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obtained in this study were deposited in the GenBank database; all accession numbers are
available in the Supplementary Table S2.

4.5. Statistical Analyses

Composition of cryptic species (i.e., the combination of species occurrences and
abundances) was analyzed with permutational multivariate analyses of variance (PER-
MANOVA; [89]. The model included intertidal elevation (low, mid, high, and spray level)
and season (spring, summer, autumn, and winter) as fixed and crossed factors. The species
abundance data (number of individuals) were transformed to Bray–Curtis dissimilarities
before the analysis, and 999 permutations of raw data were constrained within sites (Pi-
lolcura, San Carlos, Niebla, Los Liles, and Melinka). After fitting the global model, we
conducted between-elevation PERMANOVA post-hoc pairwise comparisons within each
season. To control the type I error rate, we used a “treatment” contrast in which each
elevation was compared against the low-tide elevation (reference group). Moreover, the
spatial patterns of the community structure were described in a constrained principal
coordinates analysis (PCoA) ordination [90]. This method allowed us to show the mul-
tivariate axes that accounted for most of the variation in the species abundance dataset
according to our predictive model (i.e., separate and joint elevation by season effects on
species composition).

Individual counts of numerically dominant species were separately analyzed with
zero-inflated hierarchical generalized linear models. The error structure was modeled as a
negative binomial distribution and model parameters were estimated by means of maxi-
mum likelihood. The models included elevation and season as fixed and crossed factors and
site as a hierarchical factor. Model goodness-of-fit was assessed by means of conditional
and marginal pseudo-coefficients of determination (R2

c and R2
m, respectively; [83,84]).

Conditional R2
c represents the fit of the fixed factors (elevation and season); marginal

R2
m represents that of the entire model (including the random effects). Plots of fitted vs.

observed values were used as model diagnostics. Statistical fit was tested with a likelihood
ratio test (LRT) in which a chi-squared test (χ2) was used to contrast the explained deviance
of the model against that of a null model that included only the intercept. After fitting the
global models, we conducted Tukey-corrected post-hoc comparisons. As above, we used a
“treatment” contrast with low elevation as a reference group.

The vegan R package was used for running PERMANOVA and PCoA, glmmTMB
was used for the zero-inflated models, MuMIn was used for pseudo-R2, and the tidyverse,
cowplot, RColorBrewer, and wesanderson packages were used for data preparation and
plotting [90–100]. All statistical analyses were conducted in R version 3.0.3 [93].

5. Conclusions

Our study provides useful insights into the mechanistic understanding of the growing
diversity of cryptic species. The observed differences in the occurrence and abundance of
cryptic bladed Bangiales along the rocky intertidal zone in south Chile hint at niche parti-
tioning within this assemblage. This, in turn, has probably favored the co-existence in time
of these Bangiales species and indicates that they are not fully ecologically similar. Future
research on physiological responses to biotic and abiotic environmental stress would help
us to understand the mechanisms underpinning the observed spatial patterns. In bladed
Bangiales, as in other species characterized by a complex life cycle, both the microscopic
sporophyte (also known as the conchocelis phase) and the macroscopic gametophytic
phases are important to study. Indeed, laboratory-based experimental studies have shown
that the sporophyte and gametophyte phases respond differently to abiotic stresses (light
and temperature [101,102]) and grazing pressure by intertidal mollusks [103]). We suggest
that similar morphologies do not equal similar environmental tolerances, which challenges
the widely accepted use of comparative anatomy to define functional types, e.g., [104]
and, thus, to understand how individual species influence the community structure and
ecosystem functioning.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants11050605/s1, Table S1: Abiotic environmental variables at each sampling site. Data
were downloaded from Bio-ORACLE (www.bio-oracle.org), Table S2: Bladed Bangiales specimens
sampled for this study. Season, locality, intertidal elevation, morphological traits, GenBank accession
numbers, and percentage of identity between each sequence and the best BLAST in GenBank
are given.
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