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Abstract
Many applications in geosciences require solving inverse problems to estimate the state of a physical system.
Data assimilation provides a strong framework to do so when the system is partially observed and its underlying
dynamics is known to some extent. In the variational flavor, it can be seen as an optimal control problem where
initial conditions are the control parameters. Such problems being often ill-posed, regularization may be needed
using explicit prior knowledge to enforce satisfying solution. In this work we propose to use a deep prior, a neural
architecture that generates potential solution and acts as implicit regularization. The architecture is trained in an
fully-unsupervised manner using the variational data assimilation cost so that gradients are backpropagated through
the dynamical model and then through the neural network. To demonstrate its use, we set a twin experiment using
a shallow-water toy model, where we test various variational assimilation algorithms on a ocean-like circulation
estimation.

© The Authors(s) 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

www.doi.org/10.1017/eds.2020.xx
http:// creativecommons.org/licenses/by/4.0/


2 Filoche et al.

1. Introduction
Physics-driven numerical weather prediction requires to estimate initial conditions before making
a forecast. To do so, one should exploit all the knowledge at disposal which can be observations, a
dynamical model or errors statistics. It formalizes as an inverse problem and data assimilation offers a
large panel of methods to solve it [2]. A subset of these methods are variational so that the system state
is estimated via the minimization of a cost function as in the 4D-Var algorithm [10]. Many similarities
with machine learning have been highlighted [1] as both can be used to perform Bayesian inversion by
gradient descent.

Even though variational data assimilation has a long standing experience in model-constrained opti-
mization, deep learning techniques have revolutionized ill-posed inverse problems solving [14]. And
methods combining neural architectures and differentiable physical models already exists [6, 17, 12].
Most of the time, a large database is leveraged to learn a regularization adapted to the task.

Fitting observations respecting the dynamical model can be seen as a form of regularization but an
additional regularizer may be required to promote acceptable solution [9]. Recently a very original idea
called deep prior [18] has been developed. A neural architecture is used to generate the solution of an
inverse problem and acts like an implicit regularization. Astonishingly the whole architecture is trained
in an unsupervised manner on one example and provides results comparable to supervised methods.

In this work, we propose a hybrid methodology bridging deep prior and variational data assimilation
and we test it in a twin experiment. The algorithm is evaluated on an ocean-like motion estimation task
requiring regularization, then compared to adapted data assimilation algorithms [3, 4]. All algorithms
are implemented using tools from the deep learning community. The code is available in Github1.

2. Methodology
2.1. Data assimilation Framework
A dynamical system is considered where a state X evolves over time following perfectly-known dynam-
ics M, see Eq. (1). Partial and noisy observations Y are available through an observation operator H,
Eq. (2). A background X𝑏 gives prior information about the initial system state, Eq. (3).

Evolution: X𝑡+1 = M𝑡 (X𝑡 ) (1)
Observation: Y𝑡 = H𝑡 (X𝑡 ) + 𝜀𝑅𝑡

(2)
Background: X0 = X𝐵 + 𝜀𝐵 (3)

Additive noise 𝜀𝐵 and 𝜀𝑅 represent uncertainties about the observations and the background, respec-
tively. These noises are quantified by their assumed known covariance matrices B and R, respectively.
The dynamics is here considered perfect, but the framework could easily be extended to an imper-
fect dynamics. For any given matrix A, we note ∥𝑥 − 𝑦∥2

𝐴
= ⟨(𝑥 − 𝑦) |A−1 (𝑥 − 𝑦)⟩ the associated

Mahalanobis distance.

1https://github.com/ArFiloche/Deepprior4DVar_CI22

https://github.com/ArFiloche/Deepprior4DVar_CI22


Environmental Data Science 3

2.2. Variational assimilation
The objective of data assimilation is to provide an estimation of the system state X by optimally com-
bining available data X𝐵, Y and the dynamical modelM. In the variational formalism [10], this is done
via the minimization of a cost function which is the sum of background errors and observational errors,
J4DVar = 1

2 ∥𝜀𝑏∥
2
B + 1

2
∑𝑇

𝑡=0 ∥𝜀𝑅𝑡
∥2

R𝑡
. The optimization problem is model-constrained as described in

Eq. (4). What motivates this cost function is that minimizing it leads to the maximum a posteriori esti-
mation of the state under independent Gaussian errors, linear observation operator and linear model
hypothesis. The corresponding optimization algorithm is named 4D-Var.

arg min
X0

J4DVar (X0) =
1
2
∥X0 − X𝑏∥2

B + 1
2

𝑇∑︁
𝑡=0

∥Y𝑡 − H𝑡 (X𝑡 )∥2
R𝑡

s.t. X𝑡+1 = M𝑡 (X𝑡 )
(4)

The link between variational assimilation and Tikhonov regularization is well described in [9]. For
example, choosing a particular matrix B will promote a particular set of solutions. Therefore, making
alike choices can be seen as a handcrafted regularization to take advantage of expert prior knowledge.

2.3. Deep prior 4D-Var
The idea behind deep prior is that using a well-suited neural architecture to generate a solution of the
variational problem can act as a handcrafted regularization. This means that the control parameters are
shifted from the system state space to the neural network parameters space. From a practical standpoint,
a latent variable 𝑧 is fixed and a generator network 𝑔𝜽 outputs the solution from it such that 𝑔𝜽 (𝑧) = X0.

control variables
latent fixed variables

initial condition to estimate
passive tracer
numerical cost

Figure 1. Schematic view of the forward integration in Deep Prior 4D-Var.

2.3.1. Cost function
The generator is then trained with the variational assimilation cost J (𝜽). To emphasize the regularizing
effect of the deep prior method, we choose to fix B = 0 so that no background information is used. It
means that J (𝜽) = 1

2
∑𝑇

𝑡=0 ∥𝜀𝑅𝑡
∥2
𝑅𝑡

and by denoting multiple integration between two times M𝑡1→𝑡2 ,
the cost can be developed as in Eq. (5).

J (𝜽) = 1
2

𝑇∑︁
𝑡=0

∥Y𝑡 − H𝑡 (M0→𝑡 (𝑔𝜽 (𝑧)))∥2
𝑅𝑡

(5)
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It is important to note that this approach is unsupervised, the architecture being trained from scratch
on one assimilation window with no pre-training. All the prior information should be contained in the
architecture choice.

2.3.2. Gradient
The gradients of this cost function can be determined analytically. First, the chain rule gives Eq. (6).
Then using the adjoint state method we can develop ∇X0J (X0) as in Eq. (7), a detailed proof
can be found in [2]. In the differentiable programming paradigm, such analytical expression is not
needed to obtain gradients, adjoint modeling is implicitly performed as gradients are backpropagated
automatically.

∇𝜽J (𝜽) = ∇X0J (X0)∇𝜽X0 = ∇X0J (X0)∇𝜽𝑔𝜽 (𝑧) (6)

∇X0J (X0) =
𝑇∑︁
𝑡=0

[
𝜕 (H𝑡M0→𝑡 )

𝜕X0

]⊤
R𝑡

−1𝜀𝑅𝑡
(7)

2.3.3. Algorithm
The algorithm seeks to numerically optimize the cost function and simply consists of alternating for-
ward and backward integration to update control parameters by gradient descent (see Algorithm 1). A
schematic view of the forward integration can be found in Figure 1.

Algorithm 1 – Deep prior 4D-Var
Initialize fixed latent variables 𝑧
Initialize control variables 𝜽
while stop criterion do

forward: integrateM0→𝑇 (𝑔𝜽 (𝑧)) and compute J
backward: automatic differentiation returns ∇𝜽J
update: 𝜽 = optimizer(𝜽 ,J ,∇𝜽J)

end while
return 𝜽 ,X0

3. Case study
3.1. Twin experiment
The proposed methodology is tested within a twin experiment where data are generated from a numer-
ical dynamical model. Observations are then created by sub-sampling and adding noise. The aim of
this experiment is to highlight the implicit regularizing effect of the deep generative network. To do
so, we compare various algorithms on the observation assimilation task. The considered algorithms are
4D-Var with no regularization, 4D-Var with Tikhonov regularization, and deep prior 4D-Var. All the
algorithms are implemented with tools based on automatic differentiation such that no adjoint model-
ing is required, as described in [7]. In all the assimilation experiments, the dynamical model is perfectly
known.

3.2. Dynamical system
3.2.1. State
State variables of the considered system are 𝜂, the height deviation of the horizontal pressure surface
from its mean height, and w, the associated velocity field. w can be decomposed in 𝑢 and 𝑣, the zonal
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and meridional velocity, respectively. At each time 𝑡, the system state is then X𝑡 =
(
𝜂𝑡 w⊤

𝑡

)⊤. The
considered temporal window has a fixed size.

3.2.2. Shallow water model
The dynamical model used here corresponds to a discretization of the shallow water equations system
in Eq. (8) with first order upwind numerical schemes. These schemes are implemented using a natively
differentiable software. 𝐻 represents the mean height of the horizontal pressure surface and 𝑔 the accel-
eration due to gravity. After reaching an equilibrium starting from Gaussian random initial conditions,
system trajectories are simulated as shown in Figure 2.



𝜕𝜂

𝜕𝑡
+ 𝜕 (𝜂 + 𝐻)𝑢

𝜕𝑥
+ 𝜕 (𝜂 + 𝐻)𝑣

𝜕𝑦
= 0

𝜕𝑢

𝜕𝑡
+ 𝑔

𝜕𝜂

𝜕𝑥
= 0

𝜕𝑣

𝜕𝑡
+ 𝑔

𝜕𝜂

𝜕𝑦
= 0

(8)
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Figure 2. Example of simulated trajectory with the shallow water numerical model.

3.2.3. Observations
At regular observational dates, 𝜂 is fully observed up to an additive white noise, see Figure 3. The
velocity field w is never observed. This means that at observational date 𝑡, the observation operator H𝑡

is then a linear projector so that 𝜂𝑡 = H𝑡X𝑡 .

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

Figure 3. Example of simulated system observations.

3.3. Regularization
The role of the assimilation task is then to estimate the velocity field from successive observations of 𝜂.
Such motion estimation inverse problem can be ill-posed and may need regularization. The dynamical
model being considered perfect, all the velocity fields within the window are determined by the initial
field w0.
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3.3.1. No regularization
The 4D-Var version without regularization only optimizes the fit-to-data term in the cost function.
This means that no prior knowledge on the solution can be used, the background covariance matrix B
vanishes.

3.3.2. Tikhonov regularization
On the other hand, the “Tikhonov” 4D-Var algorithm optimizes the fit-to-data term and also a penalty
term. The estimated motion field is forced to be smooth by constraining ∥∇w0∥2

2 and ∥∇.w0∥2
2 to be

small. As proved in [11], these terms can be directly included in the background error using a particular
matrix B such that 𝛼∥∇w0∥2

2 + 𝛽∥∇.w0∥2
2 = ∥X0 − X𝑏∥2

𝐵𝛼,𝛽
where 𝛼 and 𝛽 are parameters to be

tuned. Such regularization is a classical optical flow penalty [8] and can be used for ocean motion
estimation [3].

3.3.3. Deep prior
As depicted in the method, the only assumption made is about the architecture of the network 𝑔𝜽
generating the solution w0. Obviously, the chosen architecture is critical for performances. In this exper-
iment, we use a neural architecture similar to the generative convolutional network presented in [16],
but replacing deconvolution operations to avoid checkerboard artifacts as described in [13]. The exact
architecture is provided in Appendix A.1.

4. Results
The first results to look at is the plot of the velocity fields estimated by the algorithms, see Figure 4.
The 2D-field of arrows represents the direction and the intensity of the velocity, the colormap provides
the same information but helps visualization. Without regularization, the 4D-Var estimation is sharp
and seems to suffer from numerical optimization artifacts. On the contrary the deep prior estimate
looks less precise but far smoother. The regularized provides the most accurate and smooth estimation.
Others examples can be found in Appendix A.2.

4D-Var Deep prior 4D-Var "Tikhonov" 4D-Var Ground truth

Figure 4. Example of estimated motion fields w0 with various algorithms.

Several metrics are calculated to quantify the quality of the estimations. The endpoint error and the
angular error are classical optical flow scores, they calculate the Euclidean distance and the average
angular deviation between the estimation and the ground truth, respectively. At first glance, there is no
statistical difference between deep prior 4D-Var and 4D-Var without regularization.
However, if we dig into smoothness statistics of the estimated fields, ∥∇.w0∥2, ∥∇.w0∥2 and ∥Δw0∥2,
it seems that deep prior is able to capture complex statistics of the true motion field. Similar behavior
has been noticed in [19]. Looking closer in the histograms, Figure 5, we see that deep prior and
“Tikhonov” 4D-Var estimations have smoothness statistics very close to that of the original motion
field. Whether it has been explicitly constrained or by deep network design, smooth solutions are
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Table 1. Metrics quantifying the quality of estimated motion field w0 over the assimilated database

Assimilation Score Smoothness statistics

Metric1 Endpoint error (×102) Angular error ∥∇w0 ∥2 ∥∇.w0 ∥2 ∥Δw0 ∥2

4D-Var 4.2 ± 0.4 28.4 ± 9.8 6.1 ± 0.6 5.3 ± 0.5 9.9 ± 1.0
Deep Prior 4D-Var 4.6 ± 2.0 26.7 ± 5.0 1.9 ± 0.1 1.6 ± 0.9 1.0 ± 0.3
“Tikhonov” 4D-Var 1.6 ± 0.6 9.9 ± 9.8 2.0 ± 0.1 1.8 ± 0.1 1.9 ± 0.1
Ground truth 0 0 1.7 ± 0.9 1.6 ± 0.1 0.7 ± 0.3
1All the metrics are averaged on images

unforced by regularization.
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Figure 5. Histograms of smoothness statistics from estimated motion field w0 with various algorithms.

It has to be noted that the “Tikhonov” 4D-Var is the only algorithm here that has been treated with
hyper-parameters tuning which can explain the large differences in scores. It can be argued that the
neural architecture, which is known as a good baseline to generate images, has been tuned through
many image processing experiments. However, grid-searching hyper-parameters particularly suited for
this experiment should enhance performances.

5. Conclusion
We proposed an original method bridging ideas from the image processing and the geosciences com-
munities to solve a variational inverse problem. More precisely we used a neural network as implicit
regularization to generate the solution of an initial value problem. To demonstrate its efficiency, we
set up a twin experiment comparing different algorithms in a data assimilation task derived from shal-
low water model. The results show that this kind of regularization can provide an interesting alternative
when prior knowledge is not available. However in our case, we observed that expert-driven handcrafted
regularization provides better performances. Finally, this work opens the way for further develop-
ments on the architecture design, but also in a more realistic context where the numerical dynamics
is imperfect.
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A. Appendix. Experiment details
A.1. Neural network architecture
----------------------------------------------------------------

Layer (type) Output Shape Param #
================================================================

ConvTranspose2d-1 [-1, 512, 4, 4] 819,200
BatchNorm2d-2 [-1, 512, 4, 4] 1,024

ReLU-3 [-1, 512, 4, 4] 0
Upsample-4 [-1, 512, 8, 8] 0

ReflectionPad2d-5 [-1, 512, 10, 10] 0
Conv2d-6 [-1, 256, 8, 8] 1,179,904

BatchNorm2d-7 [-1, 256, 8, 8] 512
ReLU-8 [-1, 256, 8, 8] 0

Upsample-9 [-1, 256, 16, 16] 0
ReflectionPad2d-10 [-1, 256, 18, 18] 0

Conv2d-11 [-1, 128, 16, 16] 295,040
BatchNorm2d-12 [-1, 128, 16, 16] 256

ReLU-13 [-1, 128, 16, 16] 0
Upsample-14 [-1, 128, 32, 32] 0

ReflectionPad2d-15 [-1, 128, 34, 34] 0
Conv2d-16 [-1, 64, 32, 32] 73,792

BatchNorm2d-17 [-1, 64, 32, 32] 128
ReLU-18 [-1, 64, 32, 32] 0

Upsample-19 [-1, 64, 64, 64] 0
ReflectionPad2d-20 [-1, 64, 66, 66] 0

Conv2d-21 [-1, 3, 64, 64] 1,731
Tanh-22 [-1, 3, 64, 64] 0

================================================================
Total params: 2,371,587
Trainable params: 2,371,587
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 11.03
Params size (MB): 9.05
Estimated Total Size (MB): 20.08
----------------------------------------------------------------
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A.2. Supplementary examples

4D-Var Deep prior 4D-Var "Tikhonov" 4D-Var Ground truth

4D-Var Deep prior 4D-Var "Tikhonov" 4D-Var Ground truth

4D-Var Deep prior 4D-Var "Tikhonov" 4D-Var Ground truth

4D-Var Deep prior 4D-Var "Tikhonov" 4D-Var Ground truth

Figure 6. Examples of estimated motion fields w0 with various algorithms, each line corresponds to a
different assimilation window.
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