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Abstract
The oceans have a very important role in climate regulation due to its massive heat storage capacity. Thus, for the
past decades oceans have been observed by satellites in order to better understand its dynamics. Satellites retrieve
several data with various spatial resolution. For instance Sea Surface Height (SSH) is a low-resolution data field
where Sea Surface Temperature (SST) can be retrieved in a much higher one. These two physical parameters are
linked by a physical relation that can be learned by a Super-Resolution machine learning algorithm. In this work we
present a Subpixel Convolutional Deep learning model that takes advantage of the higher resolution SST field to
guide the downscaling of the SSH one. The data fields that we use are simulated by a physic based ocean model at
a higher sampling rate than the satellites provide. We compared our approach with a convolutional neural network
(CNN) model. Our architecture generalized well with validation performances of 3.94 cm RMSE and training
performances of 2.65 cm RMSE.

1. Introduction
The oceans, with their massive heat storage capacity and conveyor belt circulation are the prime drivers
of climate regulation. Better understanding and monitoring their response to climate change requires
high resolution datasets. Such datasets are usually obtained by satellite imaging, or by numerical mod-
eling, or by a combination of the two through data assimilation. Satellite remote sensing provide a
multitude of geophysical data fields with various sampling in space and in time. For instance Sea Sur-
face Temperature (SST) can be obtained at a very high resolution (1.1 and 4.4 km) from the AVHRR
instruments. In the other hand, Sea Surface Height (SSH) can be retrieved at a coarser resolution
(around 25 km) from different satellites. SSH and SST variables are linked by a hidden physical re-
lation that we aim to use by combining these multi resolution data in order to downscale the coarse
SSH. This could lead to estimate ocean currents as they are formed by geostrophy from SSH gradient.
This is a Super Resolution (SR) problem applied to oceanography.

Since 2014 and the Super Resolution Convolutional Neural Network (SRCNN) introduced by [2],
neural networks have been used to perform Super Resolution tasks, and often achieve state-of-the-
art performances [11]. A wide range of deep neural network architectures have been explored such
as the residual networks (ResNet). ResNets allow the use of deeper architectures and bigger learning
rates [6, 3]. Various up-sampling strategies have also been tested such as the subpixel convolution
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method introduced by [8]. However these methods should be adapted to the SSH downscaling problem
because the network must be able to extract information from the high resolution SST. This problem
has been tackled by the RESAC neural network architecture [10] which is a proof-of-concept Super-
Resolution architecture. Its main features are downscaling through consecutive resolutions, and using a
cost function that monitors the correct downscaling in each of these resolutions. We propose a subpixel
convolutional residual network, called RESACsub, a modified version of the RESAC network. As the
RESAC network, RESACsub aims to downscale a low resolution SSH using information from a higher
resolution SST. We achieve the SSH downscaling with a higher upsampling factor than in the RESAC
proof of concept, but we only focused on the SSH, while RESAC also recovers the longitudinal and
latitudinal velocities. In the following we will present RESACsub, as well as its main differences to
RESAC, briefly detail the dataset used by both models, present the results obtained and discuss further
potential developments.

2. Data
In order to train a supervised neural network as RESACsub we need the data fields at every resolution.
As SSH cannot be retrieved from a satellite at the resolution we want to downscale to, we use simulated
grided SSH and SST from an ocean physics-based model: NATL60 [1]. This model is based on the
NEMO 3.6 [7] code, with atmospheric forcing, and initial conditions taken from MERCATOR [5]. We
use the SSH and SST state variables of this model at a very high resolution denoted R01, (for resolution
of 1/60° at the Equator). At this resolution the model has a very high running cost, therefore we were
only able to retrieve one year of training data (366 days starting from 1st October 2012), and 4 months
of validation in 2008 (March, June, September, December). We are well aware that we should use
different test/validation data-set, but considering the importance of the annual cycle and that the main
objective is to compare two models, we decided not to separate the 4 validation months. Compared
to RESAC, our validation method is more rigorous as there cannot be data-leakage from sampling the
validation data from the training year.

We simulate the various resolutions by recursively averaging the pixels in a 3 × 3 mask. We then
call hereafter R01, R03, R09, R27, R81 the five resolutions that we study with respective size at the
grid center of (1.5 × 1.5, 4.5 × 4.5, 13 × 14, 40 × 41, and 120 × 122 km2). We renormalize the dataset
between 0 and 1 to both stabilize the numerical calculations and equalize the importance of SST and
SSH. In order to compare our models we perform ten trainings of each architecture, with different
weight initialization on each training.

3. Method
3.1. RESAC Super-Resolution Method
In this paper we compare two CNN architectures that use the same downscaling RESAC method. This
method aims to learn the hidden link between high resolution SST and a low resolution SSH. To that
end we progressively increase the resolution of our coarse SSH_R81 in three up-sampling steps each
one with a up-sampling factor of 3 for a total up-sampling factor of 27. To perform each resolution
increase we use a CNN block as shown in the RESAC method in Figure 1.

The Vanilla RESAC method as proposed by [10] performed only two downscaling CNNs starting
from SSH_R81 (120 × 122 km2) and retrieving SSH_R09 (13 × 14 km2) for a total up-sampling factor
of 9. But the original method also used another CNN block at the end of the network to compute the
circulation (U and V currents) from the estimate SSH_R09. Our downscaling method upscales the SSH
from 120×122 km2 down to 4.5×4.5 km2 (upsampling factor of 27) without retrieving ocean currents.
Both methods use cost functions that force the model to correctly downscale through the intermediary
resolution. Therefore we use three loss functions at R27, R09, and R03 and the global loss of the model
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Figure 1. Comparison between the vanilla downscaling method used in [10] and ours. The main two
differences are that we increase the SSH resolution one step further but we do not retrieve the ocean
circulation.

is their sum. The use of three separate loss functions guides the model to correctly reconstruct the
intermediary resolutions, which depend on different physical phenomena given their scales. For each
of these loss functions we use mean squared error (MSE) between the estimated SSH and the target.

In this work every architecture uses the same downscaling method: a slightly different method that
the one used by [10], that downscale SSH_R81 to SSH_R03 using every intermediate resolution SST
and without retrieving ocean currents. We denote this downscaling method as the RESAC method
hereafter.

3.2. Network architecture
3.2.1. RESAC network
The original RESAC architecture upsamples the SSH with a bilinear upsampling and then apply 𝑁𝑙𝑜𝑜𝑝

times 2 convolution layers followed by a Batch Normalization (BN) layer as shown in Figure 2. In the
following work we set 𝑁𝑙𝑜𝑜𝑝 = 5, therefore each downscaling CNN block has 10 convolution layers,
each one with 37 filters. We use the swish activation function for every convolution layer, except for
the last one that uses a linear activation function.

Figure 2. Comparison of the architectures of one downscaling step for RESAC and RESACsub. For
each layer the output number of channels is given below it.
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3.2.2. RESACsub network
RESACsub is a Subpixel Convolutional Residual Network. It is a post network upsampling strategy
showed in Figure 2. The principle of a subpixel convolutional layer is to perform the convolution, not
in the original image space (that we call supspace hereafer), but in a deeper and smaller space (that we
call subspace hereafter). This method has been introduced by Shi et al [8]: the upsampling is therefore
performed at the end of the network by getting back to the supspace. The supspace is obtained from the
subpsace by apply a pixel suffler operation as showed in Figure 3. Two pixels that are spatial neighbors
in the supspace are channels neighbors in the subspace. We call hereafter 𝑃 the operation that transform
a subspace image into a supspace image and 𝑃−1 the inverse operation, see Eq. (1),

𝐼𝑠𝑢𝑏
𝑛,𝑛,𝑅2𝑐

𝑃

⇄
𝑃−1

𝐼
𝑠𝑢𝑝

𝑅𝑛,𝑅𝑛,𝑐
(1)

where 𝑅 is the upsampling factor (3 in our work), 𝑛 is the spatial dimension of the low resolution image,
and 𝑐 the number of channels. Therefore 𝐼𝑠𝑢𝑏

𝑛,𝑛,𝑅2𝑐
is the image in the subspace and 𝐼

𝑠𝑢𝑝

𝑅𝑛,𝑅𝑛,𝑐
is the same

image shifted in the supspace.

Figure 3. Pixel shuffler and inverse pixel shuffler.

In RESACsub we first concatenate the SST and the SSH in the subspace. As the SST is wider than
the SSH, we first shift it to the subspace with an inverse pixel shuffling layer. To keep the same weight
between SST ans SSH images we duplicate 9 times the low resolution SSH image and concatenates
the two images after doing so. We then use a Residual Network to downscale the SSH, with 5 residual
loop (𝑁𝑙𝑜𝑜𝑝 = 5). Each residual loop starts with adapted form of Batch Normalization that we detail in
3.2.3, followed by 3 convolution layers with respectively 32, 32 and 18 filters and the swish activation
function. We then add the SSH and concatenate the SST. The final output layer is a convolution layer
with 9 filters and a linear activation function followed by a Pixel.

3.2.3. Batch Normalization
With this subpixel convolution method, we use the channel dimension to store neighbors pixels and
then perform a convolution layer. This implies that using Batch Normalization (called BN hereafter)
will create strong checkerboard artifacts as each channel is normalized with a different mean and vari-
ance. The tests we performed confirmed this. To explain the impact of batch normalization on the
checkerboard artifacts we must get back to the following equation:

𝑌𝑏,𝑥,𝑦,𝑐 = 𝛾𝑐
𝑋𝑏,𝑥,𝑦,𝑐 − 𝜇𝑐√︁

𝜎2
𝑐 + 𝜖

+ 𝛽𝑐 (2)
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where 𝑋 and 𝑌 are respectively the input and the output of the batch normalization layer. They are 4-
dimension tensors with 𝑏 as the batch coordinate, 𝑥 and 𝑦 the two spatial coordinates of the image and
𝑐 the channel index. Parameters 𝜇𝑐 and 𝜎𝑐 are respectively the mean and the standard deviation of the
image across the two space dimensions and the batch dimension for the channel 𝑐. Finally, 𝜖 is a small
positive constant that we add for numerical stability, and 𝛽𝑐 and 𝛾𝑐 are the output mean and the output
standard deviation that are learned during the training.

The batch normalization method thus learns the bias and the standard deviation of each channel
independently during training phase. This is inconsistent with the subpixel convolutional method be-
cause the channels do not represent different data nor images, but neighbors pixels that have similar
distributions and should be normalized the same way.

To fix this issue we use an adapted form of batch normalization that we call 𝑠𝑢𝑝𝐵𝑁𝑠𝑢𝑏 as illustrated
in Figure 4. Operator 𝑠𝑢𝑝𝐵𝑁𝑠𝑢𝑏 gets back to the supspace, applies a BN layer and then returns to the
subspace. If we call 𝐵𝑁 the Batch Normalization operation described in Eq. (2), we can write the
𝑠𝑢𝑝𝐵𝑁𝑠𝑢𝑏 operator as:

𝑠𝑢𝑝𝐵𝑁𝑠𝑢𝑏 = 𝑃−1 (𝐵𝑁 (𝑃)) (3)
SupBNsub method produces better results in RMSE sense.

Figure 4. Comparison of the two Batch Normalization methods for a 1-dimension example. For each
channel we write the mean and standard deviation below it and the learned parameters are in bold.

To explain why Batch Normalization creates checkerboard artifacts, we must write the mean and
standard deviation of the both method. It is trivial that in the case of the standard Batch Normalization,
the 𝐶 ′

1 channel has a mean of 𝛽1 and a standard deviation of 𝛾1 (respectively 𝛽2 and 𝛾2 for the 𝐶 ′
2

channel). According to notations in Figure 4, in the supBNsub case we have (see Appendix A for
details):

𝜇𝑝 =
𝜇1 + 𝜇2

2
𝜎2
𝑝 =

𝜎2
1 + 𝜎2

2
2

+
( 𝜇1 − 𝜇2

2

)2
𝜇′

1 = 𝛾𝑝

𝜇1 − 𝜇𝑝

𝜎𝑝

+ 𝛽𝑝 𝜎′2
1 =

𝛾2
𝑝𝜎

2
1

𝜎2
𝑝

(4)

In both cases, the output mean and standard deviation of the 𝐶 ′
1 and the 𝐶 ′

2 channels are not equal.
During the upspamling operation to get back to the supspace, neighbors pixels will have slightly differ-
ent values due to their different means, therefore some checkerboard artifacts will appear as shown in
Figure 6. However the supBNsub layer performs better than the standard Batch Normalization because
it has a higher regularization effect as all the channels are normalized the same way. The supBNsub
layer has less degrees-of-freedom where the standard BN bias and standard deviation are completely
unrelated between two different channels.

The checkerboard artifacts are intrinsically linked to the subpixel convolutional layers, as different
filters weights are applied to neighbor pixels. To get rid of this problem we use a post-trained denoising
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filter: at the end of RESACsub, we apply 2 convolution layers with 32 filters with a 7×7 kernel size and
a ReLu activation function. This convolution operation is wide enough to perceive a 12×12 area where
several checkerboard patterns should be repeated. After these 2 layers we perform a last convolution
layer with one filter 1 × 1 and no activation to get back to the image dimension.

4. Results
We compare the results of 4 models on the validation data set. We call hereafter RESAC is the network
presented in [10], RESACsub supBNsub is the proposed network with the supBNsub Batch Normal-
ization layer, RESACsub BN is the same network but with the standard BN, and Denoiser stands for
the denoising filter applied after the RESACsub supBNsub network. For each upsampling architecture
(a CNN block in Figure 1), both models have 5 loops (𝑁𝑙𝑜𝑜𝑝 = 5) in Figure 2. For RESAC, that cor-
respond to 10 convolution layers with 37 filters, and for RESACsub it correspond to 10 convolution
layers with 32 filters and 5 with 18 filters. We adjusted the number of filters in RESAC up to 37 so that
the two models are comparable in terms of weight number. However, RESACsub is still around 5 times
faster to compute. We train each network 10 times with different initialization, so the scores presented
in Table 1 are the mean ± standard deviation on the different training. The RESAC, RESACsub supB-
Nsub and RESACsub BN networks are trained with a batch size of 32 and a adaptive learning rate. On
the other hand the Denoiser is trained with a batch of a single image.

The proposed model RESACsub with the supBNsup layer outperforms both RESAC and the
RESACsub with a standard BN. The denoising network improves the performances of RESACsub
supBNsub on RMSE but also on the visual aspect by removing the checkerboard artifacts as the Figure 6
shows. We also compare the RMSE on the first and the last decile of the ground truth i.e. on the spa-
tial location where the SSH is the higher and the lower. As expected all the networks have a higher
RMSE on the first decile than on the global image. This is because the North zone that has a low SSH
is very energetic with very strong currents. Therefore the SSH variations are more important and less
predictable. In Table 1 it is clear that most of the error is made in the North zone (corresponding to the
1st decile).

Model RESAC RESACsub BN RESACsub supBNsub Denoiser
weights 344,976 335,442 334,722 51,841

RMSE (cm) 5.50 ± 0.47 4.43 ± 0.14 4.00 ± 0.26 3.94 ± 0.28
RMSE 1st dec (cm) 8.03 ± 0.91 5.33 ± 0.76 5.09 ± 0.93 5.03 ± 0.99

RMSE 10th dec (cm) 4.65 ± 0.14 4.78 ± 0.22 4.42 ± 0.12 4.36 ± 0.12
RMSE cropped (cm) 5.24 ± 0.48 4.22 ± 0.14 3.82 ± 0.25 3.80 ± 0.27

Table 1. Mean and standard deviation scores on 10 trainings of each architecture with different weight
initializations. The scores are given on the validation data set. We compare the models in RMSE (root
mean squared error): the global RMSE is given, along with the RMSE on the first and the last decile of
the target image. We also give a cropped RMSE (the RMSE of a smaller interior image to avoid boarder
effects)

5. Conclusion
We have proposed RESACsub, a subpixel convolutional residual network that outperforms RESAC in
the Super Resolution task of downscaling SSH with high resolution SST. Our method (RESACsub + de-
noising network) achieve a downscaling of 27 upsampling factor (from a resolution of 120×122 km2 to
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Figure 5. Network output for The SSH at R03. The first line is the estimate SSH of the same day (10th

of March), where the second line is the error map associated .
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Figure 6. Zoom on the error map of the 2 subpixel models RESACsub BN and RESACsub supBNsub,
and the denoising network applied on RESACsub supBNsub. We can clearly see the 3 × 3 pattern on
the 2 subpixel model where the denoiser removes it.

4.5×4.5 km2) with a RMSE of 3.94 cm. We have compared two forms of Batch Normalization: supBN-
sub, a subpixel adapted form of Batch Normalization and the standard BN. We show that the supBNsub
method has a higher regularizing power than the standard one that result in a performance improve-
ment. However the subpixel convolutional method has some drawback: it creates strong checkerboard
artifacts on the output image. We were able to get rid of most of the cherckerboard artifacts with a two
layers denoising network that learns the 3 × 3 pattern and successfully denoise the SSH with a 0.06 cm
RMSE improvement.
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Going further with this work, we will push our approach further by not limiting it to a number of
parameters similar to the ones in RESAC, which we suspect will yield even better results. We also
intend to test and adapt our approach with other state-of-the-art architectures. Using the RESACsub
Network as a generator for a Conditional Generative Adversarial Neural network (GAN) similar to
the SRGAN model introduced by [4] could improve its performance, given the advantages of using
a discriminator network as a cost function for image reconstruction tasks. Further work also includes
adapting this method to real world satellite data using transfer learning to retain the skill obtained over
the numerical model’s dataset.
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A. Appendix: Proof of the mean and variance of the supBNsub layer
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Because the BN do not changes the order of the pixels we can see that:

𝐶 ′
1 (𝑖) = 𝛾𝑝

𝐶1 (𝑖) − 𝜇𝑝
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+ 𝛽𝑝
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(A.2)
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