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Structured abstract (201/200 words) 
Introduction: Although the management of rheumatoid arthritis (RA) has improved in 
major way over the last decades, this disease still leads to an important burden for 
patients and society, and there is a need to develop more personalized approaches. 
Machine learning (ML) methods are more and more used in health-related studies 
and can be applied to different sorts of data (clinical, radiological, or “omics” data). 
Such approaches may improve the management of patients with RA. 
Areas covered: In this paper, we propose a review regarding ML approaches 
applied to RA. A scoping literature search was performed in PubMed, in September 
2021 using the following MeSH terms: “arthritis, rheumatoid” and “machine learning”. 
Based on this search, the usefulness of ML methods for RA diagnosis, monitoring 
and prediction of response to treatment and RA outcomes, is discussed. 
Expert opinion: ML methods have the potential to revolutionize RA-related research 
and improve disease management and patient care. Nevertheless, these models are 
not yet ready to contribute fully to rheumatologists’ daily practice. Indeed, these 
methods raise technical, methodological, and ethical issues, which should be 
addressed properly to allow their implementation. Collaboration between data 
scientists, clinical researchers and physicians is therefore required to move this field 
forward. 
 
Keywords (4-10): artificial intelligence, artificial neural networks, deep learning, 
diagnosis, machine learning, monitoring, prediction, random forests, rheumatoid 
arthritis, support vector machine. 
 
Article highlights: 

- Machine learning (ML) is a growing field in health-related research; in 
rheumatic diseases, ML is applied more and more to rheumatoid arthritis (RA). 

- ML methods could provide interesting findings to improve disease 
management in RA, notably to enable an earlier diagnosis, to monitor disease 
activity and comorbidities, or to predict outcomes and treatment efficacy. 

- However, the implementation of ML findings in current practice is limited by 
technical, methodological, and ethical issues. These limitations could be 
addressed by regulators and collaborations between clinicians and data 
scientists in the years to come. 
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1. Introduction 

Rheumatoid arthritis (RA) is the most frequent autoimmune rheumatic disease, 

leading to extensive arthritis involving small joints, and ultimately to joint destruction 

(1). Early diagnosis, appropriate management of the disease and identification of 

factors associated with poor outcomes are therefore key issues to avoid functional 

impairment and deleterious consequences of the disease (2). During the last two 

decades, the development of targeted disease modifying anti-rheumatic drugs such 

as biologics, combined with paradigm shifts such as treat-to-target strategies, have 

contributed to the improvement of short- and long-term outcomes in RA (2,3). 

Nevertheless, this disease still represents an important burden for patients and for 

society in terms of costs, and there is a need to develop more personalized 

approaches, in order to enable patients to receive the treatment that will best suit 

their situation, as quickly as possible. 

We are living in the era of Big Data (i.e., extremely large data sets that are 

accumulating rapidly, from various sources, and characterized by their Volume, 

Value, Veracity, Velocity and Variability). Novel statistical approaches are 

increasingly used to analyze these data (4). These methods specifically involve 

Artificial Intelligence (AI), i.e., the ability of a machine to mimic certain human 

abilities, such as calculation, learning or problem solving (5). AI includes several 

types of algorithms, of which the best known and most used to date are Machine 

Learning (ML) methods (6). These consist in models which, after “training” on a 

sample dataset, allow the development of predictions or decisions without being 

explicitly programmed to do so (7). ML includes different algorithms such as: artificial 

neural networks, deep learning, decision trees, support-vector machines, or Bayesian 

networks (8,9) (Table 1).  

These methods have several applications in our daily lives, such as email 

filtering, speech recognition or computer vision, and are also applied to health 

research (10). Indeed, ML makes it possible to extract patterns within patient data 

and exploit these patterns to predict patient outcomes for improved clinical 

management (11). Even if applications of ML in rheumatology are currently hindered 

by the heterogeneity and complexity of rheumatic diseases, small cohort sizes and 

varying effect sizes of different molecular and clinical factors (12), ML studies in RA-

related research are increasingly being published and provide promising potential 

answers to the unmet needs in this disease.  
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The aim of the present narrative review is therefore to describe the 

applications of ML methods in RA, for diagnosis, monitoring and prediction of 

response to treatments, and to explore future directions for AI research in RA (Table 

2).  

To ground our review, a scoping literature search in PubMed Medline was 

performed using the following MeSH terms: “arthritis, rheumatoid” and “machine 

learning” until September 2021. We will present the results of this literature review, 

combined with the authors’ opinion, in different sections below. 

 
2. Usefulness for diagnosis 

Detecting RA early is a key issue in rheumatology, given that the first months of the 

disease’s course determine the short- and long-term outcomes (2). ML may be 

particularly helpful to establish a diagnosis of RA, particularly in situations when other 

diagnoses, such as osteoarthritis or psoriatic arthritis are plausible.  

 

2.1. Diagnosis based on Electronic Health Records 

Clinical data sources are the most commonly used source of data in “big data” 

studies in the field of rheumatic and musculoskeletal diseases (RMDs), representing 

47% of publications (13). Electronic Health Records (EHRs) are one of the most 

important sources of clinical data. Such data sources are interesting for health-

related research, given that these data are collected routinely, and therefore reflect 

real-world care, which allows assessment of the benefits and risks of different 

medical treatments in real life conditions. Moreover, as these data are collected 

automatically, studies based on so called “real-world data” are faster to conduct than 

random controlled trials. As they gather data from thousands to millions of patients 

(for national healthcare EHRs) and are not formatted explicitly to provide precise 

clinical information (such as the severity of a given disease), ML methods may be 

helpful to identify patients with a given disease. Moreover, ML methods may be time-

saving, given that these algorithms usually run in several seconds or minutes, 

whereas tens to hundreds of hours would be necessary for a physician to check the 

files of thousands of patients.  

A first study in the Netherlands and Germany, based on Leiden and Erlangen 

EHRs, aimed to compare the ability of 6 different ML algorithms and a naïve word-

matching algorithm to accurately identify patients with RA (14). A support vector 
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machine method performed well, with an area under the receiver operating 

characteristic curve (AUROC) of 0.98, and a positive predictive value (PPV) of 0.94. 

This means that almost all RA patients were identified by the algorithm (14). This 

method was able to identify 2,873 patients with RA from 23,300 patients in the EHR 

in less than 7 seconds. Another study by the same Dutch team compared the 

performance of a support vector machine model and manual chart reviewing in 

identifying RA patients; here again, the ML model performed well, with 

sensitivity=0.85, specificity=0.99, PPV=0.86, and negative predictive value=0.99 (15).  

A Welsh study aimed to use data-driven methods to develop and validate a 

disease phenotyping algorithm for RA using primary care EHRs (16). In this study, 

data were available for 2,238,360 patients aged 16 or more, and of these, 20,667 

patients were also linked in the secondary care rheumatology clinical system. 

Overall, 900 predictors (out of a total of 43,100 variables) in the primary care record 

were discovered more frequently in those with RA versus those without. Among 

these 900 predictors, 37 variables were selected to develop a decision tree model. 

The final algorithm identified 8 predictors related to diagnostic codes for RA, 

medication codes, such as those for disease modifying anti-rheumatic drugs 

(DMARDs), and absence of alternative diagnoses such as psoriatic arthritis (16). The 

proposed data-driven method performed as well as the expert clinical knowledge-

based methods. 

Thus, ML methods may be useful in accurately and quickly identifying patients 

with RA from EHRs, in order to consider them in clinical research studies. 

 
 

2.2. Diagnosis based on biological samples 
 

So-called “omics data” (proteomics, genomics, metabolomics, metagenomics and 

transcriptomics) are an important data source, and may be helpful for the diagnosis 

of rheumatic diseases (13). RA is characterized by the presence of auto-antibodies, 

such as rheumatoid factor (RF) and anti-citrullinated peptide auto-antibodies (ACPA) 

(17). However, RF can also be positive in other conditions, such as Sjögren’s 

syndrome, as well as in some infectious diseases, such as endocarditis (18,19). 

Conversely, around 20% of RA patients are seronegative for antibodies, which raises 

the question of the accuracy of the diagnosis – as other inflammatory rheumatic 

conditions may have clinical patterns similar to RA (20). For all these reasons, 
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identification of additional biomarkers is necessary to improve the diagnosis of RA 

and also other RMDs. A study identified a set of 12 chemokines (TGFα, EGF, 

CD40L, IFNγ, MIP-1β, eotaxin, TNFα, IL-1α, GRO, G-CSF, fractalkine) with levels 

significantly different between patients with RA, patients with osteoarthritis, and 

patients with no rheumatic condition (21). Based on this set, 2 artificial neural 

networks were developed, each diagnosing 100% of test set patients correctly. 

Another study revealed that serum proteins measured by multiple reaction monitoring 

significantly differed between patients with RA and those with psoriatic arthritis; the 

random forest model built for this purpose had an area under the curve (AUC) of 0.79 

in a first phase and 0.85 in a second phase of validation, reflecting good 

performances to distinguish RA from psoriatic arthritis patients(22).  

The analysis of genomics data with ML methods may be also helpful in RA 

diagnosis (23–30). Based on random forest models, a study identified a set of 9 

mRNAs (CFL1, COTL1, ACTG1, PFN1, LCP1, LCK, HLA-E, FYN, and HLA-DRA) 

enabling to distinguish RA samples from healthy samples, with AUCs between 0.95 

and 1.00 according to the models (31). Another study, based on a panel of micro-

RNAs (miR-22-3p, miR-24-3p, miR-96-5p, miR-134-5p, miR-140-3p, and miR-627-

5p), used ML methods to differentiate RA patients from systemic lupus 

erythematosus (SLE) patients and healthy subjects; these methods differentiated RA 

from control subjects in discovery (AUC=0.81) and validation cohorts (AUC=0.71), 

seronegative RA (AUC=0.84), RA patients in remission (AUC=0.85), and patients 

with SLE (AUC=0.80) versus controls (32). Random forests, k-nearest neighbors, 

support vector machine, naïve-Bayes and a tree-based method applied to a set of 16 

genes (TMOD1, POP7, SGCA, KLRD1, ALOX5, RAB22A, ANK3, PTPN3, GZMK, 

CLU, GZMB, FBXL7, TNFRSF4, IL32, MXRA7, and CD8A) were used to distinguish 

RA from osteoarthritis, with a good accuracy for each of these methods (0.91 to 0.96) 

(33). 

Genomics data have also been used to identify RA sub-types in patients based 

on histologic data from synovial tissue samples. The severity of RA symptoms is 

variable from patient to patient, and it has been reported that this may be the result of 

distinctive gene expression profiles  (34,35). To investigate these findings, a study 

applied consensus clustering techniques to gene expression data in order to identify 

different synovial sub-types. 129 synovial samples were used to identify 20 histologic 

features, which were used to cluster the gene expression data from a subset of 45 
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samples 1000 times each into 2, 3, or 4 groups. The ML algorithm was able to 

identify 3 subgroups: a high inflammation subgroup characterized by extensive 

infiltration of leukocytes (AUC=0.88), a low inflammation subgroup characterized by 

enriched growth factor , glycoprotein, and neuronal gene pathways (AUC=0.71), 

and a mixed subgroup (AUC=0.59) (36).  

Thus, these studies indicate the value of ML methods to improve diagnosis based 

on -omics, and ultimately, to potentially enable the development of novel biological 

tests to diagnose RA (33,37,38). Moreover, apart for diagnosis, novel systems for 

disease phenotyping from mild to severe by means of and on terms identified by ML 

could be of utmost importance for basic research (disease pathophysiology), clinical 

management (e.g. patients at-risk for fast versus slow progression) and ultimately for 

deciding how tightly the control of the disease should be pursued. 

 

2.3. Diagnosis based on imaging and image recognition 
Numerous big data studies in RMDs are based on imaging data (13). Given that a 

single imaging exam compiles a huge amount of data, this field is particularly 

conducive to the use of ML methods (39,40).  

In a study based on 1000 hand photographs from 280 patients with hand arthritis, 

ML algorithms were developed to classify those patients as having RA, osteoarthritis 

or psoriatic arthritis (41); the reference diagnosis was provided by a physician after a 

45-minutes consultation. These algorithms were able to classify inflammatory arthritis 

with an accuracy of 96.8% and a precision of 97.2%. 

It has been established that some imaging techniques, and particularly 

ultrasonography (US), depend on the examinator’s experience (42,43). In this 

context, ML may aid diagnosis by automatically analyzing US images. A literature 

review identified 11 main ML methods currently used in ultrasound computer-aided 

diagnosis systems, and RA was one of the 4 rheumatic conditions for which these 

innovative systems were used the most, with an overall accuracy of more than 75% 

(44). Combining US images with clinical and biological information may also allow a 

faster and more accurate diagnosis of RA; a Japanese team used a pretrained 

convolutional neural network algorithm, AlexNet, to classify patients as RA or non- 

RA, based on US images and clinical settings (45). The accuracy of this method was 

of 90 to 98%, and agreement between this algorithm and clinical diagnosis was 

satisfactory (Cohen’s kappa=0.79 to 0.87). 
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 ML methods may also be applied to other imaging techniques. A study based 

on diffuse optical tomography of proximal interphalangeal joints showed that the use 

of a polynomial SVM classifier helped for diagnosing RA with a sensitivity of 100.0% 

and a specificity of 97.8% (46). Other studies developed automated algorithms to 

detect synovitis on magnetic resonance imaging (MRI), and compared results from 

the algorithm with the semi-quantitative RAMRIS scoring system (47,48). The 

correlation between automated algorithms and RAMRIS was good, with r=0.70 to 

0.90. These results indicate the potential of ML methods applied to MRI for clinical 

applications in RA. 

 
 

2.4. Diagnosis based on sensors 
 

RA symptoms may fluctuate over the day, and clinical examination may be normal 

if the patient comes to the clinic after the flare has resolved. Sensors are devices 

such as accelerometer or thermal infrared cameras, that may be wearable, and that 

are more and more used to gather data from RA patients (50).   

Such devices may be helpful for early RA diagnosis. Thermal imaging enables the 

detection of inflammation in a joint, by detecting variations of temperature in specific 

joints, and therefore may help in diagnosing RA at an early stage – in other terms, in 

the first weeks after symptoms onset, before the occurrence of structural damage. An 

Indian team proposed a ML method called modified multi-seeded region growing, to 

classify knees as having arthritis or not based on thermographs, with 91% accuracy, 

then to classify arthritis as RA or other kind of arthritis (51). This method allowed the 

diagnosis of RA at an early stage with 73% accuracy, and an AUC of 0.72.  

Another team proposed using wearable sensor-enabled gloves, also based on 

thermal infrared camera technologies, to measure finger movements and then 

assess the presence of stiffness, which is a clinical sign of RA (52). However, the 

glove is a complex device, which is not easily implementable in patients’ daily lives. 

Different ML methods may be applied to analyze data from sensors, such as k-

nearest neighbors or decision trees (50). 

 

3. Usefulness for monitoring  
3.1. Monitoring the disease 
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 After RA is diagnosed, proper monitoring of the disease is key. To this end, 

ML methods may provide interesting tools, to assess disease activity or structural 

progression on imaging and/or detect flares. 

 Wearable activity trackers continuously register a patient’s movements and 

may therefore capture changes reflecting the evolution of symptoms or the 

occurrence of a flare. From the raw accelerometer data, the use of machine learning 

makes it possible to deduce the types of physical activity performed (53). Recent 

methodology allows to automatically apply a threshold to predictions by confidence 

levels, in addition to a logical filter to correct for infeasible sequences of activities. An 

example of the use of trackers in RA patients is to automatically correlate task 

performance with symptom level. In one study, patients were asked to perform a 

specific exercise several times a week without any supervision, such as standing up 

from a chair and sitting down five times. The activity tracker was used to remotely 

collect the time taken to perform the five repetitions. Varying the time taken to 

perform this exercise provided passive and automatic information about a patient's 

pain and stiffness (49). In the French Study ActConnect, activity tracker was used to 

detect flares in patients with RA or spondyloarthritis based on the variation in the 

number of steps taken during the day (54). Overall, data from 155 patients (1,339 

weekly flare assessments and 224,952 hours of physical activity assessments) were 

analyzed using multiclass Bayesian methods, which performed well when compared 

with patient-reported flares (mean sensitivity 96%, mean specificity 97%, mean 

positive predictive value 91% and negative predictive value 99%). In another study, 

wrist and walking movements were tracked by a smartphone sensor to detect 

symptoms. This study used the gyroscope and the accelerometer of a smartphone to 

measure movement, with pattern recognition using unsupervised machine learning 

algorithms including Gaussian mixture model. A link was observed between objective 

measurements and the participant-reported information on pain, discomfort, and 

mobility (55). 

Wearable devices may also be used to monitor a specific joint. A study 

proposed a wearable device to monitor patients’ hand movements during a game 

aiming to help the rehabilitation of the wrist (56). Data were then computed and 

analyzed by an artificial neural network, which provided a score determining if the 

patient performed well or not. The results were also transferred to the patient’s 

rheumatologist and physiotherapist, to guide her/him to improve rehabilitation.  
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 Beyond the analysis of sensor data, the use of machine learning is also found 

with imaging. Indeed, a regular assessment of RA patients also involves repeated 

imaging, and particularly radiographs or ultrasonographs of the joints. However, the 

comparison of radiographs or MRI images may be time-consuming (57), and US 

exams may depend on the physician’s experience. Thus, automatic analysis of the 

images may be helpful to monitor the disease in RA patients. The ML methods used 

to this end are mostly artificial neural networks (58,59), and especially deep learning 

(60,61).  

 
 

3.2. Monitoring comorbidities 

 RA is associated with comorbidities, which are related to the disease itself 

(particularly, cardiovascular comorbidities) or may be to the consequences of RA 

treatments (e.g., DMARDs increase the risk of infection, and glucocorticoids the risk 

of osteoporosis) (62). Consequently, identifying and monitoring such complications is 

a cornerstone of global care in RA. ML methods may be helpful for this purpose. 

 Several studies used ML and especially deep learning algorithms to better 

characterize arterial tissue and the atherosclerotic plaque in RA patients (63). These 

methods analyze morphology and texture features extracted from US images, and 

can detect atherosclerotic changes in the arterial wall (64–66). Recently, Lekadir et 

al. used a deep learning model to characterize US images of the carotid into three 

classes: lipid, fibrous, and calcified plaques (67). Thus, ML methods are relevant to 

assess patients’ cardiovascular risk, ensure their US follow-up, monitor the 

effectiveness of the management of cardiovascular risk factors, and thus may help to 

prevent the occurrence of cardiovascular events. 

  

 
4. Usefulness for prediction  
4.1. Prediction of response to treatment 

 

 The early initiation of a DMARD is key in the management of RA, but this early 

initiation does not guarantee an accurate response to the treatment, and 

intensification of therapy may be required to achieve remission. It is therefore crucial 

to predict patients’ response to a given treatment, to adapt the management of RA 

proposing the best therapeutic option.  
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 Methotrexate (MTX) is the first line DMARD for most RA patients (3). Thus, 

several studies aimed to predict insufficient clinical response to this conventional 

synthetic DMARD (csDMARD). A study based on the Dutch REACH cohort aimed to 

assess the performance of multiple regression and 3 ML methods (LASSO, random 

forest and XGBoost) to predict insufficient response to MTX at 3 months, (68). To this 

end, features related to RA pathogenesis (RF status, ACPA status, and Disease 

Activity Score 28 [DAS28] components) or to MTX metabolism (e.g., single 

nucleotide polymorphisms (SNPs) in ATP-binding cassette (ABC) transporter genes 

and erythrocyte folate) from 355 RA patients were computed to build the models. The 

4 models performed well to predict insufficient response to MTX, with AUC=0.77 for 

multiple logistic regression, AUC=0.76 for LASSO, AUC=0.71 for random forest, and 

AUC=0.70 for XGBoost. Furthermore, the most important features were baseline 

DAS28 components. Another study aimed to analyze whole blood samples from RA 

patients at 2 time points (pretreatment and 4 weeks following initiation of MTX), to 

identify gene expression biomarkers of the MTX response (69). Data were analyzed 

by the means of a random forest model. Based on this method, a significant 

overrepresentation of type I interferon signaling pathway genes in non-responders at 

pretreatment (p-value < 0.0001) and at 4 weeks after treatment initiation (p-value < 

0.0001) was identified. Finally, a study of the Swedish Rheumatology Quality 

Register aimed to predict the 1‐year persistence to MTX initiated as the first ever 

csDMARD in new‐onset RA (70); in this study, data on phenotype at diagnosis, 

demographics, medical disease history and medication use were analyzed by four 

different ML methods (LASSO, support vector machine, random forest and 

XGBoost). Among these methods, LASSO regression performed best (AUC=0.67) to 

predict the persistence to MTX. Finally, to predict the response to csDMARD (MTX, 

hydroxychloroquine, leflunomide and sulfasalazine) at 6 months, a study used 

random forest and support vector machine methods to identify predictors among 

serum biomarkers (71). This work demonstrated that baseline plasma concentrations 

of resolvin D4, 10S, 17S-dihydroxy-docosapentaenoic acid, 15R-Lipoxin (LX)A4 and 

n-3 docosapentaenoic-derived Maresin 1 were predictive of csDMARD 

responsiveness at 6 months. 

The question of response prediction is also important for biologic DMARDs 

(bDMARDs). Artificial neural networks were used to predict response to infliximab 

and identified 9 clinical predictors of good to moderate response: ESR, tender joint 
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count, albumin level, monocyte level, red blood cell level, prednisone intakes, MTX 

intakes, HbA1c and previous bDMARD intakes (72). This method displayed good 

performances, with 92% accuracy, 96.7% sensitivity and 75% specificity.  A random 

forest algorithm was used to predict the response at 6 months for adalimumab and 

etanercept, based on gene expression and/or DNA methylation profiling on 

peripheral blood mononuclear cells (PBMCs), monocytes, and CD4+ T cells prior to 

anti-TNF treatment (73). The models using differential genes reached an accuracy of 

85.9% for adalimumab and 79.0% for etanercept, and models using differentially 

methylated positions reached an overall accuracy of 84.7% and 88% for adalimumab 

and etanercept, respectively. Thus, analyzing molecular signature in RA by the 

means of ML methods can predict patients’ response to TNF-inhibitors, prior to 

treatment initiation. Another study, using a Gaussian process regression model to 

analyze data on patient demographics, baseline disease assessment, treatment, and 

single-nucleotide polymorphism array, showed this method performed well to predict 

response to TNF inhibitors (74); baseline DAS28 score could better predict response 

to therapy than genetic biomarkers, but genetic biomarkers improved the predictive 

accuracy of the model. Genes such as EPPK1 (75), HMMR, PRPF4B, EVI2A, 

RAB27A, MALT1, SNX6 and IFIH1 (76) were identified thanks to ML methods as 

potential predictors of the response to TNF inhibitors.  

Thus, it appears that both clinical and -omics data are relevant predictors of 

response to biologics, and ML methods are interesting tools to identify them (77,78). 

However, these methods are not yet implemented in clinical practice.  

 

4.2. Prediction of outcomes 
 Accurately predicting patients’ outcomes in RA can allow to anticipate the 

potential complications of the disease and adapt the treatment strategy if needed. 

 ML methods may be useful to predict outcomes related to RA itself, such as 

flares or radiographic progression. Deep learning (79,80), k-nearest neighbors, naïve 

Bayes classifier, random forest (81) and support vector machine (82) methods were 

proposed to predict the evolution of disease activity and the occurrence of flares, 

based on patients’ clinical and biological features. These methods all had good 

predictive performances, with AUC between 0.75 and 0.91, and identified predictors 

of flare such as change of bDMARDs, clinical disease activity (DAS28 ESR), disease 

duration, joint pain, inflammatory markers, age and duration of treatment (79–83).  
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Regarding radiographic progression, a study used a support vector machine 

classifier to identify SNPs predicting structural damage progression on X-ray (84). 

Overall, the ML model identified 85 SNPs combined with patients’ clinical information 

as predictors of radiographic progression, with an AUC of 0.79; this model performed 

better than classical approaches such as GWAS (AUC=0.65) and SPOT (AUC=0.74). 

 ML methods may also help in predicting morbimortality related to RA. Random 

survival forests were used to identify predictors of mortality in two Spanish cohorts: 

age at diagnosis, median ESR, and number of hospital admissions were shown to 

display the best predictive capacity for this outcome, and the elaborated model had 

specificity and sensitivity of 0.79–0.80 and 0.43–0.48 after 1 year and 7 years of 

follow-up, respectively (85). An American cohort study aimed to identify predictors of 

serious infection risk in RA compared with non-inflammatory rheumatic diseases: the 

LASSO model revealed a major role of moderate and high disease activity (86). 

Finally, LASSO and random forests were used to explore the risk factors for 

osteopenia or osteoporosis in RA patients (87). These models identified higher serum 

25-hydroxyvitamin D3 level and using tumor necrosis factor inhibitor in the last year 

as protective factors, whereas aging, lower body mass index, and increased serum 

uric acid were risk factors for bone loss. 

 

5. Limitations of machine learning and future directions 

5.1 – Limitations of machine learning methods 

Although promising, ML methods have several limitations which is slowing 

down their implementation in daily practice. 

As ML methods used to date are mostly “supervised”, large datasets are 

needed to train the models adequately. Additionally, the accuracy of these data must 

be guaranteed, as poor quality data could lead to erroneous results and therefore, to 

erroneous conclusions; nevertheless, implementing data quality control can be time 

consuming, expensive, and laborious (88). Moreover, standardization of data 

(especially imaging data) acquisition is still challenging. 

 A model based on ML methods is only able to answer a specific question 

based on a given dataset, but is currently unable to solve a multitude of different 

problems. Human expertise and intervention are therefore still required to build, train 

and validate ML models. Furthermore, most models do not pass external validation 

when applied to other datasets. Moreover, most studies focus on the “performances” 
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of the models, but do not consider or discuss the clinical relevance of their findings. 

This explains why, even though the number of publications related to ML is 

increasing, only a few models are implemented in daily practice.  

In this review, we presented some models which achieve a performance of 1 

or 100% in terms of AUC, accuracy or precision for example. This may indicate either 

that the model is perfect and classifies groups without error, or that the model is 

overloaded and may lead to poor implementation of cross-validation strategies (11). 

ML methods are complex, and the process leading to the findings is often 

unclear: this “black box” phenomenon constitutes a scientific and ethical issue, given 

that results from medical research have consequences on patients’ health and lives. 

In this context, it seems crucial to be able to explain and justify the decisions taken by 

the machine.  

This naturally leads to the question of the integration and real-world use of ML 

methods (89). Indeed, as with any new technology, this requires an initial transitional 

period for professionals to get used to it. Conversely, the lack of understanding, 

coupled with a certain degree of complacency which may appear, can lead to an 

over-reliance on ML for decision making. These two aspects mandate to clearly 

define prerogatives and clinical best practices when using ML, and AI systems more 

generally in clinical situations. Indeed, the efficiency and accuracy of ML methods do 

not preclude the involvement of a human healthcare professional: this “human 

guarantee” is even mandatory by law in some countries (90). 

Another ethical issue raised by ML is the consequence of such methods on a 

patient’s daily life. Indeed, care should be taken to ensure that patients identified by 

these new technologies as being at greater risk of a poor prognosis do not suffer 

deleterious consequences, particularly in economic terms (for example, by paying 

higher insurance costs). The guarantee of data anonymity and medical confidentiality 

is therefore crucial. 

5.2 – Future directions  

The limitations mentioned above should not be seen as unsolvable problems. 

On the contrary, they pave the way for directions to be taken in machine learning 

research. Thus, to enable the creation of large databases while ensuring quality 

control of these data, data collection methodology should be standardized; moreover, 

standardization could facilitate research results to be interoperable and reliable. A 
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possibility would be using existing core outcome measurement sets, as proposed for 

example by the OMERACT (91). 

To limit human intervention in the building, training and validation of ML 

algorithms (for time-sparing purposes) as much as possible, the development of so 

called “evolutionary algorithms” might help designing models, in order to find the 

optimum parameters for the models automatically (92). 

Furthermore, after the elaboration of a ML model, validation studies should be 

performed, on the one hand, to test the reproducibility of the results on other 

datasets, and on the other hand, to assess the clinical relevance of the findings. 

Thus, collaboration between data scientists, health researchers and physicians is key 

to implement ML tools in rheumatology practice; this point has been raised in the 

recent EULAR points to consider for the use of big data and AI in rheumatic diseases 

(93). To address these different points, a research agenda was proposed by EULAR, 

with several working points related to data collection, data analyses, training, 

interpretation, and implementation of findings (93). The execution of this research 

agenda is ongoing. 

Extending and standardizing the use of ML methods will lead to ever more new and 

exciting applications in rheumatology. For instance, voice analysis has shown its 

usefulness in the monitoring of patients with multiple sclerosis, since voice patterns 

are affected during flares (94). Similarly, changes in the larynx can occur with 

disease progression in RA patients. Thus, vocal biomarker identification and tracking 

is being developed as it may be useful for patient monitoring (95). ML applied to 

voice represents a cost effective and efficient way to help monitor certain symptoms 

of RA patients. 

Another potential field is the monitoring and analysis of patient experience using the 

enormous amounts of data generated on social media platforms. This type of 

analysis has already been conducted to investigate the perception of DMARD 

treatments for RA (96).  The use of social media, though still in its infancy regarding 

its use in rheumatology, represents a challenging yet promising endeavour, which 

may complement traditional approaches, particularly as concerns patient safety and 

experience (97). 

 

6. Conclusion 
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ML methods are numerous and diversified, and lead to applications in health 

in general, with promising though not yet fully implementable findings in RA 

management (Table 2). ML models may be used in the diagnosis of RA, based on 

clinical, radiological and -omics data. These methods may also be applied in the 

monitoring of RA and its associated comorbidities. Finally, ML algorithms may also 

help in the prediction of the response to treatment, and of short- and long-term 

outcomes.  

However, the implementation of these methods in rheumatologists’ daily 

practice is still an issue, for technical, methodological, and ethical reasons. These 

limitations should encourage clinical researchers in the field of RA to standardize 

their practices, and strengthen collaboration between data scientists, clinical 

researchers, and physicians to develop relevant tools for the management of RA. 

 

7. Expert opinion  

 Artificial intelligence, and particularly ML, is a rapidly growing field in medical 

research (10,12). ML methods are extremely diverse, each with potentially interesting 

properties, such as recognition, classification, clustering, or prediction (11). This 

explains the growing interest shown by rheumatologists and researchers, as these 

methods have the potential to impact RA management, including shifting or 

extending the scope and roles of all those involved in patient care – from nurses to 

the patients themselves. The use of ML could augment current practice to provide 

more personalized care or assist in managing situations outside of the usual context 

of care while awaiting physicians’ decisions. 

As discussed above, several models have been developed, based on diverse 

data sources, to enable an earlier and more accurate disease diagnosis (14-49); as it 

has been demonstrated that there is a window of opportunity in RA, and that the first 

months of the disease are crucial for disease prognosis (98), using ML methods may 

result in sooner treatment initiation and therefore, faster disease activity control, and 

better long-term outcomes for the patient (99). ML methods may also help monitoring 

the disease (50-64), and thus detect flares faster, which could also result in quicker 

treatment adjustment and thus, in achieving remission again. Disease activity control 

is indeed key in RA management, since chronic inflammation of the joints results in 

pain, joint destruction, and functional impairment, which impact patients’ daily lives, 

and particularly, their ability to work (100).  Achieving remission as fast as possible, 
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with the help of ML methods, could therefore help reduce the economic burden of RA 

on society (101).  

Furthermore, the prediction ability of ML methods could which treatment patients 

have the best response to, and therefore help find the best therapeutic approach for 

each patient (65-84). It has been established that some patients with more severe 

forms do not respond to the first lines of conventional or biological treatments 

recommended by the learned societies (3); it is therefore essential to identify these 

patients as soon as possible, in order to offer them an adapted therapeutic strategy 

and to improve their short and long-term prognosis. Consequently, identifying new 

predictive factors could impact treatment management and therefore, treatment 

guidelines in RA.  

Although promising, implementation of ML methods in routine practice is not 

feasible presently, for technical, methodological, and ethical reasons. 

Technical issues are related to the fact that huge amounts of validated data are 

required to properly train “supervised” ML models – which represent most ML 

methods used nowadays (88). Indeed, depending on the physician or research team, 

disease parameters are not assessed in the same way (e.g., disease activity can be 

assessed in 28 or 44 joints, or using erythrocyte sedimentation rate or C reactive 

protein), which results in heterogeneous data. A crucial and time consuming data 

management process is therefore required to homogenize the data, and check if the 

data are adequately computed in the database. A potential solution would be to 

standardize the way data are computed by the means of recommendations for good 

research practice (91,93), or to develop validated “equivalence” scales to 

homogenize data collected in different ways for a same disease parameter.  

Methodological issues are mostly related to the fact that, although providing 

interesting results on specific datasets, only a few ML models are applicable to other 

datasets (88). As a matter of fact, most ML models presented previously have good 

predictive performances, but this could reflect “overfitting” of the models to the 

dataset they were trained on. Additional validation studies, not focusing on “technical” 

performances of the models but rather on their clinical relevance, are therefore 

required. Consequently, to move this field forward, a strong collaboration between 

ML experts and RA experts is needed (93). 

The ethical issues raised by ML in RA research are linked to the so-called “black 

box” phenomenon: in other terms, the mechanisms leading from an input to an output 
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are unclear for most ML algorithms (102). Not being able to explain results that will 

have consequences on the management and therefore the health of patients is a 

major concern. A better understanding of the theoretical aspects of machine learning 

algorithms is therefore fundamental in order to have full confidence in these methods. 

Another ethical question that arises is the consequences of advances in ML on 

patients’ everyday lives (103). Indeed, patients could suffer deleterious 

consequences if their health information were to be communicated to their insurance 

companies or their employers. The guarantee of data anonymity and medical 

confidentiality is therefore more important than ever. In this perspective, the General 

Data Protection Regulation, which is in place in Europe (104), should not be 

perceived as an obstacle to research, but as a way to ensure the confidentiality of 

patients' data to avoid deleterious consequences on their daily lives.  

Future research in the field of machine learning should therefore address all these 

issues, with a view to implementing these methods in current practice. A research 

agenda was elaborated by the EULAR task force on Big Data and Artificial 

Intelligence use in RMDs, with several working points related to data collection, data 

analyses, training, interpretation, and implementation of findings (93). The execution 

of this research agenda is ongoing. 

Future efforts should be inspired by the evolutions of ML in other fields, especially 

other medical areas. Fields dealing with easily digitizable data or at the very least 

data which is easily handled by computers (in terms of processing) are of particular 

interest in this regard. In cardiology and radiology for instance, ML projects are 

numerous  (105,106). Such projects could provide interesting starting points to 

address some of the concerns that have been raised. 

Given its potential, ML is part of the future of medical research, and particularly in 

RA-related research. Nevertheless, given the current limitations, it is clearly not the 

only way, and more classical basic and clinical approaches are still relevant to 

improve the management of the disease. In the years to come, we believe that 

progress will be made at least regarding the technical and methodological limitations 

of ML, which will certainly help to implement these methods, and ultimately improve 

the management of RA patients. 
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Table 1: types of machine learning algorithms 

Type of learning Definition Examples of 

algorithms 

Examples of 

application  

Supervised learning The algorithm maps an 

input to an output, 

based on example 

input-output pairs 

(107). 

Logistic regression, 

Bayesian networks, 

random forests, 

support vector 

machine, artificial 

neural networks, deep 

learning, LASSO, k-

nearest neighbors, 

XGBoost 

Object recognition in 

computer vision (108), 

vocal recognition 

(Siri…) 

Unsupervised learning The algorithm is not 

provided with any pre-

assigned labels or 

scores for the training 

data and must 

therefore first self-

discover any naturally 

occurring patterns in 

that training data 

set.(109) 

Hierarchical clustering, 

k-means clustering, 

principal component 

analysis, deep learning 

Phenotypic 

stratification of cardiac 

risk (110), personalized 

movie propositions on 

Netflix 

Weak supervision 

learning 

This technique uses 

models based on new 

generated data which 

can be incomplete, 

inexact, or inaccurate. 

They typically use 

programs to de-noise 

or predictively label 

data (111). 

Transductive support 

vector machines, 

convolutional neural 

networks,  

Snorkel (112), the 

BREXIT tweet classifier, 

Image recognition 

Transfer learning This focuses on storing 

the knowledge gained 

while solving one 

problem and applying 

it to a different but 

related problem (113). 

Markov logic networks, 

Bayesian networks 

Cancer subtype 

discovery (114), 

medical imaging, spam 

filtering 

Semi-supervised 

learning 

This type of learning 

combines a small 

amount of labeled data 

with a large amount of 

unlabeled data during 

training (115) 

Semi-supervised 

clustering, semi-

supervised support 

vector machine 

Analysis of urban flow 

(116) 

Reinforcement learning It consists, for the 

machine, in learning 

the actions to take, 

from experiments, in 

order to optimize a 

quantitative reward 

over time (117). 

Monte Carlo, Q-

learning, State–action–

reward–state–action 

(SARSA) 

Gaming (AlphaGo 

Zero) (118) 

 



28 

 

Table 2: summary of data sources and machine learning methods used in 

rheumatoid arthritis for diagnosis, monitoring and prediction 

Application Data source Machine learning methods 

used 

Diagnosis Electronic Health Records SVM 

Omics ANN, RF, k-NN, SVN, naive 

Bayes, consensus clustering 

Imaging CNN, SVM 

Sensors Modified multi-seeded 

region growing, k-NN, 

decision trees 

Monitoring Sensors Bayesian methods, ANN 

Imaging ANN, deep learning 

Prediction Clinical data (cohort or 

register) 

LASSO, RF, ANN, SVM, 

XGBoost 

Omics RF 

Clinical and omics data 

combined 

Deep learning, k-NN, naïve 

Bayes, RF, SVM 

Footnote: ANN: artificial neural network; CNN: convolutional neural network; n-NN: k-

nearest neighbors; LASSO: Least Absolute Shrinkage and Selection Operator; RF: 

random forests; SVM: support vector machine 

 


