
HAL Id: hal-03625864
https://hal.sorbonne-universite.fr/hal-03625864v1

Submitted on 31 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Acquisition of a Repertoire of Diverse
Grasping Trajectories through Behavior Shaping and

Novelty Search
Aurélien Morel, Yakumo Kunimoto, Alex Coninx, Stéphane Doncieux

To cite this version:
Aurélien Morel, Yakumo Kunimoto, Alex Coninx, Stéphane Doncieux. Automatic Acquisition of a
Repertoire of Diverse Grasping Trajectories through Behavior Shaping and Novelty Search. IEEE
International Conference on Robotics and Automation 2022, IEEE, May 2022, Philadelphia, United
States. �hal-03625864�

https://hal.sorbonne-universite.fr/hal-03625864v1
https://hal.archives-ouvertes.fr


Automatic Acquisition of a Repertoire of Diverse Grasping Trajectories
through Behavior Shaping and Novelty Search

Aurélien Morel1,∗, Yakumo Kunimoto2,∗, Alex Coninx3 and Stéphane Doncieux4

Abstract— Grasping a particular object may require a dedi-
cated grasping movement that may also be specific to the robot
end-effector. No generic and autonomous method does exist
to generate these movements without making hypotheses on
the robot or on the object. Learning methods could help to
autonomously discover relevant grasping movements, but they
face an important issue: grasping movements are so rare that
a learning method based on exploration has little chance to
ever observe an interesting movement, thus creating a bootstrap
issue. We introduce an approach to generate diverse grasping
movements in order to solve this problem. The movements are
generated in simulation, for particular object positions. We test
it on several simulated robots: Baxter, Pepper and a Kuka Iiwa
arm. Although we show that generated movements actually
work on a real Baxter robot, the aim is to use this method to
create a large dataset to bootstrap deep learning methods.

I. INTRODUCTION

Grasping is a mandatory step for many daily object ma-
nipulation tasks. We do it without even thinking about it, but
despite this apparent simplicity, it is a challenging movement
that has been studied for decades and is still not completely
solved for robotic agents, in particular when the 3D model
of the target objects are not known [1]. If robots are to be
deployed in our every-day environment, for instance as home
assistants, they will have to deal with very diverse situations
and will thus need a strong adaptivity. In this context,
grasping synthesis algorithms that are robust and efficient
on a large set of objects having diverse shape and weight
will be required. Learning methods are expected to help
improve the generalization ability of grasping controllers
[2], [3], [4], but learning to grasp requires to face a major
issue: grasping is a hard exploration problem, where only a
small subset of a large policy space is relevant. It creates
a challenge for exploration-based learning algorithms, as
without strong constraints or prior knowledge on the task
or on the policy space to explore, it is unlikely that a
purely random exploration could discover relevant grasping
motions. A learning algorithm may thus fail to bootstrap

∗Both first authors contributed equally to this work.
1Aurelien Morel, Sorbonne Université, CNRS, Institut des Systèmes

Intelligents et de Robotique, ISIR, F-75005 Paris, France and
Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Suisse
aurelien.morel.arthur@gmail.com

2Yakumo Kunimoto, Sorbonne Université, CNRS, Institut des
Systèmes Intelligents et de Robotique, ISIR, F-75005 Paris, France
yakunimoto@yahoo.fr

3Alex Coninx, Sorbonne Université, CNRS, Institut des
Systèmes Intelligents et de Robotique, ISIR, F-75005 Paris, France
coninx@isir.upmc.fr

4Stéphane Doncieux, Sorbonne Université, CNRS, Institut des
Systèmes Intelligents et de Robotique, ISIR, F-75005 Paris, France
doncieux@isir.upmc.fr

and find solutions to improve on, may it be through gradient
descent or through a gradient-free trial and error process.

(a) Kuka (b) Baxter (c) Pepper

Fig. 1: Examples of grasping behaviors found for each robot.

A possible solution is to decompose the task and start by
estimating object pose before determining where to grasp
it [4], but these approaches require to know object models.
Another approach consists in exploiting available knowledge
about the end-effector. The features of a parallel-jaw gripper,
for instance, can be used to limit the number of grasping
candidates [5], [6], [7]. Unfortunately, this strategy does
not easily transfer to other kinds of end-effectors. Another
strategy consists in constraining the grasping movements to
an easier top-down grasping motion [8], but, by construction,
it limits the range of possibilities. Human demonstrations
can also be used to guide the learning process [9], [10],
[11], [12], but generating large enough datasets is costly and
would need to be repeated for every new robot.

In this work, we introduce a method to autonomously build
grasping datasets. The method can be applied to any kind
of robot arm and end-effectors with negligible adaptation.
It has been tested in simulation on grippers (Kuka Iiwa
and Baxter robots) as well as on a multi-fingered hand
(Pepper robot). The transfer to a real robot has been studied
on the Baxter. The proposed approach relies on a Quality
Diversity algorithm [13], [14] built on top of Novelty Search
[15]. Previous works with these algorithms have generated
repertoires of legged-robots movements [16] or ball throwing
and joystick manipulation movements on a Baxter [17].
Novelty Search has been shown to have an efficient explo-
ration ability as it samples uniformly in a given behavior
space [18], [19]. To deal with the sparsity of successful
grasping movements, we introduce an improvement of its
exploration skill through the simultaneous management of
multiple behavior spaces. It drastically improves the number
of grasping movements discovered. The approach generates
sets of open-loop grasping movements for a given object at
a given location (Fig. 1). It cannot be used to directly grasp
unknown objects at any location, but can generate large-scale



grasping datasets for deep learning approaches. Although the
grasping movements are generated and tested in simulation,
we show that the size and diversity of the dataset result in a
large number of policies that transfer to the real world.

II. RELATED WORK

Large scale data collection can rely on human demon-
strators observation [20], [21], but these methods are hard to
scale since they require large human resources, are biased by
human semantic priors and are specific to one type of robotic
arm. Automating the data collection is challenging given the
sparsity of grasping movements, but it has been achieved in
restricted planar grasp conditions [22], [8]. These restrictions
are sufficient to get a successful grasp rate of 10% to 30%,
which allows to collect a sufficient dataset to train a neural
network achieving grasp control from real video images [8].
Other approaches focus on parallel-plate grippers to define an
autonomous grasping movement generator [7]. The approach
introduced here does not constrain grasping movements and
can be used directly on any kind of robot.

Discovering diverse solutions is an important challenge
in a variety of Machine Learning fields. Novelty-based
evolutionary methods [15], [13], [23], as well as related goal
exploration process methods [24], were designed to tackle
this problem and illuminate search spaces. Novelty search,
one of these approaches [15], was actually shown to tend
towards a uniform sampling in a user-defined behavior space
[18], [19], a property that is hard to get given the complexity
of the mapping the policy parameter space and the behavior
space. These methods have been used to generate repertoires
of primitive actions for robot locomotion [23], [16] or
simple manipulations with a robot arm [17]. The generated
repertoires have already been used to bootstrap deep learning
approaches [25], [26]. We propose to extend novelty-based
repertoire generation methods with exploration of multiple
behavior spaces such as in [27], [28] but with an additional
focus on setups with very sparse interactions. We then apply
it to grasping movements generations.

III. METHOD

Fitness shaping is a convenient mean to turn a sparse
reward into a dense reward in order to facilitate exploration
[29]. Novelty-based algorithms algorithms are not driven by
reward and therefore do not suffer from the sparse reward
problem, but if the behaviors they look for are very sparse
in the space of all possible behaviors, as is the case for
grasping, a similar issue arises as the search will have
trouble bootstrapping and discovering relevant solutions. In
the previously studied robotics tasks such as locomotion,
navigation and ball throwing, all policies (even randomly
generated ones) yield a valid behavior: the robot reaches
some final position, or the ball reaches some location. The
first discovered behaviors are usually very simple (such as
remaining very close to the start position or just dropping
the ball), but they allow the algorithm to bootstrap and then
iteratively discover more novel and higher quality policies.

By contrast, trying to bootstrap grasping policies with ran-
dom generation in a large policy space with little or no prior
knowledge will mostly produce behaviors that do not engage
the target object at all.

To mitigate this issue, we introduce an approach for
behavior shaping that has a goal similar to fitness shaping,
but in behavior spaces. The idea is to introduce new behavior
spaces whose exploration aims at facilitating the generation
of “target” behaviors, in a curriculum-like way. Building
upon the ability of Novelty Search to continuously generate
novel solutions [19], Novelty Search with Multiple Behavior
Spaces (NSMBS) extends it to take into account multiple
behavior spaces and thus propose a framework in which
behavior shaping can be implemented.

A. Definitions and notations

In this paper, we consider policies πθ parameterized by
a vector θ ∈ Θ ⊂ Rng , with ng the policy dimension.
The policies, as well as the transition model of the robot
and environment, are assumed deterministic. Novelty-based
methods rely on the policies’ behavior characterization,
which results from mapping the trajectory of the robot when
applying the policy from an initial state s0 into a smaller
dimension vector in a carefully selected behavior space [18].
In the following and as usual in novelty-based algorithms,
we assume that the initial state is fixed, and the behavior
therefore only depends on the policy parameter θ.

NSMBS proposes a framework to explore in multiple
behavior spaces, here called behavior components. A policy
is thus be described by nb behavior components. While
in classic novelty-based algorithms, each policy is always
associated to a behavior characterization, NSMBS relaxes
this assumption and some policies may have undefined
behavior components. It allows us to characterize grasping
behaviors, for instance, and give an undefined grasping be-
havior component to policies that do not succeed in grasping
the object. To this end, an eligibility criterion is associated
to each behavior component. This gives rise to the following
notations:

• Bi ⊂ RnBi is the i-th behavior component space;
• ξi(θ) is the eligibility criterion associated to Bi. If
ξi(θ) = True, the corresponding behavior is defined.

• bi(θ) ∈ Bi ∪ {∅} is the i-th component of the robot
behavior when it follows policy πθ. bi(θ) = ∅ i.f.f.
ξi(θ) = False;

• nb is the number of behavior components.
Although some recent work try to automatically learn the

behavior spaces [30], [31], here the behavior components are
supposed to be known and given by the experimenter.

B. NSMBS

NSMBS (Algorithm 1) derives from Novelty Search [15],
[18]. As for other evolutionary algorithms, an initial pop-
ulation of solutions is randomly generated, evaluated, and
a parent set is selected. The parents are then copied and
modified by mutation and crossover operators to get new
solutions, that are then evaluated and selected to constitute



the next generation of parents. In Novelty Search, an archive
of explored behaviors is also maintained, and the selection
process relies on maximizing a novelty objective, which
is the average distance to the K-nearest neighbors in the
behavior space among the archive and current population.

In NSMBS, the outcome of a policy πθ is described by a
list of behavior components: (b1(θ), b2(θ), . . . , bnb

(θ)). The
selection process in charge of finding the individuals of
the next generation relies on these elements (Algorithm 2).
Policies are selected one by one from a set of individuals
S initialized with the current population and offspring. The
individual selection starts by randomly choosing a behavior
component among the ones that are defined at least for
one policy in S. The most novel individual in the selected
component is then selected; it is removed from S and the
process starts again until the new population is filled.

Algorithm 1: NSMBS
Input: population size µ, number of generations G,

number of offsprings λ, evaluation function eval(),
number of neighbours for novelty computation k

Result: archive of individuals
pop← generateRandomPopulation(µ) ;
archive← ∅ ;
for a in population do

a.bd← eval(a) ;
end
gen = 0 ;
while gen < G do

parents← selectParents(pop, λ) ;
offspring← operate(parents) ;
for a in offspring do

a.bd← eval(a) ;
end
refSet← pop ∪ offspring ∪ archive ;
for a in pop ∪ offspring do

a.nov ← getNov(a, refSet, k) ;
end
archive.add(randomSample(offspring)) ;
pop← multiBCSel(pop ∪ offspring, µ) ;
gen = gen + 1 ;

end

Algorithm 2: multiBCSel
Input: set of individuals S, number of individuals to select

µ
Result: set of individuals P
P ← ∅ ;
while size(P) < µ do

i← randomSelComponent(S) ;
T ← {θ ∈ S | ξi(θ) = True} ;
chosen← argmax

θ∈T
novi(θ) ;

P ← P ∪ {chosen} ; S ← S − {chosen} ;
end

• generateRandomPopulation generates a population of
size µ: {θ0, ...θµ−1} by uniform sampling;

• eval evaluates an individual’s policy θ and outputs its
behavior components bd = (b1(θ), b2(θ), . . . , bnb

(θ)),

with bi(θ) = ∅ i.f.f. ξi(θ) = False
• selectParents is a random selection process of λ indi-

viduals in pop;
• operate copies the parents and applies gaussian bounded

mutation and crossover operators to generate offsprings;
• getNov computes a list of per component novelties

nov = (nov1, nov2, . . . , novnb
(θ)) for an individual.

novi =
K−1∑
k=0

(dist (bi(θ), bi(θk))) where bi(θk) are the

behavior components of the K nearest neighbors of bi
in refSet (∅ values are ignored). If bi(θ) = ∅, novi is
undefined.

• multiBCSel is the main selection process, described in
Fig. 2 and Algorithm 2.

• randomSelComponent selects a behavior component by
uniform selection among components for which at least
one individual is eligible.

ind 1 ind 2 ind 3 ind 4

random selection

no
ve

lty
ind 4

ind 2

ind 1

ind 1 X

1)

2)

3)

Fig. 2: Description of the multiBCSel() method for 4 individuals
and 3 behavior components. The third (red) component cannot be
selected because there is no eligible individual. Among the two
remaining components, the second (blue) one is randomly selected,
and the eligible individuals (inds 1, 2 and 4) are sorted according
to nov2. The most novel individual, ind 1, is selected.

IV. EXPERIMENTAL SETUP

A. Simulated environments description

In order to demonstrate the algorithm’s ability to generate
rich, diverse grasping movements for multiple robots, we
rely on simulated environments using the Gym framework
[32]. A robot is placed in front of a table, where an object
is spawned at a fixed position. Three robots are used: A
Rethink Robotics Baxter using only the left arm, with 7
degrees of freedom and a parallel gripper; A Kuka Iiwa arm
with 7 degrees of freedom and a two-fingers clamp gripper,
both simulated using pyBullet [33]; and a SoftBank Robotics
Pepper, using only the left arm, with 5 degrees of freedom
and a multi-fingered hand, simulated using Qibullet [34]. The
episode’s length T is adapted to each robot and simulator’s
dynamics, all other experimental hyperparameters being the
same between the three robots. Five target objects are used:
a simple 5 cm cube, a simple 5 cm ball, a miniature plastic
bowling pin, a mug with a handle, and a gamepad.

The policies are defined by three waypoints in the joint
space, giving the robot pose at T/3, 2T/3 and T . Smooth
motions are interpolated using third order polynomials. An



extra parameter tgrasp defines the time when the gripper
closes. The policy dimension ng is therefore 3× ndof + 1.

Besides the length of the episode T , we define ttouch the
time when the gripper first touches the object (undefined if
the object is not touched), objpost and grippost the position
of resp. the object and the gripper at time t in the Cartesian
space (R3), and griport ∈ R4 the orientation of the gripper
at t, defined as a quaternion.

B. Behavior Descriptors

We consider the following four behavior
descriptors:b1(θ) = objposT , b2(θ) = griporT/2,
b3(θ) = gripposttouch

and b4(θ) = griporttouch
. Each bi

pushes the exploration in one direction and generates a
useful incentive: b1 pushes for trajectories that move the
object around, b2 promotes diverse movements during
exploration, b3 and b4 explicitly push towards diverse
grasping poses.
b1 is always eligible. b2 is only eligible if the gripper

touched the object (we only search diverse trajectories that
engage the object). b3 and b4 are only eligible if the object
was successfully grasped. A successful grasp is defined as a
trajectory where the gripper touches the object shortly after
it is closed while the object is on the table, and that ends
with the object in a stable position in the air, with minor
conditions on penetrations to avoid unrealistic grasps.

C. Measures

To monitor the progress of the exploration and the result-
ing diversity, we use the following metrics:

• The number of successful grasping solutions found,
and their coverage of the behavior space B4 [19]. This
gives an estimation of the raw success of the repertoire
generation process.

• The sample efficiency, defined as the proportion of all
the evaluations that resulted in a successful grasp. This
measures the ability to generate a rich repertoire while
minimizing the computational cost.

In order to compare our method to the state of the art, we
introduce two other measurements:

• The first success generation, which is the number of
iterations after which the algorithm first discovers a suc-
cessful grasp. This evaluates the ability of an algorithm
to quickly bootstrap in this sparse, difficult task.

• The successful run rate, which measures the proportion
of runs that generated at least a single grasping move-
ment. This measures the reliability of an algorithm.

V. RESULTS
A. Grasping synthesis on multiple robots

The NSMBS algorithm is first run on all the three robots,
with the mug object, for 1000 generations, a population size
µ = 100 individuals, an offspring size λ = 50 individuals,
and a value of K = 15 for the KNN algorithm. The search
is repeated 10 times for each condition.

The generated repertoires are very different between
robots, with sizes of 13148± 4574 successful grasps for the

Baxter, 3490 ± 4706 for the Pepper, and 3929 ± 2262 for
the Kuka. This reflects the variable difficulty of the grasping
task with different robots, the high variance for the Pepper
and Kuka robots being due to the presence of failed runs
where no grasping was discovered. Despite this, the search
finds a variety of grasping behaviors for all robots, some of
which are shown in Fig. 1.

Fig. 3 shows the final diversity coverage and the evolution
of the sample efficiency for the three robots. We can see
that the algorithm quickly manages to bootstrap and discover
grasping motions, and then leverages those existing motions
to improve diversity, as shown by the constantly growing
sample efficiency during the process.

kuka baxter pepper

0.00

0.05

0.10

0.15

di
ve

rs
ity

 c
ov

er
ag

e
(a) Diversity coverage of NSMBS
for all robots.

0 200 400 600 800 1000
generation

0.0

0.1

0.2

0.3

sa
m

pl
e 

ef
fic

ie
nc

y

kuka
baxter
pepper

(b) Evolution of sample efficiency
during the search.

Fig. 3: Coverage and sample efficiency of the search for grasping
behavior with NSMBS for the three robots and the mug object.

Furthermore, we can sort the ways the mug object can
be grasped in four different categories, which allows us to
define four grasping styles, not all of them available to all
robots due to their design:

• Grasping the handle (handle style): this grasping style
is possible on all three robots;

• Grasping the mug from the top, with part of the gripper
inside the mug and the other outside (in-out style):
only the Kuka and Baxter robots are capable of this
grasping style, the Pepper robot’s weaker hand being
unable to hold the mug this way;

• Grasping the mug from the sides, with the gripper
grasping the outside of the mug (out style): only the
Kuka robot is capable of this grasping style, thanks to
its much larger gripper;

• Grasping the mug from the inside, by inserting the entire
gripper (in style): only the Baxter robot with its thin
parallel gripper is capable of this grasping style.

We categorize the discovered grasping motions on all three
robots. The results (Fig. 4) show that NSMBS is general
enough to fully make use of the capabilities of each robot,
discovering all the possible styles for all robots.

B. Comparative analysis

In order to highlight the benefits of NSMBS, we compare
the performance with the following variants and baselines:

• Our full NSMBS algorithm (NSMBS);
• The same algorithm without the object touching BD

(NSMBS no BD2) and without the grasping position
BD ((NSMBS no BD3);



Fig. 4: Mug grasping styles proportions (10 runs, 1000 generations).
Red cross means grasp style not generated for this robot.

• A classic Novelty Search (NS) algorithm [15] using a
single behavior descriptor, which is built by concatenat-
ing the four bi from NSMBS. If one of the components
is not eligible, its values are set to 0.

• A Map-Elites algorithm [23], using the same con-
catenated behavior descriptor as NS with 1000 CVT
cells [35]. Map-Elites uses a quality measure; it is not
important here and set to a simple energetic criterion;

• A random search baseline where a similar number of
individuals are generated by random uniform sampling
in policy parameter space.

The algorithms are used on the Baxter environment with
the mug object, with the same hyperparameters as above
except the process is run for 2000 generations. Each condi-
tion is repeated 20 times. The main results are shown in
Fig. 5. The NSMBS variants overperforms the baselines,
yielding higher sample efficiency and diversity coverage. NS
discovers some grasping motions, but is generally much less
sample-efficient, resulting in a lower coverage. Map-elites
is generally unsuccessful ; this may be due to the absence
of a population combined with a random selection and a
very large composite behavior space, which fails to focus
the evolutionary budget on promising individuals [36].

Fig. 6 gives further insights into the benefits of our
behavior shaping technique. Although most NS and NSMBS
runs are eventually successful at generating at least some
grasping behaviors (Fig. 6a), the full NSMBS algorithm
with all the behavior components does so earlier in the
evolutionary process (Fig. 6b). It also quickly achieves and
maintains higher sample efficiency (Fig. 6c), with 25% of
evaluated individuals (in average) being successful grasps
after only 400 generations.

C. Transfer on real-world robot

The grasping motion repertoires are only relevant if at least
some of the generated policies transfer to the real world. We
therefore generate repertoires for five objects with the Baxter
robot and evaluate them in real world experiments.

NSMBS is first run 10 times for 1000 generations in the
simulated Baxter environment for each of the five objects.
Repertoires are successfully generated for all objects (Fig. 8).
Results for the mug were previously discussed in section V-
B; sample efficiency is lower for other objects, but NSMBS
still reliably generates large repertoires of successful grasps.

random

MAP-Elite
s NS

NSMBS no BD 2

NSMBS no BD 3

NSMBS

0.0

0.1

0.2

0.3

0.4

sa
m

pl
e 

ef
fic

ie
nc

y

(a) Overall sample efficiency of
each algorithm.

random

MAP-Elite
s NS

NSMBS no BD 2

NSMBS no BD 3

NSMBS

0.00

0.02

0.04

0.06

0.08

di
ve

rs
ity

 c
ov

er
ag

e

(b) Final diversity coverage of each
algorithm.

Fig. 5: Sample efficiency and diversity coverage of the search for
grasping behavior on the Baxter robot after 2000 generations.

random

MAP-Elite
s NS

NSMBS no BD 2

NSMBS no BD 3

NSMBS

0.0

0.2

0.4

0.6

0.8

su
cc

es
sf

ul
 r

un
 r

at
e

(a) Proportion of successful runs
(i.e.runs that discover at least one
grasp within 2000 generations) for
each algorithm.

random

MAP-Elite
s NS

NSMBS no BD 2

NSMBS no BD 3

NSMBS

0

100

200

300

400

fir
st

 s
uc

ce
ss

 g
en

er
at

io
n

(b) Generation at which the first
grasp is found, for each algorithm.
Unsuccessful runs are ignored.

0 200 400 600 800 1000
generation

0.0

0.1

0.2

0.3

sa
m

pl
e 

ef
fic

ie
nc

y

algorithm
random

MAP-Elites

NS

NSMBS no BD 2

NSMBS no BD 3

NSMBS

(c) Evolution of sample efficiency during the runs.

Fig. 6: Proportion of successful runs, bootstrap time for successful
runs, and evolution of the sample efficiency for each algorithm
(map-elites hidden behind random).

All 10 runs succeed in discovering grasping motions for
the pin, 9 succeed for the mug, the sphere and the gamepad,
and 7 succeed for the ball. For each successful run, 10
individuals are randomly sampled from the final repertoire,
and evaluated on the robot, for a total of 70 to 100 real world
evaluations depending on the object. Some successful grasps
for each object are shown in Fig. 7 and in the video in annex.

The transfer success rates are reported in Fig. 9a. The
highest transfer rate is achieved with the mug, where 30 %
of policies succeeded, followed by the cube, the sphere, and
finally the gamepad and the pin at 8 %. It is noteworthy
that this success rate is directly correlated with the sample
efficiency of the process in simulation (Fig. 8). The lower
sample efficiency for the gamepad and the pin can be ex-
plained by their characteristics : the gamepad is quite heavy
(0.21 kg) compared to other objects, and it has a complex



(a) Cube (b) Gamepad (c) Mug (d) Pin (e) Sphere

Fig. 7: Grasping example on real Baxter robot for each object. The end effector trajectory, the pose at which the robot grasps the object
and the final robot and object pose are shown.

0 200 400 600 800 1000
generation

0.0

0.1

0.2

0.3

sa
m

pl
e 

ef
fic

ie
nc

y

object
cube

dualshock

mug

pin

sphere

Fig. 8: Sample efficiency at each generation in simulation.

cube
gam

epad

m
ug

pin ball
0.00

0.05

0.10

0.15

0.20

0.25

0.30

su
cc
es
s

(a) Success rate of evaluated indi-
viduals in reality.

cube
gam

epad

m
ug

pin ball
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

sa
m

pl
e 

ef
fic

ie
nc

y

(b) Estimated sample efficiency
for the full repertoire generation
process in reality.

Fig. 9: Success rate and sample efficiency in reality on the robot
Baxter. Repertoire generation is run 10 times per object, and 10
individuals are randomly selected from each successfully generated
repertoire.

shape and moving parts that are not fully represented in the
simulated environment. The pin is standing, thus it can easily
fall and the dynamics then differ from the simulation.

We can use these results to estimate the sample efficiency
of the full repertoire generation process, i.e. the expected
proportion of all the evaluations in simulation that result in
a grasp that transfers to reality, by multiplying the sample
efficiency in simulation (as defined in section IV-C) by the
transfer success rate. Results are shown in Fig. 9b. Values
range from about 1.6 % for the pin to 7.1 % for the mug.

VI. CONCLUSION

The simulation results show that our NSMBS method is
able to efficiently generate grasping behaviors for various
robot arms, and that it outperforms the state of the art in both
diversity coverage and sample efficiency. The comparison

to ablated versions of the method with only some of the
behavior components highlights the importance of choosing
adequate behavior characterizations for the method to be able
to bootstrap and learn, and the comparison to classic diversity
methods showcases the ability of NSMBS to take advantage
of those multiple components for behavior shaping.

Real world transfer rates range from 8 % to 30 % de-
pending on the object. This is comparable to the technique
used by Levine et al. [8], which makes strong hypotheses
about the experimental setup and uses motor primitives that
constrains the diversity of the possible grasps, whereas our
method is applicable to a large variety of robots without any
modification and promotes grasping diversity.

The real world sample efficiency ranges from 1.6 % to
7.1 %, which corresponds to one out of 14 to one out of 62
simulated policies being a valid grasping policy in the real
world. It may seem low, but it does not prevent the generation
of a large, diverse repertoire, as simulated experiments are
cheap enough that more than 100 000 evaluations can be
performed in a few hours on a modern workstation, resulting
in thousands of transferable grasps. An open question is how
to filter the generated repertoire for individuals that transfer
to the real world, as the transfer rate makes random sampling
wasteful. Further work could address this by training a model
to predict transferability from a limited real world dataset.

Our method allows for the generation of large-scale,
diverse datasets for robotics, including for challenging tasks
like grasping, without limitations about the applicable robots
or policies. Instead, it requires defining relevant behavior
spaces and the corresponding eligibility criteria. This is
usually not a major issue, as it is often quite straightforward
to define behavior components to promote diversity in a way
that helps discover and explore the task solutions space.

The final test of NSMBS shall be the use of the generated
repertoires as datasets to train closed loop policies [8], [25],
and the evaluation of those policies on real robots. The
large size and high diversity of the generated datasets, the
good sample efficiency of the method and its applicability to
various problems and robots without adaptation or parameter
tweaking, make it promising in this regard.

ACKNOWLEDGMENT

This work was supported by ANR projects InDex and
Learn2Grasp.



REFERENCES

[1] Billard, A., and Kragic, D., 2019. “Trends and challenges in robot
manipulation”. Science, 364(6446).

[2] Sahbani, A., El-Khoury, S., and Bidaud, P., 2012. “An overview of 3d
object grasp synthesis algorithms”. Robotics and Autonomous Systems,
60(3), pp. 326–336.

[3] Bohg, J., Morales, A., Asfour, T., and Kragic, D., 2013. “Data-driven
grasp synthesis—a survey”. IEEE Transactions on Robotics, 30(2),
pp. 289–309.

[4] Kleeberger, K., Bormann, R., Kraus, W., and Huber, M. F., 2020. “A
survey on learning-based robotic grasping”. Current Robotics Reports,
pp. 1–11.

[5] Kraft, D., Detry, R., Pugeault, N., Başeski, E., Guerin, F., Piater,
J. H., and Krüger, N., 2010. “Development of object and grasping
knowledge by robot exploration”. IEEE Transactions on Autonomous
Mental Development, 2(4), pp. 368–383.

[6] Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Ojea,
J. A., and Goldberg, K., 2017. “Dex-net 2.0: Deep learning to plan
robust grasps with synthetic point clouds and analytic grasp metrics”.
arXiv preprint arXiv:1703.09312.

[7] Depierre, A., Dellandréa, E., and Chen, L., 2018. “Jacquard: A
large scale dataset for robotic grasp detection”. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
IEEE, pp. 3511–3516.

[8] Levine, S., Pastor, P., Krizhevsky, A., and Quillen, D., 2016. Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection.

[9] Lenz, I., Lee, H., and Saxena, A., 2015. “Deep learning for detecting
robotic grasps”. The International Journal of Robotics Research, 34(4-
5), pp. 705–724.

[10] Sharma, P., Mohan, L., Pinto, L., and Gupta, A., 2018. “Multiple
interactions made easy (mime): Large scale demonstrations data for
imitation”. In Conference on robot learning, PMLR, pp. 906–915.

[11] Zhang, T., McCarthy, Z., Jow, O., Lee, D., Chen, X., Goldberg, K., and
Abbeel, P., 2018. “Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation”. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, pp. 5628–
5635.

[12] Song, S., Zeng, A., Lee, J., and Funkhouser, T., 2020. “Grasping in the
wild: Learning 6dof closed-loop grasping from low-cost demonstra-
tions”. IEEE Robotics and Automation Letters, 5(3), pp. 4978–4985.

[13] Pugh, J. K., Soros, L. B., and Stanley, K. O., 2016. “Quality diversity:
A new frontier for evolutionary computation”. Frontiers in Robotics
and AI, 3, p. 40.

[14] Cully, A., and Demiris, Y., 2017. “Quality and diversity optimization:
A unifying modular framework”. IEEE Transactions on Evolutionary
Computation, 22(2), pp. 245–259.

[15] Lehman, J., and Stanley, K. O., 2011. “Abandoning objectives: Evolu-
tion through the search for novelty alone”. Evolutionary Computation,
19(2), pp. 189–223.

[16] Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B., 2015. “Robots
that can adapt like animals”. Nature, 521(7553), May, pp. 503–507.

[17] Kim, S., Coninx, A., and Doncieux, S., 2021. “From exploration to
control: learning object manipulation skills through novelty search and
local adaptation”. Robotics Auton. Syst., 136, p. 103710.

[18] Doncieux, S., Laflaquière, A., and Coninx, A., 2019. “Novelty
search: a theoretical perspective”. In Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 99–106.

[19] Doncieux, S., Paolo, G., Laflaquière, A., and Coninx, A., 2020.
“Novelty search makes evolvability inevitable”. In Proceedings of
the 2020 Genetic and Evolutionary Computation Conference, GECCO
’20, Association for Computing Machinery, pp. 85–93.

[20] Saudabayev, A., Rysbek, Z., Khassenova, R., and Varol, H. A., 2018.
“Human grasping database for activities of daily living with depth,
color and kinematic data streams”. Scientific Data, 5.

[21] Ekvall, S., and Kragic, D., 2007. “Learning and evaluation of the
approach vector for automatic grasp generation and planning”. In
Proceedings 2007 IEEE International Conference on Robotics and
Automation, pp. 4715–4720.

[22] Pinto, L., and Gupta, A., 2016. “Supersizing self-supervision: Learning
to grasp from 50k tries and 700 robot hours”. 2016 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3406–3413.

[23] Mouret, J.-B., and Clune, J., 2015. Illuminating search spaces by
mapping elites.

[24] Forestier, S., Mollard, Y., and Oudeyer, P.-Y., 2017. “Intrinsically moti-
vated goal exploration processes with automatic curriculum learning”.
ArXiv, abs/1708.02190.

[25] Jegorova, M., Doncieux, S., and Hospedales, T. M., 2020. “Behavioral
repertoire via generative adversarial policy networks”. IEEE Transac-
tions on Cognitive and Developmental Systems.

[26] Keller, L., Tanneberg, D., Stark, S., and Peters, J., 2020. “Model-
Based Quality-Diversity Search for Efficient Robot Learning”.
arXiv:2008.04589 [cs], Aug. arXiv: 2008.04589.

[27] Doncieux, S., and Coninx, A., 2018. “Open-ended evolution with
multi-containers qd”. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO ’18, Association for
Computing Machinery, p. 107–108.

[28] Cazenille, L., 2021. Ensemble Feature Extraction for Multi-Container
Quality-Diversity Algorithms. Association for Computing Machinery,
New York, NY, USA, p. 75–83.

[29] Ng, A. Y., Harada, D., and Russell, S., 1999. “Policy invariance under
reward transformations: Theory and application to reward shaping”. In
Icml, Vol. 99, pp. 278–287.

[30] Paolo, G., Laflaquiere, A., Coninx, A., and Doncieux, S., 2020.
“Unsupervised learning and exploration of reachable outcome space”.
In 2020 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, pp. 2379–2385.

[31] Cully, A., 2019. “Autonomous skill discovery with quality-diversity
and unsupervised descriptors”. In Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 81–89.

[32] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,
Tang, J., and Zaremba, W., 2016. Openai gym.

[33] Coumans, E., and Bai, Y., 2016–2019. Pybullet, a python module
for physics simulation for games, robotics and machine learning.
http://pybullet.org.

[34] Busy, M., and Caniot, M., 2019. “qibullet, a bullet-based simulator
for the pepper and nao robots”. arXiv preprint arXiv:1909.00779.

[35] Vassiliades, V., Chatzilygeroudis, K., and Mouret, J.-B., 2017. Using
centroidal voronoi tessellations to scale up the multi-dimensional
archive of phenotypic elites algorithm.

[36] Coninx, A., and Doncieux, S., 2021. “Younger is better: A simple
and efficient selection strategy for map-elites”. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion,
Association for Computing Machinery, p. 87–88.


