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Abstract

Some binary mixtures, such as speci�c alcohol-alkane mixtures, or
even water-tbutanol, exhibit two humps �camel back� shaped KBI. This
is in sharp contrast with usual KBI of binary mixtures having a single
extremum. This extremum is interpreted as the region of maximum con-
centration �uctuations, and usually occurs in binary mixtures presenting
appreciable micro-segregation, and corresponds to where the mixture ex-
hibit a percolation of the two species domains. In this paper, it is shown
that two extrema occur in binary mixtures when one species forms "meta-
particle" aggregates, the latter which act as a meta-species, and have their
own concentration �uctuations, hence their own KBI extremum. This
"meta-extremum" occurs at low concentration of the aggregate-forming
species (such as alcohol in alkane), and is independant of the other usual
extremum observed at mid volume fraction occupancy. These systems are
a good illustration of the concept of the duality between concentration
�uctuations and micro-segregation.

1 Introduction

The so-called Kirkwood-Bu� integrals (KBI)[1, 2] are de�ned as the integrals of
the species-species pair correlation functionsGab = 1

Ω

´
dX1dX2 [gab(X1,X2)− 1]

where Xi is the set of position, and if required, the orientations, of molecule i,
where a and b designates the species indexes (Ω = V ω2, where ω is the angu-
lar integral, equal to 4π or 8π2, depending on the symmetry of the molecules).
It can be shown [3, 4] that this integral is identical to that involving the pair
correlation between any two atoms belonging to each molecules. Following this,
the KBI are more simply de�ned as

Gab = 4π

ˆ ∞

0

drr2 [giajb(r)− 1] (1)
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where iaand jb designate any two atoms i and j of , respectively, species a
and b, and giajb(r) the atom-atom pair correlation function.The Kirkwood-Bu�
theory relates speci�c thermodynamic properties, such as the compressibility,
or the partial molar volumes, for example, to be related to these integrals,
thus providing an appealing link between macroscopic measurable properties to
the microscopic structure, albeit in an integrated form, where all microscopic
details are lost. Ben-Naim [5], Matteoli and Lepori [6] and other authors [7, 8,
9, 10, 11] have managed to invert these relations, providing a way to calculate
these integrals from the experimentally available data on compressibility, partial
molar volume and vapour pressure or Gibbs free-energy. The corresponding
expressions for a binary mixture (a, b) are well known [12]:

Gaa = Gab +
1

xb

[
V̄b
D
− V

]
(2)

Gab =
χT
kBT

− V̄aV̄b
V D

(3)

were xb is the mole fraction of component b, V̄c is the partial molar volume of
component c (c = a or b), V is the molar volume, χT is the isothermal com-
pressibility (with T the temperature and kB the Boltzmann constant) and D is
related to the concentration �uctuations and given by

D = xi

(
∂βµi
∂xi

)
TP

(4)

where µi is the chemical component of species i and β = 1/kBT is the Boltzmann
factor.

Fig.1 of the seminal Matteoli and Lepori paper [6] displays KBI for various
types of aqueous mixtures, and it can be seen that most of them have a single
extremum, which is positive for like KBI Gaa and negative for then unlike Gab
with (a 6= b). This extremum has its origin in the shape of the coe�cient D
above, which is often a U-like shaped curve with a single minimum. An example
of such typical KBI and D are given in Fig.1, and other similar examples can
be found in various place in the literature such as [13, 14, 15, 16, 12]. Note
that, while for a given mixture, the D coe�cient has a single extremum, the
corresponding extrema in the KBI are not necessarily at the same x-position,
as illustrated in Fig.1, as Eqs.(2,3) tend to alter this position from that of D.

A single extremum for D is expected for a curve which reaches the same
value at both end points. In fact, Eq.(4) can be shown (see Appendix) to be
related to the stability limit criteria for a binary mixture, that is precursor for
demixing, namely

D ∝ C11C22 − C2
12 (5)

where Cij = δij −
√
ρiρj c̃ij(k = 0) , with the c̃ij(k = 0) being the integrals

of the direct correlation functions and i,j refer to species index.Indeed, when
D → 0 the mixture becomes mechanically unstable [3], such when approaching
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Figure 1: Examples of single extremum KBI. Red curves experimental KBI
curves for aqueous-acetone from Ref.[17]; blue curves for aqueous-2propanol
from Ref.[12]. Circles for Water-water KBI, squares for cross water-solute
KBI, and triangles for solute-solute KBI. The inset shows the corresponding
D (Eq.(4)) with same color codes, both showing a single minimum.

a spinodal or a critical point. Therefore, a single extremum in D can be physi-
cally interpreted as the point where concentration �uctuations are maximal, and
with the eventuality that when these grow beyond the mechanical stability, the
mixture undergoes demixing. Subsequently, the extremum in the KBI is a sig-
nature of maximal concentration �uctuations[18] . Since many binary mixtures,
such as aqueous mixtures, for example, show stable local nano-segregation of
constituents [19, 20, 21, 22, 23], the extremum can be interpreted as maximal
amplitude in local segregation[18].

In this context, it came as a surprise that Jan Zielkiewicz published exper-
imental KBI for various alcohols-heptane mixtures [24], which clearly showed
the existence of two extremum. In Fig.2 of his paper, he shows KBI written as
ρaGab where ρa = Na/V is the partial density of species a (Na is the number of
particle in volume V ), which ampli�es the second extremum, the resulting KBI
looking like �camel back� shaped, as opposed to the usual single extremum KBI
which are �dromadary camel back� shaped.

The purpose of this paper is to understand the origin of this dual extremum
in terms of �uctuations. The driving idea is the following. It is well known
that alcohols generally tend to cluster their hydroxyl groups into linear pat-
terns, forming chains, loops, etc... [25, 26, 27, 28, 29, 30] When put in small
concentration in an inert alkane solvent, such as heptane, for example, small
�chain-micelles� of alcohols form and act as independant meta-particles. Herein,
we will adopt the convention of using the wording �meta� to designate local ag-
gregated assemblies which act as micelle-like objects, and cannot be considered
as mere local concentration �uctuations. Consequently, such exhibit their own
concentration �uctuations, which corresponds to one of the observed extrema
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in the corresponding KBI. With increasing concentration, the frontier between
well separated micelles and alcohol micro-segregated domains become loose, and
the mixture becomes a simple micro-segregated mixture, which has its own in-
dependent maximum in concentration �uctuations. It is not obvious that such
scenario should happen, and the purpose of this paper is to use computer simu-
lation to provide evidence that this scenario is correct, principally through the
analysis of pair correlation functions and the KBI.

2 Theoretical and simulation details

The study of equilibrium locally micro-segregated mixtures has proven to be
very di�cult in the past decades, particularly in the case of aqueous mixtures.
Perhaps a canonical example is that of aqueous tert-butanol (TBA) mixtures,
for which the force �eld induced slow demixing at very small TBA concentra-
tions around xTBA ≈ 0.01 was shown [31, 32, 33, 34, 35] to rule out many
classically robust force �eld models such as OPLS [36, 37] or TraPPE [38, 39].
One may even consider this problem to remain unsolved. Similarly, the water-
tetrahydrofuran mixture remains di�cult to simulate, in particular for putting
into evidence the loop coexistence phase diagram [40, 41, 42]. One of the prin-
cipal obstacle for successfully simulating such mixtures is the fact that both
water and the alcohol tend to form hydrogen bonded clusters, and it would
seem that it is precisely the competition between these cluster formation which
tend to drive the simulated mixture into demixing, often after unusually very
long times.

These problems might be avoided if water is replaced by a more inert solvent
such as an alkane. In a previous work [43], we have studied ethanol-benzene
mixtures and found that the description of the strong micro-heterogeneity (MH)
in the low ethanol content region posed statistical issues which necessitated large
size simulations. We expect to �nd similar issues in the present study.

Herein, we focus on the ethanol-heptane mixtures, simulated in the following
range of ethanol mole fractions: 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and
0.9. All of the mixtures contain N=16000 particles, in order to properly describe
extented MH. The program package Gromacs was used to perform molecular
dynamics simulations [44, 45]. The simulation protocol has been the same for all
mole fractions of ethanol. The initial random con�gurations of 16000 molecules
were created with the program Packmol [46]. These initial con�gurations were
�rst energy minimized and then equilibrated in the NpT ensemble 5 ns. The
length of the production runs varied for each mole fraction of ethanol and can
be found in Table 1. The shortest production runs of 10 ns sampled on average
1000 con�gurations, whereas the longest runs of 35 ns sampled more than 3500
con�gurations.

The TraPPE force�eld for heptane [38] and ethanol [39] was used throughout
the range of ethanol mole fractions. The mixtures were simulated at T = 300 K
and p = 1 bar. Temperature was maintained constant using mostly the v-rescale
[47] or Nose�Hoover [48, 49] thermostat, while pressure was maintained with the
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Mole fractions xETH Production run times Mole fractions xETH Production run times
0.02 10 ns 0.5 25 ns
0.05 35 ns 0.6 20 ns
0.1 35 ns 0.7 15 ns
0.2 30 ns 0.8 10 ns
0.3 35 ns 0.9 10 ns
0.4 20 ns

Table 1: Production run times for the simulated ethanol-heptane mixtures.

Parrinello�Rahman barostat [50, 51]. The temperature algorithms had a time
constant of 0.2 ps, while the pressure algorithm was set at 2 ps. The integration
algorithm leap-frog [52] was used at every time-step of 2 fs. The short-range
interactions were calculated within the 1.5 nm cut-o� radius. The electrostatics
were handled with the PME method [53], and the constraints with the LINCS
algorithm [54].

The snapshots were made with VMD [55].

3 Results

3.1 Experiments

The experimental KBI data for the ethanol-heptane mixtures scanned from
Zielkiewicz paper are reported as lines in the main panel of Fig.2.

Figure 2: Experimental �camel back shaped� KBI from Ref.[24] for the ethanol-
heptane mixtures, reproduced as lines, with symbols for recalculated values (see
text) for consistency check.

In order to make sure that these results are fully consistent with one another,
we have inverted Eqs(2,3) in order to extract D, using the following assump-
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tions. The partial molar volumes have been replaced by the molar volume of
each species, thus making these quantities independent of the concentrations.
The isothermal compressibility term has been neglected (assuming the incom-
pressibility of the liquid mixtures). Finally, the excess volume of the mixture
has been set to be a linear function of the pure liquid volumes, hence neglecting
the excess volumes. These are usually found to be less that 0.3cm^3/mol. All
3 assumptions can be justi�ed only by the resulting KBI (as was proven by us
for aqueous alcohol mixtures in Ref. [12, 22]). From Eqs(2,3) we have extracted
the following equivalent expressions for D

Dab = − VaBb
V Gab

(6)

Daa =
xbVb − xaVa
f1 − f2

(7)

with f1 = xaxb (Gaa −Gbb) and f2 = V (xa − xb). The resulting values are
reported in Fig.3.

Figure 3: Dual minima D for the ethanol-heptane mixtures, as calculated from
the experimental results of Ref.[24] (see Eqs.(6,7) in the text).

It is seen that they are quite similar, with the denominator in Eq.(7) pro-
ducing a singularity at xEth ≈ 0.7. The dots represent the values which have
been selected to best represent a good compromise between the two sets. The
most prominent feature is the very apparent existence of the 2 extrema, one
at xEth ≈ 0.2 and the other at xEth ≈ 0.5. Interestingly, both evaluations
of D coincide almost perfectly in the entire range of the minimum part of D.
Using these values of the extracted D function, we return to evaluate back the
3 KBI integrals, by still preserving the 3 approximations mentioned above. The
resulting values are reported in Fig.2 as dots, and are seen to nicely superpose
to the original data. This simple exercise proves that a single form of D, which
must be quite close to the one reported in the inset, must have served in Ref.[24]
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to calculate the KBI, and moreover, that the use of true partial molar volumes,
compressibilities and excess volume did not a�ect much the �nal shapes. We
also prove that the 2 extrema of the KBI originate from the 2 extrema observed
in D.

3.2 Computer simulations

3.2.1 Snapshots

When mixtures present strong local heterogeneity, it is often instructive to look
at snapshots in order to visually appreciate the nature and the extent of the
concentration dependence of the spatial segregation. Fig.4 shows snapshots of
4 typical concentrations of ethanol, with di�erent styles highlighting the mor-
phological changes in the ethanol clustering in heptane solvent.

Figure 4: Snapshots of the ethanol-heptane mixtures for 4 typical ethanol con-
centrations. Ethanol oxygen, hydrogen and carbon groups, in red, white and
cyan, respectively, and heptane carbon groups in blue. Heptane is shown as
ghost pale blue for x = 0.1 and 0.2. Ethanol carbon groups are also shown as
ghost pale blue for x = 0.2. (see text for details).

For ethanol concentration x = 0.1, full ethanol molecules are shown (oxy-
gen atom in red, hydrogen in white and carbon groups in cyan) while heptane
molecules are shown in transparent mode. It can be seen that small droplets of
ethanol �oat in the midst of heptane solvent. For x = 0.3, only the hydroxyl
groups are fully shown, with all carbon groups of both species shown in trans-
parent mode. This way, hydroxyl clusters and their distribution are highlighted.
For x = 0.5 and x = 0.8, ethanol molecules are fully shown like for x = 0.1, and
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Figure 5: Zoom over the ethanol hydroxyl group clusters for the cases shown in
Fig.4. (Box edges can be seen as blue lines).

heptane molecules are shown in blue. These last 2 snapshots highlight the clear
micro-segregation of both species.

Fig.5 shows a zoom on the hydroxyl group clustering for the same 4 ethanol
concentrations highligted in Fig.4. For x = 0.1 one sees that the small ethanol
droplets of Fig.4 consist in fact in pentameric rings of hydroxyl groups, form-
ing ethanol pentameric �micelles�. This structure vanishes for the other higher
ethanol concentrations shown in Fig.5, replaced by more complex cluster struc-
tures, such as globules and various type of chains conformations..

Detailed studies of snapshots for the entire concentration range shows that
ethanol molecules start to spontaneously form these pentameric micelles at the
smallest ethanol concentrations studied herein, which is x = 0.02. These pen-
tameric micelle structures persist until x = 0.3, after which larger aggregated
structures take over. The visual inspection of formed structure tends to con�rm
that there are 2 regime of clustering, pentameric ethanol micelles for x < 0.3 and
larger clusters for higher concentrations. We now con�rm this through cluster
and pair correlation function studies.

3.2.2 Cluster structure

The cluster size probability distributions were calculated as:

Pn =

∑
k s (n, k)∑

k

∑
n s (n, k)

(8)

where Pn is the probability for the cluster formed of n sites, s (n, k) repre-
sents the number of clusters of the size n in the con�guration k. Pn is obtained
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by averaging the number s (n, k) of clusters of size n over several such con�gura-
tions. The cut-o� distance (rc) for a calculation depends on the �rst minimum
in the pair correlation function of a particular site. For the oxygens in ethanol,
the rc = 3.7 Å.

Fig.6 shows the size s dependence of the cluster distributions P (s) in 2
di�erent ways. Left panel (a) shows the distribution as function of the cluster
size, and for di�erent ethanol concentrations. What is apparent is the pentamer
peak, which exists for all concentrations. In addition, we observe the appearance
of a shoulder-like feature for large clusters, showing that the probability of larger
clusters is not negligible for ethanol concentrations above x > 0.3. Moreover,
while the probability of monomers is higher than that of pentamers for x < 0.3,
and becomes comparable or lower for x > 0.3.

Figure 6: Cluster distribution probability function P (s) as function of (a) clus-
ter size s and (b) ethanol concentration. (See text for details).

The right panel (b) shows P (s) as function of ethanol concentration, and for
di�erent types of n-mers. What is strikingly apparent here is that, for the entire
concentration range, there is a sharp fall of P(s) from monomer to dimers and
3-mers, followed by a second dramatic increase for 4-mers and 5-mers, followed
by 6-mers, while higher n-mers are the same level as monomers and dimers. An
important feature is that the maximum of the curves seems to saturate around
x = 0.3, indicating a turnover of cluster structures above this concentration.

The cluster study complements the visual inspection of Fig.5 by showing
more details, such as for example the existence of 4-mers at small concentrations,
and not only pentamers, as the visual inspection may suggest.

3.2.3 Atom-atom pair correlation functions

In order to further con�rm the sharp separation of cluster structure highlighted
in the previous sections, we show in Fig.7 the evolution of 3 typical pair corre-
lation functions as a function of ethanol concentration. The right panel shows
the ethanol oxygen-oxygen correlation function gOO(r) for all the ethanol con-
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centrations calculated. Focusing on the second peak, which represent second
neighbour correlations, hence the in�uence of clustering beyond the �rst neigh-
bour peak, we clearly a di�erence between two successive concentrations: the
gap is wider for x < 0.3. In order to facilitate this observation, the curve for
x=0.3 is marked in thicker orange color.

Figure 7: Ethanol concentration dependance of selected atom-atom pair corre-
lation functions. (a) Ethanol oxygen-oxygen pair correlation functions gOO(r);
(b) ethanol oxygen heptane 1st carbon group cross correlations gOM1(r): (c)
heptane 1st carbon group correlations gM1M1(r). The ethanol concentration
x = 0.3 is marked at thicker orange line.

The narrower gap for x > 0.3 can be interpreted as lesser di�erence in the
second neighbour correlations as a mark of insensitivity for the concentration
dependence. This is consistent with hydroxyl clusters being of more varied
shapes. In contrast, the almost similar gap for x<0.3 shows a linear dependence
in concentration, which would be expected if clustering was the same and would
only depend on the concentration of the pentamers.

In order to further con�rm this trend, we examine in the middle panel of
Fig.7 the cross species correlations gOM1

(r) between the ethanol oxygen and the
heptane �rst(last) carbon group termed M1. These correlations are seen to be
less concentration dependent than the previously examined gOO(r) correlations.
This is expected, since heptane site are not charged, hence only Lennard-Jones
like correlations exist, which are less prominent then for those between charged
groups [43]. Nevertheless, we observe that for x < 0.3 all correlation functions
are nearly superposed (below the thick orange curve), and start to show appre-
ciable di�erences only when x > 0.3. Again, this is fully consistent with the
existence of same type of clusters for x<0.3. Indeed, is clustered objects are
the same, the correlations between the carbon sites of heptane and the meta
objects would be nearly similar, and very weakly dependent on x. In contrast,
if the clustered objects are very di�erent in shape, and if this depends strongly
on ethanol concentration, we would indeed expect a larger concentration depen-
dence of gOM1

(r).
The last right panel Fig.7 shows a weak concentration correlations between
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Figure 8: Illustration of the two ethanol concentration regions for each ex-
tremum of the KBI, separated by x = 0.3 (vertical orange line). Left part for
x < 0.3 concerns ethanol micellar entities, while right part x > 0.3 concerns
standard micro-segregated ethanol-heptane domains.

the heptane last/�rst carbon site gM1M1
(r), very similar to that observed for

gOM1
(r). First of al these are Lennard-Jones like correlations, and correlations

below x<0.3 are also nearly superimposed, witnessing the same insensitivity to
concentration in presence of same type of aggregates of the ethanol.

If we reconsider now the experimental KBI in the light of this sharp separa-
tion of the behaviour of the correlations for x < 0.3 and for x > 0.3, we obtain
the result shown in Fig.8, where the thick orange vertical line at x=0.3 perfectly
separates the

concentrations under the �rst KBI extremum for x< 0.3, where mostly pen-
tameric ethanol micelles are observed, from the concentrations under the second
weaker peak at right for x < 0.3, for which usual micro-segregation of the 2
species is observed. In order to fully con�rm this picture of sharp separation
between a meta-object mixture and a usual mixture, we need to calculate the
KBI from the simulations and reproduce the same KBI shapes as observed in
experiments.

3.3 Kirkwood-Bu� integrals from simulations

The evaluation of the KBI through computer simulation requires that the asymp-
totes of the various site-site correlations are well de�ned and converging to 1
as expected. Recent investigations have shown that there are 2 major obsta-
cles. The �rst obstacle is that computer simulations conducted in the Canonical
or Isobaric ensemble cannot lead to the proper asymptote 1, this value being
reached only in the Grand Canonical ensemble [56, 57, 58]. The second obstacle
concerns the existence of micro-segregation, whose spatial extent and slow kinet-
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ics alters the statistics of the correlations at large atom-atom separations. Both
cases are illustrated below, where we examine both the tail of the correlation
functions gab(r),but also the so-called running KBI de�ned as [1]:

Gab(r) = 4π

ˆ r

0

ds s2 [gab(s)− 1] (9)

which, when r is large enough, is expected to converge to the KBI de�ned in
Eq.(1).

In a �rst example, we examine the case of ethanol concentration x = 0.7, for
which we have shown above that micro-segregation is dominant. The typical
order parameter for micro-segregation is gOM1

(r), the cross species pair correla-
tion between the ethanol oxygen atom and the �rst/last carbon group atom of
heptanol. Fig.9 shown this function in the main panel for 3 di�erent runs of 5ns
each. The strong depletion between adverse ethanol and heptane nano-domains
is clearly visible, as all 3 curves stay below 1 until 20Å or so.

Figure 9: Long range tail contribution for ethanol-heptane cross correlation
function gOM1

(r) for ethanol concentration x = 0.7 shown in the main panel
for 3 di�erent runs of 5ns each. The upper inset is a close-up of the tail part.
The lower inset shows the respective RKBI GOM1

(r) functions, along with the
experimental KBI (in blue).

On this scale, all 3 curves seem nearly similar, which is what is expected from
statistics. However, the zoom on tail region in the upper inset shows that there
are visible di�erences between the 3 runs, as the segregation of domain is not the
same in each of the 3 runs. What is observed is the typical domains oscillatory
correlations, with half-period about 20Å, which is the depletion extent. All 3
curves oscillated about the asymptote 1, hence the �rst obstacle mentioned is not
really apparent. The lower inset shows the corresponding running KBIGOM1

(r),
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Figure 10: Long range tail contribution for ethanol-heptane cross correlation
function gOM1

(r) for ethanol concentration x = 0.2 shown in the main panel
for 5 di�erent runs of 5ns each. The upper inset is a close-up of the tail part.
The lower inset shows the respective RKBI GOM1(r) functions, along with the
experimental KBI (in purple).

as well as the expected experimental value. It is seen that the various runs
have an oscillatory asymptotic feature, witnessing the domains alternation, but
oscillate around the experimental value. This result shows the rather excellent
agreement between the experimental KBI and the calculated one.

In the second example, we examine the case of ethanol concentration x = 0.2,
for which we expect an homogeneous distribution of ethanol micelles in the midst
of heptane solvent. In this case, micro-segregation is very di�erent in that it
generates these micelles. Fig.10 shows the same order parameter gOM1(r) in the
main panel, and for 5 di�erent runs of 5ns each.

This function again shows appreciable depletion, but of the size of the ethanol
micelles, which is more about 12Å. But now, the zoom of the tail in the upper
inset shows that there are no domain oscillations, which is indeed expected if
the ethanol droplets are homogeneous distributed. However, we observe that all
the asymptote are clearly shifted upwards from 1. This is a direct manifestation
of the �rst obstacle mentioned above, which occurs here since our calculations
are in the isobaric ensemble instead of the Grand canonical ensemble. It can be
shown that the asymptote of the correlation functions has the following form

lim
r→∞

gab(r) = 1− εab
N

(10)

where N is the number of particles in the simulation box, and the value of εab
depend both on species a,b and the statistical ensemble [56, 57, 58]. For like
correlations the shift is downwards from 1, and for unlike it is upwards [43]. The
RKBI are shown in the lower inset, and are seen to lie above the experimental
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value, and not to have the expected �at asymptote for a proper de�ntition of
the KBI value for GOM1 . In order to correct for this �spurious� behaviour, we
simply multiply the pair correlation function with the appropriate coe�cient
γab = 1/

(
1− εab

N

)
before applying Eq.(10) to ḡOM1

(r) = γOM1
gOM1

(r), which
now has the correct asymptote 1. The asymptote-corrected RKBI are computed
using the expression

Ḡab(r) = 4π

ˆ r

0

ds s2 [γabgab(s)− 1] (11)

and the corresponding KBI are given by

Ḡab = lim
r→∞

Ḡab(r) ≈ Ḡab(L/2) (12)

where L is the box size. The above approximation is appropriate if a �at asymp-
tote is reached for Ḡab(r) before r < L/2. For each correlation function an ini-
tial value of εab/N is guessed, Eq.(11) applied and we visually test if the Ḡab(r)
function is becoming more horizontal. If not, a new guess of εab/N is used, and
the procedure repeated. At some point, the change of horizontality shifts in
the opposite direction, and this determines the optimum εab/N value. Clearly,
this empirical procedure is not obvious when the functions Ḡab(r) have large
domain oscillations, such as in Fig.11. We have successfully used this empiri-
cal shift methodology in several of previous our works in obtaining very good
agreement with the experimental data [4, 17, 22, 43] .

The corresponding results are shown in Fig.11.

Figure 11: Tail corrected version of pair correlation functions shown Fig.10 (see
text)

Due to the extreme smallness of εab

N , γab is nearly 1 and the main panel
shows no di�erence with respect for Fig.10. However, while the upper inset
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Figure 12: Comparison between the calculated KBI from simulations versus the
experimental ones [24].

con�rms that the correct asymptote 1 has been set by the operation above, the
lower inset shows that all the RKBI have now �at asymptotes, even though it is
not quite the value set by the experiments. This discrepancy is expected, since
the ethanol aggregation in the real mixtures may not be well represented by the
model simulations.

For the calculations of the KBI, from the cross KBI GOM1
we extract D

from Eq.(6) and calculate the like KBI GOO and GM1M1
using Eq.(7). Indeed,

the simulations results for these KBI do not often converge to the consistency
for D in Eqs.(7,6)), and the above trick is one way to get around this problem.
The origin of the inconsistency is due to system size problems, since the like
domain statistics require larger simulations, with N=32000 particles or more
[33, 34, 35]. When these operations are conducted for all ethanol concentrations,
we obtain the result shown in Fig.12, which shows a remarkable agreement with
the experimental results.

The very low ethanol concentrations for x = 0.02 and x = 0.05 pose partic-
ular problems for the proper evaluation of the asymptotes. Indeed, the corre-
sponding RKBI have very distorted shapes, which cannot be arranged to look
�at by simple shifting of the asymptotes of the pair correlation functions. These
distortions, which vary considerably from one run the other, witness the strong
kinetics of the ethanol micelle formation. Since these micelles are about 15Å in
diameter, while the half box length extends to 70Å, if the micelles were replaced
by soft spheres of same diameter, the statistics on the tail of the soft sphere cor-
relations would be much better. Therefore, it is really the micelle-monomer
exchange which a�ect those statistics at very small ethanol concentrations.

Even though the calculated KBI shown in Fig.12 are in good agreement with
the experimental ones, and more importantly, allowing to explain the experimen-
tal evidence of the 2 extrema, one could ask if the techniques used in Eqs.(11,12)
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are the appropriate ones. Conversely, one may question if other methodologies
developped for the calculations of the KBI are suitable for the demanding cases
of very large heterogeneity, such as that studied in the present work. We ex-
amine this issue in the Supplementary Information (SI). The fact that other
methodologies often give results similar to that proposed here ,demonstrates
that the current method is equally appropriate, with the added advantage of
being intuitive and very simple to implement.

4 Discussion and Conclusion

It is not a priori obvious that the segregation of ethanol in small concentra-
tion in oil-like solvent should evolve in a discontinuous manner into the micro-
segregation as this concentration is increased, leading to the separation illus-
trated in Fig.8. For instance, in a previous study of ethanol-benzene mixtures
[43], we have found a single extremum shaped KBIs. Yet, this study has shown
that small micelle-like aggregates at low ethanol mole fraction mixtures. This
di�erence suggests that closed carbon group molecules, such as benzene, a�ect
di�erently the cluster structural changes from micelle to domain, than chain-
like shaped alkanes. Indeed, these latter molecules can more easily merge with
the micellar alkane corona than the disc-shaped benzene molecules. In order to
explain this apparent discrepancy, we hypothetize here that it is solvent shape
induced depletion entropic e�ects [59, 60, 61] which a�ect the structural tran-
sition between the ethanol micelles regime and the micro-segregated domain
regime. Following this hypothesis, chain-like solvent would allow a smoother
transition between micelles and domains, hence clearly separating the two man-
ifestations in terms of �uctuations, thus leading to separate �uctuation regimes.

In the abstract, we mention that water tert-butanol mixtures equally show
two extrema in KBI. This was indeed reported our previous work[12] , where
the KBI calculated by us (see Fig.6b in Ref.[12]) were obtained by Y. Koga from
the vapour pressure measurements of the chemical potentials (see the plot of D
in Fig.6a of Ref.[12]) . The double extrema is absent from the KBI data from
other authors (see Fig.6b in Ref.[12]), but present in the SANS data obtained in
the same work. Interestingly, in boths cases, the double extrema occurs clearly
only for the water-water KBI. In addition, the equivalent of the micelle extrema
- in the present case it would be tbutanol micellar aggregates, occurs for very
small tbutanol concentrations in the interval 0.1 < x < 0.2, which is similar to
that observed in the present work for an entirely di�erent system. Interestingly,
the aggregation in aqueous tbutanol is not clearly understood to date, despite
several experimental [62, 63] and simulation [32, 33, 35, 64] investigations.

From these two points, it appears that the topic of the existence of camel
back shaped KBI deserves further investigations as to the conditions where it
might occur.

To conclude, the present study illustrates the di�erence between concentra-
tion �uctuations and micro-segregation both in the microscopic and macroscopic
thermodynamic level. It is generally believed that micro-segregation would cor-
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respond to a more microscopic k 6= 0 part of the concentration �uctuations,
related to the �nite extent of segregated domains, while concentration �uctu-
ations would be their thermodynamic limit, which correspond to k = 0. The
present study shown that the KBI, which are related to the macroscopic k = 0
limit of the structure factors, themselves contain the di�erence in both mani-
festations. This was illustrated in Fig.8, through the sharp separation between
concentration �uctuations of meta-objects (the ethanol micelles) for x < 0.3
and the micro-segregation regime for x > 0.3. To be more speci�c, while
micro-segregation concerns the initial microscopic objects, namely ethanol and
heptane molecules, the concentration �uctuations described here concern the
meta-objects formed by the ethanol micelles, themselves �oating in molecular
heptane solvent. This study has been possible, precisely because heptane is
an inert solvent, due to its uncharged carbon group sites, which cannot form
associated entities. In this context, heptane concentration �uctuations are very
small, and the neutrality of this oil-solvent enhances the charge association of
ethanol molecules. This is not possible to observe with water-solvent and small
alcohol molecules, because both species tend to associate. In order to observe
a similar phenomena in water, one requires much larger solutes molecules, such
as surfactants, which can form micelles and other self-assembled objects.

The present study also illustrates the importance of the pair correlation
functions and their asymptotes, and through these quantities, the issues related
to domain segregation and concentration �uctuations in �nite size simulations,
in particular through the Lebowitz-Percus shift of the asymptotes, illustrate here
for the �uctuations between meta-objects, as opposed to the usual illustration
for molecular objects.

Appendix

Eq.(2) in the Kirkwood-Bu� paper [1] expresses the derivative of the chemical
potential µiof species i with respect to its mole fraction xi in terms of the KBI,
which we rewrite below using a trivial rearrangement of the original equation
as: (

∂βµi
∂xi

)
T,P

=
1

xi [1 + ρjxi (G11 +G22 − 2G12)]

The Ornstein-Zernike equation for a binary mixture can be written in a matrix
equation as (

S11 S12

S12 S22

)(
C11 C12

C12 C22

)
= I

where I is the identity matrix, and where the structure matrix elements are
Sij(k) = δij +

√
ρiρj h̃ij(k) and the C-matrix elements are de�ned in terms of

the direct correlation functions as Cij(k) = δij −
√
ρiρj c̃ij(k), with the Fourier

transform notation and de�nition f̃(k) =
´
d~rf(r) exp(i~r.~k). Since the KBI are

de�ned as in Eq.(1), one has Gij = h̃ij(k = 0), and Sij = δij +
√
ρiρjGij .
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Therefore, one can rewrite the equation above as (using ρi = xiρ)(
∂βµi
∂xi

)
T,P

=
1

xi
√
x1x2 [S11 + S22 − 2S12]

which can be rewritten by using the OZ equation as(
∂βµi
∂xi

)
T,P

=
detC

xi
√
x1x2 [C11 + C22 + 2C12]

Using Eq.(4) which de�nes the KBI coe�cient D, one has the relation relating
D to the determinant of C, which controls the stability limit of a mixture [3],
as written in Eq.(5)

D = α
[
C11C22 − C2

12

]
with α = 1/(

√
x1x2 [C11 + C22 + 2C12]).
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In this SI document,  we consider the size dependence of the KBI, as well  two technical  issues
concerning  the  evaluation  of  macroscopic  fluctuations  within  finite  size  simulation  boxes,  and
which  could  potentially  affect  the  KBI  computed  in  the  work.  The  analysis  shows  that  these
methods  are  equally  affected  by  the  strong  local  heterogeneity,  and  do  not  improve  over  the
asymptote shifting method used herein.

A – System size dependence of the KBI

Although rather large system size was used in the simulations (N=16000 molecules), leading to
calculated KBI in good agreement with the experimental data, and allowing to support the idea of
duality in aggregation and fluctuations, we have nevertheless considered useful to simulate larger
systems  of  N=32000  molecules,  doubling  the  previous  size.  We  have  focused  on  ethanol
concentration x= 0.2 which corresponds to the middle of the ethanol  “micelle” region,  where
competition between aggregation and fluctuation may be the most challenging to reproduce. Two
independent  runs  of  5ns  each  were  performed,  after  the  initial  10ns  equilibration.  The  two
calculated RKBI GOM 1

(r ) , both for the asymptote shifted gOM 1
(r )  data (main panel) and non-

shifted data (inset) are shown below in Fig.1A. The data from Fig.11 is equally shown as green
curves, for comparison purpose.

 

It is seen that both new curves has quite an appreciable horizontal middle range, pointing toward the
same mean value suggested by the smaller systems. When averaging the 2 curves, the resulting
orange curve shows a rather  excellent  agreement  with the mean value  obtained by the smaller
system calculations. The large deviations at the end of the half-box size are expected for 2 reasons.

Fig.1A. Comparison of the RKBI for a N=32000 system (blue and cyan curves) 
with that of the N=16000 systems shown in Fig.11 (reproduced in green here). The 
inset shows the original asymptote uncorrected curves. The average of the 2 runs 
for the larger system is shown as orange curve.



First,  the  statistics  on  the  aggregated  entities  show appreciable  domain  oscillations,  which  are
genuine  features,  and  may  require  excessive  long  simulation  to  stabilize.  Second,  small
uncertainties  in  the  large  distance  behaviour  of  the g(r ) are  amplified  by  the  integration
procedure. These results show that very large systems are not necessarily a good strategy when
dealing with strongly heterogeneous systems with inner large association-dissociation kinetics.

B – Finite size scaling analysis

Finite size analysis has been originally [1] used in the context of second order phase transitions for
the following reason. In this type of phase transition, the correlation length ξ diverges, hence may
become larger than the simulation box size L . It necessary to find the way ξ  scales with L
in order to predict the distribution of the order parameter with L . In the present context which is
far from any demixing phase transition, the correlation is about few atom size ( ξ≈5 Å), much
smaller the box size L≈135 Å), and such considerations may appear as remote. Yet, the KBI are
a measure of the concentration fluctuations, since , alternatively to the definition in Eq.(1), they are
also defined as [2]

Gab=V
⟨Na Nb⟩−⟨Na⟩ ⟨Nb⟩

⟨N a⟩ ⟨N b⟩
−V

δab
⟨N b⟩

(1B)

where N x  is the number of particles of species x . However, in the context of simulations when
the total number of particles is fixed, the total fluctuation is zero (-ie-  ⟨N aN b ⟩−⟨Na⟩ ⟨Nb⟩=0 .
This is the case in canonical and isobaric ensembles, the latter which we have used in this work.
Hence, the formula above can only give the ideal gas result for the KBI. However, one can compute
local fluctuations within smaller boxes of size Li< L  embedded within the simulation box, and
accumulate  statistics  while  varying the sizes Li ,  hence estimate  the size dependence  of local
Gab  by using Eq.(1a). While these values will be strongly distorted for L/2< Li<L , one can

expect that there will be a scaling with smaller sizes Li< L/2 , which would allow to extract the
correct KBI by extrapolating to larger Li . This is exactly what was found in Ref.[3], with the
following scaling relation for intermediate values of the Li

Gab
(i)=Gab+

αab

Li (2B)

Below, we have applied this method to the 2 cases studied in detail  in Section 3.3, namely for
ethanol concentrations x=0.2 and x=0.7 . We have followed the procedure described in Ref.
[4]. We started with small boxes of size L0=15 Å, and computed cross fluctuations between the
oxygen sites of ethanol (O site) and first carbon group of heptane (M1 site), using Eq.(1B). This was
done for 100 random choices of the box center within the main box. This operation was repeated for
several choices for Li=L0+δ L ,  with  δ L=5 Å, which represents about 15-17 points before
reaching L/2 where  distortions  appear  (as  one  moves  towards  the  zero  global  fluctuation
regimes). The relation (2B) is indeed well verified, as can be seen in Fig-1B and Fig-2B below. 
The finite size scaling applied to the case of x=0.7  is shown in Fig.1B. The main panel shows,
in addition to the scaling analysis, the RKBI of Fig.9. The inset shows the 1/r plot, which allows
to verify the extent of the applicability of Eq.(2B). It is seen that the scaling analysis tends to predict
KBI in close agreement to that guessed from the KBI. Fig.1B shows a similar analysis for x= 0.2
, but for the asymptote shifted KBI. The close agreement demonstrates that the asymptote shift
method produces correct KBI values with a simpler empirical approach. One of the data for the
N=32000 particles is also shown as brown curve and symbols. Again, a rather good agreement with
previous smaller size data is observed



The extrapolation 1/Li→0  shown in the insets predicts values for the KBI which are very similar
to those shown in Fig.9 and Fig.11, showing the same dispersion. This is not a surprise, since each
calculations  have  been  performed  using  the  same  trajectories  as  for  the  calculations  of  the
gOM 1

(r ) reported in section 3.3. It is particularly interesting for the case of x=0.2 , since the
newly extrapolated KBI are consistent with the KBI obtained the corrected asymptotes as in Fig.11,
and not those of Fig.10. 

Again, this is not a surprise, since the work of Lebowitz and Percus in the 70’s have demonstrated
[5] that  correlation functions  computed in  other ensembles  than the Grand Canonical  ensemble
(GCE)  (which  allows  for  total  particle  number  fluctuations,  due  to  the  coupling  to  a  particles
reservoir), should not tend asymptotically to 1, but rather obey Eq.(10). In particular, it should not

Fig.1B. Finite size scaling analysis of KBI for x=0.7, for the 3 independent runs 
shown in Fig.9 with the same 3 color conventions. The inset shows the 1/r 
dependence which obeys Eq.(2B). Corresponding RKBI are shown both in the main 
panel and inset. Close dots correspond to points r<L/2, and open dots for r>L/2. 
The horizontal blue line is the experimental value.

Fig.2B. Finite size scaling analysis of KBI for x=0.2, for the  independent runs 
shown in Fig.11 with the same color conventions. In addition, one result for the 
N=32000 particle of Fig.1A is equally shown as brown lines and symbols. Line and 
symbol conventions are as in Fig.1B.



obey Eq.(1), and this is exactly what the current calculations have confirmed. However, the results
shown in the SI equally demonstrate that calculations based on shifting the asymptote, as in Eqs.
(11,12) are a proper way to use Eq.(1B) in the isobaric ensemble, since the predict KBI very similar
to those of the finite scale analysis.

C – Alternate computational methodology for evaluating KBI from simulations

The comparison conducted in Section B of this SI document confirms that the incorrect behaviour
of the asymptote  of the gab(r ) ,  is  a fundamental  problem for the computation the KBI from
simulations conducted in ensembles other than the GCE, since Eq.(1) cannot be used. A similar
conclusion was equally reached in Ref.[4] where the authors proposed a formula to compute the
asymptote shift, instead of the empirical numerical approach used here. 
A different method was proposed in Ref[6] which consists in weighting the integral in the KBI by a
function which takes  into account  cross  correlations  between the domains  surrounding the two
particles  1  and 2 for  which  the separation  is r=|r⃗1−r⃗ 2| .  The important  point  we would  like
demonstrate  here,  is  that  this  method is  not  suited to  predict  the KBI,  unless the asymptote  is
corrected prior to using it.  According to this method the KBI are given by the expression

Gab=limR→∞Gab
(w)(R)=limR→∞ 4 π∫0

R
drr 2[gab(r)−1]wR(r ) (1C)

The distance dependent  weight wR(r) accounts for the overlap volume between the 2 spheres
centered around particles 1 and 2, which leads to the expression

wR(r)=1−3
2
r
R

+ 1
2
( r
R

)
3

(2C)

An alternative expression, valid for large R , is

wR(r)=1−( r
R

)
3

(3C)

A first remark about Eq.(1C) is that it has the same problem as Eq.(1) with respect to the asymptote,
since it uses gab(r )−1 , which is not appropriate in constant N ensembles. In other words, it does
not cure the fundamental problem of the computation of the KBI noted above. A second remark
concerns how the weight function wR(r) affect the integral in Eq.(1C) as compared to that in Eq.
(1).  In both expressions, wR(r)  varies smoothly from 1 at r=0 , to 0 for r=R . Hence,
it  will  affect  the  value  of  the  running  integral Gab(r ) close  to r=R ,to  differ  from  the
unweighted one, except when R  is large enough such that gab(r )−1≈0 . This damping effect
makes the running integral to converge faster to KBI value, and in particular at intermediate R  to
differ from those obtained using the unweighted expression. From the expressions above, we see
that the damping will be faster for Eq.(3C) than for Eq.(2C), which is indeed verified below.

Before using Eqs.(1C-3C) in the present context, and to illustrate the two remarks above, we have
calculated  the  KBI  for  a  simple  Lennard-Jones  liquid,  for  the  reduced  density
ρ*=(N /V )σ3=0.8 and  reduced  temperature T*=T /(ϵ/kB)=1.5 ,  in  a  simulation  with
N=16000  particles. The RKBI function G(r ) , as calculated from the 3 methods, namely the

asymptote shifting method of the present work and the 2 weighting methods Eq.(2C) and Eq.(3C),
are shown in Fig.1C, and for both the cases when the asymptote of g(r ) is un-shifted or shifted.
This figure is very similar to Fig.(1a) in Ref.[6].
The G(r )  for the original data, calculated using Eq.(9) is shown in dashed orange lines and that
using Eq.(11) is shown in red lines. The asymptote shift is empirically found to be extremely small
(since ϵN=0.0352 ). Although the difference between the 2 curves in invisible in the main panel,
it is very apparent in the zoom shown in the inset, the orange curve for G(r ) of the un-shifted
g(r )  showing this typical tendency of curving downward.



When using Eq.(2C), the G(r )  for the un-shifted (thick dashed pink curve) and the shifted one
(thick green curve) show a very good damping of the oscillations at all distances, but very slow
convergence, as illustrated in the inset. By contrast,  G(r )  obtained by Eq.(3C) for the shifted
g(r )  (thick black curve) converge faster, and the agreement with the method of Eq.(11) is very

good, with the advantage of being less noisy, precisely because of the damping. However, if Eq.
(3C) is applied to the un-shifted g(r )  (thick dashed blue curve), it curves downward, just as the
orange  curve.  This  plot  demonstrates  clearly  that  it  is  the  asymptote  shift  which  ensures  the
obtention of the correct KBI. The weighting methodology could be useful to spot the incorrect
asymptote, since it damps the noise in the G(r ) .
Next, in Fig.2C, we compare the RKBI for ethanol concentration x=0.7 in a plot similar to the
lower inset of Fig.9, for the 3 different runs depicted with different colors. 

The RKBI obtained with Eq.(2C) (dashed lines) are clearly the worst of the 3, and this is consistent
with the results for the LJ fluid shown above. Those computed with Eq.(3C) (thick lines) are better
than those reported in Fig.9, in the sense that they flatten out better,  thus allowing for a better

Fig.1C. Comparison of the calculation methods for the RKBI for a Lennard-Jones liquid (see 
text). The lower inset is a zoom on the tail behaviour of the various G(r) of the main panel. In 
both plots, the thin horizontal blue lines serves as a guide for the correct KBI value.

Fig.2C. Comparison of the calculation methods for the RKBI for x=0.7 for 3 
different runs depicted with 3 colors (black, red, green). The data from Eq.
(2C) are shown as thin dashed lines, that for Eq.(3C) in thick lines, and that 
from Fig.9 in thin lines. The horizontal blue line is the data the experimental 
KBI value.



estimate. However, these estimates are not so different than those predicted in this work and the
total estimate is very close to the previous one, both predictions being indistinguishable on the scale
of the final plot Fig.12. 

The same analysis for the case of x=0.2  is done below in Fig.4C, first for the case of the un-
shifted asymptotes (as in Fig.10), and second for the case of the shifted ones (Fig.11). To make the
plots less cluttered, only 3 of the 5 runs have been analyzed.

The conclusion of these 3 calculations can be expressed as follows.
Eq.(3C) produces better  KBI results  than the original  expression Eq.(2C),  the latter  which was
based on the physical picture of allowing for cross correlations between the 2 particles of interest,
itself  based on the claim of better  mathematical  treatment  of the initial  expression for the KBI
integral [6]. In view the results shown here, but also in the original papers [3,6,7], one may raise
some doubts on the entire procedure. Indeed, both in Ref.[3] and [7], the validity of Eqs.(1C-3C)
have been successfully tested for a model g(r )  which has the correct asymptote of 1, valid for

Fig.3C. Comparison of the calculation methods for the RKBI for x=0.2 for 3 
different runs, and computed from the un-shifted correlation functions. The 
horizontal blue line is the data the experimental KBI value. Line conventions 
as in Fig.3C.

Fig.4C. Comparison of the calculation methods for the RKBI for x=0.2 for 3 
different runs, and computed from the shifted correlation functions. The 
horizontal blue line is the data the experimental KBI value.



the GCE but for the N-constant ensembles for which the entire procedure is supposed to apply. The
dashed blue curve in Fig.1C clearly shows that a g(r) taken from N-constant ensemble will not
produce the proper KBI.
When using properly shifted asymptotes, Eq.(3C), which is an approximation of Eq.(2C) valid for
large separations, produces better results by damping the oscillating RKBI asymptotes. However,
this forced damping may produce artifacts for mixtures where the oscillations are realistic physical
features witnessing the alternance of segregated domains, such in the case of aqueous-1propanol
mixtures [8], and possibly in more complex soft matter liquids. 

These  results  may  not  be  so  surprising,  since  this  methodology  was  generally  tested  in  less
demanding  cases,  where  the  asymptote  of  the  correlations  are  well  defined,  because  the
corresponding  liquids  are  very  homogeneous  at  microscopic  scales.  The  cases  discussed  here
present  heavy  domain  segregation,  hence  asymptote  distortions  are  important  physical
manifestations which cannot be dismissed [9]. The method proposed in the present work (and also
in our previous ones), although empirical, has the advantage of not altering the influence of domain
formation statistics on the pair correlation functions.
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