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Abstract: The role of immune checkpoints (ICPs) in both anti-HIV T cell exhaustion and HIV reservoir
persistence, has suggested that an HIV cure therapeutic strategy could involve ICP blockade. We
studied the impact of anti-PD-1 therapy on HIV reservoirs and anti-viral immune responses in
people living with HIV and treated for cancer. At several timepoints, we monitored CD4 cell counts,
plasma HIV-RNA, cell associated (CA) HIV-DNA, EBV, CMV, HBV, HCV, and HHV-8 viral loads,
activation markers, ICP expression and virus-specific T cells. Thirty-two patients were included, with
median follow-up of 5 months. The CA HIV-DNA tended to decrease before cycle 2 (p = 0.049). Six
patients exhibited a ≥0.5 log10 HIV-DNA decrease at least once. Among those, HIV-DNA became
undetectable for 10 months in one patient. Overall, no significant increase in HIV-specific immunity
was observed. In contrast, we detected an early increase in CTLA-4 + CD4+ T cells in all patients
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(p = 0.004) and a greater increase in CTLA-4+ and TIM-3 + CD8+ T cells in patients without HIV-DNA
reduction compared to the others (p ≤ 0.03). Our results suggest that ICP replacement compensatory
mechanisms might limit the impact of anti-PD-1 monotherapy on HIV reservoirs, and pave the way
for combination ICP blockade in HIV cure strategies.

Keywords: immune checkpoint blockade; HIV reservoir; anti-HIV immune responses; compen-
satory mechanisms

1. Background

Immune checkpoints (ICPs), such as programmed cell death protein 1 (PD-1), cytotoxic
T lymphocytes antigen 4 (CTLA-4), T-cell immunoreceptor with immunoglobulin and ITIM
domain (TIGIT) and lymphocyte activation gene (LAG-3) are T cell inhibitory receptors that
are activated on immune cells after TCR engagement to counterbalance chronic antigenic
stimulation [1]. In cancers, ICPs are involved in immune control escape, promoting anti-
tumor T-cell exhaustion. Nowadays, ICP blockade (ICB) by monoclonal antibodies is used
for restoring anti-tumor immunity and is a major advance in cancer therapy [2].

During HIV-1 infection, ICPs are involved in both reservoir latency and anti-viral T cell
exhaustion. On the one hand, PD-1, TIGIT and LAG-3 expression is positively associated
with the frequency of CD4 + T cells harboring integrated HIV-DNA, and PD-1 engagement
has been showed to inhibit HIV production and reactivation in latently infected cells ex
vivo [3,4]. Accordingly, ICB reverses latency and reactivates viral production [3,5]. On the
other hand, increased levels of PD-1 expression on total and HIV-specific CD8 + and CD4+
T cells in untreated HIV-1 infection are significantly correlated with both increased HIV
viral load (VL) and with reduced capacity of cytokine production and of proliferation of
HIV-specific T cells [6–8]. Anti-PD-1 and anti-PD-L1 antibodies demonstrated immune
dysfunction reverse [8–10]. Taken together, these data suggest that ICB used as a “shock
and kill” strategy could at the same time reverse latency and make the virus visible to
the immune system, and restore anti-HIV immunity towards an HIV cure. The impact of
ICB monotherapy on HIV-1 infection in vivo has been reported with controversies [11]. In
our experience, one patient treated with nivolumab for cancer demonstrated a drastic and
persistent decrease in cell-associated (CA) HIV-DNA [12]. Three other reports revealed
latency reversal in patients [3,5,13]. A more recent study with very short follow-up in-
cluding 33 people living with HIV (PLWH) with cancer showed no modification of the
replication-competent reservoir [14].

During other co-infecting chronic viral infections, such as HBV, HCV, JC-virus or
EBV infections, pathogens also exploit ICPs for immune evasion [15–17]. Several studies
have suggested that ICB could be used as anti-infectious treatment for chronic HBV and
HCV infection or for progressive multifocal leukoencephalopathy [18–20]. Finally, EBV-
associated lymphomas and HHV-8- associated Kaposi sarcoma (KS) could benefit from
ICB [21,22]. Of note, no predictive biomarker of ICB efficacy is available concerning chronic
viral infections.

A biological sub-study was set-up, from both the ANRS CO24 OncoVIHAC prospec-
tive multicenter cohort (OncoVIRIM) and clinical trial IFCT-1602 CHIVA-2 (BIO-CHIVA-2),
including PLWH with cancer treated with ICB. Here, we present the results of the largest co-
hort of patients assessing in vivo CA HIV-DNA, immunological changes and the evolution
of virus-specific T cells among PLWH treated with ICB for cancer.

2. Methods
2.1. Study Design and Population

Patients were included from December 2017 to March 2020 from ten French centers
on behalf the Agence nationale de recherche sur le SIDA et les hépatites virales (ANRS)
and Intergroupe Francophone de cancérologie thoracique (IFCT) groups. Inclusion criteria:
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were age above 18 years old, proven HIV-1 or 2 infection, viral load below 50 cps/mL
in OncoVIRIM or 200 cps/mL in BIO-CHIVA-2 under ART, ICB for cancer. Patients
received nivolumab or cemiplimab 3 mg/kg every 2 weeks or pembrolizumab 2 mg/kg
every 3 weeks until tumor progression, toxicity or patient decision to cease treatment.
All patients signed a written informed consent form. The protocol was approved by an
institutional review board (ANRS CO-24 OncoVIHAC: CPP17-020/2017-A00699-44; IFCT-
1602 CHIVA2: CPP-Sud-Est V/17-IFCT-01) and was performed in accordance with the
Helsinki declaration. Fresh blood samples were obtained at baseline and before cycles 2, 3
or 4, 9, 15 or 18, 27 or 36 and 51 and at the end of treatment.

2.2. HLA-Typing

HLA typing was performed using PCR-SSO hybridization methods in a Luminex
FLEXMAP-3D® platform and analyzed on the HLA-FusionTM software (LABtype SSO
class I/II tests: LABtype XR Class I locus A, B, C and Labtype SSO class II DRB1, DQA1/B1,
OneLambda Inc., West Hills, CA, USA).

2.3. Viral Assays

Serologies for CMV and EBV (DiaSorin, Saluggia, Italy), HBV and HCV (Abbott,
Chicago, IL, USA), HHV-8 [23] were analyzed at baseline. The HIV, HBV and HCV viral
loads (VL) were analyzed in plasma using AmpliPrep/COBAS TaqMan (Roche Diagnostics,
Basel, Switzerland) and the CMV and EBV loads were measured in whole blood (Qiagen,
Hilden, Germany). HHV-8 was quantified by RT-PCR [24]. CA HIV-1 DNA was quantified
by ultrasensitive RT-PCR (Biocentric, Bandol, France) [25].

2.4. Flow Cytometric Analysis

Flow cytometry testing was performed on fresh blood with two mixes of antibodies
assessing first lymphocyte subsets and ICP: TIM3-BB515 (BD, Franklin Lakes, NJ, USA,
7D3), CXCR5-PE (BioLegend, San Diego, CA, USA, J252D4), CD45RA-ECD (BC, Fullerton,
CA, USA, 2H4LDH11LDB9), CD27-PerCP-Cy5.5 (BD, Franklin Lakes, NJ, USA, L128),
CCR7-Pe-Cy7 (BD, Franklin Lakes, NJ, USA, 3D12), CTLA4-APC (BD, Franklin Lakes, NJ,
USA, BNI3), CD4-APC-R700 (BD, RPA-T4, Franklin Lakes, NJ, USA), CD3-APC-Cy7 (BD,
SK7, Franklin Lakes, NJ, USA), PD1-BV421 (BD, EH12.1, Franklin Lakes, NJ, USA) and CD8-
BV510 (BD, SK1, Franklin Lakes, NJ, USA), and intracellular staining with CTLA4-APC
(BD, BNI3, Franklin Lakes, NJ, USA); second, activation markers were assessed:CD4-FITC
(BD, RPA-T4, Franklin Lakes, NJ, USA), CD25-PE (BC, B1.49.9, Fullerton, CA, USA), CD69-
PE-CF594 (BD, FN50, Franklin Lakes, NJ, USA), PD1-PE-Cy7 (BD, EH12.1, Franklin Lakes,
NJ, USA), HLA-DR-AF700 (BioLegend, San Diego, CA, USA, L243), CD3-APC-AF750 (BC,
Fullerton, CA, USA, UCHT1), CD38-BV421 (BioLegend, San Diego, CA, USA, HB7) and
CD8 BV510 (BD, Franklin Lakes, NJ, USA, SK1), and intracellular staining with Ki67-APC
(ThermoFisher, Waltham, MA, USA, 20Raj1). Cell permeabilization (Cytofix/Cytoperm,
BD, Franklin Lakes, NJ, USA), fixation (CellFIX, BD, Franklin Lakes, NJ, USA), acquisition
(10-colors Gallios) and analysis (FlowJo 10.5) were performed as previously described [26].
T cell subsets were defined as: naive T cells (TN): CD27 + 45RA + CCR7+, central memory
T cells (TCM): CD27 + 45RA-CCR7+, transitional memory T cells (TTM): CD27 + 45RA-
CCR7-, effector memory T cells (TEM): CD27-45RA-CCR7-, CD45RA re-expressing TEM
(TEMRA): CD27-45RA + CCR7-. Boolean ICP analysis defined single, double and triple
expressers displaying only one, two or three ICP.

2.5. Intracellular Cytokine Staining Assays

Virus-specific T cells were analyzed using an ICS assay [27]. Briefly, 1 × 106 thawed
PBMC were stimulated overnight with each virus peptides pool (Supplementary Methods
S1 and Supplementary Table S1) or staphylococcal enterotoxin B toxin as the positive
control and medium alone as negative control. Cells were surface-stained with Live/Dead
Fixable Aqua Dead Cell (Invitrogen, Carlsbad, CA, USA, L34957) and anti PD1-BV421
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(BD, Franklin Lakes, NJ, USA, EH12.1), CD4-APC (BD, Franklin Lakes, NJ, USA, RPA-T4)
and CD8-PerCP-Cy5.5 (BD, Franklin Lakes, NJ, USA, SK1); then intracellular staining was
performed for interleukin-2 (IL2)-PE (BD, Franklin Lakes, NJ, USA, 5344.111), interferon-γ
(IFN-γ)-FITC (BD, Franklin Lakes, NJ, USA, 25723.11), tumor necrosis factor-α (TNF-α)-PE-
Cy7 (BD, Franklin Lakes, NJ, USA, Mab11) and CD3-APC-Cy7 (BD, Franklin Lakes, NJ,
USA, SK7).

The HIV-stimulated cells from 18 patients were also analyzed for the expression of
ICP and surface stained with anti CD4-ECD (BC, Fullerton, CA, USA, UCHT1, 7448079F),
CD8-PerCP-Cy5.5 (BD, Franklin Lakes, NJ, USA, SK1), PD1-BV421 (BD, Franklin Lakes, NJ,
USA, EH12.1), TIM3-PeCy7 (ThermoFisher; Waltham, MA, USA, F38-2E2), CTLA4-APC
(BD, Franklin Lakes, NJ, USA, BNI3), LAG3-AlexaFluor700 (ThermoFisher, Waltham, MA,
USA, 3DS223H) and IgG 4-PE (Southern Biotech, Birmingham, AL, USA, HP6025); then in-
tracellular staining was performed for IFN-γ-FITC (BD, Franklin Lakes, NJ, USA, 25723.11),
CD3-APC-Cy7 (BD, Franklin Lakes, NJ, USA, SK7) and CTLA4-APC (BD, Franklin Lakes,
NJ, USA, BNI3).

Percentages of CD8+ and CD4 + T cells producing cytokines were determined after
subtraction of negative controls and by adding the various peptide pools for each virus.
Phenotypes of specific T cells were evaluated only on cytokine-producing cells with more
than 50 events.

2.6. Statistical Analysis

The non-parametric Wilcoxon test was used to test differences between paired groups.
The Mann–Whitney test was used to test differences between unpaired groups. Statistical
significance was considered for p-values below 0.05. When multiple comparisons were
performed, the Bonferroni correction was used to correct the significance level, as stated in
the figure legends.

3. Results
3.1. Patients Characteristics

Thirty-two patients with HIV-1 infection were included: n = 22 in OncoVIRIM, n = 10
in BIO-CHIVA-2 (Table 1). The cancer types were non-small cell lung-cancer (n = 20),
bladder cancer (n = 3), melanoma (n = 2), head and neck cancer (n = 2), Hodgkin lymphoma,
KS, anal, oropharynx and orbit cancer (1 patient each). Viral co-infections included HHV-8
infection (53%), resolved HBV infection (38%), resolved HCV infection (38%) and chronic
HBV infection (22%). At baseline, the median CA HIV-DNA was 184 cps/106 cells (range
40–1749) and the median HIV VL was 20 cps/mL (range <1–352). The median baseline
CD4 cell count was 369/mm3 (range 45–915) and the CD4/CD8 ratio was 1 (range 0.2–2.1).
All patients were treated with anti-PD-1: nivolumab (69%), pembrolizumab (28%) and
cemiplimab (3%). Six of the patients received ICB as a first line treatment and the others
had refractory or relapse diseases. The median follow-up duration was five months (range
1–30) and the median number of cycles received was six (range 2–36). At last follow-up, all
but one patient had discontinued ICB. Eighteen patients died: 15 from tumor progression,
one from an immune-related adverse event (myocarditis), one from COVID-19 infection
and one from an unknown cause.
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Table 1. Clinical and biological characteristics at baseline.

Pt Cohort Age Sex Type of
Cancers

Pv
Line

ICB
Type ART

CD4
Count
(/mm3)

CD4/CD8
Ratio

HIV VL
(cp/mL) HIV-DNA(cp/10 cells) HLA

Typing

1 CHIVA-2 71 M NSCLC 2 Nivo Rilpivirine,
Dolutegravir 183 0.5 28 <40 A*01:03

B*37:49

2 CHIVA-2 68 M NSCLC 2 Nivo Abacavir,
Nevirapine NA NA <1 227 A*03:11

B*07:27

3 CHIVA-2 56 M NSCLC 1 Nivo

Emtricitabine
tenofovir

disoproxil,
Maraviroc

831 0.4 193 818 A*24:29
B*38:44

4 CHIVA-2 59 M NSCLC 1 Nivo

Emtricitabine,
Rilpivirine,
Tenofovir

alafenamide

596 0.9 <1 <40 A*02:29
B*49:58

5 CHIVA-2 65 M NSCLC 2 Nivo
Tenofovir,

Emtricitabine,
Bictegravir

451 0.9 * 352 904 A*02:29
B*07:15

6 CHIVA-2 55 F NSCLC 1 Nivo
Dolutegravir,

Abacavir,
Lamivudine

499 0.6 138 1287 A*29:30
B*37:44

7 CHIVA-2 68 M NSCLC 1 Nivo Abacavir,
Efavirenz 241 0.7 <20 187 A*02:11

B*39:40

8 CHIVA-2 53 F NSCLC 1 Nivo
Efavirenz,

Emtricitabine,
Tenofovir

291 0.4 <20 66 A*02:66
B*49:52

9 CHIVA-2 58 M NSCLC 1 Nivo
Dolutegravir,

Abacavir,
Lamivudine

249 0.2 <20 851 A*01:03
B*08:51

10 CHIVA-2 59 M NSCLC 1 Nivo
Lamivudine,
Dolutegravir,

Abacavir
583 0.4 <1 231 A*02:03

B*18 27

11 Onco
VIHAC 62 M Melanoma 0 Nivo

Elvitegravir,
Emtricitabine,

Tenofovir
455 0.8 <1 166 A*02:26

B* 07:08

12 Onco
VIHAC 69 M NSCLC 0 Pembro

Emtricitabine,
Rilpivirine,
Tenofovir

273 0.4 <1 <40 A*02:24
B*35:57

13 Onco
VIHAC 75 M NSCLC 1 Nivo Lamivudine,

Dolutegravir 217 1 42 218 A*25:31
B*40:51

14 Onco
VIHAC 60 F NSCLC 0 Pembro

Darunavir,
Norvir,

Raltegravir
888 2.1 21 1749 A*31:68

B*07:07

15 Onco
VIHAC 63 M NSCLC 1 Nivo

Dolutegravir,
Abacavir,

Lamivudine
238 1.8 <1 <40 A*03:23

B*44:53

16 Onco
VIHAC 53 M HL 3 Nivo Dolutegravir,

Lamivudine 373 0.3 <20 173 A*33:68
B*14:44

17 Onco
VIHAC 53 M NSCLC 2 Nivo Abacavir,

Lamivudine 405 0.6 <1 620 A*02:29
B*40:49

18 Onco
VIHAC 64 M Bladder 2 Pembro

Abacavir,
Lamivudine,
Nivérapine

449 1.1 <1 213 A*02:31
B*07:40

19 Onco
VIHAC 62 M Oropharynx 2 Nivo Darunavir,

Ritonavir 162 0.5 <20 80 A*02:11
B*15:40

20 Onco
VIHAC 58 M Kaposi

Sarcoma 4 Nivo
Dolutegravir,

Abacavir,
Lamivudine

728 2.1 47 409 A*33:68
B*14:44

21 Onco
VIHAC 62 M Anal 2 Nivo Dolutegravir,

Lamivudine 209 1.2 <20 231 A*02:24
B*35:44

22 Onco
VIHAC 52 M Head and

neck 1 Nivo
Darunavir,

Norvir,
Raltegravir

369 0.8 <20 191 A*30:33
B*07:15

23 Onco
VIHAC 71 F Head and

neck 1 Nivo Dolutegravir 333 1.1 <1 <40 A*02:24
B*44:50

24 Onco
VIHAC 63 M Eye 2 Cemi

Bictegravir,
Emtricitabne,

Tenofovir
45 0.2 29 <40 A*02:33

B*14:53

25 Onco
VIHAC 70 M Melanoma 0 Pembro

Emtricitabine,
Tenofovir,

Névirapine
434 0.5 <1 181 A*01:03

B*07:51
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Table 1. Cont.

Pt Cohort Age Sex Type of
Cancers

Pv
Line

ICB
Type ART

CD4
Count
(/mm3)

CD4/CD8
Ratio

HIV VL
(cp/mL) HIV-DNA(cp/10 cells) HLA

Typing

26 Onco
VIHAC 56 M NSCLC 2 Pembro

Emtricitabine,
Tenofovir,
Darunavir,
Ritonavir

424 0.8 <20 166 A*11:11
B*15:27

27 Onco
VIHAC 62 M Bladder 1 Pembro

Efavirenz,
Emtricitabine,

Tenofovir
915 1,4 <20 99 A*24:24

B*44:44

28 Onco
VIHAC 58 M NSCLC 0 Pembro

Darunavir,
Doletugravir,

Ritonavir,
Tenofovir

192 0,4 <1 73 A*02:32
B*44:51

29 Onco
VIHAC 62 M NSCLC 1 Nivo

Raltegravir,
Emtricitabine,

Tenofovir
534 0.3 <1 99 NA

30 Onco
VIHAC 60 M Bladder 2 Pembro

Bictegravir,
Emtricitabne,

Tenofovir
969 0.6 <1 363 NA

31 Onco
VIHAC 59 M NSCLC 1 Nivo Darunavir,

Ritonavir 699 1 <1 251 NA

32 Onco
VIHAC 60 M NSCLC 0 Pembro

Bictegravir,
Emtricitabne,

Tenofovir
169 0.4 <1 59 NA

all OncoVIHAC
69% 61 M

88%

NSCLC 63%
Bladder

9%
1

Nivo
69%

Pembro
28%

369 1 20 184

Abbreviations: Pt, patient; Pv, previous; ICB, immune checkpoint blockade; ART, antiretroviral therapy; M: male; F,
female; NSCLC, non-small cell lung cancer; HL: Hodgkin lymphoma, Nivo, nivolumab; Pembro, pembrolizumab;
Cemi, cemiplimab; NA, Not Available, %, percentage. In the line named “all”, absolute values are medians.

3.2. Early Two-Fold Decrease of CA-HIV-DNA following Anti-PD-1

Evaluating as a first step the total CA HIV-DNA at each time point, we observed a
1.9-fold decrease from a median 184 to 99 cps/106 cells at C2 when compared to baseline
(p = 0.0499), without reaching the significance level after the Bonferroni correction (Figure 1).
In addition, as 0.3 log10 physiological fluctuations are commonly described in this assay, we
used a threshold of 0.5 log10 to further evaluate this decay. A more than 0.5 log10 decrease in
HIV-DNA cps/106 cells was observed at once after anti-PD-1 initiation in six patients (Pt #7,
#14, #17, #21, #30 and #31). We further identified these patients with reservoir size reduction
as “RR” patients, and we studied if they exhibited specific immunological characteristics
to better understand which factors could be involved. Baseline CA HIV DNA was higher
in RR compared to those without reservoir size reduction (further identified as “NoRR”
patients): 307 versus 166 cps/106 cells (p = 0.002) (Supplementary Figure S1). Amongst
the six RR, patient #7 demonstrated a persistent and stable HIV-DNA decrease below the
detection threshold at the three consecutive last samples. Among the 26 other patients, 4
had a transient increase of ≥0.5 log10 HIV-DNA cps/106 cells and there was no change
below or above 0.5 log10 for the 22 other patients. Because age potentially impacts the
expression of PD-1 on T lymphocytes, we looked at baseline HIV-DNA between younger
(<60 years) and older (≥60 years) patients and found no difference between groups (median
values 191 and 181 cps/106 cells, respectively, p = 0.9018). We also compared the median
age in RR and in NR and found no significant difference (p = 0.6974).
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Figure 1. Anti-PD-1 therapy in PLWH with cancer does not significantly impact the biology of HIV. 
(A), HIV-DNA (cp/10^6cells) (upper panel) and HIV-DNA (log10 cp/10^6 cells) delta from baseline 
(lower panel), (B). HIV-RNA (cp/mL) (upper panel) and HIV-RNA (log10 cp/mL) delta from baseline 
(lower panel), (C), CD4 count (/mm3) (upper panel) and CD4 count (/mm3) delta from baseline 
(lower panel). Dotted lines denote decrease ≤ 0.5 log10 for CA HIV-DNA and increase ≥ 0.5 log10 for 
HIV-RNA. Red color denotes the RR patients represented with different shapes. EOT: end of treat-
ment. Bonferroni corrected p-value: p ≤ 0.007, Wilcoxon-matched pairs signed Rank test. At cycle 1, 
n = 32; at cycle 2, n = 29; at cycle 3 or 4, n = 29; at cycle 9, n = 11; at cycle 15, n = 5; at cycle 27, n = 3; at 
cycle 51, n = 1; at end of treatment, n = 5. Experiments were monoplicates. 

3.3. CD4 Stability and Early T Cell Activation. 
There was no difference in baseline CD4 count and HIV-VL between RR and NoRR 

patients (Supplementary Figure S1). The HIV-VL decreased from a median baseline of 20 
cp/mL to 1 cp/mL at cycle 9 (p = 0.0313) without reaching the significance level after the 
Bonferroni correction, and there was no change in the CD4 cell counts (Figure 1), nor in 
the CD4/CD8 ratios, in the CD3, CD8, NK and B cell counts or in lymphocyte differentia-
tion (Supplementary Figure S2). Overall, the proportions of HLA-DR + CD4+ and CD8 + 
T cells and of CD38+ and HLA-DR + CD38 + CD8 + T cells significantly increased at C2 or 
C3: respectively 1.8, 1.6, 1.4 and 1.7 fold increase from baseline (p < 0.0001, Figure 2, Sup-
plementary Figures S3 and S4). Similarly, there was an early increase in Ki67 + CD4+ and 
CD8 + T cells at C2 or C3: respectively 2.1 and 2.3 fold increase from baseline (p ≤ 0.0003). 
Among RR, the baseline proportions of CD25 + CD8+ T cells (33%) in patient #7 and of 
HLA-DR + CD8 + T cells (25%) in patient #21 were the highest of the cohort, while patient 
#14 displayed an early major increase of CD4 + Ki67+ and CD4 + HLA-DR T cells at C3. 
Nevertheless, there was no statistical difference between activation markers at baseline or 
kinetics among patients with and without reservoir size reduction (Supplementary Figure 
S5). These results confirm that ICB induces early immunological activation and show that 
some RR patients had high baseline levels of activation markers. 

Figure 1. Anti-PD-1 therapy in PLWH with cancer does not significantly impact the biology of HIV.
(A), HIV-DNA (cp/106cells) (upper panel) and HIV-DNA (log10 cp/106 cells) delta from baseline
(lower panel), (B), HIV-RNA (cp/mL) (upper panel) and HIV-RNA (log10 cp/mL) delta from baseline
(lower panel), (C), CD4 count (/mm3) (upper panel) and CD4 count (/mm3) delta from baseline
(lower panel). Dotted lines denote decrease ≤ 0.5 log10 for CA HIV-DNA and increase ≥ 0.5 log10

for HIV-RNA. Red color denotes the RR patients represented with different shapes. EOT: end of
treatment. Bonferroni corrected p-value: p ≤ 0.007, Wilcoxon-matched pairs signed Rank test. At
cycle 1, n = 32; at cycle 2, n = 29; at cycle 3 or 4, n = 29; at cycle 9, n = 11; at cycle 15, n = 5; at cycle 27,
n = 3; at cycle 51, n = 1; at end of treatment, n = 5. Experiments were monoplicates.

3.3. CD4 Stability and Early T Cell Activation

There was no difference in baseline CD4 count and HIV-VL between RR and NoRR
patients (Supplementary Figure S1). The HIV-VL decreased from a median baseline of
20 cp/mL to 1 cp/mL at cycle 9 (p = 0.0313) without reaching the significance level after
the Bonferroni correction, and there was no change in the CD4 cell counts (Figure 1),
nor in the CD4/CD8 ratios, in the CD3, CD8, NK and B cell counts or in lymphocyte
differentiation (Supplementary Figure S2). Overall, the proportions of HLA-DR + CD4+
and CD8 + T cells and of CD38+ and HLA-DR + CD38 + CD8 + T cells significantly
increased at C2 or C3: respectively 1.8, 1.6, 1.4 and 1.7 fold increase from baseline (p <
0.0001, Figure 2, Supplementary Figures S3 and S4). Similarly, there was an early increase
in Ki67 + CD4+ and CD8 + T cells at C2 or C3: respectively 2.1 and 2.3 fold increase from
baseline (p ≤ 0.0003). Among RR, the baseline proportions of CD25 + CD8+ T cells (33%)
in patient #7 and of HLA-DR + CD8 + T cells (25%) in patient #21 were the highest of the
cohort, while patient #14 displayed an early major increase of CD4 + Ki67+ and CD4 +
HLA-DR T cells at C3. Nevertheless, there was no statistical difference between activation
markers at baseline or kinetics among patients with and without reservoir size reduction
(Supplementary Figure S5). These results confirm that ICB induces early immunological
activation and show that some RR patients had high baseline levels of activation markers.
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Figure 2. Anti-PD-1 treatment in PLWH with cancer results in T cell immunological activation. (A), 
Highest fold change at C2 or 3 from baseline in HLA-DR + cells among CD4+ and CD8 + T cells. (B), 
Highest fold change at C2 or 3 from baseline in Ki67+ cells among CD4+ and CD8+ T cells. (C), 
Highest fold change at C2 or 3 from baseline in CD38+ cells among CD8+ T cells. (D), Highest fold 
change at C2 or 3 from baseline in CD38 + HLA-DR + cells among CD8 + T cells. Red spots denote 
the RR patients and dotted lines denote fold change of 1. Wilcoxon- signed Rank test. FC: fold 
change. Experiments were monoplicates. 

3.4. CTLA-4 Is Upregulated on CD4 Cells and ICP Compensatory Mechanisms Are Less 
Pronounced in Patients RR 

Next, we assessed at each time point the co-expression of PD-1 together with CTLA-
4 and TIM-3 on T cells to explore whether inhibitory compensation of ICP blockade oc-
curred (Figure 3, Supplementary Figures S6–S8). At baseline, RR patients did not demon-
strate any specific profile except patient RR #21 who showed the highest proportion of 
PD-1 + CD8 + T cells (99%) in the cohort. (Supplementary Figure S8). At C2 and overtime, 
the membrane PD-1 molecule became barely detectable on CD4+ and CD8 + T cells (p < 
0.0001). In contrast, we observed a significant but transient increase in CTLA-4 + CD4 + T 
cells at C2 (fold change: 1.5, p = 0.004) and a trend for an increase of CTLA-4 + CD8+ T cells 
at C2 which did not reach statistical significance (p = 0.03). Of note, the proportions of 
CD8+ T cells displaying CTLA-4 and TIM-3 increased more at C2 or C3 in NoRR patients 
compared to RR patients (respectively 2.4 versus 1.1 for CTLA-4 + CD8 + fold change, and 
1.4 versus 0.9 for TIM-3 + CD8 + fold change) (p ≤ 0·03) (Figure 3). Taken together, these 

Figure 2. Anti-PD-1 treatment in PLWH with cancer results in T cell immunological activation.
(A), Highest fold change at C2 or 3 from baseline in HLA-DR + cells among CD4+ and CD8 + T
cells. (B), Highest fold change at C2 or 3 from baseline in Ki67+ cells among CD4+ and CD8+ T cells.
(C), Highest fold change at C2 or 3 from baseline in CD38+ cells among CD8+ T cells. (D), Highest
fold change at C2 or 3 from baseline in CD38 + HLA-DR + cells among CD8 + T cells. Red spots
denote the RR patients and dotted lines denote fold change of 1. Wilcoxon- signed Rank test. FC: fold
change. Experiments were monoplicates.

3.4. CTLA-4 Is Upregulated on CD4 Cells and ICP Compensatory Mechanisms Are Less
Pronounced in Patients RR

Next, we assessed at each time point the co-expression of PD-1 together with CTLA-4
and TIM-3 on T cells to explore whether inhibitory compensation of ICP blockade occurred
(Figure 3, Supplementary Figures S6–S8). At baseline, RR patients did not demonstrate
any specific profile except patient RR #21 who showed the highest proportion of PD-1 +
CD8 + T cells (99%) in the cohort. (Supplementary Figure S8). At C2 and overtime, the
membrane PD-1 molecule became barely detectable on CD4+ and CD8 + T cells (p < 0.0001).
In contrast, we observed a significant but transient increase in CTLA-4 + CD4 + T cells
at C2 (fold change: 1.5, p = 0.004) and a trend for an increase of CTLA-4 + CD8+ T cells
at C2 which did not reach statistical significance (p = 0.03). Of note, the proportions of
CD8+ T cells displaying CTLA-4 and TIM-3 increased more at C2 or C3 in NoRR patients
compared to RR patients (respectively 2.4 versus 1.1 for CTLA-4 + CD8 + fold change, and
1.4 versus 0.9 for TIM-3 + CD8 + fold change) (p ≤ 0.03) (Figure 3). Taken together, these
results suggest that anti-PD-1 monotherapy could be associated with some compensatory
increase of other ICP molecules on T cells which is less pronounced in the RR patients.
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3.5. Stability of Peripheral HIV-Specific T Cells Despite PD-1 Overexpression at Baseline 
We next evaluated whether ICB could enhance HIV-specific T cell responses in vivo, 

defined as IFN-γ producing CD8+ T cells. At baseline, the median proportion of HIV-spe-
cific CD8 + T cells was 0.48% (range 0–6.52) of total CD8+ T cells. Those frequencies did 
not differ in the RR patients compared to the NoRR patients, although the patient RR #21 
had the third highest proportion of HIV-specific CD8+ T cells among the cohort (2.63%) 
(Supplementary Figure S9). Overall, the percentages of HIV-specific CD8+ T cells did not 
statistically change over time (Figure 4) and there was no difference in the kinetics of HIV-
specific CD8+ T cells between the RR and NoRR patients (Supplementary Figure S9). The 
frequencies of IL-2 + CD8+ and TNF-α+ CD8+ T cells were much lower at baseline (0.02% 
each) than the IFN-γ + CD8+ T cells frequencies and did not change over time (Supple-
mentary Figure S10). The cell poly-functionality defined as the co-production of IFN-γ, 
and/or IL-2 and/or TNF-α also remained stable over time without differences between RR 
patients and the others (Supplementary Figure S11). Similarly, CD4 HIV-specific T cell 
responses did not change over time (Supplementary Figure S10).  

Figure 3. Anti-PD-1 therapy in PLWH with cancer induces dramatic decrease of PD-1 detection and
slight and transient CTLA-4 expression increase. (A), Changes overtime in PD-1 expression on CD4 +
(left) and CD8 + (right) T cells. (B), Changes overtime in CTLA-4 expression on CD4 + (left) and CD8
+ (right) T cells. Bonferroni corrected p-value: p ≤ 0.007, Wilcoxon-matched pairs signed Rank test.
Highest fold change at cycle 2 or 3 of (C), CTLA-4 + CD4 + (left) and CD8 + (right) T cells, and of
(D), TIM-3 + CD4 + T (left) and CD8 + (right) among the patients without reservoir reduction (NoRR)
and with reservoir reduction (RR). Mann–Whitney test. In each graph, red spots denote the patients
RR. EOT: end of treatment. FC: fold change. At cycle 1, n = 32; at cycle 2, n =29; at cycle 3 or 4,
n= 29; at cycle 9, n = 11; at cycle 15, n =5; at cycle 27, n = 3; at cycle 51, n = 1; at end of treatment, n = 5.
Experiments were monoplicates.

3.5. Stability of Peripheral HIV-Specific T Cells Despite PD-1 Overexpression at Baseline

We next evaluated whether ICB could enhance HIV-specific T cell responses in vivo,
defined as IFN-γ producing CD8+ T cells. At baseline, the median proportion of HIV-
specific CD8 + T cells was 0.48% (range 0–6.52) of total CD8+ T cells. Those frequencies did
not differ in the RR patients compared to the NoRR patients, although the patient RR #21
had the third highest proportion of HIV-specific CD8+ T cells among the cohort (2.63%)
(Supplementary Figure S9). Overall, the percentages of HIV-specific CD8+ T cells did
not statistically change over time (Figure 4) and there was no difference in the kinetics of
HIV-specific CD8+ T cells between the RR and NoRR patients (Supplementary Figure S9).
The frequencies of IL-2 + CD8+ and TNF-α+ CD8+ T cells were much lower at baseline
(0.02% each) than the IFN-γ + CD8+ T cells frequencies and did not change over time
(Supplementary Figure S10). The cell poly-functionality defined as the co-production of
IFN-γ, and/or IL-2 and/or TNF-α also remained stable over time without differences
between RR patients and the others (Supplementary Figure S11). Similarly, CD4 HIV-
specific T cell responses did not change over time (Supplementary Figure S10).
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Figure 4. Anti-PD-1 therapy in PLWH with cancer does not significantly increase the in vivo fre-
quency of HIV-specific CD8 + T cells. Thawed PBMC were stimulated during 6 h with HIV peptides 
(15 mers overlapping peptides covering RT, Nef and Gag) and then stained with intra-cellular anti-
cytokine antibodies (anti-IFN-ɣ, anti- IL-2 and anti-TNF-α). HIV-specific CD8 + T cells were defined 
as IFN- ɣ producing CD8 + T cells after HIV stimulation. (A), Example dot plots of IFN-ɣ expression 
among CD8 + T cells after HIV stimulation at baseline and at cycle 2. (B), frequency of HIV-specific 
CD8+ T cells under ICB. (C), HIV-specific CD8 + T cells delta from baseline under ICB. Red colors 
denote the RR patients. EOT: end of treatment. At cycle 1, n = 32; at cycle 2, n =29; at cycle 3 or 4, n= 
29; at cycle 9, n = 11; at cycle 15, n =5; at cycle 27, n = 3; at cycle 51, n = 1; at end of treatment, n = 5. 
Experiments were monoplicates. 

When analysing PD1 expression on HIV-specific T cells at baseline, we observed that 
HIV-specific T cells displayed higher percentages of PD-1+ cells and CTLA-4+ cells (Figure 
5 and Figure S12) and higher mean fluorescence intensity (MFI) of PD-1 (Supplementary 
Figure S13) compared to non-HIV-specific CD8+ T cells (p < 0.001). PD-1 expression on 
HIV-specific CD8 + T cells was non significantly lower in RR compared to NoRR patients 
(Supplementary Figure S9). We then tested in 18 patients whether such a lack of immune 
enhancement could reflect an upregulation of other ICP on HIV-specific CD8 T cells. How-
ever, CTLA-4, TIM-3 and LAG-3 expression on HIV-specific T cells did not increase over 
time (Figure 5).  

Figure 4. Anti-PD-1 therapy in PLWH with cancer does not significantly increase the in vivo fre-
quency of HIV-specific CD8 + T cells. Thawed PBMC were stimulated during 6 h with HIV peptides
(15 mers overlapping peptides covering RT, Nef and Gag) and then stained with intra-cellular anti-
cytokine antibodies (anti-IFN-γ, anti- IL-2 and anti-TNF-α). HIV-specific CD8 + T cells were defined
as IFN-γ producing CD8 + T cells after HIV stimulation. (A), Example dot plots of IFN-γ expression
among CD8 + T cells after HIV stimulation at baseline and at cycle 2. (B), frequency of HIV-specific
CD8+ T cells under ICB. (C), HIV-specific CD8 + T cells delta from baseline under ICB. Red colors
denote the RR patients. EOT: end of treatment. At cycle 1, n = 32; at cycle 2, n =29; at cycle 3 or 4,
n= 29; at cycle 9, n = 11; at cycle 15, n =5; at cycle 27, n = 3; at cycle 51, n = 1; at end of treatment, n = 5.
Experiments were monoplicates.

When analysing PD1 expression on HIV-specific T cells at baseline, we observed that
HIV-specific T cells displayed higher percentages of PD-1+ cells and CTLA-4+ cells (Figure 5
and Figure S12) and higher mean fluorescence intensity (MFI) of PD-1 (Supplementary
Figure S13) compared to non-HIV-specific CD8+ T cells (p < 0.001). PD-1 expression on
HIV-specific CD8 + T cells was non significantly lower in RR compared to NoRR patients
(Supplementary Figure S9). We then tested in 18 patients whether such a lack of immune
enhancement could reflect an upregulation of other ICP on HIV-specific CD8 T cells.
However, CTLA-4, TIM-3 and LAG-3 expression on HIV-specific T cells did not increase
over time (Figure 5).

Taken together, these results suggest that ICB monotherapy is insufficient for enhanc-
ing an HIV-specific response despite high PD1-expression on HIV-specific CD8+ T cells at
baseline.

3.6. Immunological and Virological Parameters of Other Viruses Are Not Modified

As ICB have been proposed to be used against other chronic viral co-infections such
as EBV, CMV and HBV, we aimed at evaluating the effects of ICB on other viruses in
these poly-infected patients, and whether anti-PD-1 could enhance these other virus-
specific T cell responses. In patients seropositive for HHV-8, HCV, HBV and CMV, there
was no corresponding viral replication at baseline, except in 2 patients with active HBV
infection and for whom anti-HBV treatment was changed at the start of ICB. After anti-PD-1
initiation, there was no significant change in HHV-8, HBV, HCV, EBV and CMV loads over
time (Supplementary Figure S14). There was no significant change in virus-specific CD8 +
T cells over time despite highly heterogeneous profiles (Figure 6). When studying PD-1
expression on virus-specific CD8+ T cells, we observed at baseline higher percentages of
PD-1 expression (Figure 5) and higher MFI of PD-1 (Supplementary Figure S13) on EBV-
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and HBV-specific CD8+ T cells (p < 0.007). Taken together, these results suggest that ICB
can be safely used in PLWH with viral co-infections and that PD-1 overexpression on EBV
and HBV-specific CD8+ T cells could be targeted, even though we failed to demonstrate
specific invigoration in peripheral blood.
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cells at baseline depending on viral stimulations. Mann Whitney test. (B), CTLA-4, TIM-3 and LAG-
3 expression among HIV-specific and non-specific CD8 + T cells after HIV stimulation (n = 18). Mann 
Whitney test. (C), expression of CTLA-4 (left), TIM-3 (middle) and LAG-3 (right) on HIV specific 
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3.6. Immunological and Virological Parameters of Other Viruses Are Not Modified 
As ICB have been proposed to be used against other chronic viral co-infections such 

as EBV, CMV and HBV, we aimed at evaluating the effects of ICB on other viruses in these 
poly-infected patients, and whether anti-PD-1 could enhance these other virus-specific T 
cell responses. In patients seropositive for HHV-8, HCV, HBV and CMV, there was no 
corresponding viral replication at baseline, except in 2 patients with active HBV infection 

Figure 5. In PLWH with cancer, high levels of ICP expression are detected on HIV-specific T cells,
without upregulation on anti-PD-1 therapy. Thawed PBMC were stimulated during 6 h with viral
peptides and then stained with intra-cellular anti-cytokine antibodies (anti-IFN-γ, anti-IL-2 and
anti-TNF-α). HIV-specific CD8 + T cells were defined as IFN-γ producing CD8+ T cells after HIV
stimulation. (A), PD-1 expression among specific (black spots) and non-specific (blue square) CD8 + T
cells at baseline depending on viral stimulations. Mann Whitney test. (B), CTLA-4, TIM-3 and LAG-3
expression among HIV-specific and non-specific CD8 + T cells after HIV stimulation (n = 18). Mann
Whitney test. (C), expression of CTLA-4 (left), TIM-3 (middle) and LAG-3 (right) on HIV specific CD8
+ T cells overtime. Red spots denote the patients with reservoir reduction. EOT: end of treatment. At
cycle 1, n = 32; at cycle 2, n =29; at cycle 3 or 4, n= 29; at cycle 9, n = 11; at cycle 15, n =5; at cycle 27,
n = 3; at cycle 51, n = 1; at end of treatment, n = 5. Experiments were monoplicates.
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Figure 6. Anti-PD-1 therapy in PLWH with cancer does not significantly increase the frequency of 
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stained with intra-cellular anti-cytokine antibodies (anti-IFN-ɣ, anti-IL-2 and anti-TNF-α). Virus-
specific CD8 + T cells were defined as IFN- ɣ producing CD8+ T cells after viral stimulation. Fre-
quencies of (A), HHV-8, (B), HBV, (C), HCV, (D), EBV, and (E), CMV-specific-CD8+ T cells overtime. 
Delta from baseline of (F), HHV-8, (G), HBV, (H), HCV, (I), EBV, and (J), CMV-specific CD8 + T 
cells under ICB. Red colors denote the patients with reservoir reduction. EOT: end of treatment. 
Experiments were monoplicates. 

3.7. Immuno-Virological Profiling of RRs 
The individual profiles (HIV-RNA, CA HIV-DNA and HIV-specific T cells) of RR 

patients are summarized in Figure 7. None of these patients with available HLA typing (n 
= 4) had the HLA-B27 or B57 protective alleles. Patient #7 had the longest follow-up of 14 
months and his HIV-DNA decreased from 187 cps/106 cells to become persistently unde-
tectable at the last three time points (C9, 15 and C27). Patient #14 displayed the highest 
HIV-DNA at baseline (1749 cps/106 cells) which decreased by 0.6 log10 down to 403 cps/106 
cells six months later. Patient #17 experienced an early 0.5 log10 decrease in HIV-DNA from 
620 to 178 cps/106 cells at C2. Patient #21 demonstrated a persistent CA HIV-DNA reduc-
tion from 231 to 66 cps/106 cells 4 months later (−0.5 log10). Patient #30 HIV-DNA decreased 
from 363 to 106 cps/106 cells (−0.5 log10) 4 months later. Finally, the HIV-DNA of patient 
#31 decreased gradually from 251 to 53 cps/106 cells 2 months later (−0.7 log10). ICB was 
stopped because of tumor progression in 4 cases and of cutaneous toxicity in 1 case, and 
monitoring was stopped in 1 case because of patient relocation. 

Figure 6. Anti-PD-1 therapy in PLWH with cancer does not significantly increase the frequency
of virus-specific CD8 + cells. Thawed PBMC were stimulated during 6 h with viral peptides and
then stained with intra-cellular anti-cytokine antibodies (anti-IFN-γ, anti-IL-2 and anti-TNF-α).
Virus-specific CD8 + T cells were defined as IFN-γ producing CD8+ T cells after viral stimulation.
Frequencies of (A), HHV-8, (B), HBV, (C), HCV, (D), EBV, and (E), CMV-specific-CD8+ T cells
overtime. Delta from baseline of (F), HHV-8, (G), HBV, (H), HCV, (I), EBV, and (J), CMV-specific CD8
+ T cells under ICB. Red colors denote the patients with reservoir reduction. EOT: end of treatment.
Experiments were monoplicates.

3.7. Immuno-Virological Profiling of RRs

The individual profiles (HIV-RNA, CA HIV-DNA and HIV-specific T cells) of RR
patients are summarized in Figure 7. None of these patients with available HLA typing
(n = 4) had the HLA-B27 or B57 protective alleles. Patient #7 had the longest follow-up
of 14 months and his HIV-DNA decreased from 187 cps/106 cells to become persistently
undetectable at the last three time points (C9, 15 and C27). Patient #14 displayed the
highest HIV-DNA at baseline (1749 cps/106 cells) which decreased by 0.6 log10 down to
403 cps/106 cells six months later. Patient #17 experienced an early 0.5 log10 decrease in
HIV-DNA from 620 to 178 cps/106 cells at C2. Patient #21 demonstrated a persistent CA
HIV-DNA reduction from 231 to 66 cps/106 cells 4 months later (−0.5 log10). Patient #30
HIV-DNA decreased from 363 to 106 cps/106 cells (−0.5 log10) 4 months later. Finally, the
HIV-DNA of patient #31 decreased gradually from 251 to 53 cps/106 cells 2 months later
(−0.7 log10). ICB was stopped because of tumor progression in 4 cases and of cutaneous
toxicity in 1 case, and monitoring was stopped in 1 case because of patient relocation.
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Figure 7. Immunovirological- profiles of the six PLWH patients treated with anti-PD-1 with a CA 
HIV-DNA decrease ≥ 0.5 log10. In each graph, red inverted triangles represent HIV-DNA (cp/10^6 
cells), purple triangles represent HIV-RNA (cp/mL) and green squares represent HIV-specific CD8 
+ cells (% of total CD8 + T cells). Dotted lines represent CA HIV-DNA = 40 cp/10^6 cells, which is the 
detection threshold. EOT: end of treatment. The frequency of HIV-specific CD8 + T cells was not 
available for patient #31. Experiments were monoplicates. 

4. Discussion 
Here, we report the largest comprehensive and homogeneous immunological and 

virological assessment of the influence of immune check-point blockade on HIV reservoirs 
and T cell functions in a series of 32 PLWH treated with anti-PD-1 for cancer.  

Despite some cancers heterogeneity, there was a majority of lung cancers and no ev-
idence that the cancer type might influence the ICB action on the HIV reservoir and on 
HIV-specific T cells.  

We chose to focus as a first step of reservoir size analysis on the measurement of total 
CA HIV-DNA since our final aim was to study the evolution of the HIV-reservoir as a 
result of both HIV latent cell reactivation and immune invigoration. We assume that it 
provides less understanding of the potential influence of ICB on the reservoirs, but such 
evaluation appeared to us to be more relevant on a clinical perspective. The CA HIV-DNA 
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Figure 7. Immunovirological- profiles of the six PLWH patients treated with anti-PD-1 with a CA
HIV-DNA decrease ≥ 0.5 log10. In each graph, red inverted triangles represent HIV-DNA (cp/106

cells), purple triangles represent HIV-RNA (cp/mL) and green squares represent HIV-specific CD8
+ cells (% of total CD8 + T cells). Dotted lines represent CA HIV-DNA = 40 cp/106 cells, which is
the detection threshold. EOT: end of treatment. The frequency of HIV-specific CD8 + T cells was not
available for patient #31. Experiments were monoplicates.

4. Discussion

Here, we report the largest comprehensive and homogeneous immunological and
virological assessment of the influence of immune check-point blockade on HIV reservoirs
and T cell functions in a series of 32 PLWH treated with anti-PD-1 for cancer.

Despite some cancers heterogeneity, there was a majority of lung cancers and no
evidence that the cancer type might influence the ICB action on the HIV reservoir and on
HIV-specific T cells.

We chose to focus as a first step of reservoir size analysis on the measurement of total
CA HIV-DNA since our final aim was to study the evolution of the HIV-reservoir as a
result of both HIV latent cell reactivation and immune invigoration. We assume that it
provides less understanding of the potential influence of ICB on the reservoirs, but such
evaluation appeared to us to be more relevant on a clinical perspective. The CA HIV-DNA
decrease observed after the cycle 1 was only transient and such ICB could have impacted
more profoundly and durably the HIV-reservoir, though still transiently, in only 19% of
cases. The threshold of CA HIV-DNA reduction of 0.5 log is above the usual 0.3 log10
fluctuations of the methods and was an acceptable cut-off in other studies [28,29]. This
proportion of 19% RR could be mis-estimated given that CA HIV-DNA was undetectable
at baseline in six patients. The 6 patients with a CA HIV-DNA decrease ≥ 0.5 log10 under
ICB included one with CA HIV-DNA becoming persistently undetectable for 14 months
and one with features of a “shock and kill”. Although follow-up was short due to frequent
tumor progression, four patients with RR were followed during more than three months,
which represents one of the longest descriptions of CA-HIV DNA under ICB. Of note, two
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out of six patients RR (patient #14 and #17) had a decrease of CD4+ T cells frequencies at the
same time, which may have impacted the results of HIV reservoir. Overall, no significant
immunological differences in terms of immune activation or HIV-specific T cell responses
were observed between these rare RR and NoRR patients. The weak HIV-specific T cell
responses observed in our patients and the lack of ICB effect might reflect the consequences
of previous multiple chemotherapies in those PLWH with cancers

Our results suggest one mechanism to explain such limited ICB impact on HIV reser-
voirs is that the virus persists preferentially in CD4 + T cells expressing other ICP than
PD-1. The greater increase in CTLA-4 and TIM-3 expression on CD8 + T cells in the
NoRR compared to the RR patients reinforces this hypothesis. Such ICP compensation
and upregulation on CD8 + T cells could have hampered the CTL response to the virus
and prevent an efficient “shock and kill” mechanism. These observations are consistent
with the recently published demonstration of ICP overexpression in Hodgkin lymphoma
tumor microenvironment exposed to anti-PD-1 [30]. Thus, a combination of IC blockade
could be necessary to bypass multiple ICP expression both on HIV reservoir cells and on
HIV-specific T cells as suggested by others, although such combinations are limited by
an increased and barely acceptable toxicity in PLWH [4,14,31–33]. Finally, the dramatic
decrease in PD-1 expression on T cells reflects the antigenic occupancy with the monoclonal
antibody of detection which recognizes the same epitope as the therapeutic one, as it has
been demonstrated previously [34].

Finally, we provide insights into the virological safety of ICB and its impact on immune
responses against other viruses. Indeed, ICB is safe and can be widely used in co-infected
patients, although the great majority of patients had very low viral antigen loads with
undetectable HBV, HCV, CMV and HHV-8 VL at baseline. Of note, the two patients with
active HBV infection at baseline benefited from anti-HBV treatment at the same time, which
also hinders the interpretation of VL decrease under ICB.

In conclusion, our study shows that ICB with anti-PD1 antibodies in PLWH with
cancer had a very limited impact on HIV reservoirs and immunity to HIV which might
be explained by an ICP compensatory phenomenon as assessed by the early increase in
CTLA-4 and Tim-3 expression. Further studies are warranted to evaluate the impact of
combined immune checkpoint blockade on the HIV reservoirs and immunity of PLWH
suffering from cancers.
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