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Abstract

We establish a fractal tube formula for the Weierstrass Curve, which gives, for small values of
a strictly positive parameter ε, an explicit expression for the volume of the ε-neighborhood of the
Curve. For this purpose, we prove new geometric properties of the Curve and of the associated
function, in relation with its local Hölder and reverse Hölder continuity, with explicit estimates
that had not been obtained before. We also show that the Codimension 2 −DW is the optimal
Hölder exponent for the Weierstrass function W , from which it follows that, as is well known, W
is nowhere differentiable. Then, the formula, that yields the expression of the ε-neighborhood,
consists of a fractal power series, with underlying exponents the Complex Codimensions. This
enables us to obtain the associated tube and distance fractal zeta functions, whose poles yield the
set of Complex Dimensions. We prove that the nonzero Complex Dimensions are periodically dis-
tributed along countably many vertical lines, with the same oscillatory period. By considering
the lower Minkowski content of the Curve, which we prove to be strictly positive, we then show
that the Weierstrass Curve is Minkowski nondegenerate, as well as not Minkowski measurable, but
admits a nontrivial average Minkowski content – and that, as expected, the Minkowski dimension
(or box dimension) DW is the Complex Dimension with maximal real part, and zero imaginary part.
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1 Introduction

Among the so-called “pathological objects” that appeared in the XIX
th

century, the Weierstrass
Curve (W -Curve) stands as one of the most fascinating and intriguing ones. At first, it was simply
designed and thought of in order to be continuous everywhere, while being nowhere differentiable.

Given λ ∈ ]0, 1[, and b such that λ b > 1 +
3π

2
, the associated function is defined as the sum of the

uniformly convergent trigonometric series

x ∈ R↦

∞

∑
n=0

λ
n

cos (π bn x) ⋅

The original proof, by K. Weierstrass [Wei75], in the case where b is an odd positive integer, can
also be found in [Tit39] (pages 351-353). It has been completed by the one, now classical, given
by G. H. Hardy [Har16], in the more general case, where b is any real number such that λ b > 1.

As is discussed in [Dav21], the introduction of this function challenged all the existing theories that
went back to André-Marie Ampère, and has led to the emergence of many new functions possessing
the same type of properties.

History then left it aside for a while, before new discovered properties brought it back once again
to the forefront. It happened, in particular, that, in addition to its nowhere differentiability, the func-
tion – and the associated Curve – have self-similarity properties. After the works of A. S. Besicovitch
and H. D. Ursell [BU37], Benôıt Mandelbrot [Man77], [Man83], particularly highlighted the fractal
properties of the Weierstrass Curve. He also conjectured that the Hausdorff dimension of the graph

is given by DW = 2 +
lnλ

ln b
= 2 − lnb

1

λ
.

Interesting discussions and results in relation to this question may be found in the book of K. Fal-
coner [Fal86]. As for the box dimension, a first series of results have been obtained by J.-L. Kaplan,
J. Mallet-Paret and J. A. Yorke [KMPY84], where the authors show that it is equal to the Lyapunov
dimension of the equivalent attracting torus. Then, the problem was tackled by F. Przytycki and
M. Urbański [PU89], as well as by T.-Y. Hu and K.-S. Lau [HL93].
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As for the Hausdorff dimension, the first key result was obtained by F. Ledrappier [Led92], where
the Curve is considered as “the repeller for some expanding self-mapping on [0, 1] ×R”, in the case
where b is an integer, an assumption that is of importance, in so far as a Markov partition for the map-
ping x↦ b x mod 1 is involved. The resulting dynamics thus obeys the Markov property, a fact that
has naturally led the author of [Led92] to using such notions as topological – metric entropies, explored
in his earlier joint work with L. S. Young [LY85]. An interesting and useful connection was therefore
established between Lyapunov exponents and dimensions, in this context. Another result was then
obtained by B. Hunt [Hun98] in 1998 in the case where arbitrary phases are included in each cosinu-
soidal term of the summation. Later, in 2014, K. Barańsky, B. Bárány and J. Romanowska [BBR14]
showed that, for any value of the real number b, there is a threshold value λb belonging to the in-

terval ]1

b
, 1[ such that the Hausdorff dimension is equal to DW , for every b in ]λb, 1[. The results

obtained by W. Shen in [She18] went further than the main result of [BBR14] and, in fact, showed
that the Hausdorff dimension of the Weierstrass Curve is equal to DW , for any (allowed) values of the
parameters. Furthermore, in [Kel17], G. Keller proposed a very original and much simpler proof of
the main results of [BBR14].

In [Dav18], the first author proved – in the case when b = Nb is an integer, and in contrast to the
then existing work – that the Minkowski dimension (or box-counting dimension) of the Weierstrass
Curve could be obtained in a simple way, without requiring any theoretical background in dynamical
systems theory. The proof relies on the use of prefractal approximations; that is, here, a suitable se-
quence of finite graphs which converges towards the Weierstrass Curve. They are obtained by means
of a suitable nonlinear iterated function system (IFS) [Dav19], where, as in the case of the horse-
shoe attractor introduced by Stephen Smale, the nonlinear maps involved are not contractions, but
possess what can be viewed as an equivalent property, since, at each step of the iterative process,
they reduce the values of the two-dimensional Lebesgue measures of a given sequence of rectangles
covering the Curve. As expected, the Weierstrass Curve is invariant with respect to the family of those
maps, which provides us in this context with a result equivalent to the one that can be found in [BD85].

Interestingly, the intrinsic properties of the intriguing maps which constitute the nonlinear IFS
can be directly linked to the computation of the box dimension of the Weierstrass Curve, and to a
new proof of the nowhere differentiability of the Weierstrass function, as shown in [Dav21].

Yet, thus far, no connection has been established with the theory of Complex Dimensions. There-
fore, the following questions arise naturally in this setting: Can one prove that the Minkowski (or
box) dimension of the Weierstrass Curve is, also, a Complex Dimension? Can we also determine all of
the (possible) Complex Dimensions of this Curve, as well as obtain an associated fractal tube formula,
in the form of a fractal power series involving the underlying Complex Dimensions? (See [LRŽ17b],
Problem 6.2.24, page 560.)

The foundations of the theory of Complex Dimensions were laid by M. L. Lapidus and his col-
laborators in [Lap91], [Lap92], [Lap93], [LP93], [LM95], [LvF00], [LP06], [Lap08], [LPW11], [ELMR15],
[LvF13], [LRŽ17a], [LRŽ18], [Lap19], [HL21] and [Lap22], in particular. The theory provides a very
natural and intuitive way to characterize fractal strings or drums, in relation with their intrinsic vi-
brational properties. Geometrically, in the latter case, this means studying the oscillations of a small
neighborhood of the boundary, i.e., of a tubular neighborhood, where points are located within an
epsilon distance from any edge. As is explained in [Lap19], a fractal may be viewed “as a musical
instrument tuned to play certain notes with frequencies (respectively, amplitudes) essentially equal
to the real parts (respectively, the imaginary parts) of the underlying complex dimensions”. One can
also imagine a “geometric wave propagating through the fractal” [Lap19].

The one-dimensional theory of Complex Dimensions (i.e., that of fractal strings) was developed,
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in particular, in the books by the second author and M. van Frankenhuisjen [LvF00], [LvF13], where
general explicit formulas and fractal tube formulas were obtained for fractal strings (see [LvF13],
Chapters 5 and 8). Later, in the book [LRŽ17b] – as well as in a series of accompagnying papers,
including [LRŽ17a] and [LRŽ18] – the higher-dimensional theory of Complex Dimensions was devel-
oped by the second author, G. Radunovic and D. Žubrinić, in the general case of bounded subsets
of Euclidean space R

N
and of relative fractal drums of R

N
, with N ⩾ 1 being an arbitrary integer.

General fractal tube formulas were also obtained in this context and applicable to a large variety of
examples; see [LRŽ17b], Chapter 5, and [LRŽ18]. In short, Complex Dimensions are defined as the
poles of the meromorphic continuation of suitable geometric or fractal zeta functions, associated with
the fractal under study. A geometric object is then said to be fractal if it admits at least one nonreal
Complex Dimension, thereby giving rise to geometric oscillations via the corresponding fractal tube
formula. For example, in agreement with one’s intuition, the Devil’s Staircase (i.e., the graph of the
Cantor–Lebesgue function) is shown to be fractal, in this sense, whereas it is not fractal according
to Benôıt B. Mandelbrot’s definition in [Man83], because its topological and Hausdorff dimensions
coincide.

Under a mild assumption, the (upper) Minkowski dimension of the geometric object under study
is equal to the abscissa of convergence of the geometric, distance or tube, fractal zeta functions, and is
the only Complex Dimension located on the real axis and with maximal real part, therefore giving rise,
via the corresponding fractal tube formula, to geometric, spectral, or dynamical oscillations with the
largest amplitudes. We note that fractal tube formulas express the volume of (small) ε-neighborhoods
of the fractal as a fractal power series, with exponents the underlying Complex Codimensions.

Building on the work on multifractal zeta functions and Complex Dimensions of multifractals
strings developed in [LR09], [LLVR09], [ELMR15], along with the work on Complex Dimensions and
fractal tube formulas in [LvF00], [LvF13]. L. O. R. Olsen [Ols13a], [Ols13b], also obtained a suitable
multifractal analog of fractal tube formulas in this context.

A clear summary of the theory of Complex Dimensions for fractal strings can be found in [Ols01],
while a long survey of the theory of Complex Dimensions, both for fractal strings and in higher di-
mensions, is given in [Lap19].

A question which naturally arises in this context is that of differential operators on such struc-
tures. In the case of fractal strings, as an echo to noncommutative geometry, where spectral triples
are involved, a geometric zeta function provides the set of complex modes, while the dimensions stand
as its nonreal poles. The occurrence of the zeta function can be understood very intuitively, in so far
as it simply represents the trace of the differential operator at a complex order s. Thus, the poles are
nothing but the maximal orders of differentiation. Hence, dimensions.

The notion of a fractal drum extends that of a fractal string : at stake is an open subset with
a fractal boundary. In the Euclidean plane, this boundary is a curve. The word “drum” calls for
vibrations: intuitively, one understands that they occur in a small neighborhood of the boundary, a
tubular neighborhood, the Lebesgue measure of which is associated to a tube zeta function which,
similarly, enables one to obtain the Complex Dimensions, which stand as characteristic numbers that
account for specific geometric properties of the fractal boundary, here, the underlying curve.

For the Koch Snowflake Curve, a fractal tube formula was obtained by M. L. Lapidus and E. P. J. Pear-
se in [LP06]. As was pointed out in [LRŽ17b] (see Problem 6.2.24, page 560), the case of the Weier-
strass Curve remained a difficult open problem, which we propose to completely solve in this paper.
It is directly associated to our previous work [Dav18], in so far as precise estimates are required
for the elementary heights of the sequence of natural prefractal approximations tending towards the
Curve. As is often the case in such a situation, we significantly improve these estimates, which also
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enable us to obtain the exact values of the local extrema, and to obtain the optimal Hölder exponent
of W . Those extrema – which form a dense subset of the Weierstrass Curve – directly depend on the
choice of an initial set of points, which happen to be here the fixed points of the nonlinear iterated
function system involved in the construction of the Curve; see [Dav19] for further details. Moreover,
we introduce the concept of self-shape similarity, a more general one than the standard notion of
self-similarity.

One of the novelties of our approach is that our tubular neighborhood is located on both sides of
the Curve, which seems natural, because vibrations may occur on either side of the underlying fractal
drum. The method we use is similar to the one of [LP06] and [LPW11] (see also [LvF00], §10.3,
and [LvF13], §12.4), without resorting a priori to the distance or the tube zeta function. Once the
fractal tube formula has been obtained, however, we deduce from it the explicit form of the fractal
(tube and distance) zeta functions, along with the Complex Dimensions of the Weierstrass Curve.

The main results obtained in this paper, where we consider the case b = Nb being an integer, can
be found in the following places:

i. In Corollary 2.12, and Theorem 2.13, along with Corollary 2.14, where we prove the sharp
local Hölder continuity, and a sharp discrete version of reverse Hölder continuity, with op-
timal Hölder exponent, for the Weierstrass function W , equal to the (Minkowski) Codimen-

sion 2 −DW = lnNb

1

λ
. It follows, in particular, that W is nowhere differentiable – as is well

known, although our method of proof is completely different from the usual ones.

ii. In Theorems 4.7 and 4.11, wich yield, for small values of the positive parameter ε, the expres-
sion of the area of the ε-neighborhood of the Curve – a Weierstrass Fractal Tube Formula,
which (apart from two terms associated with the Complex Dimensions 0 and −2) consists of an
expansion of the form

∑
α real part of a Complex Dimension

ε
2−α

Gα (lnNb
(1
ε)) , (⋆)

where, for any real part α of a Complex Dimension, Gα denotes a continuous and one-periodic
function. Furthermore, for α = αmax = DW , the Minkowski dimension of the Curve – i.e., for α
being equal to the maximal real part of the Complex Dimensions of the Weierstrass Curve –
the periodic function Gαmax

is nonconstant, as well as bounded away from zero and infinity.
As is the case in the general theory of fractal tube formulas (see [LvF13], [LRŽ17b], Chapter 8
and Chapter 5, respectively), the resulting fractal power series has for exponents the Complex
Codimensions of the Weierstrass Curve. Observe that each nonconstant periodic function in (⋆)
gives rise to multiplicatively periodic (or log–periodic) oscillations in the scaling variable ε.

iii. In Theorem 4.10, where we exhibit the possible Complex Dimensions of the Curve, as the poles
of the associated Tube Zeta Function, itself obtained in Theorem 4.8. Equivalently, in the light
of [LRŽ17a], [LRŽ17b], since DW < 2, the Complex Dimensions are also the poles of the distance
zeta function of the Weierstrass Curve. In particular, we show that the Complex Dimensions

(other than 0 and −2) are all simple and periodically distributed (with the same period p =
2π

lnNb
,

the natural oscillatory period of the Weierstrass Curve) along countably many vertical lines, with
abscissae DW − k (2 −DW ) and 1 − 2 k, where k in N is arbitrary. In addition, −2 and 0 are
also Complex Dimensions, and they are simple.
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iv. In Theorem 4.12 and Corollary 4.13, where we prove the nondegeneracy of the Curve, in the
Minkowski sense (see [LRŽ17b]), coming from the fact that the upper and lower Minkowski
contents of the Curve are respectively positive and finite. As a result, the Minkowski dimen-
sion (or box-counting dimension) DW of the Weierstrass Curve exists, i.e., the lower and upper
Minkowski dimensions of the Curve coincide. Also, since the periodic function GDW

is not con-
stant, it follows that the Weierstrass Curve is not Minkowski measurable. Moreover, we show
that the average Minkowski content of the Weierstrass Curve exists, is positive and finite, as
well as coincides with the average value of the periodic function GDW

.

v. As a corollary of Theorem 4.12, the fact that the number DW is both the Minkowski Dimension
and a Complex Dimension of the Weierstrass Curve; see Corollary 4.13.

vi. The fractality of the Weierstrass Curve, in the sense of [LvF13], [LRŽ17b], [Lap19]; i.e., the exis-
tence of nonreal Complex Dimensions (with real part DW ) giving rise to geometric oscillations,
in the Fractal Tube Formula obtained in this paper (Theorems 4.7 and 4.11), as described in ii.
above. In fact, in the terminology of [LvF13] and [LRŽ17b], the Weierstrass Curve is fractal in
countably many dimensions dk, with dk → −∞, as k →∞.

As could have been expected, the Minkowski dimension (or box dimension) DW coincides with
the maximum value of the real parts of the Complex Dimensions of the Curve. By considering the
lower Minkowski content, which we prove to be strictly positive, we show that DW is, as expected, a
Complex Dimension.

We also briefly evoke, in Subsection 4.5, the noninteger case, i.e., when b is any positive real num-
ber satisfying λ b > 1. This case will be studied in detail in a future work.

Now, the determination of those dimensions, as important as it may be, is not an end in itself. In
fact, the Complex Dimensions directly echo the fractal cohomological properties of the Curve, which
will be the subject of a second paper, [DL22b]. The results of this paper and of [DL22b] are announced
in the survey article [DL22a], where their main results are presented in a summarized form.

2 Geometric Framework

Henceforth, we place ourselves in the Euclidean plane of dimension 2, equipped with a direct or-
thonormal frame. The usual Cartesian coordinates are denoted by (x, y). The horizontal and vertical
axes will be respectively referred to as (x′x) and (y′y).

Notation 1 (Set of all Natural Numbers and Intervals).

As in Bourbaki [Bou04] (Appendix E. 143), we denote by N = {0, 1, 2, ⋯} the set of all natural
numbers, and set N

⋆
= N \ {0}.

Given a, b with −∞ ⩽ a ⩽ b ⩽∞, ]a, b[ = (a, b) denotes an open interval, while, for example, ]a, b] = (a, b]
denotes a half-open, half-closed interval.
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Notation 2 (Wave Inequality Symbol).

Given two positive numbers a and b, we will use the notation a ≲ b, when there exists a strictly
positive constant C such that a ⩽ C b.

Notation 3. In the sequel, λ and Nb are two real numbers such that

0 < λ < 1 , Nb ∈ N
⋆

and λNb > 1 ⋅ (♣)
As explained in [Dav19], we deliberately made the choice to introduce the notation Nb which

replaces the initial b, in so far as, in Hardy’s paper [Har16] (in contrast to Weierstrass’s original
article [Wei75]), b is any positive real number satisfying λ b > 1 , whereas we deal here with the specific
case of a natural integer, which accounts for the natural notation Nb; see, however, Section 4.5.

Definition 2.1 (Weierstrass Function, Weierstrass Curve).

We consider the Weierstrass function W , defined, for any real number x, by

W (x) =
∞

∑
n=0

λ
n

cos (2πNn
b x) ⋅

We call the associated graph the Weierstrass Curve.

Due to the one-periodicity of the W -function, from now on, and without loss of generality, we
restrict our study to the interval [0, 1[= [0, 1).

Notation 4 (Logarithm).

Given y > 0, ln y denotes the natural logarithm of y, while, given a > 0, a ≠ 1, lna y =
ln y

ln a
denotes

the logarithm of y in base a; so that, in particular, ln = lne.

Notation 5. For the parameters λ and Nb satisfying condition (♣) (see Notation 3), we denote by

DW = 2 +
lnλ

lnNb
= 2 − lnNb

1

λ
∈ ]1, 2[

the box-counting dimension (or Minkowski dimension) of the Weierstrass Curve ΓW , which happens to
be equal to its Hausdorff dimension [KMPY84], [BBR14], [She18], [Kel17]. As was mentioned earlier,
our results in this paper will also provide a direct geometric proof of the fact that DW , the Minkowski
dimension (or box-counting dimension) of ΓW , exists and takes the above value.

Remark 2.1. As can be found, for instance, in [Fal86], we recall that the box-counting dimension (or
box dimension, in short), of ΓW ,

DW = − lim
δ→0+

lnNδ (ΓW )
ln δ

, (⋄)
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where Nδ (ΓW ) stands for any of the following quantities:

i. the smallest number of sets of diameter at most δ that cover ΓW on [0, 1[ ;

ii. the smallest number of closed balls of radius δ that cover ΓW on [0, 1[ ;

iii. the smallest number of cubes of side δ that cover ΓW on [0, 1[;

iv. the number of δ-mesh cubes that intersect ΓW on [0, 1[;

v. the largest number of disjoint balls of radius δ with centers in ΓW on [0, 1[.

Furthermore, for the Weierstrass Curve ΓW , as, more generally, for any bounded subset of Eu-
clidean space – the box-counting dimension coincides with the Minkowski dimension (the definition of
which is recalled in Definition 4.5 below).

We stress that our results will imply that the Minkowski (or box-counting) dimension of the

Weierstrass Curve exists; more specifically, the above limit exists and is equal to DW = 2 +
lnλ

lnNb
.

Convention (The Weierstrass Curve as a Cyclic Curve).

In the sequel, we identify the points (0,W (0)) and (1,W (1)) = (1,W (0)).

Remark 2.2. The above convention makes sense, because the points (0,W (0)) and (1,W (1)) have
the same vertical coordinate, in addition to the periodic properties of the W -function.

Property 2.1. (Symmetry with Respect to the Vertical Line x =
1

2
)

Since, for any x ∈ [0, 1],

W (1 − x) =
∞

∑
n=0

λ
n

cos (2πNn
b − 2πN

n
b x) = W (x) ,

the Weierstrass Curve is symmetric with respect to the vertical straight line x =
1

2
.

Proposition 2.2 (Nonlinear and Noncontractive Iterated Function System (IFS)).

Following our previous work [Dav18], we approximate the restriction ΓW to [0, 1[×R, of the
Weierstrass Curve, by a sequence of graphs, built through an iterative process. For this purpose, we
use the nonlinear iterated function system (IFS) of the family of C

∞
maps from R

2
to R

2
denoted by

TW = {T0,⋯, TNb−1} ,

where, for any integer i belonging to {0,⋯, Nb − 1} and any point (x, y) of R
2
,

Ti(x, y) = (x + i
Nb

, λ y + cos (2π (x + i
Nb

))) ⋅
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Remark 2.3. As is explained in [Dav19], it happens that the maps Ti, with i = 0,⋯, Nb − 1, com-
prising the IFS TW in the statement of Proposition 2.2 just above – are not contractions, in the

classical sense. As a result, the nonlinearity of the IFS, TW = {Ti}Nb−1
i=0 , does not enable one to re-

sort to the probabilistic approach of M. F. Barnsley and S. Demko [BD85], or to the earlier work
of J. E. Hutchinson [Hut81], which is applicable in the case of standard fractals such as the Sierpiński
Gasket and the Koch Curve. Interestingly, even if they are not contractions, our maps possess what
can be viewed as satisfying an equivalent property, since, at each step of the iterative process, they
reduce the two-dimensional Lebesgue measures of a given sequence of rectangles covering the Curve.
This is due to the fact that they correspond, in a sense, to the composition of a contraction of ratio rx
in the horizontal direction, and a dilatation of factor ry in the vertical direction, with rx ry < 1. Such
maps are considered, for example, in the book of Robert L. Devaney [Dev03], where they play a part
in the first step of the horseshoe map process introduced by Stephen Smale.

Property 2.3 (Attractor of the IFS).

The Weierstrass Curve is the attractor of the IFS TW : ΓW =

Nb−1

⋃
i=0

Ti(ΓW ).

Proof. We refer to our works [Dav18], [Dav19].

Notation 6 (Fixed Points).

For any integer i belonging to {0,⋯, Nb − 1}, we denote by

Pi = (xi, yi) = ( i

Nb − 1
,

1

1 − λ
cos ( 2π i

Nb − 1
))

the unique fixed point of the map Ti (see [Dav19]).

Definition 2.2 (Sets of Vertices, Prefractals).

We denote by V0 the ordered set (according to increasing abscissa), of the points

{P0,⋯, PNb−1} ⋅
The set of points V0 – where, for any i of {0,⋯, Nb − 2}, the point Pi is linked to the point Pi+1

– constitutes an oriented finite graph, ordered according to increasing abscissa, which we will denote
by ΓW0

. Then, V0 is called the set of vertices of the graph ΓW0
.

For any natural integer m, i.e., m ∈ N, we set Vm =

Nb−1

⋃
i=0

Ti (Vm−1).

The set of points Vm, where two consecutive points are linked, is an oriented finite graph, ordered
according to increasing abscissa, which we will call the m

th
-order W -prefractal. Then, Vm is called

the set of vertices of the prefractal ΓWm
; see Figures 1, 2, 3.
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Definition 2.3 (Adjacent Vertices, Edge Relation).

For any natural integer m, the prefractal graph ΓWm
is equipped with an edge relation ∼

m
, as fol-

lows: two vertices X and Y of ΓWm
, i.e. two points belonging to Vm, will be said to be adjacent

(i.e., neighboring or junction points) if and only if the line segment [x, y] is an edge of ΓWm
; we then

write x ∼
m
y. Note that this edge relation depends on m, which means that points adjacent in Vm

might not remain adjacent in Vm+1.

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

Figure 1: The prefractal graphs ΓW0
, ΓW1

, ΓW2
, ΓW3

, ΓW4
, ΓW5

, in the case where λ =
1

2
and Nb = 3.

10



1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

Figure 2: The prefractal graphs ΓW0
, ΓW1

, ΓW2
, ΓW3

, ΓW4
, ΓW5

, in the case where λ =
1

2
and Nb = 4.
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1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

Figure 3: The prefractal graphs ΓW0
, ΓW1

, ΓW2
, ΓW3

, ΓW4
, ΓW5

, in the case where λ =
1

2
and Nb = 7.
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Property 2.4. [Dav18] For any natural integer m:

i. Vm ⊂ Vm+1 ⋅

ii. #Vm = (Nb − 1) Nm
b + 1, where #Vm denotes the number of elements in the finite set Vm.

iii. The prefractal graph ΓWm
has exactly (Nb − 1) Nm

b edges.

iv. The consecutive vertices of the prefractal graph ΓWm
are the vertices of N

m
b simple nonregular

polygons Pm,k with Nb sides. For any strictly positive integer m, the junction point between two
consecutive polygons is the point

( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 1 ⋅

Hence, the total number of junction points is N
m
b − 1. For instance, in the case Nb = 3, the

polygons are all triangles; see Figure 4.

In the sequel, we will denote by P0 the initial polygon, whose vertices are the fixed points of
the maps Ti, 0 ⩽ i ⩽ Nb − 1, introduced in Definition 2.2, i.e., {P0,⋯, PNb−1}.

P0
P2

T0 (P1)

T0 (P2) = T1 (P0) T1 (P2) = T2 (P0)

T2 (P1)

P1

polygon P1,0

polygon P1,1

polygon P1,2

initial polygon P0

1
x

-1

1

y

Figure 4: The initial polygon P0, and the polygons P0,1, P1,1, P1,2, in the case

where λ =
1

2
and Nb = 3.
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Definition 2.4 (Vertices of the Prefractals, Elementary Lengths, Heights and Angles).

Given a strictly positive integer m, we denote by (Mj,m)0⩽j⩽(Nb−1)Nm
b −1 the set of vertices of

the prefractal graph ΓWm
. One thus has, for any integer j in {0,⋯, (Nb − 1)Nm

b − 1},

Mj,m = ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) ⋅

We also introduce, for any integer j in {0,⋯, (Nb − 1)Nm
b − 2}, the following quantities:

i. the elementary horizontal lengths:

Lm =
j

(Nb − 1)Nm
b

;

ii. the elementary lengths:

`j,j+1,m = d (Mj,m,Mj+1,m) =
√
L2
m + h

2
j,j+1,m ;

iii. the elementary heights:

hj−1,j,m =

»»»»»»»»
W ( j

(Nb − 1)Nm
b

) −W ( j − 1

(Nb − 1)Nm
b

)
»»»»»»»»
, hj,j+1,m =

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
;

iv. the geometric angles:

θj−1,j,m = ̂((y′y), (Mj−1,mMj,m)) , θj,j+1,m = ̂((y′y), (Mj,mMj+1,m)) ,

which yield the value of the geometric angle between consecutive edges
[Mj−1,mMj,m,Mj,mMj+1,m]:

θj−1,j,m + θj,j+1,m = arctan
Lm

∣hj−1,j,m∣
+ arctan

Lm

∣hj,j+1,m∣
⋅

Property 2.5. For the geometric angle θj−1,j,m, with 0 ⩽ j ⩽ (Nb − 1)Nm
b − 1 and m ∈ N, we have

the following relation:

tan θj−1,j,m =
hj−1,j,m
Lm

⋅

One now requires, at a given step m ∈ N
⋆
, the exact coordinates of the vertices of the prefractal

graph ΓWm
, i.e. of the following set of points:

( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) , 0 ⩽ j ⩽ #Vm ⋅

Thus far, they could not be found in the existing literature on the subject.

For this purpose, it is interesting to use the scaling properties of the Weierstrass function.
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Property 2.6 (Scaling Properties of the Weierstrass Function, and Consequences).

Since, for any real number x, W (x) =
∞

∑
n=0

λ
n

cos (2πNn
b x), one also has

W (Nb x) =
∞

∑
n=0

λ
n

cos (2πN
n+1
b x) = 1

λ

∞

∑
n=1

λ
n

cos (2πNn
b x) =

1

λ
(W (x) − cos (2π x)) ,

which yields, for any strictly positive integer m and any j in {0,⋯,#Vm},

W ( j

(Nb − 1)Nm
b

) = λW ( j

(Nb − 1)Nm−1
b

) + cos( 2π j

(Nb − 1)Nm−1
b

) ⋅

By induction, one then obtains that

W ( j

(Nb − 1)Nm
b

) = λm W ( j

(Nb − 1)) +
m−1

∑
k=0

λ
k

cos( 2πN
k
b j

(Nb − 1)Nm
b

) ⋅

Property 2.7. (A Consequence of the Symmetry with Respect to the Vertical Line x =
1

2
)

For any strictly positive integer m and any j in {0,⋯,#Vm}, we have that

W ( j

(Nb − 1)Nm
b

) = W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

) ,

which means that the points

((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

,W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)) and ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

are symmetric with respect to the vertical line x =
1

2
.

Definition 2.5 (Left-Side and Right-Side Vertices).

Given natural integers m, k such that 0 ⩽ k ⩽ N
m
b − 1, and a polygon Pm,k, we define:

i. The set of its left-side vertices as the set of the first [Nb − 1

2
] vertices, where [y] denotes the

integer part of the real number y.

ii. The set of its right-side vertices as the set of the last [Nb − 1

2
] vertices.

When the integer Nb is odd, we define the bottom vertex as the (Nb − 1

2
)
th

one; see Figure 6.
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M j-1,m

M j-1+p,m

M(Nb-1)Nb
m
- j+1,m

M(Nb-1)Nb
m
- j+1-p,m

x =
1

2

1
x

-1

1

y

Figure 5: Symmetric points with respect to the vertical line x =
1

2
.

Left - side vertices Right - side vertices

Bottom vertex

x

y

Left - side vertices

Right - side vertices

Bottom vertex

1
x

-1

1

y

Figure 6: The left-side and right-side vertices.
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Property 2.8. Since, for any natural integer n,

N
n
b = (1 +Nb − 1)n =

n

∑
k=0

(nk) (Nb − 1)k ≡ 1 mod Nb − 1 ,

one obtains, for any integer j in {0,⋯, Nb − 1}:

W ( j

Nb − 1
) =

∞

∑
n=0

λ
n

cos (2πN
n
b

j

(Nb − 1)) =
∞

∑
n=0

λ
n

cos ( 2π j

Nb − 1
) = 1

1 − λ
cos ( 2π j

Nb − 1
) ⋅

We observe that the point

( j

Nb − 1
,W ( j

Nb − 1
)) = ( j

Nb − 1
,

1

1 − λ
cos ( 2π j

Nb − 1
))

is also the fixed point of the map Tj introduced in Property 2.2.

Property 2.9.

For 0 ⩽ j ⩽
(Nb − 1)

2
(resp., for

(Nb − 1)
2

⩽ j ⩽ Nb − 1), we have that

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩽ 0 (resp., W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩾ 0) ⋅

Proof. For any integer j in {0,⋯, Nb − 1},

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) = 1

1 − λ
(cos (2π (j + 1)

Nb − 1
) − cos ( 2π j

Nb − 1
)) ⋅

i. For 0 ⩽ j ⩽
Nb − 1

2
:

0 ⩽
2π j

Nb − 1
⩽ π , 0 ⩽

2π (j + 1)
Nb − 1

⩽ π (1 +
2

Nb − 1
) ⋅

The limit case

2π (j + 1)
Nb − 1

= π (1 +
2

Nb − 1
)

only occurs when the integer Nb is odd, for the value j =
Nb − 1

2
, and corresponds to the bottom

vertex of the initial polygon P0. In this case, one has

W (Nb − 1

2
) = − 1

1 − λ
⋅

This case can thus be left aside.

One may therefore only consider the cases when 0 ⩽
2π j

Nb − 1
⩽

2π (j + 1)
Nb − 1

⩽ π.
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The cosine function being nonincreasing on [0, π], one obtains the expected result:

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩽ 0 ⋅

ii. For
(Nb − 1)

2
⩽ j ⩽ Nb − 1:

π ⩽
2π j

Nb − 1
⩽ 2π , π (1 +

2

Nb − 1
) ⩽ 2π (j + 1)

Nb − 1
⩽

2πNb

Nb − 1
⋅

As previously, the limit case

2π (j + 1)
Nb − 1

= π (1 +
2

Nb − 1
)

can be left aside. The increasing property of the cosine function on [π, 2π] then yields the
expected result:

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩾ 0 ⋅

Notation 7 (Signum Function).

The signum function of a real number x is defined by

sgn (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1, if x < 0,
0, if x = 0,
+1, if x > 0 ⋅

Property 2.10. Given any strictly positive integer m, we have the following properties:

i. For any j in {0,⋯,#Vm}, the point

( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

is the image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i)) = (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

,W (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

))

under the map Ti, 0 ⩽ i ⩽ Nb − 1.
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Consequently, for 0 ⩽ j ⩽ Nb − 1, the j
th

vertex of the polygon Pm,k, 0 ⩽ k ⩽ N
m
b − 1, i.e.,

the point

((Nb − 1) k + j
(Nb − 1)Nm

b

,W ((Nb − 1) k + j
(Nb − 1)Nm

b

))

is the image of the point

⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

,W
⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

⎞
⎟
⎠
⎞
⎟
⎠

;

it is also the j
th

vertex of the polygon Pm−1,k−i (Nb−1)Nm−1
b

. Therefore, there is an exact
correspondance between vertices of the polygons at consecutive steps m − 1, m.

ii. Given j in {0,⋯, Nb − 2} and k in {0,⋯, N
m
b − 1}, we have that

sgn (W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ⋅

Proof.

i. One simply applies Proposition 2.3, in conjunction with Property 2.8.
For i in {0,⋯, Nb − 1}, we have that

Ti (
j − i (Nb − 1)Nm−1

b

(Nb − 1)Nm−1
b

,W (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

))

∣∣

(j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm
b

+
i

Nb
, λW (j − i (Nb − 1)Nm−1

b

(Nb − 1)Nm−1
b

) + cos(2π (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm
b

+
i

Nb
)))

= ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm−1
b

− i) + cos (2π
j

(Nb − 1)Nm
b

))

= ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm−1
b

− i) + cos (2π
j − i

(Nb − 1)Nm
b

+
i

Nb
))

= ( j

(Nb − 1)Nm
b

, λW ( j

(Nb − 1)Nm−1
b

) + cos (2π
j − i

(Nb − 1)Nm
b

))

= ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) ⋅
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ii. We prove the result by induction on m. Accordingly, let us consider j in {0,⋯, Nb − 2}.

The result at the initial step m = 1 is satisfied, in so far as, for any integer k in {0,⋯, Nb − 1} :

W (k (Nb − 1) + j + 1

(Nb − 1)Nb
) −W (k (Nb − 1) + j

(Nb − 1)Nb
) = λ (W (k (Nb − 1) + j + 1

Nb − 1
) −W (k (Nb − 1) + j

Nb − 1
))

+ cos (2π (k (Nb − 1) + j + 1)
Nb − 1

) − cos (2π (k (Nb − 1) + j)
Nb − 1

)

= λ (W (k + j + 1

(Nb − 1)) −W (k + j

(Nb − 1)))

+ cos (2π (j + 1)
(Nb − 1) ) − cos ( 2π j

Nb − 1
)

= λ (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
))

+W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)

= (1 + λ) (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ⋅

Let us now assume that, for any integer k in {0,⋯, N
m−1
b − 1},

sgn (W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W ( k (Nb − 1)j
(Nb − 1)Nm

b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ⋅

Henceforth, we want to prove that, for any integer k in {0,⋯, N
m−1
b − 1},

sgn (W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W ( k (Nb − 1)j
(Nb − 1)Nm

b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ⋅

The induction hypothesis will be used in so far as any k in {0,⋯, N
m−1
b − 1} can also be expressed

in the following form:

k = k̃ + iN
m−1
b , 0 ⩽ k̃ ⩽ N

m−1
b − 1 , 0 ⩽ i ⩽ Nb − 1 ⋅

This will be useful because of the one-periodicity of the W -function, since, for any real number x
and any integer i, we have that

W (x + i) = W (x) ⋅

Due to the symmetry with respect to the vertical line x =
1

2
(see Property 2.1), given a natural

integer m, one can, in addition, restrict oneself to the cases when

0 ⩽ (Nb − 1) k + j < (Nb − 1) k + j + 1 ⩽ [(Nb − 1)Nm
b + 1

2
] = (Nb − 1)Nm

b

2
,

which yields

0 ⩽
(2 (Nb − 1) k + 2 j − 1) π

2 (Nb − 1)Nm
b

<
(2 (Nb − 1) k + 2 j + 1) π

(Nb − 1)Nm
b

⩽ π ⋅
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Thus, we only have to consider the cases when

sin ((2 (Nb − 1) k + 2 j − 1) π
(Nb − 1)Nm

b

) ⩾ 0 and sin ((2 (Nb − 1) k + 2 j + 1) π
(Nb − 1)Nm

b

) ⩾ 0 ⋅

The remaining ones, namely, the cases when

sin ((2 (Nb − 1) k + 2 j − 1) π
(Nb − 1)Nm

b

) ⩽ 0 and sin ((2 (Nb − 1) k + 2 j + 1) π
(Nb − 1)Nm

b

) ⩽ 0 ,

are then obtained by symmetry.

Hence,

W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
∣∣

= λ (W (k (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k (Nb − 1) + j
(Nb − 1)Nm−1

b

))

+ cos(2π (k (Nb − 1) + j + 1)
(Nb − 1)Nm−1

b

) − cos(2π (k (Nb − 1) + j)
(Nb − 1)Nm−1

b

)

= λ (W (k (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k (Nb − 1) + j
(Nb − 1)Nm−1

b

))

−2 sin( π

(Nb − 1)Nm−1
b

) sin((2 (Nb − 1) k + 2 j + 1) π
(Nb − 1)Nm−1

b

)

= λ (W ( k̃ (Nb − 1) + i (Nb − 1)Nm−1
b + j + 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + i (Nb − 1)Nm−1
b + j

(Nb − 1)Nm−1
b

))

−2 sin( π

(Nb − 1)Nm−1
b

) sin((2 (Nb − 1) k + 2 j + 1) π
(Nb − 1)Nm−1

b

)

= λ (W (i + k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W (i + k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

))

−2 sin( π

(Nb − 1)Nm−1
b

) sin((2 (Nb − 1) k + 2 j + 1) π
(Nb − 1)Nm−1

b

)

= λ (W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

))

−2 sin( π

(Nb − 1)Nm−1
b

) sin((2 (Nb − 1) k + 2 j + 1) π
(Nb − 1)Nm−1

b

) ⋅

In the case when

0 ⩽ (Nb − 1) k + j + 1 ⩽ [(Nb − 1)Nm
b + 1

2
] = (Nb − 1)Nm

b

2
,
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one thus has

−2 sin( π

(Nb − 1)Nm−1
b

) sin((2 (Nb − 1) k + 2 j − 1) π
(Nb − 1)Nm−1

b

) ⩽ 0 ⋅

The configuration of the initial polygon ensures, for 0 ⩽ j ⩽
Nb − 1

2
, that

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩽ 0

and therefore, thanks to the induction hypothesis,

W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

) ⩽ 0 ⋅

By induction, one thus obtains, for any natural integer m, any k in {0,⋯, N
m
b − 1}, and any j

in {0,⋯,
Nb − 3

2
}, that

W ((Nb − 1) k + j + 1

(Nb − 1)Nm
b

) −W ((Nb − 1) k + j
(Nb − 1)Nm

b

) ⩽ 0 ,

as required.

Corollary 2.11 (Lower Bound for the Elementary Heights (Coming from Property 2.10)).

For any strictly positive integer m, and any j in {0,⋯, (Nb − 1)Nm
b }, we have that

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
⩾ λ

»»»»»»»»»
W ( j + 1

(Nb − 1)Nm−1
b

) −W ( j

(Nb − 1)Nm−1
b

)
»»»»»»»»»
,

which yields, by induction,

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
⩾ λ

m

Í ÒÑÒÏ
N
m (DW −2)
b

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
⋅

This improves our previous result in [Dav18].

Corollary 2.12 (Upper Bound for the Elementary Heights (Coming from Property 2.10)).

For any strictly positive integer m, and any j in {0,⋯, (Nb − 1)Nm
b }, we have that

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
⩽ λ

m (
»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2πNb

(Nb − 1)Nm
b (Nb − λ)

)

⩽ λ
m

Í ÒÑÒÏ
N
m (DW −2)
b

(
»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2πNb

(Nb − 1) (Nb − λ)
) ,

which also improves our previous result in [Dav18].
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Proof. For any strictly positive integer m and any j in {0,⋯, (Nb − 1)Nm
b }, we have the following

estimates:

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
⩽ λ

»»»»»»»»»
W ( j + 1

(Nb − 1)Nm−1
b

) −W ( j

(Nb − 1)Nm−1
b

)
»»»»»»»»»

+
»»»»»»»»»
cos( 2π (j + 1)

(Nb − 1)Nm−1
b

) − cos( 2π j

(Nb − 1)Nm−1
b

)
»»»»»»»»»

⩽ λ
»»»»»»»»»
W ( j + 1

(Nb − 1)Nm−1
b

) −W ( j

(Nb − 1)Nm−1
b

)
»»»»»»»»»

+
2π

(Nb − 1)Nm−1
b

,

which yields, by induction,

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
⩽ λ

m
»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+
m−1

∑
k=0

λ
k 2π

(Nb − 1)Nk
b

= λ
m

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π λ
m

(Nb − 1)Nm
b (1 − λ

Nb
)

= λ
m (

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2πNb

(Nb − 1)Nm
b (Nb − λ)

) ,

as desired.

Remark 2.4. Corollaries 2.11 and 2.12 are important, because they enable one to obtain exact and
more accurate values of the bounding constants Cinf and Csup involved in the following inequality:

Cinf L
2−DW
m ⩽ ∣W ((j + 1)Lm) −W (j Lm)∣ ⩽ Csup L2−DW

m , m ∈ N, 0 ⩽ j ⩽ (Nb − 1)Nm
b , (✠)

where

Cinf = (Nb − 1)2−DW
»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

and

Csup = (Nb−1)2−DW (
»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2πNb

(Nb − 1) (Nb − λ)
) = Cinf+

2πNb (Nb − 1)1−DW

(Nb − λ)
⋅

One should note, in addition, that these constants depend on the initial polygon P0.
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Theorem 2.13 (Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Func-
tion (Corollary of 2.11)).

For any natural integer m, let us consider a pair of real numbers (x, x′) such that

x =
(Nb − 1) k + j
(Nb − 1)Nm

b

= ((Nb − 1) k + j) Lm , x
′
=

(Nb − 1) k + j + `
(Nb − 1)Nm

b

= ((Nb − 1) k + j + `) Lm ,

where 0 ⩽ k ⩽ Nb − 1
m − 1, and

i. if the integer Nb is odd,

0 ⩽ j <
Nb − 1

2
and 0 < j + ` ⩽

Nb − 1

2

or

Nb − 1

2
⩽ j < Nb − 1 and

Nb − 1

2
< j + ` ⩽ Nb − 1 ;

ii. if the integer Nb is even,

0 ⩽ j <
Nb

2
and 0 < j + ` ⩽

Nb

2

or

Nb

2
+ 1 ⩽ j < Nb − 1 and

Nb

2
+ 1 < j + ` ⩽ Nb − 1 ,

This means that the points (x,W (x)) and (x′,W (x′)) are vertices of the polygon Pm,k (see Prop-
erty 2.4 above), both located on the left-side of the polygon, or on the right-side; see Figure 6.

Then, one has the following (discrete, local) reverse-Hölder inequality, with sharp Hölder expo-

nent −
lnλ

lnNb
= 2 −DW ,

Cinf ∣x′ − x∣2−DW
⩽

»»»»»W (x′) −W (x)»»»»» ⋅

Proof. In the light of Property 2.9, one can restrict oneself to the case when

0 ⩽ j <
Nb − 1

2
and 0 < j + ` ⩽

Nb − 1

2
⋅

The expected result in the remaining case can easily be proved in a similar way. Since

W (((Nb − 1) k + j + `) Lm) ⩽⋯ ⩽ W (((Nb − 1) k + j + 1) Lm) ⩽ W (((Nb − 1) k + j) Lm)

then, by applying the results of Remark 2.4, we have the following ` inequalities:

Cinf L
2−DW
m ⩽ −W (((Nb − 1) k + j + 1) Lm) +W ((Nb − 1) k + j) Lm)

Cinf L
2−DW
m ⩽ −W (((Nb − 1) k + j + 2) Lm) +W (((Nb − 1) k + j + 1) Lm)

.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
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Cinf L
2−DW
m ⩽ −W (((Nb − 1) k + j + `) Lm) +W (((Nb − 1) k + ` − 1) Lm) ⋅

Thus, upon summation, we obtain that

`Cinf L
2−DW
m ⩽ −W (((Nb − 1) k + j + `) Lm) +W (((Nb − 1) k + j) Lm) ⋅

Since ` ⩾ `
2−DW and ∣x′ − x∣ = ` Lm, one deduces the desired result.

Remark 2.5. Thus far, no such reverse Hölder estimates had been obtained for the Weierstrass func-
tion. The fact that they are discrete ones is natural, since the Weierstrass Curve is approximated by a
sequence of polygonal prefractal finite graphs. Recall that the countable set of vertices of all of these
graphs is dense in the whole Weierstrass Curve.

Corollary 2.14 (Optimal Hölder Exponent for the Weierstrass Function).

The local reverse Hölder property of Theorem 2.13 – in conjunction with the Hölder condition sat-
isfied by the Weierstrass function (see also [Zyg02], Chapter II, Theorem 4.9, page 47) – shows that

the Codimension 2 −DW = −
lnλ

lnNb
∈ ]0, 1[ is the best (i.e., optimal) Hölder exponent for the Weier-

strass function (as was originally shown, by a completely different method, by G. H. Hardy in [Har16]).

Note that, as a consequence, since the Hölder exponent is strictly smaller than one, the Weierstrass
function W is nowhere differentiable.

Remark 2.6. Indeed, if W were differentiable at some point x0 ∈ [0, 1], then it would have to be
locally Lipschitz at x0, and hence, its Hölder exponent at x0 would be equal to 1, which is impossible.

Corollary 2.15 (Coming from Property 2.10).

Thanks to Remark 2.4, one may now write, for any strictly positive integer m and any integer j
in {0,⋯, (Nb − 1)Nm

b − 1}:

i. for the elementary heights:

hj−1,j,m = L
2−DW
m O (1) ;

ii. for the elementary quotients:

hj−1,j,m
Lm

= L
1−DW
m O (1) ,

as follows from Remark 2.4 above, and where

Cinf ⩽ O (1) ⩽ Csup ⋅
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Corollary 2.16 (Nonincreasing Sequence of Geometric Angles (Coming from Property 2.10)).

For the geometric angles θj−1,j,m, 0 ⩽ j ⩽ (Nb − 1)Nm
b − 1, m ∈ N, we have the following result:

tan θj−1,j,m =
Lm

hj−1,j,m
(Nb − 1) > tan θj−1,j,m+1 ,

which yields

θj−1,j,m > θj−1,j,m+1 and θj−1,j,m+1 ≲ L
DW −1
m ⋅

Proof.

i. One simply writes, successively:

tan θj−1,j,m =
Lm

»»»»»»»»
W ( j

(Nb − 1)Nm
b

) −W ( j − 1

(Nb − 1)Nm
b

)
»»»»»»»»

⩾
λLm

»»»»»»»»»
W ( j

(Nb − 1)Nm+1
b

) −W ( j − 1

(Nb − 1)Nm+1
b

)
»»»»»»»»»

=
λ (Nb − 1)Nb Lm+1

»»»»»»»»»
W ( j

(Nb − 1)Nm+1
b

) −W ( j − 1

(Nb − 1)Nm+1
b

)
»»»»»»»»»

= λ (Nb − 1)Nb tan θj−1,j,m+1

> (Nb − 1) tan θj−1,j,m+1

since λNb > 1. Then, i. holds.

ii. One also has

θj−1,j,m+1 < arctan
(Nb − 1)Lm
hj−1,j,m

,

where

hj−1,j,m = L
2−DW
m O (1) and Cinf ⩽ O (1) ⩽ Csup ⋅

This yields

(Nb − 1)Lm
hj−1,j,m

= L
DW −1
m O (1) and (Nb − 1)Cinf ⩽ O (1) ⩽ (Nb − 1)Csup ⋅

Consequently, θj−1,j,m+1 ≲ L
DW −1
m , as claimed.
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Corollary 2.17 (Local Extrema of the Weierstrass Function (Coming from Property 2.10)).

i. The set of local maxima of the Weierstrass function on the interval [0, 1] is given by

{((Nb − 1) k
Nm
b

,W ((Nb − 1) k
Nm
b

)) ∶ 0 ⩽ k ⩽ N
m
b − 1, m ∈ N} ,

and corresponds to the extreme vertices of the polygons at a given step m (vertices connecting
consecutive polygons).

ii. For odd values of Nb, the set of local minima of the Weierstrass function on the interval [0, 1]
is given by

{(
(Nb − 1) k + Nb−1

2

(Nb − 1)Nm
b

,W (
(Nb − 1) k + Nb−1

2

(Nb − 1)Nm
b

)) ∶ 0 ⩽ k ⩽ N
m
b − 1, m ∈ N} ,

and corresponds to the bottom vertices of the polygons at a given step m.

Property 2.18 (Existence of Reentrant Angles).

i. The initial polygon P0, admits reentrant interior angles, at a vertex Pj, with 0 < j ⩽ Nb − 1,
in the sense that, with the right-hand rule, according to which angles are measured in a counter-

clockwise direction ̂((PjPj+1) , (PjPj−1)) > π, in the case when

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1

(see Figure 7), which does not occur for values of Nb < 7.

The number of reentrant angles is then equal to 2 [Nb − 3

4
].

ii. At a given step m ∈ N
⋆

, with the above convention, a polygon Pm,k admits reentrant interior
angles in the sole cases when Nb ⩾ 7, at vertices Mk+j, 1 ⩽ k ⩽ N

m
b , 0 < j ⩽ Nb − 1, as well as

in the case when

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1 ⋅

The number of reentrant angles is then equal to 2N
m
b [Nb − 3

4
].
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P j-1

P j

P j+1

interior

reentrant

angle

1
x

-1

1

y

Figure 7: An interior reentrant angle. Here, Nb = 7 and λ =
1

2
.

Proof.

i. Due to the symmetry with respect to the vertical line x =
1

2
(see Property 2.1), one can restrict

oneself to the vertices Pj , with 0 < j <
Nb − 1

2
.

The initial polygon P0, admits reentrant interior angles at a vertex Pj , with j + 1 <
Nb − 1

2
, in

the case when

̂((y′y), (Pj−1Pj)) > ̂((y′y), (PjPj+1)) (♠)
Since

Pj = (xj , yj) = ( j

Nb − 1
,W ( j

Nb − 1
)) = ( j

Nb − 1
,

1

1 − λ
cos ( 2π j

Nb − 1
)) ,

one has

tan ̂((y′y), (Pj−1Pj)) =
L0

»»»»»»»»
W ( j

Nb − 1
) −W ( j − 1)

Nb − 1
)
»»»»»»»»

and

tan ̂((y′y), (PjPj+1)) =
L0

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

,

where L0 =
1

Nb − 1
.

Therefore, condition (♠) above corresponds to the case when

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
>

»»»»»»»»
W ( j

Nb − 1
) −W ( j − 1

Nb − 1
)
»»»»»»»»
,
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i.e.,

»»»»»»»»
cos (2π (j + 1)

Nb − 1
) − cos ( 2π j

Nb − 1
)
»»»»»»»»
>

»»»»»»»»
cos ( 2π j

Nb − 1
) − cos (2π (j − 1)

Nb − 1
)
»»»»»»»»
,

or, equivalently,

»»»»»»»»
2 sin

π

Nb − 1
sin (π (2 j + 1)

Nb − 1
)
»»»»»»»»
>

»»»»»»»»
2 sin

π

Nb − 1
sin (π (2 j − 1)

Nb − 1
)
»»»»»»»»
,

and thus happens if

»»»»»»»»
sin (π (2 j + 1)

Nb − 1
)
»»»»»»»»
>

»»»»»»»»
sin (π (2 j − 1)

Nb − 1
)
»»»»»»»»
⋅

Since

0 <
π (2 j − 1)
Nb − 1

<
π (2 j + 1)
Nb − 1

< π ,

we conclude that condition (♠) occurs if

0 < π (2 j − 1)Nb − 1 <
π (2 j + 1)
Nb − 1

⩽
π

2
,

i.e., if 0 < j ⩽
Nb − 3

4
.

For vertices Pj , with
Nb + 1

2
< j < Nb − 1, the result is obtained thanks to the aforementioned

symmetry. The initial polygon P0, admits reentrant interior angles at a vertex Pj in the case

when
3Nb − 1

4
⩽ j < Nb − 1.

ii. The result is obtained by strong induction on the integer m. We restrict ourselves to the val-

ues Nb ⩾ 7, and consider j in {0,⋯, [Nb − 3

4
]}.

We claim that the result is satisfied at the initial step m = 1. Indeed, as was already encountered
in the proof of Property 2.10, for any integer k in {0,⋯, Nb − 1}, we have that

»»»»»»»»
W (k (Nb − 1) + j + 1

(Nb − 1)Nb
) −W ( j

(Nb − 1)Nb
)
»»»»»»»»
=

»»»»»»»»
(1 + λ) {W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)}

»»»»»»»»
and

»»»»»»»»
W (k (Nb − 1) + j

(Nb − 1)Nb
) −W ( j − 1

(Nb − 1)Nb
)
»»»»»»»»
=

»»»»»»»»
(1 + λ) {W ( j

Nb − 1
) −W ( j − 1

Nb − 1
)}

»»»»»»»»
⋅
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Thus,

tan θk (Nb−1)+j−1,k (Nb−1)+j,1
tan θk (Nb−1)+j,k (Nb−1)+j+1,1

=

»»»»»»»»
W (k (Nb − 1) + j + 1

(Nb − 1)Nb
) −W (k (Nb − 1) + j

(Nb − 1)Nb
)
»»»»»»»»»»»»»»»»

W (k (Nb − 1) + j
(Nb − 1)Nb

) −W (k (Nb − 1) + j − 1

(Nb − 1)Nb
)
»»»»»»»»

=

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j − 1

Nb − 1
)
»»»»»»»»»»»»»»»»

W ( j

Nb − 1
) −W ( j − 1

Nb − 1
)
»»»»»»»»

> 1 ,

which implies that

θk (Nb−1)+j−1,k (Nb−1)+j,1 > θk (Nb−1)+j,k (Nb−1)+j+1,1

and yields the existence of an interior reentrant angle at the vertex

(k (Nb − 1) + j
(Nb − 1)Nb

,W (k (Nb − 1) + j
(Nb − 1)Nb

)) ⋅

Let us now assume that, up to a given step m ⩾ 1, there is a reentrant interior angle at any vertex

( k (Nb − 1) + j
(Nb − 1)Nm−1

b

,W ( k (Nb − 1) + j
(Nb − 1)Nm−1

b

)) , with 0 ⩽ k ⩽ N
m−1
b − 1 ⋅

We then want to prove that there is a reentrant interior angle at any vertex

(k (Nb − 1) + j
(Nb − 1)Nm

b

,W (k (Nb − 1) + j
(Nb − 1)Nm

b

)) , with 0 ⩽ k ⩽ N
m
b − 1 ⋅

As was the case in the proof of Property 2.10, in order to be able to use the induction hypothesis,
we express any integer k in {0,⋯, N

m
b − 1} in the following form:

k = k̃ + iN
m−1
b , 0 ⩽ k̃ ⩽ N

m−1
b − 1 , 0 ⩽ i ⩽ Nb − 1 ⋅

Thus,

W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

) = λ (W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

))

−2 sin( π

(Nb − 1)Nm−1
b

) sin
⎛
⎜
⎝
(2 (Nb − 1) k̃ + 2 j + 1) π

(Nb − 1)Nm−1
b

⎞
⎟
⎠
,

and

W (k (Nb − 1) + j
(Nb − 1)Nm

b

) −W ( j − 1

(Nb − 1)Nm
b

) = λ (W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

) −W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−1
b

))

−2 sin( π

(Nb − 1)Nm−1
b

) sin
⎛
⎜
⎝
(2 (Nb − 1) k̃ + 2 j − 1) π

(Nb − 1)Nm−1
b

⎞
⎟
⎠
⋅
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In light of Property 2.10, given such an integer k - and hence also, k̃ and j - and since

0 ⩽ j ⩽ [Nb − 3

4
] ⩽ Nb − 1

2
,

the only configuration to be considered corresponds to the case when

θk̃ (Nb−1)+j−1,k̃ (Nb−1)+j,m−1 > θk̃ (Nb−1)+j,k̃ (Nb−1)+j+1,m−1

and

W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−1
b

)−W ( j

(Nb − 1)Nm−1
b

) > 0 , W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

)−W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) > 0 ⋅

Then,

tan θk̃ (Nb−1)+j−1,k̃ (Nb−1)+j,m−1 > tan θk̃ (Nb−1)+j,k̃ (Nb−1)+j+1,m−1 ;

i.e.,

Lm−1
»»»»»»»»»
W ( k̃ (Nb − 1) + j

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−1
b

)
»»»»»»»»»

>
Lm−1

»»»»»»»»»
W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

)
»»»»»»»»»

,

which yields

»»»»»»»»»
W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

)
»»»»»»»»»
>

»»»»»»»»»
W ( k̃ (Nb − 1) + j

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−1
b

)
»»»»»»»»»
,

or, equivalently,

W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

) −W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) > W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

) ⋅

The strong induction hypothesis, which ensures the existence of a reentrant interior angle at the
vertex

( (Nb − 1) k̃ + j
(Nb − 1)Nm−2

b

,W ( (Nb − 1) k̃ + j
(Nb − 1)Nm−2

b

)) ,

requires, in conjunction with

W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−2

b

) −W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−2
b

) > W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−2
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−2

b

) ,

that

sin(π (2 k̃ (Nb − 1) + 2 j + 1)
(Nb − 1)Nm−2

b

) > sin(π (2 k̃ (Nb − 1) + 2 j − 1)
(Nb − 1)Nm−2

b

) ,
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which corresponds to

0 <
π (2 k̃ (Nb − 1) + 2 j + 1)

(Nb − 1)Nm−2
b

<
π (2 k̃ (Nb − 1) + 2 j − 1)

(Nb − 1)Nm−2
b

⩽
π

2

and, as a matter of fact, ensures that

0 <
π (2 k̃ (Nb − 1) + 2 j + 1)

(Nb − 1)Nm−1
b

<
π (2 k̃ (Nb − 1) + 2 j − 1)

(Nb − 1)Nm−21
b

⩽
π

2Nb
<
π

2
⋅

One then has the following inequality:

λ (W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

) −W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

)) + 2 sin( π

(Nb − 1)Nm−1
b

) sin(π (2 k̃ (Nb − 1) + 2 j + 1)
(Nb − 1)Nm−1

b

)

> λ (W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

)) + 2 sin( π

(Nb − 1)Nm−1
b

) sin(π (2 k̃ (Nb − 1) + 2 j − 1)
(Nb − 1)Nm−1

b

) ⋅

Hence,

tan θk̃ (Nb−1)+j−1,k̃ (Nb−1)+j,m

∣∣

Lm

»»»»»»»»»
W ( k̃ (Nb − 1) + j

(Nb − 1)Nm
b

) −W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm
b

)
»»»»»»»»»

=
Lm

»»»»»»»»»
λ (W ( k̃ (Nb − 1) + j

(Nb − 1)Nm
b

) −W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm
b

)) − 2 sin( π

(Nb − 1)Nm−1
b

) sin(π (2 k̃ (Nb − 1) + 2 j − 1)
(Nb − 1)Nm−1

b

)
»»»»»»»»»

=
Lm

λ (W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)) + 2 sin( π

(Nb − 1)Nm−1
b

) sin(π (2 k̃ (Nb − 1) + 2 j − 1)
(Nb − 1)Nm−1

b

)

>
Lm

λ (W ( k̃ (Nb − 1) + j
(Nb − 1)Nm

b

) −W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm
b

)) + 2 sin( π

(Nb − 1)Nm−1
b

) sin(π (2 k̃ (Nb − 1) + 2 j + 1)
(Nb − 1)Nm−1

b

)

= tan θk̃ (Nb−1)+j,k̃ (Nb−1)+j+1,m ,

which yields the expected result. Namely,

θk̃ (Nb−1)+j−1,k̃ (Nb−1)+j,m > θk̃ (Nb−1)+j,k (Nb−1)+j+1,m ;

i.e., the presence of a reentrant angle at the j
th

vertex of the polygon Pm,k.

The result in the remaining case
3Nb − 1

4
⩽ j < Nb − 1 can be obtained in an entirely similar way.

It corresponds to the cases when

θk (Nb−1)+j−1,k̃ (Nb−1)+j,mc < θk (Nb−1)+j,k̃ (Nb−1)+j+1,m
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and

W (k (Nb − 1) + j − 1

(Nb − 1)Nm
b

)−W (k (Nb − 1) + j
(Nb − 1)Nm

b

) < 0 , W (k (Nb − 1) + j
(Nb − 1)Nm

b

)−W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) < 0 ⋅

Therefore, the shape of the initial polygon P0 governs the shape of any polygon Pm,k, 0 ⩽ k ⩽ N
m
b ,

which, ifNb ⩾ 7, admits reentrant interior angles at verticesM(Nb−1) k+j , 0 ⩽ k ⩽ N
m
b − 1, 0 < j ⩽ Nb − 1,

in the case when

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1 ⋅

This concludes the proof of Property 2.18.

Definition 2.6 (Self-Shape Similarity of the Weierstrass Curve).

We will say that the Weierstrass Curve – as the two-dimensional Hausdorff and uniform limit curve
of a sequence of polygonal prefractals, which satisfy Properties 2.10 and 2.18 – has self-shape similarity,
in the sense that the shape of the initial polygon P0 governs the shape of all the polygons Pm,k,
with 0 ⩽ k ⩽ N

m
b , at any step m of the prefractal approximation process. This self-shape similarity

property is apparent in Figures 1, 2, 3. As for the existence of reentrant angles, it can be observed on
the first two graphs of Figure 3, in the case when Nb = 7.

3 Tubular Neighborhood

Following [LRŽ17b], [LRŽ18] and [Lap19], we are presently interested in determining the Complex
Dimensions of the Weierstrass Curve. For this purpose, one requires a fractal tube formula for the
Curve; i.e., here, the area of a two-sided ε-neighborhood of the Curve, which is expected to be of the
following form, in the case of simple Complex Dimensions:

∑
ω Complex Dimension

cω ε
2−ω

, cω ∈ C , (⋆⋆)

where, for any Complex Dimension ω, cω is directly expressed in terms of the residue at ω of the tube
zeta function ζ̃ω (or of the distance zeta function ζω).

More specifically, consistent with the corresponding results in [LRŽ17a], [LRŽ17b] and [LRŽ18],

cω = res (ζ̃ω, ω) =
1

2 − ω
res (ζω, ω) ⋅

We shall proceed as in [LP06], by the second author and E. P. J. Pearse, as well as in the later
paper [LPW11], by the same authors and S. Winter (see also [LvF00], §10.3, or [LvF13], §12.1). Note
that these two papers were written prior to the development of the higher-dimensional theory of Com-
plex Dimensions and fractal tube formulas, by the second author, G. Radunovic and D. Zubrinic, in the
book [LRŽ17b] and in a series of accompanying papers by the same authors, including [LRŽ17a], [LRŽ18].

The proper fractal function to be used for this purpose, named the distance zeta function, was
discovered by the second author in 2009, while the equivalent, but, equally convenient, tube zeta func-
tion, depending on the problem at hand, was later introduced by the aforementioned authors in the
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above references. Both types of fractal zeta functions are connected via an explicit functional equation.

Consequently, once we have obtained the desired fractal tube formula for the Weierstrass Curve,
we will be able to use the general results and methods of the higher-dimensional theory of Complex
Dimensions in [LRŽ17a], [LRŽ17b] and [LRŽ18] in order to deduce the fractal zeta functions of the
Weierstrass Curve: first, the tube zeta function and then, via the aforementioned functional equation
connecting those two zeta functions, the distance zeta function. We will then conclude from the ex-
pression of either fractal zeta function (since DW < 2, they yield the same result here) the values of
the possible Complex Dimensions of the Weierstrass Curve. For many of those Complex Dimensions,
including the principal ones, in the terminology of [LRŽ17b] (i.e., those with real parts equal to the
maximal real part DW < 2), we will also be able to determine that they are actual Complex Dimen-
sions of the Weierstrass Curve, that is, poles of the tube zeta function, or, equivalently, of the distance
zeta function.

We note that the only possible exceptions to the latter statement would be the potential Complex
Dimensions with real part equal to 1 (except for 1 itself), some (or all) of which could have a vanishing
residue; further theoretical or numerical work will be needed in order to deal with this last remaining
issue.

Notation 8 (Euclidean Distance).

In the sequel, we denote by d the Euclidean distance.

Definition 3.1 ((m,ε)-Upper and Lower Neighborhoods).

Given a natural integer m, we denote by d (M,ΓWm
) the distance from M to ΓWm

. Then, for any
sufficiently small positive number ε, we introduce:

i. The (m, ε)-Upper Neighborhood:

D
+ (ΓWm

, ε) = {M = (x, y) ∈ R2
, y ⩾ W (x) and d (M,ΓWm

) ⩽ ε} ;

ii. The (m, ε)-Lower Neighborhood:

D
− (ΓWm

, ε) = {M = (x, y) ∈ R2
, y ⩽ W (x) and d (M,ΓWm

) ⩽ ε} ⋅

Definition 3.2 ((m,ε)-Neighborhood).

Given a natural integer m, and ε > 0 as above in Definition 3.1, we define the (m, ε)-Neighborhood
as the union of the upper and lower ones, as follows:

D (ΓWm
, ε) = D

− (ΓWm
, ε) ∪D

− (ΓWm
, ε) ⋅
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Definition 3.3 (Left-Side and Right-Side (m,ε)-Neighborhoods).

Given a natural integer m, and ε > 0 as above, we introduce:

i. the Left-Side (m, ε)-Neighborhood of the Curve as

DLeft (ΓWm
, ε) = {M = (x, y) ∈ [0,

1

2
] ×R , d (M,ΓWm

) ⩽ ε} ;

ii. the Right-Side (m, ε)-Neighborhood of the Curve as

DRight (ΓWm
, ε) = {M = (x, y) ∈ [1

2
, 1] ×R , d (M,ΓWm

) ⩽ ε} ⋅

Those neighborhoods are symmetric with respect to the vertical line x =
1

2
; see Figures 5 and 13.

They constitute, in a sense, a partition of the whole tubular neighborhood.

What stands out in our previous studies is the key role played by the elementary lengths Lm:

∀m ∈ N ∶ Lm =
1

(Nb − 1)Nm
b

;

see Section 2 above above for a detailed discussion of the geometric framework.

For a given m ∈ N, it is then natural to take ε in

( 1

(Nb − 1)Nm+1
b

,
1

(Nb − 1)Nm
b

] ,

and to introduce the map

ε↦ m(ε) = [− lnNb
((Nb − 1) ε)] = [m(ε)] + {m(ε)} ,

where [⋅] and {⋅} respectively denote the integer and fractional parts.

For notational simplicity, we temporarily set x = m(ε) = − lnNb
((Nb − 1) ε).

Previous works give a very unfriendly expression for the absolute value of the elementary heights, ∣hj,m∣,
as

∣hj,m∣ =
»»»»»»»»»»
λ
m (yj+1 − yj) − 2

m

∑
k=1

λ
m−k

sin ( π

Nk+1
b (Nb−1)

) sin( π (2 j+1)
Nk+1

b (Nb−1)
+ 2π

k

∑
q=0

im−q

N
k−q
b

)
»»»»»»»»»»
,

for (i1,⋯, im) ∈ {0,⋯, Nb − 1}m. Although it is sufficient to compute the Minkowski dimension of the
Curve, one also requires, in the present work, an explicit expression for the elementary lengths Lm,m ∈ N

⋆
.
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Accordingly, one has

N
m
b = N

[x]
b = N

x−{x}
b , N

−m
b = N

{x}−x
b ,

Lm =
1

(Nb − 1)Nm
b

=
1

Nb − 1
N
x−{x}
b ,

− ([x] + {x}) lnNb = ln ((Nb − 1) ε) , e
−([x]+{x}) lnNb

= (Nb − 1) ε , ε =
1

Nb − 1
N
−([x]+{x})
b ⋅

The (m, ε)-Upper and Lower Neighborhoods introduced in Definition 3.1 are then obtained by
means of rectangles and wedges, as depicted in Figures 8–14.

Proposition 3.1 ((m,ε)-Upper Neighborhood).

According to Property 2.4, given a strictly positive integer m, the (m, ε)-Upper Neighborhood is
thus constituted of:

i. (Nb − 1)Nm
b rectangles, each of length `j−1,j,m, for 1 ⩽ j ⩽ N

m
b − 1, and height ε.

Those rectangles are also overlapping ones, at least at their bottom. If we denote by Mj,m the
common vertex between two consecutive overlapping rectangles (see Figure 10), the area that is
thus counted twice corresponds to parallelograms, of height ε and basis ε cotan (π − θj−1,j,m − θj,j+1,m);

i.e., this area is equal to ε
2

cotan (θj−1,j,m + θj−1,j,m).

Since one deals here with an upper neighborhood, one also has to substract the areas of the extra

outer lower triangles, i.e.,
1

2
ε (bj−1,j,m + bj,j+1,m).

ii. N
m
b (1 + 2 [Nb − 3

4
]) − 1 upper wedges (to be understood in the strict sense, which means

that the extreme ones are not taken into account here). If we denote by Mj,m the vertex from
which is issued the wedge (see Figure 14), the area of this latter wedge is given by

1

2
(π − θj−1,j,m − θj,j+1,m) ε2 , for 1 ⩽ j ⩽ N

m
b − 2 ⋅

The number of wedges is determined by the shape of the initial polygon P0, as well by the
existence of reentrant angles. This directly follows from Property 2.18. For the sake of simplicity,
we set

r
+
b = 1 + 2 [Nb − 3

4
] ⋅

iii. Two extreme wedges (see Figure 15), each of area equal to
1

2
π ε

2
.
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Proposition 3.2 ((m,ε)-Lower Neighborhood).

In the same way, given a strictly positive integer m, the (m, ε)-Lower Neighborhood is thus consti-
tuted of:

i. (Nb − 1)Nm
b rectangles, each of length `j−1,j,m, for 1 ⩽ j ⩽ N

m
b − 1, and height ε.

Those rectangles are also overlapping ones, this time at least at their top. If we denote by Mj,m

the common vertex between two consecutive overlapping rectangles, the area that is thus counted
twice again corresponds to parallelograms, of height ε and basis ε cotan (π − θj−1,j,m − θj,j+1,m);

i.e., this area is equal to ε
2

cotan (θj−1,j,m + θj−1,j,m).

Since one deals here with a lower neighborhood, one has this time to substract the areas of the

extra outer upper triangles, namely, amounting to
1

2
ε (bj−1,j,m + bj,j+1,m).

ii. N
m
b (Nb − 2 [Nb − 3

4
]) − 1 lower wedges. If we denote by Mj,m the vertex from which is

issued the wedge, the area of this latter wedge is obtained as previously, and is given by

1

2
(π − θj−1,j,m − θj,j+1,m) ε2 , for 1 ⩽ j ⩽ N

m
b − 2 ⋅

The number of lower wedges is determined by the shape of the initial polygon P0, as well as
by the existence of reentrant angles. This directly comes from Property 2.18. For the sake of

simplicity, we set r
−
b = Nb − 2 [Nb − 3

4
].

Remark 3.1.

i. The number of upper overlapping rectangles is equal to the number of lower extra triangles, and
also to the number of upper wedges.

ii. The number of lower overlapping rectangles is equal to the number of upper extra triangles, and
also to the number of lower wedges.

iii. In light of i. and ii. just above, those numbers can be respectively calculated as being equal to

(rb − 1)Nm
b and (Nb − rb)Nm

b , for 1 ⩽ rb ⩽ Nb − 2 ⋅

iv. Note that the small parameter ε has to be sufficiently small (say 0 < ε < ε0, for some ε0 > 0 which
exists, but appears difficult to specify explicitly) in order to avoid more unfriendly overlaps than
the parallelograms; see Figure 16.
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Figure 8: The (1, ε)-Upper and Lower Neighborhoods, in the case where λ =
1

2
and Nb = 3.
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ϵϵ

ϵ ϵ

θ j-1, j,m
θ j-1, j,m

M j-1,m M j+1,m

M j,m

Figure 9: The (1, ε)-Upper Neighborhood, in the case where λ =
1

2
and Nb = 3.
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b j-1, j,m

θ j, j+1,m

ϵ

θ j-1, j,m + θ j, j+1,m

Overlapping

rectangles

ϵ

Parallelogram of

height ϵ, and

basis b j-1, j,m

θ j-1, j,m

b


j-1, j,m

Extra triangles

M j-1,m M j+1,m

M j,m

Figure 10: Two overlapping rectangles, in the case where λ =
1

2
and Nb = 3.
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Figure 11: The (1, ε), (2, ε) and (3, ε)-Neighborhoods, in the case where λ =
1

2
and Nb = 3.

Figure 12: The (1, ε), (2, ε) and (3, ε)-Upper Neighborhoods, in the case where λ =
1

2
and Nb = 4.
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x =
1

2

Left -SideNeighborhood Right -

SideNeighborhood

Figure 13: The (3, ε)-Left and Right-Side Neighborhoods, in the case where λ =
1

2
and Nb = 3.
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ϵϵ

ϵ ϵ

θ j, j+1,m

M j,m

M j+1,m

θ j-1, j,m

Figure 14: An upper wedge.
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extremewedges

Figure 15: The extreme wedges, in the case where λ =
1

2
and Nb = 3.
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ϵ

Overlapping

rectangles at

their bottom

M j,m

Figure 16: Two overlapping rectangles, when the parameter ε is not sufficiently small: the
overlap is a pentagon.

In order to obtain a pleasant and understandable expression for the tubular volume at a given
level m ∈ N

⋆
, we will make use of the following relations, coming from Corollary 2.15:

Proposition 3.3.

i. For the number of rectangles: N
m
b = N

x−{x}
b .

Due to the fact that

ε =
1

Nb − 1
N
−([x]+{x})
b =

1

Nb − 1
N
−x
b , N

−x
b = (Nb − 1) ε , N

x
b =

1

Nb − 1
ε
−1
,
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one thus also has

N
m
b ε = N

x−{x}
b

1

Nb − 1
N
−x
b =

1

Nb − 1
N
−{x}
b ⋅

ii. For the elementary horizontal lengths:

Lm =
1

(Nb − 1)Nm
b

=
1

Nb − 1
N

{x}−x
b = N

{x}
b ε ⋅

iii. For the elementary vertical heigths:

hj−1,j,m = O (L2−DW
m ) = O (N (2−DW ) ({x}−x)

b ) = N (2−DW ) ({x}−x)
b O (1) , 1 ⩽ j ⩽ N

m
b − 1 ⋅

iii. For the elementary ratios, 1 ⩽ j ⩽ N
m
b − 1:

Lm
hj−1,j,m

= O (LDW −1
m ) = O (N (1−DW ) ({x}−x)

b ) = O (N (1−DW ) {x}
b ε) = N (1−DW ) {x}

b εO (1) ,

and, similarly, for 1 ⩽ j ⩽ N
m
b − 2:

Lm
hj,j+1,m

= O (LDW −1
m ) = O (N (1−DW ) ({x}−x)

b ) = O (N (1−DW ) {x}
b ε) = N (1−DW ) {x}

b εO (1) ⋅

Proposition 3.4 (Basis of the Parallelograms in Common to Overlapping Rectangles).

Given a natural integer m, and j in {1,⋯, (Nb − 1)Nm
b − 1}, the basis bj−1,j,m of the parallelogram

in common to overlapping rectangles associated to the vertex Mj,m is such that

bj−1,j,m = N
(3DW −2) {x}
b ε

2
O (1) ⋅

Proof. One has

tan θj−1,j,m =
ε

bj−1,j,m + b̃j−1,j,m
,

where

tan (θj−1,j,m + θj,j+1,m) = ε

b̃j−1,j,m
⋅

Hence,

bj−1,j,m + b̃j−1,j,m = ε ∣cotan θj−1,j,m∣ ,
which yields

bj−1,j,m = ε ∣cotan θj−1,j,m∣ − b̃j−1,j,m = ε {∣cotan θj−1,j,m∣ − ∣cotan (θj−1,j,m + θj,j+1,m)∣} ;
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i.e.,

bj−1,j,m = ε (
hj−1,j,m
Lm

−
»»»»»»»»
cotan (arctan

Lm
hj−1,j,m

+ arctan
Lm

hj,j+1,m
)
»»»»»»»»
)

= ε
⎛
⎜⎜
⎝
hj−1,j,m
Lm

−

»»»»»»»»»»»»

Lm

hj−1,j,m

Lm

hj,j+1,m
− 1

Lm

hj−1,j,m
+ Lm

hj,j+1,m

»»»»»»»»»»»»

⎞
⎟⎟
⎠

= ε
⎛
⎜⎜
⎝
hj−1,j,m
Lm

−
1 − Lm

hj−1,j,m

Lm

hj,j+1,m

Lm

hj−1,j,m
+ Lm

hj,j+1,m

⎞
⎟⎟
⎠
⋅

Again, one needs to make an asymptotic expansion. A slight difficulty occurs, coming from the
term

1
Lm

hj−1,j,m
+ Lm

hj,j+1,m

⋅

The apparent problem is the following:

i. Either one uses, as previously, expressions of the form

1
Lm

hj−1,j,m
+ Lm

hj,j+1,m

= N
(DW −1) {x}
b O (1) ,

with nothing but a black box (which means, unknown terms) in factor of constants, that would
yield Complex Dimensions with a real part equal to two, and would therefore lead to a contra-
diction because the Weierstrass Curve has box dimension DW < 2.

ii. Either, knowing that, which is not the more satisfactorily way of reasoning, from a mathemati-
cian’s point of view, one copes with it and tries to find how to get rid of those terms.

Two configurations occur:

↝
Lm

hj−1,j,m
>

Lm
hj,j+1,m

, in which case

hj−1,j,m
Lm

−
1

Lm

hj−1,j,m
+ Lm

hj,j+1,m

=
hj−1,j,m
Lm

−
hj−1,j,m
Lm

+ smaller order and negligeable terms ⋅

↝
Lm

hj−1,j,m
<

Lm
hj,j+1,m

, in which case

hj−1,j,m
Lm

−
1

Lm

hj−1,j,m
+ Lm

hj,j+1,m

=
hj−1,j,m
Lm

−
hj,j+1,m
Lm

+ smaller order and negligeable terms ⋅

Fortunately, due to results obtained in the proof of Property 2.18, this situation occurs only

in the case of reentrant angles, when Nb ⩾ 7, twice, for respectively [Nb − 3

4
] consecutive
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vertices of polygons Pm,k, 0 ⩽ k ⩽ N
m
b − 1. Given a polygon Pm,k, and as already encoun-

tered, one just has to reason on the associated first set of consecutive vertices. The annoying
terms simplify two by two in a telescopic sum, from the first reentrant vertex, to the penul-
timate one. There remains the term coming from the first vertex with an interior reentrant
angle, that will be denoted Mj,m, and the term coming from the ultimate one, Mj+p−1,m:

due to the symmetry with respect to the vertical line x =
1

2
(see Property 2.1), they are

cancelled by those coming from the symmetric polygon, see Figure 17). To summarize, one
gets a sum of the form

hj−1,j,m
Lm

−
hj,j+1,m
Lm

+
hj,j+1,m
Lm

−
hj+1,j+2,m

Lm
+
hj+1,j+2,m

Lm
⋯

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
telescoping sum

−
hj+p,j+p+1,m

Lm
⋅

The remaining terms
hj−1,j,m
Lm

and −
hj+p,j+p+1,m

Lm
are the ones which will simplify with the

exact opposites coming from the symmetric polygon with respect to the vertical line x =
1

2
(see Figure 17), since

hj+p,j+p+1,m
Lm

=
1

Lm

»»»»»»»»
W ( j + p + 1

(Nb − 1)Nm
b

) −W ( j + p

(Nb − 1)Nm
b

)
»»»»»»»»

=
1

Lm

»»»»»»»»
W ((Nb − 1)Nm

b − j − p − 1

(Nb − 1)Nm
b

) −W ((Nb − 1)Nm
b j − p

(Nb − 1)Nm
b

)
»»»»»»»»

=

h(Nb−1)Nm
b −j−p−1,(Nb−1)Nm

b −j−p,m

Lm
⋅

Thus, in the end, there is no problem.

In the light of the above results, one may now rewrite bj−1,j,m as follows:

bj−1,j,m = N
(DW −1) {x}
b N

2 (DW −1) {x}
b ε

2
O (1)

= N
(3DW −2) {x}
b ε

2
O (1) ⋅

This concludes the proof of Proposition 3.4.
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M j,m

M j+p,m

M(Nb-1)Nb
m
- j+1,m

M(Nb-1)Nb
m
- j-p,m

h j-1, j,m

Lm

-

h j+p-1, j+p,m

Lm

+

h j+p-1, j+p,m

Lm

-

h j-1, j,m

Lm

first reentrant

angle

last reentrant

angle

1
x

-1

1

y

Figure 17: The symmetric points with respect to the vertical

line x =
1

2
, leading to terms that cancel each other out in the proof of Proposition 3.4.

In the sequel, we will use the following two series expansions:

i. ∀ z ∈ [0, 1[ ∶
√

1 + z =
∞

∑
k=0

(
1
2

k
) zk,

where, for any pair of natural integer k, (
1
2

k
) is the generalized binomial coefficient

(
1
2

k
) =

1
2
× (1

2
− 1) × (1

2
− 2) ×⋯× (1

2
− k + 1)

k !
=

(1
2
)
k

k !
⋅

This expansion is thus valid for

z =
L
2
m

h2j−1,j,m
= O (L2 (DW −1)

m )≪ 1 ⋅

ii. ∀ z ∈ [0, 1[ ∶ tan
−1
z = arctan z =

∞

∑
k=0

z
2 k+1

2 k + 1
, which is also valid for

z =
L
2
m

h2j−1,j,m
= O (L2 (DW −1)

m )≪ 1 ⋅
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Notation 9. In the sequel, for the sake of simplicity, we will use the following notation:

i. ∑
j rectangle

⋯ , to denote the sum over the upper and lower rectangles.

ii. ∑
j lower wedge

⋯ , to denote the sum over the lower wedges.

iii. ∑
j upper wedge

⋯ , to denote the sum over the upper wedges.

iv. ∑
j upper triangle

⋯ , to denote the sum over the extra outer upper triangles.

v. ∑
j lower triangle

⋯ , to denote the sum over the extra outer upper triangles.

vi. ∑
j lower parallelogram

⋯ , to denote the sum over the upper overlapping rectangles.

vii. ∑
j upper parallelogram

⋯ , to denote the sum over the lower overlapping rectangles.

Proposition 3.5 (Contribution of the Rectangles to the Tubular Volume).

The contribution of the (Nb − 1)Nm
b rectangles to the tubular volume is given by

VRectangles(ε) = 2 ∑
j rectangle

ε `j−1,j,m

= 2 ∑
j rectangle

ε
√
L2
m + h

2
j−1,j,m

= 2 ∑
j rectangle

ε hj−1,j,m

√
√√√√√⎷1 +

L2
m

h2j−1,j,m

= 2 ∑
j rectangle

ε hj−1,j,m

√
√√√√√⎷1 +

L2
m

h2j−1,j,m

= 2 ∑
j rectangle

ε hj−1,j,m

∞

∑
k=0

(
1
2

k
) L

2 k
m

h2 kj−1,j,m

= 2 ∑
j rectangle

ε hj−1,j,m

∞

∑
k=0

(
1
2

k
)Nk (2−DW ) {x}

b ε
k (2−DW )

O (1)

= 2 ∑
j rectangle

ε ε
2−DW O (1)

∞

∑
k=0

(
1
2

k
)Nk (2−DW ) {x}

b ε
k (2−DW )

O (1)

= 2N
m
b ε

2−DW O (1)
∞

∑
k=0

(
1
2

k
)Nk (2−DW ) {x}

b ε
1+k (2−DW )

O (1)

= 2 (Nb − 1)Nm
b ε ε

2−DW

∞

∑
k=0

(
1
2

k
)Nk (2−DW ) {x}

b ε
k (2−DW )

O (1)

= 2N
−{x}
b ε

2−DW

∞

∑
k=0

(
1
2

k
)Nk (2−DW ) {x}

b ε
k (2−DW )

O (1)

= 2
∞

∑
k=0

(
1
2

k
)N (k (2−DW )−1) {x}

b ε
2−DW +k (2−DW )

O (1) ⋅
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Proposition 3.6 (Contribution of the Extreme, Upper and Lower Wedges to the Tubular
Volume).

i. The contribution of the extreme wedges to the tubular volume is given by

Vextreme wedges(ε) = π ε2 ⋅

ii. The contribution of the r
+
b N

m
b − 1 upper wedges to the tubular volume is given by

Vupper wedges(ε) =
1

2
∑

j upper wedge

(π − θj−1,m − θj,j+1,m) ε2

=
1

2
∑

j upper wedge

ε
2 (π − arctan

Lm
hj−1,j,m

− arctan
Lm

hj,j+1,m
)

=
ε
2

2
∑

j upper wedge

ε
2 (π −

∞

∑
k=0

1

2 k + 1

L
2 k+1
m

h2 k+1j−1,j,m

−
∞

∑
k=0

1

2 k + 1

L
2 k+1
m

h2 k+1j,j+1,m

)

=
ε
2

2
∑

j upper wedge

(π −
∞

∑
k=0

1

2 k + 1
N

(2 k+1) (1−DW ) {x}
b ε

2 k+1
O (1))

=
ε
2

2
(r+b Nm

b − 1) (π −
∞

∑
k=0

1

2 k + 1
N

(2 k+1) (1−DW ) {x}
b ε

2 k+1
O (1))

=
ε
2

2
(ε

4
r
+
b N

−{x}
b −

ε
2

2
) (π −

∞

∑
k=0

1

2 k + 1
N

(2 k+1) (1−DW ) {x}
b ε

2 k+1
O (1))

=
π

2
(ε

3

4
r
+
b N

−{x}
b −

ε
4

2
) − ε

3

4
r
+
b

∞

∑
k=0

1

2 k + 1
N
−((2 k+1)DW −2 k) {x}
b ε

2 k+1
O (1)

+
ε
4

4

∞

∑
k=0

1

2 k + 1
N
−(2 k+1) (DW −1) {x}
b ε

2 k+1
O (1) ⋅

iii. In the same way, the contribution of the r
−
b N

m
b − 1 lower wedges to the tubular volume is given

by

Vlower wedges(ε) =
π

2
(ε

3

4
r
−
b N

−{x}
b −

ε
4

2
) − ε

3

4
r
−
b

∞

∑
k=0

1

2 k + 1
N
−((2 k+1)DW −2 k) {x}
b ε

2 k+1
O (1)

+
ε
4

4

∞

∑
k=0

1

2 k + 1
N
−(2 k+1) (DW −1) {x}
b ε

2 k+1
O (1) ⋅
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Proposition 3.7 (Negative Contribution of the Extra Outer Triangles to the Tubular Vol-
ume).

i. The negative contribution of the (Nb − r
+
b − 1)Nm

b extra outer lower triangles to the tubular
volume is given by

Vextra outer lower triangles(ε) = −
ε

2
∑

j triangle

{bj−1,j,m + bj,j+1,m}

= −
ε

2
∑

j lower triangle

N
(3DW −2) {x}
b ε

2
O (1)

= −
ε

2
(Nb − r

+
b − 1)Nm

b N
(3DW −2) {x}
b ε

2
O (1)

= −
ε
2

2
(Nb − r

+
b − 1)N−{x}

b N
(3DW −2) {x}
b O (1) ⋅

ii. In the same way, the negative contribution of the (Nb − r
−
b − 1)Nm

b extra outer upper trian-
gles to the tubular volume is given by

Vextra outer upper triangles(ε) = −
ε
2

2
(Nb − r

−
b − 1)N−{x}

b N
(3DW −2) {x}
b O (1) ⋅

Proposition 3.8 (Negative Contribution of the Overlapping Rectangles to the Tubular
Volume).

The negative contribution of the upper and lower overlapping rectangles to the tubular volume
is given by

Vupper and lower parallelograms(ε) = −ε ∑
j upper and lower parallelogram

bj−1,j,m − ε
2
N

(3DW −2) {x}
b O (1) ⋅

4 Fractal Tube Formulas, Complex Dimensions and Average Minkowski
Content

4.1 Preliminaries

Property 4.1 (Fourier Series Expansion of the One-Periodic Map x↦N
−{x}
b [LvF13] ).

The fractional part map {⋅} is one-periodic. Hence, it is also the case of the map x↦ N
−{x}
b , which

admits, with respect to the real variable x, the following Fourier Series expansion:

N
−{x}
b =

Nb − 1

Nb
∑
m∈Z

e
2 i πmx

lnNb + 2 imπ
=
Nb − 1

Nb
∑
m∈Z

(Nb − 1)−imp
ε
−imp

lnNb + 2 imπ
,
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where the exponential Fourier coefficients cm have been obtained through

cm = ∫
1

0
N
−t
b e

−2 i πm t
dt = ∫

1

0
e
−t lnNb e

−2 i πm t
dt = −

1

lnNb + 2 imπ
[e−t lnNb e

−2 i πm t]
1

0

=
1

lnNb + 2 imπ
[1 −

1

Nb
] = Nb − 1

Nb

1

lnNb + 2 imπ
⋅

Thus, for any x ∈ R and any ε > 0,

N
−{x}
b =

Nb − 1

Nb
∑
m∈Z

e
2 i πmx

lnNb + 2 imπ
⋅

Note that since

x = − lnNb
((Nb − 1) ε) ,

one has, for every m ∈ Z,

e
2 i πmx

= e
−2 i πm lnNb((Nb−1) ε)

= e
−2 i πm

ln((Nb−1)ε)
lnNb ⋅

Definition 4.1 (Oscillatory Period).

Following [LvF00], [LvF13], [LRŽ17b], we introduce the oscillatory period of the Weierstrass Curve:

p =
2π

lnNb
⋅

Definition 4.2 (m
th

-Order Vibration Mode).

Given a relative integer m (i.e., m ∈ Z), we define the m
th

-order vibration mode as the one asso-
ciated to mp.

Property 4.2. For any relative integer m, as given in Property 4.1,

e
2 i πmx

= e
−imp ln((Nb−1) ε)

= ((Nb − 1) ε)−imp
= (Nb − 1)−imp

ε
−imp

⋅

Thus, for any any x ∈ R and any ε > 0,

N
−{x}
b =

Nb − 1

Nb
∑
m∈Z

(Nb − 1)−imp
ε
−imp

lnNb + 2 imπ
, N

−DW {x}
b =

N
DW

b − 1

N
DW

b

∑
m∈Z

(NDW

b − 1)
−imp

ε
−imp

DW lnNb + 2 imπ
,
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and, for any natural integer k, we have that

N
(k (2−DW )−1) {x}
b =

N
−(1−k (2−DW )−1)
b

N
1−(k (2−DW )
b

∑
m∈Z

(N1−(k (2−DW )
b )

−imp
ε
−imp

lnN
1−k (2−DW )
b + 2 imπ

=
N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

∑
m∈Z

(N1−k (2−DW )
b − 1)

−imp
ε
−imp

(1 − k (2 −DW )) lnNb + 2 imπ
⋅

Definition 4.3 (Distance and Tube Zeta Functions Associated to an Arbitrary Bounded
Set of R

2
).

Let A be an arbitrary (nonempty) bounded subset of R
2
, with upper Minkowski dimension denoted

by DA; see Definition 4.5 below.

Then, given a fixed number ε > 0, and an arbitrary ε-neighborhood (or tubular neighborhood)
of A,

DA(ε) = {M ∈ R
2
, d (M,A) ⩽ ε} ,

of tubular volume VA(ε), the distance zeta function ζA of A is defined (as in [LRŽ17b], Defini-
tion 2.1.1, page 45), for all s in C with sufficiently large real part (in fact, for Re(s) > DA), by

ζA(s) = ∫
M ∈DA(ε)

d (M,A)s−2 dM ⋅

As for the tube zeta function ζ̃A of A, it is defined (as in [LRŽ17b], Definition 2.2.8, page 118), for
all s in C with sufficiently large real part (in fact, also for Re(s) > DA), by

ζ̃A(s) = ∫
ε

0
t
s−3

VA(t) dt = ∫
ε

0
t
s−2

VA(t)
dt
t
⋅

Remark 4.1. We note that it is shown in [LRŽ17b] that different choices of ε > 0 in Definition 4.3 lead
to distance (respectively, tube) zeta functions differing by an entire function, and that ζA and ζ̃A are
connected by the following functional equation (in the present case, when A ⊂ R

2
), for the same value

of ε > 0,

ζA(s) = εs−2 VA(ε) + (2 − s) ζ̃A(s) ⋅ (♦)
Furthermore, assume that the upper Minkowski dimension of A, DA (which, by [LRŽ17b], The-

orem 2.1.11, page 57 and (♦)) coincides with the abscissa of convergence of ζA and ζ̃A, is such
that DA < 2. It then follows from the above results (see [LRŽ17b], Corollary 2.2.20, page 127) that ζA
and ζ̃A have the same poles (denoted by ω) with residues connected by the relation

res (ζ̃A, ω) =
1

2 − ω
res (ζA, ω) , (♦♦)

in case ω is a simple pole; and, similarly for the principal parts of ζA and ζ̃A at ω, in case ω is a
multiple pole. It follows, in particular, that the Complex Dimensions of A can be indifferently defined
as the (visible) poles of ζA or of ζ̃A.
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4.2 Fractal Tube Formulas and Fractal Zeta Functions

In order to obtain the main results of this section – namely, Theorems 4.7, 4.8 and 4.11, along
with Corollary 4.9 below, we consider the contribution to the fractal tube formulas brought by the
various types of geometric elements in the ε-neighborhood of ΓW , here, the rectangles and the wedges
(in Properties 4.3 and 4.4 respectively), thereby supplementing the study of the positive or negative
contributions of the rectangles, triangles and extreme wedges carried out earlier in Section 3, and
synthetized in Propositions 3.5–3.8 above.

Property 4.3 (Tube Formula and Tube Zeta Function Associated to the Contribution of
the Rectangles to the Tubular Volume).

The contribution of the 2 (Nb − 1)Nm
b rectangles to the tubular volume is

VRectangles(ε) = 2
∞

∑
k=0

(
1
2

k
)N−(1−k (2−DW )) {x}

b ε
2−DW +k (2−DW )

O (1)

= 2
∞

∑
k=0

(
1
2

k
)
N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

∑
m∈Z

(Nb − 1)−imp
ε
2−DW +k (2−DW )−imp

(1 − k (2 −DW )) lnNb + 2 imπ
O (1) ⋅

For the sake of clarity, and in order to avoid confusion between various occurrences of O (1), we
will write it under the form

VRectangles(ε) = CRectangles

∞

∑
k=0

(
1
2

k
)
N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

∑
m∈Z

(Nb − 1)−imp
ε
2−DW +k (2−DW )−imp

(1 − k (2 −DW )) lnNb + 2 imπ
,

where CRectangles denotes a strictly positive and finite constant.

The associated tube zeta function [LRŽ17b] is first obtained, for any complex number s such
that Re(s) > DW , through

ζ̃Rectangles(s) = ∫
ε

0

t
s−3

VRectangles(t) dt

= CRectangles

∞

∑
k=0

(
1

2

k
)N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

∑
m∈Z

(Nb − 1)−imp

(1 − k (2 −DW )) lnNb + 2 imπ
∫

ε

0

t
s−3

t
2−DW +k (2−DW )−imp

dt

= CRectangles

∞

∑
k=0

(
1

2

k
) N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

∑
m∈Z

(Nb − 1)−imp

(1 − k (2 −DW )) lnNb + 2 imπ

ε
s−DW +k (2−DW )−imp

s −DW + k (2 −DW ) − imp
⋅

By meromorphic continuation to all of C, one then obtains the tube zeta function ζ̃Rectangles for
all s ∈ C, as given by the last two equalities just above.

The associated Complex Dimensions arise as

DW − k (2 −DW ) + imp , with k ∈ N , m ∈ Z ⋅
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Note that, thanks to the results of Corollary 2.15, the one-periodic function (with respect to the
variable lnNb

ε
−1

, see Property 4.1), associated to DW , is bounded between two strictly positive and
finite constants.

Property 4.4 (Tube Formula and Tube Zeta Function Associated to the Contribution of
the Wedges to the Tubular Volume).

The contribution of the wedges to the tubular volume is

Vwedges(ε) = Vupper wedges(ε) + Vlower wedges(ε) + Vextreme wedges(ε)

=
rb π ε

3

8
N
−{x}
b −

π ε
4

2
+ π ε

2

−
ε
3

4
rb

∞

∑
k=0

1

2 k + 1
N
−((2 k+1)DW −2 k) {x}
b ε

2 k+1
O (1)

+
ε
4

2

∞

∑
k=0

1

2 k + 1
N
−(2 k+1) (DW −1) {x}
b ε

2 k+1
O (1)

=
rb π

8

Nb − 1

Nb
∑
m∈Z

(Nb − 1)−imp
ε
3−imp

lnNb + 2 imπ
−
π ε

4

2
+ π ε

2

−
1

4
rb

∞

∑
k=0

1

2 k + 1

N
((2 k+1)DW −2 k)
b − 1

N
((2 k+1)DW −2 k)
b

∑
m∈Z

(N ((2 k+1)DW −2 k)
b − 1)−imp

ε
2 k+1−imp

((2 k + 1)DW − 2 k) lnNb + 2 imπ
O (1)

+
1

2

∞

∑
k=0

1

2 k + 1

N
(2 k+1) (DW −1)
b − 1

N
(2 k+1) (DW −1)
b

∑
m∈Z

(N (2 k+1) (DW −1)
b − 1)−imp

ε
5+2 k−imp

(2 k + 1) (DW − 1) lnNb + 2 imπ
O (1) ⋅

As before, for the sake of clarity, we will rewrite it in the form

Vwedges(ε) = C
1
wedges ∑

m∈Z

(Nb − 1)−imp
ε
3−imp

lnNb + 2 imπ
−
π ε

4

2
+ π ε

2

−C2
wedges

∞

∑
k=0

1

2 k + 1

N
((2 k+1)DW −2 k)
b − 1

N
((2 k+1)DW −2 k)
b

∑
m∈Z

(N ((2 k+1)DW −2 k)
b − 1)−imp

ε
2 k+1−imp

((2 k + 1)DW − 2 k) lnNb + 2 imπ

+C3
wedges

∞

∑
k=0

1

2 k + 1

N
(2 k+1) (DW −1)
b − 1

N
(2 k+1) (DW −1)
b

∑
m∈Z

(N (2 k+1) (DW −1)
b − 1)−imp

ε
5+2 k−imp

(2 k + 1) (DW − 1) lnNb + 2 imπ
,

where C
1
wedges, C

2
wedges, and C

3
wedges denote strictly positive and finite constants.
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The associated tube zeta function [LRŽ17b] is first obtained, for any complex number s such
that Re(s) > DW , through

ζ̃wedges(s) = ∫
ε

0

t
s−3

Vwedges(t) dt

= C
1
wedges ∑

m∈Z

(Nb − 1)−imp

lnNb + 2 imπ
∫

ε

0

t
s−imp

dt + π ∫
ε

0

t
s−1

dt −
π

2
∫

ε

0

t
s+1

dt

−C2
wedges

∞

∑
k=0

1

2 k + 1

N
((2k+1)DW −2k)
b − 1

N
((2k+1)DW −2k)
b

∑
m∈Z

(N ((2k+1)DW −2k)
b − 1)−imp

((2 k + 1)DW − 2 k) lnNb + 2 imπ
∫

ε

0

t
s+2k+1−imp

+C3
wedges

∞

∑
k=0

1

2 k + 1

N
(2k+1) (DW −1)
b − 1

N
(2k+1) (DW −1)
b

∑
m∈Z

(N (2k+1) (DW −1)
b − 1)−imp

(2 k + 1) (DW − 1) lnNb + 2 imπ
∫

ε

0

t
s−2+2k−imp

= C
1
wedges ∑

m∈Z

(Nb − 1)−imp

lnNb + 2 imπ

ε
s+1−imp

s + 1 − imp
+
π ε

s

s −
π ε

s+2

2 (s + 2)

−C2
wedges

∞

∑
k=0

1

2 k + 1

N
((2k+1)DW −2k)
b − 1

N
((2k+1)DW −2k)
b

∑
m∈Z

(N ((2k+1)DW −2k)
b − 1)−imp

((2 k + 1)DW − 2 k) lnNb + 2 imπ

ε
s+2k−1−imp

s + 2 k − 1 − imp

+C3
wedges

∞

∑
k=0

1

2 k + 1

N
(2k+1) (DW −1)
b − 1

N
(2k+1) (DW −1)
b

∑
m∈Z

(N (2k+1) (DW −1)
b − 1)−imp

(2 k + 1) (DW − 1) lnNb + 2 imπ

ε
s+3+2k−imp

s + 3 + 2 k − imp
⋅

By meromorphic continuation to all of C, one then obtains the tube zeta function ζ̃wedges for
all s ∈ C, as given by the last two equalities just above.

The associated Complex Dimensions arise as

−1+ imp , 1− 2 k + imp , −3− 2 k + imp , with k ∈ N , m ∈ Z , along with 0 and − 2 ⋅

Note that for k ⩾ 2 (and any m ∈ Z), the last two families of (possible) Complex Dimensions fully
overlap. We will take this fact into account in Theorems 4.10 and 4.11 below.

Property 4.5 (Tube Formula and Tube Zeta Function Associated to the Contribution of
the Extra Outer Triangles to the Tubular Volume).

As for the negative contribution of the (Nb − rb − 1)Nm
b extra outer triangles to the tubular

volume, one obtains

Vextra outer triangles(ε) = Vextra outer lower triangles(ε) + Vextra outer upper triangles(ε)

= −
ε
2

2
N

(3DW −2) {x}
b O (1)

= −
N

2−3DW

b − 1

N
2−3DW

b

∑
m∈Z

(N2−3DW

b − 1)
−imp

ε
2−imp

(2 − 3DW ) lnNb + 2 imπ
O (1) ⋅
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As previously, for the sake of clarity, we will write it in the following form:

Vextra outer triangles(ε) = −Ctriangles ∑
m∈Z

(N2−3DW

b − 1)
−imp

ε
2−imp

(2 − 3DW ) lnNb + 2 imπ
,

where Ctriangles denotes a strictly positive and finite constant.

The associated tube zeta function [LRŽ17b] is first obtained, for any complex number s such
that Re(s) > DW , through

ζ̃extra triangles(s) = ∫
ε

0
t
s−3

Vextra outer triangles(t) dt

= −Ctriangles ∑
m∈Z

(N2−3DW

b − 1)
−imp

(2 − 3DW ) lnNb + 2 imπ
∫
ε

0
t
s−2−imp

dt

= −Ctriangles ∑
m∈Z

(N2−3DW

b − 1)
−imp

(2 − 3DW ) lnNb + 2 imπ

ε
s−1−imp

s − 1 − imp
⋅

By meromorphic continuation to all of C, one then obtains the tube zeta function ζ̃extra triangles for
all s ∈ C, as given by the last two equalities just above.

The associated Complex Dimensions arise as

1 + imp , with m ∈ Z ⋅

Property 4.6 (Tube Formula and Tube Zeta Function Associated to the Contribution of
the Parallelograms to the Tubular Volume).

The last contribution, coming from the parallelograms, is given by

Vparallelograms(ε) = Vlower parallelograms(ε) + Vupper parallelograms(ε)

= −
(Nb − 2)

2 (Nb − 1) {N
DW

b − 1

N
DW

b

∑
m∈Z

(NDW

b − 1)
−imp

ε
2−imp

DW lnNb + 2 imπ
O (1)

−
N

2−DW

b − 1

N
2−DW

b

∑
m∈Z

(N2−DW

b − 1)
−imp

ε
−imp

(2 −DW ) lnNb + 2 imπ
O (1) } ⋅

Again, we write it in the following form:

Vparallelograms(ε) = −Cparallelograms ∑
m∈Z

(N2−3DW

b − 1)
−imp

ε
2−imp

(2 − 3DW ) lnNb + 2 imπ
,

where Cparallelograms denotes a strictly positive and finite constant.
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The associated tube zeta function [LRŽ17b] is first obtained, for any complex number s such
that Re(s) > DW , through

ζ̃parallelograms(s) = ∫
ε

0
t
s−3

Vparallelograms(t) dt

= −Cparallelograms ∑
m∈Z

(N2−3DW

b − 1)
−imp

(2 − 3DW ) lnNb + 2 imπ
∫
ε

0
t
s−2−imp

dt

= −Cparallelograms ∑
m∈Z

(N2−3DW

b − 1)
−imp

(2 − 3DW ) lnNb + 2 imπ

ε
s−1−imp

s − 1 − imp
⋅

By meromorphic continuation to all of C, one then obtains the tube zeta function ζ̃extra triangles for
all s ∈ C, as given by the last two equalities just above.

The associated Complex Dimensions arise as

1 + imp , with m ∈ Z ⋅

The above results stated in Properties 4.3 – 4.6 can now be combined in order to yield the following
key theorems:

Theorem 4.7 (Fractal Tube Formula for The Weierstrass Curve).

Given ε > 0 sufficiently small, the tubular volume VW (ε), or two-dimensional Lebesgue measure
of the ε-neighborhood of the Curve,

D (ε) = {M = (x, y) ∈ R2
, d (M,ΓWm(ε)) ⩽ ε} ,

is given by

VW (ε) = VRectangles(ε) + Vwedges(ε) + Vextra outer triangles(ε) + Vparallelograms(ε)

= CRectangles

∞

∑
k=0

(
1

2

k
) N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

∑
m∈Z

(Nb − 1)−imp

(1 − k (2 −DW )) lnNb + 2 imπ
ε
2−DW +k (2−DW )−imp

+C1
wedges ∑

m∈Z

(Nb − 1)−imp
ε
3−imp

lnNb + 2 imπ
+ π ε

2
−
π ε

4

2

−C2
wedges

∞

∑
k=0

1

2 k + 1

N
((2k+1)DW −2k)
b − 1

N
((2k+1)DW −2k)
b

∑
m∈Z

(N ((2k+1)DW −2k)
b − 1)−imp

ε
2k+1−imp

((2 k + 1)DW − 2 k) lnNb + 2 imπ

+C3
wedges

∞

∑
k=0

1

2 k + 1

N
(2k+1) (DW −1)
b − 1

N
(2k+1) (DW −1)
b

∑
m∈Z

(N (2k+1) (DW −1)
b − 1)−imp

ε
5+2k−imp

(2 k + 1) (DW − 1) lnNb + 2 imπ

− (Ctriangles + Cparallelograms) ∑
m∈Z

(N2−3DW
b − 1)−imp

(2 − 3DW ) lnNb + 2 imπ
ε
2−imp

,

where Crectangles, C
`
wedges, ` = 1, 2, 3, Ctriangles, and Cparallelograms denote the strictly positive and finite

constants respectively introduced in Properties 4.3 – 4.6 above.
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For the sake of clarity, and in order to highlight the role played by the one-periodic functions (with
respect to the variable lnNb

ε
−1

, see Property 4.1), one can exchange the sums over k and m, which
enables one to obtain an expression of the following form:

VW (ε) = ∑
m∈Z, k∈N

fm,k,Rectangles ε
2−DW +k (2−DW )−imp

+ ∑
m∈Z, k∈N

(fm,k,wedges,1 ε
3−imp

+ fm,k,wedges,2 ε
1+2k−imp

+ f m,k,wedges,3 ε
5+2k−imp)

+ ∑
m∈Z, k∈N

fm,k,triangles, parallelograms ε
2−imp

+ π ε
2
−
π ε

4

2
,

where the notation fm,k,Rectangles, fm,k,wedges,`, 1 ⩽ ` ⩽ 3, and fm,k,triangles, parallelograms, respectively ac-
count for the coefficients associated to the sums corresponding to the contribution of the rectangles,
wedges, triangles and parallelograms.

Theorem 4.8 (Tube Zeta Function for the Weierstrass Curve).

Given ε > 0 sufficiently small, the tube zeta function associated to the Weierstrass Curve, ζ̃W (s),
defined as in [LRŽ17b] (see Definition 4.3 above), admits a meromorphic continuation to all of C, and
is given, for any complex number s, by the following expression:

ζ̃W (s) = ζ̃Rectangles(s) + ζ̃wedges(s) + ζ̃extra outer triangles(s) + ζ̃parallelograms(s)

= CRectangles

∞

∑
k=0

(
1

2

k
) N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

∑
m∈Z

(Nb − 1)−imp

(1 − k (2 −DW )) lnNb + 2 imπ

ε
s−DW +k (2−DW )−imp

s −DW + k (2 −DW ) − imp

+C1
wedges ∑

m∈Z

(Nb − 1)−imp

lnNb + 2 imπ

ε
s+1−imp

s + 1 − imp
+
π ε

s

s −
π ε

s+2

4 (s + 2)

−C2
wedges

∞

∑
k=0

1

2 k + 1

N
((2k+1)DW −2k)
b − 1

N
((2k+1)DW −2k)
b

∑
m∈Z

(N ((2k+1)DW −2k)
b − 1)−imp

((2 k + 1)DW − 2 k) lnNb + 2 imπ

ε
s+2k−1−imp

s + 2 k − 1 − imp

+C3
wedges

∞

∑
k=0

1

2 k + 1

N
(2k+1) (DW −1)
b − 1

N
(2k+1) (DW −1)
b

∑
m∈Z

(N (2k+1) (DW −1)
b − 1)−imp

(2 k + 1) (DW − 1) lnNb + 2 imπ

ε
s+3+2k−imp

s + 3 + 2 k − imp

− (Ctriangles + Cparallelograms) ∑
m∈Z

(N2−3DW
b − 1)−imp

(2 − 3DW ) lnNb + 2 imπ

ε
s−1−imp

s − 1 − imp
⋅

For the sake of clarity, and in order to highlight the role played by the one-periodic functions (with
respect to the variable lnNb

ε
−1

, see Property 4.1), one can exchange the sums over k and m, which
enables one to obtain an expression of the following form:

ζ̃W (s) = ∑
m∈Z, k∈N

fm,k,Rectangles

ε
s−DW +k (2−DW )−imp

s −DW + k (2 −DW ) − imp

+ ∑
m∈Z, k∈N

(fm,k,wedges,1

ε
s+1−imp

s + 1 − imp
+ fm,k,wedges,2

ε
s+2k−1−imp

s + 2 k − 1 − imp
+ f m,k,wedges,3

ε
s+3+2k−imp

s + 3 + 2 k − imp
)

+ ∑
m∈Z, k∈N

fm,k,triangles, parallelograms

ε
s−1−imp

s − 1 − imp
+
π ε

s

s −
π ε

s+2

4 (s + 2) ,
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where, as already introduced in Theorem 4.7, the notation fm,k,Rectangles, fm,k,wedges,`, 1 ⩽ ` ⩽ 3, and
fm,k,triangles, parallelograms, respectively account for the coefficients associated to the sums corresponding
to the contribution of the rectangles, wedges, triangles and parallelograms.

Corollary 4.9 ((of Theorem 4.8) Distance Zeta Function for the Weierstrass Curve).

According to the functional equation given in [LRŽ17b] (Theorem 2.2.1., page 112), and recalled
in equation (♦) of Remark 4.1 above, the distance zeta function, ζW , associated to the Weierstrass
Curve is obtained, for any complex number s, through

ζW (s) = ∫
M ∈D(ε)

d (M,ΓW )s−2 dM

= ε
s−2

VW (ε) + (2 − s) ∫
ε

0
t
s−3

VW (t) dt
= ε

s−2
VW (ε) + (2 − s) ζ̃W (s) ,

where VW denotes the tubular volume obtained in Theorem 4.7 above or in Theorem 4.11 below, and
where ζ̃W (s) is given in Theorem 4.8. The first two equalities are valid for Re (s) > DW , while the
last one is valid for all s in C. Furthermore, the distance zeta function ζW admits a meromorphic
continuation to all of C, given by the last equality just above.

Remark 4.2. Since DW < 2, it follows from the above expressions, as well from the general theory
developed in [LRŽ17b], that ζW and ζ̃W have exactly the same poles, with precisely related residues,
for simple poles, which is the case here. Hence, they define the same Complex Dimensions. This is
true because, with the obvious following notation, and for 0 < ε1 < ε2, the difference of ζW ,ε1 and ζW ,ε2

is an entire function; and, similarly, for ζ̃W ,ε1 − ζ̃W ,ε2 ; see [LRŽ17b], Proposition 2.1.76 on page 100,
and Proposition 2.2.13 on page 123. Furthermore, the Complex Dimensions – i.e., the poles of ζW ,
or, equivalently, of ζ̃W , are independent of the choice of the parameter ε. The same is true for the
residues of ζW (as well as of ζ̃W ) at any pole, i.e., at any Complex Dimension. See Remark 4.1 above,
including equation (♦♦).

Remark 4.3 (Periodic Functions Associated to the Poles of the Zeta Functions).

The one-periodic functions (with respect to the variable lnNb
ε
−1

, see Property 4.1), respectively
associated to the following values,

i. DW − k (2 −DW ), with k ∈ N,

ii. 1,

are nonconstant, since their m
th

Fourier coefficients, with m ∈ Z, m ≠ 0, which are respectively
proportional to the strictly positive and finite constants CRectangles, C

`
wedges, for 1 ⩽ ` ⩽ 3, and

Ctriangles + Cparallelograms, are thus nonzero. We refer to Theorem 4.11 below for the specific manner
in which these periodic functions arise. (See also Subsection 4.3.2.)
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4.3 Complex Dimensions

We deduce at once the Complex Dimensions of the Weierstrass Curve from the fractal tube formula
and the expression for the tube zeta function obtained in Theorems 4.7 and 4.8, respectively.

4.3.1 Main Results

Theorem 4.10 (Complex Dimensions of the Weierstrass Curve).

The possible Complex Dimensions of the Weierstrass Curve are all simple, and given as follows:

DW − k (2 −DW ) + imp , with k ∈ N , m ∈ Z ,

1 − 2 k + imp , with k ∈ N , m ∈ Z, along with − 2 and 0 ,

where p =
2π

lnNb
is the oscillatory period of the Weierstrass Curve.

Furthermore, the one-periodic functions (with respect to the variable lnNb
ε
−1

, see Property 4.1),
respectively associated to the values DW − k (2 −DW ), k ∈ N, are nonconstant. (See also Subsec-
tion 4.3.2 below for the exceptional cases.)

In addition, all of the Fourier coefficients of those periodic functions are nonzero, which implies
that there are infinitely many Complex Dimensions that are nonreal, including all of those with maxi-
mal real part DW , which are the principal Complex Dimensions, in the terminology of [LRŽ17b], and
therefore give rise to geometric oscillations (or vibrations) with the largest amplitude, in the fractal
tube formula obtained in Theorem 4.7 above and reformulated in Theorem 4.11 below.

Finally, for each k ∈ N and m ∈ Z, DW − k (2 −DW ) + imp, 1 + imp, −2 and 0 are all simple
Complex Dimensions of the Weierstrass Curve; i.e., they are simple poles of the tube (or, equivalently,
of the distance) zeta function.

Consequently, the Weierstrass Curve is fractal, in the sense of the theory of Complex Dimensions
developed in [LvF00] [LvF13], [LRŽ17b] and [Lap19].

We refer to Subsection 4.3.2 for a discussion of the exceptional cases, and to Subsection 4.3.3 for
a possible interpretation of our results.

Theorem 4.11 (Condensed Fractal Tube Formula for The Weierstrass Curve (Corollary
of Theorem 4.7).

Given ε > 0 sufficiently small, the tubular volume VW (ε) of the ε-neighborhood D (ε) of the Weier-
strass Curve, can be expressed in the following manner:

VW (ε) =

∞

∑
k=0

ε
2−(DW −k (2−DW ))

Gk,DW
(lnNb

(1
ε))

+
∞

∑
k=0

ε
2−(1−2 k)

Gk,1 (lnNb
(1
ε)) + π ε

2
−
π ε

4

2
,

where, for any natural integer k, Gk,DW
and Gk,1 denote, respectively, continuous one-periodic func-

tions (with respect to the variable lnNb
ε
−1

, see Property 4.1) associated to all of the Complex Dimen-
sions of real parts DW − k (2 −DW ) and 1 − 2 k, where k ∈ N is arbitrary. Furthermore, all of the
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Fourier coefficients of the periodic functions Gk,DW
(for any k ∈ N) and G0,1 are nonzero. In partic-

ular, these periodic functions are not constant. Moreover, the functions G0,DW
and G0,1 are bounded

away from zero and infinity.

This amounts to an expression of the form

VW (ε) = ∑
α real part of a Complex Dimension

α ∉ {−2, 0}

ε
2−α

Gα (lnNb
(1
ε)) + π ε

2
−
π ε

4

2
,

where, for any real part α of a Complex Dimension, with α ∉ {−2, 0}, Gα denotes a continuous and
one-periodic function.

4.3.2 Exceptional Cases

One might naturally question the following exceptional cases:

i. DW − k0 (2 −DW ) = 0, for some k0 ∈ N, which occurs when

DW =
2 k0

1 + k0
, i.e., 2 +

lnλ

lnNb
=

2 k0
1 + k0

, or λ = N
− 2

1+k0
b ⋅

According to the terminology of [LRŽ17b], Chapter 4, or [LvF13], Chapter 12, this first case
corresponds to the situation when the Weierstrass Curve is fractal in dimension 0. We then
happen to have a discrete line of Complex Dimensions with real part 0,

L0 = {0 + imp , m ∈ Z} = {imp , m ∈ Z} ,

which is obtained by merger with the discrete line of actual Complex Dimensions,

LDW ,k0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
DW − k0 (2 −DW )
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

0 here

+imp , m ∈ Z

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⋅

Note that the actual Complex Dimensions are not double (i.e., of multiplicity two). This directly
comes from the expression obtained in Theorem 4.8 for the fractal tube zeta function ζ̃W , which
becomes here, for any complex number s,

ζ̃W (s) = ∑
m∈Z

fm,k0,Rectangles

ε
s−imp

s − imp

= ∑
m∈Z, k∈N, k≠k0

fm,k,Rectangles

ε
s−DW +k (2−DW )−imp

s −DW + k (2 −DW ) − imp

+ ∑
m∈Z, k∈N

(fm,k,wedges,1

ε
s+1−imp

s + 1 − imp
+ fm,k,wedges,2

ε
s+2k−1−imp

s + 2 k − 1 − imp
+ f m,k,wedges,3

ε
s+3+2k−imp

s + 3 + 2 k − imp
)

+ ∑
m∈Z, k∈N

fm,k,triangles, parallelograms

ε
s−1−imp

s − 1 − imp
+
π ε

s

s −
π ε

s+2

4 (s + 2) ,
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where, as was already seen in Theorem 4.7, the notation fm,k,Rectangles, fm,k,wedges,`, with 1 ⩽ ` ⩽ 3,
and fm,k,triangles, parallelograms, respectively account for the coefficients associated to the sums cor-
responding to the contribution of the rectangles, wedges, triangles and parallelograms.

This could also be deduced from the fact if the pole s = 0 were double, we would have terms
involving ln ε in the expression of ζ̃W , because, for any integer m ∈ Z and any complex number s,

ε
s−imp

= e
(s−imp) ln ε

;

see [LvF13], Subsection 6.1.1, pages 180–182.

The novelty of this case is that we have Complex Dimensions above 0.

ii. DW − k1 (2 −DW ) = 1, for some k1 ∈ N, which occurs when

DW =
1 + 2 k1
1 + k1

; i.e., 2 +
lnλ

lnNb
=

1 + 2 k1
1 + k1

or, equivalently, λ = N
− 1

1+k1
b ⋅

Since, here, λNb ≠ 1, it follows that k1 ≠ 0.

According to the terminology mentioned in i., this second case corresponds to the situation
when the Weierstrass Curve is fractal in dimension 1. We then happen to have a discrete line
of Complex Dimensions with real part 1,

L1 = {1 + imp , m ∈ Z} ,

which is obtained by merger with the discrete line of actual Complex Dimensions,

LDW ,k1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
DW − k1 (2 −DW )
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

1 here

+imp , m ∈ Z

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⋅

Note again that the actual Complex Dimensions are not double. As above, this directly comes
from the expression obtained in Theorem 4.8 for the fractal tube zeta function, which becomes
here, for any complex number s,

ζ̃W (s) = ∑
m∈Z

(fm,k1,Rectangles + fm,0,wedges,2)
ε
s−1−imp

s − 1 − imp

= ∑
m∈Z, k∈N, k≠k1

fm,k,Rectangles
ε
s−DW +k (2−DW )−imp

s −DW + k (2 −DW ) − imp

+ ∑
m∈Z, k∈N⋆

fm,k,wedges,2
ε
s+2 k−1−imp

s + 2 k − 1 − imp

+ ∑
m∈Z, k∈N

(fm,k,wedges,1
ε
s+1−imp

s + 1 − imp
+ f m,k,wedges,3

ε
s+3+2 k−imp

s + 3 + 2 k − imp
)

+ ∑
m∈Z, k∈N

fm,k,triangles, parallelograms
ε
s−1−imp

s − 1 − imp
+
π ε

s

s −
π ε

s+2

4 (s + 2) ⋅
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What is new in this case is that we are sure that every possible Complex Dimension on L1,
i.e., every complex number 1 + imp, with m ∈ Z, is an actual Complex Dimension of the
Weierstrass Curve, because the same is true for each point of LDW ,k1 .

Figure 18: The Complex Dimensions of the Weierstrass Curve. The nonzero Complex

Dimensions are periodically distributed (with the same period p =
2π

lnNb
, the oscilla-

tory period of ΓW ) along countably many vertical lines, with abscissae DW − k (2 −DW )
and 1 − 2k, where k ∈ N is arbitrary. In addition, 0 and −2 are Complex Dimensions
of ΓW . (See also Subsection 4.3.2 for the exceptional cases.)

4.3.3 Possible Interpretation

Figure 18 gives the distribution of Complex Dimensions. To understand their deep meaning, one
may place on an horizontal mp line, of equation y = mp. Such a line corresponds to the m

th
-order

vibration mode, the one associated to the m
th

prefractal graph, but which can also be interpretated
as coming from:

i. The vertical line x = 0, or, in other words, oscillations coming from points: indeed, the prefractal
graph ΓWm

is, at first, constituted of points.
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ii. The vertical line x = 1, which this time correspond to oscillations coming from lines (or, rather,
line segments): prefractal as it is, ΓWm

is constituted of lines, in an Euclidean space of dimension
two.

iii. The vertical line x = DW , which, this time, corresponds to oscillations coming from the whole
prefractal ΓWm

itself.

iv. The vertical lines x = DW − k (2 −DW ), with k in N
⋆
= N \ {0}.

For k ⩽ m, it corresponds to oscillations coming from the prefractal graphs ΓWm−k
, a phenomenon

which can be understood via the following consideration:

Switching from the (m − k)th prefractal graph, to the m
th

one, 0 < k ⩽ m, is done by applying k
iterates of the Tj maps,

Tj1⋯jk = Tj1 ◦⋯ ◦ Tjk ⋅

In terms of the vertical distance between consecutive vertices, this amounts to a multiplication

of the amplitudes by λ
k
= N

−k (2−DW )
b , associated to a sum of cosine expressions.

It thus provides an interesting interpretation of the real parts

DW − k (2 −DW ) , for 0 < k ⩽ m,

in so far as the m
th

prefractal graph bears, in a sense, the oscillations of its predecessors.

There remains the lines x = DW − k (2 −DW ), with k > m.

In order to interpret them, one could think in the same way, but, without associated graphs,
how? Except if they could exist, in some way. This will be the purpose of our next extension of
the prefractal sequence (ΓWm

)m∈N, a priori indexed by nonnegative integers, to negative ones,
via the new concept of antefractals.

4.3.4 Compatibility with the General Theory of Complex Dimensions

Our results in Theorem 4.7 and Theorem 4.11 above on the fractal tube formula for the Weier-
strass Curve ΓW are compatible with the general (exact, pointwise) fractal tube formulas (via either
tube or distance zeta functions) obtained in the higher–dimensional theory of Complex Dimensions
in [LRŽ17b] (Chapter 5), or in [LRŽ18], and extending the fractal tube formulas for fractal strings
obtained in [LvF00] and [LvF13] (Chapter 8). Compare, e.g., in the case of simple poles and un-
der the hypothesis of strong languidity (a strong form of polynomial growth condition) of either ζ̃W
or ζW [LRŽ17b], Theorem 5.1.16, page 427, or Theorem 5.3.17, page 449, respectively. Indeed, ac-
cording to the aforementioned results, we would have that the tubular volume is given as follows:

VW (ε) =∑
ω

res (ζ̃W , ω) ε2−ω =∑
ω

res (ζW , ω)
2 − ω

ε
2−ω

,

where, in each of these two sums, ω ranges through all of the Complex Dimensions of ΓW (i.e., the
poles of either ζ̃W or, equivalently, ζW ).
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Recall from equation (♦♦) in Remark 4.1 above that

res (ζW , ω) = (2 − ω) res (ζ̃W , ω) ⋅
In order to obtain the fractal tube formula in Theorem 4.7 (and hence also, in Theorem 4.11),

however, we did not need to appeal to the aforementioned results of the general theory, by first calcu-
lating ζ̃W or ζW (using their basic scaling and symmetry properties described in [LRŽ17b], along with
the geometric properties of ΓW described in Section 2 above) and then, verifying that the appropriate
notion of strong languidity is satisfied. This could have been done, but was unnecessary in our present
situation.

Instead, as was explained earlier, we first directly calculated the tubular volume VW (ε) in The-
orem 4.7, and then deduced from the resulting fractal tube formula, via Mellin transformation, an
explicit expression for ζ̃W – and further, for the distance zeta function ζW , via the functional equa-
tion recalled in relation (♦) of Remark 4.1. Finally, as would have been the case if we had adopted
the first method outlined above, we deduced (in Theorem 4.10) the values of the (possible) Complex
Dimensions of ΓW , as the poles of ζ̃W (or, equivalently, of ζW , since DW < 2).

4.4 Minkowski Dimension, Minkowski Nondegeneracy, and Average Minkowski
Content

We next obtain new and refined results concerning the geometry – and, in particular, the Minkowski
nondegeneracy, non Minkowski measurability, as well as the average Minkowski content of the Weier-
strass Curve. For this purpose, and for the benefit of the reader who may not be familiar with these
notions, we first recall several definitions.

Definition 4.4 (Lower and Upper r-Dimensional Minkowski Contents).

Given a bounded set A of R
2
, and ε > 0, let us denote by VA(ε) the Lebesgue measure of the ε-

neighborhood of A, DA (ε), defined as

DA (ε) = {M = (x, y) ∈ R2
, d (M,A) ⩽ ε} ⋅

For any nonnegative real number r, we define, as in [LRŽ17b], the lower r-dimensional Minkowski
content (resp., the upper r-dimensional Minkowski content) of the set A as

M⋆
r (A) = lim inf

ε→0+

VA(ε)
ε2−r

(resp., M
⋆,r (A) = lim sup

ε→0+

VA(ε)
ε2−r

) ⋅

Definition 4.5 (Minkowski Dimension).

If the lower Minkowski (or box) dimension of a bounded set A of R
2
,

inf {r ∈ R ∶ M⋆
r (A) = 0 } ,

and its upper Minkowski (or box) dimension,

inf {r ∈ R ∶ M
⋆,r (A) = 0 } ,

coincide, then their common value, denoted by DA, is the Minkowski (or box) dimension of the set A.
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Definition 4.6 (Minkowski Nondegeneracy and Minkowski Measurability).

Let A be a bounded subset of R
2
, and ε > 0 sufficiently small. Then, as defined in [LRŽ17b], the

set A ⊂ R
2

is said to be Minkowski nondegenerate if its lower and upper Minkowski contents,

M⋆
d (A) = lim inf

ε→0+

VA(ε)
ε2−d

and M
⋆,d (A) = lim sup

ε→0+

VA(ε)
ε2−d

, for some d > 0, are respectively positive and

finite. Note that it then follows from the assumption of Minkowski nondegeneracy of A that the
Minkowski dimension of A, DA in Definition 4.5, exists, and that d = DA.

Finally, the set A ⊂ R
2

is said to be Minkowski measurable if it is Minkowski nondegenerate and

M⋆
DA (A) = M

⋆,DA (A) ;

i.e., if the following limit exists in ]0,+∞[ (and necessarily equals this common value):

M
DA (A) = lim

ε→0+

VA(ε)
ε2−DA

⋅

Then, M
DA (A) is called the Minkowski content of A.

Definition 4.7 (Average Lower and Upper Minkowski Contents).

We herafter use the same notation as in Definitions 4.4 and 4.6 just above, where A denotes
a bounded set R

2
, and ε > 0 a fixed number. Then, as can be found in [LRŽ17b], Definition 2.4.1.,

page 178, we define the average lower-dimensional Minkowski content (resp., average upper-dimensional
Minkowski content) of A as

M̃
DA
⋆ (A) = lim inf

r→+∞

1

ln r
∫
ε

1
r

t
DA−3 VA(t) dt (resp., M̃

⋆,DA (A) = lim sup
r→+∞

1

ln r
∫
ε

1
r

t
DA−3 VA(t) dt) ⋅

In the case when both of these values coincide, their common value, denoted by M̃
DA (A), is

called the average Minkowski content of A, which is then said to exist. Accordingly,

M̃
DA (A) = lim

r→+∞

1

ln r
∫
ε

1
r

t
DA−3 VA(t) dt ⋅

Without loss of generality, we may choose ε = 1 in the present definition. Indeed, the value
of M̃

DA (A) is independent of the choice of ε > 0.

We can now state several new geometric consequences of our above results, especially, Theorems 4.7
and 4.11.
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Theorem 4.12 (Lower, Upper and Average DW -Dimensional Minkowski Contents).

The lower and upper DW -dimensional Minkowski contents, M⋆
DW (ΓW ) and M

⋆,DW (ΓW ), of the
Weierstrass Curve ΓW take strictly positive and finite values, and are such that

CRectangles

Nb
< M⋆

DW (ΓW ) < M
⋆,DW (ΓW ) ⩽ CRectangles ,

where CRectangles denotes the strictly positive and finite constant introduced in Property 4.3.

Moreover, the values of M⋆
DW (ΓW ) and M

⋆,DW (ΓW ) are respectively equal to the minimum and
maximum value of the one-periodic function GDW

= G0,DW
introduced in Theorem 4.11, associated

to DW in the expression of the fractal tube formula given in the same theorem (recall that the period-
icity is with respect to the variable lnNb

ε
−1

, see Property 4.1).

Finally, the average Minkowski content (which is independent of the choise of ε > 0) exists and is
given by the mean value of the one-periodic function GDW

, as well as by the residues of ζ̃W at s = DW :

M̃
DW (ΓW ) = ∫

1

0
GDW

(x) dx = res (ζ̃W , DW ) = res (ζW , DW )
2 −DW

⋅ (✠✠)

Hence, M̃
DW is nontrivial; in fact, 0 < M⋆

DW (ΓW ) < M̃
DW (ΓW ) < M

⋆,DW (ΓW ) <∞.

Proof. One has

M
⋆,DW (ΓW ) = lim sup

ε→0+
{ ∑
m∈Z, k∈N

fm,k,Rectangles ε
k (2−DW )−imp

+ εDW ∑
m∈Z, k∈N

{fm,k,wedges,1 ε1−imp
+ fm,k,wedges,2 ε

−1+2 k−imp
+ fm,k,wedges,3 ε

3+2 k−imp}

+ ε
DW ∑

m∈Z, k∈N

fm,k,triangles, parallelograms ε
−imp

+ ε
DW π − ε

DW π ε
2

2
}

= lim sup
ε→0+

∑
m∈Z

fm,0,Rectangles ε
−imp

= lim sup
ε→0+

CRectangles
Nb − 1

Nb
∑
m∈Z

(Nb − 1)−imp

lnNb + 2 imπ
ε
−imp

= lim sup
x→+∞

CRectanglesN
−{x}
b ⋅

In the same way,

M⋆
DW (ΓW ) = lim inf

x→+∞
CRectanglesN

−{x}
b ⋅

Thanks to Property 4.2, and with 0 ⩽ {x} < 1, we have that

N
−{x}
b =

Nb − 1

Nb
∑
m∈Z

(Nb − 1)−imp
ε
−imp

lnNb + 2 imπ
, with x = − lnNb

((Nb − 1) ε) ,
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This yields
1

Nb
< N

−{x}
b ⩽ 1, and thus,

CRectangles

Nb
< M⋆

DW (ΓW ) < M
⋆,DW (ΓW ) ⩽ CRectangles ⋅

The constant CRectangles being strictly positive and finite (see Property 4.3), this accounts for

a strictly positive (resp., finite) value of the lower (resp., upper) Minkowski content M⋆
DW (ΓW )

(resp., M
⋆,DW (ΓW )).

Also, the one-periodic function (with respect to the variable lnNb
ε
−1

, see Property 4.1),

GDW
= G0,DW

∶ x↦
Nb − 1

Nb
CRectangles ∑

m∈Z

(Nb − 1)−imp
ε
−imp

lnNb + 2 imπ
= N

−{x}
b ,

associated to the value DW is nonconstant, because it has nonzero m
th

Fourier coefficients, with m ≠ 0,
as can be seen from the fractal tube formula, and as stated in Theorem 4.11.

The last part of the theorem, regarding the average Minkowski content of ΓW , follows at once
from [LRŽ17b], Theorem 2.3.25, page 157.

Corollary 4.13 ((of Theorem 4.12) Minkowski Dimension – Minkowski Nondegeneracy).

The Weierstrass Curve ΓW is Minkowski nondegenerate. Furthermore, the number DW = 2 − lnNb

1

λ
is a simple Complex Dimension of ΓW , and it coincides with the Minkowski Dimension of ΓW , which
must also exist. Moreover, ΓW is not Minkowski measurable.

Proof. In light of Theorem 4.12, the nondegeneracy directly follows from the definition. The statement
concerning DW then follows from Definition 4.6, in particular.

Furthermore, ΓW is not Minkowski measurable; i.e., here, M⋆
DW (ΓW ) < M

⋆,DW (ΓW ). This last
statement also follows from Theorem 4.12, because the one-periodic function GDW

is nonconstant,
and so (by the aforementioned results in [LRŽ17b], Theorem 2.3.25 page 157),

M⋆
DW (ΓW ) = min

[0,1]
GDW

< max
[0,1]

GDW
= M

⋆,DW (ΓW ) ⋅

Then, since the lower DW -dimensional Minkowski contents of the Weierstrass Curve is strictly
positive, by applying the result given in [LRŽ17b] (see Theorem 2.2.3, page 114), we can recover, in
a different way, the fact that the number DW is the Minkowski (or box-counting) dimension of the
Weierstrass Curve.

This fact can also be directly deduced from our fractal tube formula, Theorem 4.7 (or Theo-
rem 4.11), combined with the definition of the Minkowski dimension (Definition 4.5).

Moreover, since the distance zeta function ζW associated to the Curve can clearly be meromor-
phically extended to a connected neighborhood of s = DW in the Complex Plane, DW is a simple
pole of ζW . As was pointed out at the end of Theorem 4.12, in agreement with the general theory
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in [LRŽ17b] (see Theorem 2.3.25, page 157), the connection with the associated residue of the tube
zeta function ζ̃W and distance zeta function ζW is then given by (✠✠) in Theorem 4.12. Note that
these residues do not depend on ε, in agreement with the general theory in [LRŽ17b].

4.5 The Non-Integer Case

An interesting question is the generalization of our previous results to the non-integer case; i.e., to
the case when the Weierstrass function W is defined, for any real number x, by

W (x) =
∞

∑
n=0

λ
n

cos (2π bn x) ,

where the real number b does not belong to the set of natural integers.

We plan to provide the details in a later work, but for now limit ourselves to a few comments.

From the geometric point of view, one cannot handle things in the same way. For instance, one
cannot resort to a finite IFS, and the function, apart from its parity, has no periodicity property.

Yet, the associated graph being the attractor of the infinite set of maps, TW = {Ti}i∈Z, such that,

for any integer i and (x, y) in R
2
,

Ti(x, y) = (x + i
b

, λ y + cos (2π (x + i
b

))) ,

it is natural to consider the associated infinite IFS (IIFS), TW . As a consequence, the resulting pre-
fractal graphs are infinite ones.

The local Hölder and reverse-Hölder continuity properties of the Weierstrass function then enable
us to resort to estimates that are equivalent to the ones obtained in Corollaries 2.11 and 2.12, and,
consequently, to the resulting ones about the elementary heights obtained in Corollary 2.15.

As for the tubular neighborhood, due to the polygonal approximation induced by the prefractals,
it is still obtained by means of rectangles and wedges.

In the integer case, extra terms coming from overlapping rectangles vanished, thanks to the sym-

metry with respect to the vertical line x =
1

2
, as described in Proposition 3.4. In the non-integer case,

one simply replaces this symmetry with the one with respect to the vertical axis x = 0.

In this light, it is expected that a similar method, suitably adapted, would lead to a fractal tube
formula of the same type as the one obtained in Theorem 4.7, where the powers of the small parameter ε
would be, respectively, and as previously,

ε
2−DW +k (2−DW )−imp

, ε
3−imp

, ε
1+2 k−imp

, ε
5+2 k−imp

, ε
2−imp

, ε
2

, ε
4
,

which would yield the same results concerning the possible Complex Dimensions, along with the upper
and lower, as well as the average, Minkowski contents of the Weierstrass Curve.
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As in the integer case, the terms involving ε
2−DW +k (2−DW )−imp

come from the contribution of the
rectangles. The one-periodic functions (with respect to the variable lnb ε

−1
this time), respectively as-

sociated to the values DW − k (2 −DW ), k ∈ N, are thus nonconstant, with all of their Fourier coeffi-
cients being nonzero. Hence, as in Theorem 4.10, for each k ∈ N andm ∈ Z,DW − k (2 −DW ) + imp,
are all simple Complex Dimensions of the Weierstrass Curve; i.e., they are simple poles of the tube
(or, equivalently, of the distance) zeta function.

We also mention that we could deal with the case λ b < 1, exactly in the same manner, and with
the same conclusions. Actually, it is noteworthy that, in the present paper, all of our results remain
valid when λNb < 1, where b = Nb is an integer greater than or equal to two. Observe that in the latter
case, the Weierstrass Curve ΓW is of class C

1
, but is still fractal, because it has nonreal Complex

Dimensions (in fact, infinitely many of them).

5 Concluding Comments

In the light of our results, the box dimension DW stands as a simple pole of the tube and dis-
tance zeta functions associated to the W -Curve. It is also the abscissa of holomorphic continuation
of those functions, which therefore cannot be extended holomorphically to the left of DW . According
to [LRŽ17b], part c. of Theorem 2.1.11, page 57, and the last statement of Theorem 2.2.11, page 121,

this additional result follows from the fact that DW exists, M⋆
DW (ΓW ) > 0 and DW < 2. It can also

be deduced from Theorem 4.7, or else from Theorem 4.10.

Now, as was alluded to in the Introduction, the determination of the possible Complex Dimensions
of a fractal object, being deeply connected with its intrinsic vibrational properties, is thus directly as-
sociated to its cohomological properties: what are the topological invariants of the Weierstrass Curve?
This is the question we will try to answer in the forthcoming second part of our study, [DL22b].

Behind the fractal series expansion of the Weierstrass function, another expansion, indexed by the
Complex Dimensions obtained in our fractal tube formulas (see Theorems 4.7 and 4.11 above), natu-
rally arises. Intuitively, one understands that the terms of the expansion come from the cohomological
groups associated to the prefractal sequence of finite graphs that converges towards the Curve. This is
all the more interesting, as those groups possess the same symmetries as the Curve, which means that
a specific differentiation could be achieved on this, however, everywhere singular object; see [DL22a]
and [DL22b].

As was evoked in Subsection 4.5, we also intend, in a future work, to extend our results to the
general case, i.e., when the Weierstrass function W is defined, for any real number x, by

W (x) =
∞

∑
n=0

λ
n

cos (2π bn x)

where the real number b does not belong to the set of natural integers. This goes along with a gen-
eralization of the results of the present paper to a large class of Weierstrass-like functions (see the
paper [Dav19]), including the Takagi function, the Knopp functions and the Koch parametrized Curve;
see [DL23].
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compact sets and relative fractal drums: Oscillations, complex dimensions and fractality.
Journal of Fractal Geometry. Mathematics of Fractals and Related Topics, 5(1):1–119,
2018.

[LvF00] Michel L. Lapidus and Machiel van Frankenhuijsen. Fractal Geometry and Number Theory:
Complex Dimensions of Fractal Strings and Zeros of Zeta Functions. Birkhäuser Boston,
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