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Abstract

We establish fractal tube formulae for the sequence of prefractal graphs which converge to the
Weierstrass Curve, called Weierstrass Iterated Fractal Drums (in short, Weierstrass IFDs), and
which give, for a suitable (and geometrically meaningful) sequence of values of the parameter ¢
tending to zero, explicit expressions for the volume of the associated e-neighborhoods. For this
purpose, we prove new geometric properties of the Curve and of the associated function, in relation
with its local Holder and reverse Holder continuity, with explicit estimates that had not been ob-
tained before. We also show that the Codimension 2 — D)y, is the optimal Holder exponent for the
Weierstrass function W, from which it follows that, as is well known, WV is nowhere differentiable.
Then, the formula, that yields the expression of the e-neighborhood, consists of a fractal power
series in €, with underlying exponents the Complex Codimensions of the sequence of prefractal
graphs. This enables us to obtain the associated (local and global, effective) tube and distance
fractal zeta functions, whose poles yield the corresponding set of Complex Dimensions. We prove
that the Complex Dimensions — apart from 0 and —2 — are periodically distributed along countably
many vertical lines, with the same oscillatory period. By considering the lower and upper (effective)
Minkowski contents of the m"" prefractal approximation to the Weierstrass Curve, which we prove
to be strictly positive, we then show that the Weierstrass IFD is Minkowski nondegenerate, as well
as not Minkowski measurable, but admits a nontrivial average Minkowski content — and that, as
expected, the Minkowski dimension (or box dimension) Dy, is the Complex Dimension with maxi-
mal real part, and zero imaginary part. An interesting (and likely general) new phenomenon arising
in our investigation is that, for all sufficiently large positive integers m, the Complex Dimensions
of the m™" prefractal approximation to the Weierstrass Curve are the same and coincide with the
Complex Dimensions of the Weierstrass IFD.
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1 Introduction

Among the so-called “pathological objects” that appeared in the XIx™ century, the Weierstrass
Curve (W-Curve) stands as one of the most fascinating and intriguing ones. At first, it was simply
designed and thought of in order to be continuous everywhere, while being nowhere differentiable.

3
Given X €]0,1[, and b such that A\b> 1+ TW, the associated function is defined as the sum of the
uniformly convergent trigonometric series

o0
z€Rwm Z ' cos(ﬂbna:) .
n=0
The original proof, by K. Weierstrass [Wei75|, in the case where b is an odd positive integer, can
also be found in [Tit39] (pages 351-353). It has been completed by the one, now classical, given
by G. H. Hardy [Har16], in the more general case, where b is any real number such that Ab > 1.

As is discussed in [Dav22], the introduction of this function challenged all the existing theories that
went back to André-Marie Ampere, and has led to the emergence of many new functions possessing
the same type of properties.

History then left it aside for a while, before new discovered properties brought it back once again
to the forefront. It happened, in particular, that, in addition to its nowhere differentiability, the func-
tion — and the associated Curve — have self-similarity properties. After the works of A. S. Besicovitch

and H. D. Ursell [BU37], Benoit Mandelbrot [Man77], [Man83|, particularly highlighted the fractal
properties of the Weierstrass Curve. He also conjectured that the Hausdorff dimension of the graph
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is given by Dy =2 +

Interesting discussions and results in relation to this question may be found in the book of K. Fal-
coner [Fal86]. As for the box dimension, a first series of results have been obtained by J.-L. Kaplan,
J. Mallet-Paret and J. A. Yorke [KMPY84], where the authors show that it is equal to the Lyapunov
dimension of the equivalent attracting torus. Then, the problem was tackled by F. Przytycki and
M. Urbanski [PU89], as well as by T.-Y. Hu and K.-S. Lau [HL93].

As for the Hausdorff dimension, the first key result was obtained by F. Ledrappier [Led92|, where
the Curve is considered as “the repeller for some expanding self-mapping on [0,1] X R”, in the case
where b is an integer, an assumption that is of importance, in so far as a Markov partition for the map-
ping z = bz mod 1 is involved. The resulting dynamics thus obeys the Markov property, a fact that
has naturally led the author of [Led92] to using such notions as topological — metric entropies, explored
in his earlier joint work with L. S. Young |[LYS85]. An interesting and useful connection was therefore
established between Lyapunov exponents and dimensions, in this context. Another result was then
obtained by B. Hunt [Hun9g| in 1998 in the case where arbitrary phases are included in each cosinu-
soidal term of the summation. Later, in 2014, K. Baransky, B. Bardny and J. Romanowska [BBR14]
showed that, for any value of the real number b, there is a threshold value A\, belonging to the in-

1
terval }5, 1[ such that the Hausdorff dimension is equal to Dy, for every b in ]\, 1[. The results

obtained by W. Shen in [Shel8] went further than the main result of [BBR14] and, in fact, showed
that the Hausdorff dimension of the Weierstrass Curve is equal to D)y, for any (allowed) values of the

parameters. Furthermore, in [Kell7], G. Keller proposed a very original and much simpler proof of
the main results of [BBR14].

In [Dav18], the first author proved — in the case when b = N}, is an integer, and in contrast to the
then existing work — that the Minkowski dimension (or box—counting dimension) of the Weierstrass
Curve could be obtained in a simple way, without requiring any theoretical background in dynamical
systems theory. The proof relies on the use of prefractal approximations; that is, here, a suitable se-
quence of finite graphs which converges towards the Weierstrass Curve. They are obtained by means
of a suitable nonlinear iterated function system (IFS) [Davl9], where, as in the case of the horse-
shoe attractor introduced by Stephen Smale, the nonlinear maps involved are not contractions, but
possess what can be viewed as an equivalent property, since, at each step of the iterative process,
they reduce the values of the two-dimensional Lebesgue measures of a given sequence of rectangles
covering the Curve. As expected, the Weierstrass Curve is invariant with respect to the family of those
maps, which provides us in this context with a result equivalent to the one that can be found in [BD85].

Interestingly, the intrinsic properties of the intriguing maps which constitute the nonlinear IFS
can be directly linked to the computation of the box dimension of the Weierstrass Curve, and to a
new proof of the nowhere differentiability of the Weierstrass function, as shown in [Dav22].

Yet, thus far, no connection has been established with the theory of Complex Dimensions. There-
fore, the following questions arise naturally in this setting: Can one prove that the Minkowski (or
box) dimension of the Weierstrass Curve is, also, a Complex Dimension? Can we also determine all of
the (possible) Complex Dimensions of this Curve, as well as obtain an associated fractal tube formula,
in the form of a fractal power series involving the underlying Complex Dimensions? (See [LRZl7b],
Problem 6.2.24, page 560.)

The foundations of the theory of Complex Dimensions were laid by M. L. Lapidus and his col-
laborators in [Lap91], [Lap92], [Lap93|, [LP93], [LM95], [LvE00], [LP06], [Lap08§], [LPW11], [ELMR15],
[LvFO06], [LRZ17a], [LRZ18|, [Lap19], [HL21I] and [Lap24], in particular. The theory provides a very

natural and intuitive way to characterize fractal strings or drums, in relation with their intrinsic vi-



brational properties. Geometrically, in the latter case, this means studying the oscillations of a small
neighborhood of the boundary, i.e., of a tubular neighborhood, where points are located within an
epsilon distance from any edge. As is explained in [Lapl9], a fractal may be viewed “as a musical
instrument tuned to play certain notes with frequencies (respectively, amplitudes) essentially equal
to the real parts (respectively, the imaginary parts) of the underlying complex dimensions”. One can
also imagine a “geometric wave propagating through the fractal” [Lap19].

The one-dimensional theory of Complex Dimensions (i.e., that of fractal strings) was developed,
in particular, in the books by the second author and M. van Frankenhuisjen [LvF00], [LvEF06], where
general explicit formulas and fractal tube formulas were obtained for fractal strings (see [LvF06],
Chapters 5 and 8). Later, in the book [LRZl?b] — as well as in a series of accompagnying papers,
including [LRZ17a], [LRZ17c] and [LRZ18|] — the higher-dimensional theory of Complex Dimensions
was developed by the second author, G. Radunovic and D. Zubrini¢, in the general case of bounded
subsets of Euclidean space RY and of relative fractal drums of RN, with N = 1 being an arbitrary
integer. General fractal tube formulas were also obtained in this context and applicable to a large
variety of examples; see [LRZ17b|, Chapter 5, and [LRZ18]. In short, Complex Dimensions are defined
as the poles of the meromorphic continuation of suitable geometric or fractal zeta functions, associated
with the fractal under study. A geometric object is then said to be fractal if it admits at least one
nonreal Complex Dimension, thereby giving rise to geometric oscillations via the corresponding fractal
tube formula. For example, in agreement with one’s intuition, the Devil’s Staircase (i.e., the graph of
the Cantor—Lebesgue function) is shown to be fractal, in this sense, whereas it is not fractal according
to Benoit B. Mandelbrot’s definition in [Man83|, because its topological and Hausdorff dimensions
coincide.

Under a mild assumption, the (upper) Minkowski dimension of the geometric object under study
is equal to the abscissa of convergence of the geometric, distance or tube, fractal zeta functions, and is
the only Complex Dimension located on the real axis and with maximal real part, therefore giving rise,
via the corresponding fractal tube formula, to geometric, spectral, or dynamical oscillations with the
largest amplitudes. We note that fractal tube formulas express the volume of (small) e-neighborhoods
of the fractal as a fractal power series, with exponents the underlying Complex Codimensions.

Building on the work on multifractal zeta functions and Complex Dimensions of multifractals
strings developed in [LR0O9], [LLVR09], [ELMRI5], along with the work on Complex Dimensions and
fractal tube formulas in [LvF00], [LvF06]. L. O. R. Olsen [Ols13a], [Ols13b], also obtained a suitable
multifractal analog of fractal tube formulas in this context.

A clear summary of the theory of Complex Dimensions for fractal strings can be found in [Ols01],
while a long survey of the theory of Complex Dimensions, both for fractal strings and in higher di-
mensions, is given in [Lapl9].

A question which naturally arises in this context is that of differential operators on such struc-
tures. In the case of fractal strings, as an echo to noncommutative geometry, where spectral triples
are involved, a geometric zeta function provides the set of complex modes, while the dimensions stand
as its nonreal poles. The occurrence of the zeta function can be understood very intuitively, in so far
as it simply represents the trace of the differential operator at a complex order s. Thus, the poles are
nothing but the maximal orders of differentiation. Hence, dimensions.

The notion of a fractal drum extends that of a fractal string to higher-dimensional Euclidean
spaces, and involves an open subset with a fractal boundary. In the Euclidean plane, this boundary is
a curve. The word “drum” calls for vibrations: intuitively, one understands that they occur in a small
neighborhood of the boundary, a tubular neighborhood, the Lebesgue measure of which is associated
to a tube zeta function which, similarly, enables one to obtain the Complex Dimensions, which stand



as characteristic numbers that account for specific geometric properties of the fractal boundary, here,
the underlying curve.

For the Koch Snowflake Curve, a fractal tube formula was obtained by M. L. Lapidus and E. P. J. Pear-
se in [LP06]. As was pointed out in [LRZ17h] (see Problem 6.2.24, page 560), the case of the Weier-
strass Curve remained a difficult open problem, which we propose to solve in this paper. It is directly
associated to our previous work [Dav18], in so far as precise estimates are required for the elementary
heights of the sequence of natural prefractal approximations tending towards the Curve. As is often
the case in such a situation, we significantly improve these estimates, which also enable us to obtain
the exact values of the local extrema, and to determine the optimal Holder exponent of WW. Those
extrema — which form a dense subset of the Weierstrass Curve — directly depend on the choice of an
initial set of points, which happen to be here the fixed points of the nonlinear iterated function system
involved in the construction of the Curve; see [Dav19] for further details. Moreover, we introduce the
concept of self-shape similarity, a more general one than the standard notion of self-similarity.

The first novelty of our approach is that we define the Complex Dimensions of the Weierstrass
Curve as the set of the Complex Dimensions of the sequence of m" prefractal graphs which converge
to the Curve — Weierstrass Iterated Fractal Drum (in short, Weierstrass IFD), or, equivalently in our
context, of the sequence of m" prefractal approximations which converge to the Curve. More specifi-
cally, we show that the set of (possible) Complex Dimensions is independent of the positive integer m
sufficiently large. For this IFD, our tubular neighborhoods are located on both sides of the involved
prefractals, which seems natural, because vibrations may occur on either side of the underlying frac-
tal drum. However, when it comes to computing the associated fractal tube zeta function, classical
methods, as in [LP06] and [LPW11] (see also [LvF00], §10.3, and [LvF06], §12.4), cannot be directly
applied, since our fractal tube formulas can only be obtained for a sequence of characteristic lengths
— the cohomology infinitesimals. More precisely, we only dispose of discrete values (but geometrically
natural) for the fractal tube formulas, instead of an explicit expression of the tube formula on an
interval of the form [0, ¢y], where ¢y > 0 stands for a small parameter. This difficulty can be overcome
isofar as the knowledge of the expression for the volume at this discrete value is simply the trace of the
continuous volume function corresponding to an evolving tubular neighborhood. We can thus obtain
fractal tube formulas. Then, we deduce from them the explicit form of the local and global fractal
(tube and distance) zeta functions, along with the Complex Dimensions of the IFD, which are the
same at any step of the process, for all prefractal approximations sufficiently close to the Weierstrass
Curve. Note that the later results obtained in [DL23b] corroborate and further justify our approach.
Indeed, not only the Complex Dimensions of the IFD are the same as the Complex Dimensions of
the fractal involved, as is proved in [DL23b], but, also, the determination of the Complex Dimensions
of the IFD is a compulsory step in order to know the Complex Dimensions of the limiting object —
in our case, the Weierstrass Curve. In the process, we introduce the new notions of effective tubular
neighborhood, as well as of effective local and global fractal zeta functions.

The main results obtained in this paper, where we consider the case b = NV}, being an integer, can
be found in the following places:

i. In Corollary on page and Theorem on page along with Corollary on
page where we prove the sharp local Holder continuity, and a sharp discrete version of re-

verse Holder continuity, with optimal Holder exponent, for the Weierstrass function W, equal
1
to the (Minkowski) Codimension 2 — Dy = Iny;, N It follows, in particular, that W is nowhere

differentiable — as is well known, although our method of proof is completely different from the
usual ones.

7. In Theorem on page and Theorem on page wich yield, for specific (and geo-
metrically significant) values of the positive parameter e, the expression of the area of the e-



neighborhood of each m'" prefractal graph approximation, for all sufficiently large positive inte-
gers m — a Weierstrass Fractal Tube Formula, which (apart from two terms associated with the
Complex Dimensions 0 and —2) consists of an expansion of the form

€ (1an (%)) . (%)

where, for any real part o of a Complex Dimension, G, denotes a continuous and one-periodic
function. Furthermore, for o = a;,4, = Dy, the Minkowski dimension of the Curve — i.e., for a
being equal to the maximal real part of the Complex Dimensions of the Weierstrass IFD — the
periodic function G, is nonconstant, as well as bounded away from zero and infinity. As
is the case in the general theory of fractal tube formulas (see [LvF06], [LRZ17b], Chapter 8
and Chapter 5, respectively), the resulting fractal power series has for exponents the Com-
plex Codimensions of the Weierstrass Curve. Observe that each nonconstant periodic function
in () gives rise to multiplicatively periodic (or log-periodic) oscillations in the scaling variable e.

areal part of a Complex Dimension

iti. In Theorem[4.8] on page where we exhibit the possible Complex Dimensions of the Weierstrass
IFD, as the poles of the associated (local and global) Tube Zeta Functions, themselves obtained
in Theorem on page Equivalently, in the light of [LRZ17a], [LRZ17b], since Dyy < 2,
the Complex Dimensions are also the poles of the associated distance zeta functions. In par-
ticular, we show that the Complex Dimensions (other than —2) are all simple and periodi-

cally distributed (with the same period p = the natural oscillatory period of the Weier-

T
In N,
strass Curve) along countably many vertical lines, with abscissae Dyy — k (2 — Dyy) and 1 — 2k,
where k£ in IN = {0,1,2,...} is arbitrary. In addition, —2 and 0 are also Complex Dimensions,

and they are simple.

0. In Theorem [4.10] on page[98 and Corollary on page (100 where we prove the nondegeneracy
of the Weierstrass IFD, in the Minkowski sense (see [LRZ17h]), coming from the fact that, for
all sufficiently large positive integers m, the upper and lower (effective) Minkowski contents of
the m'™ prefractal polygonal approximation to the Curve are respectively positive and finite. As
a result, the Minkowski dimension (or box—counting dimension) D)y, of the Weierstrass IFD ex-
ists; i.e., the lower and upper Minkowski dimensions of the IFD coincide. Also, since the periodic
function G'p,, is not constant, it follows that the Weierstrass IFD is not Minkowski measurable.
Moreover, we show that the (effective) average Minkowski content of the Weierstrass IFD exists,
is positive and finite, as well as coincides with the average value of the periodic function G'p,,,.

v. As a corollary of Theorem (page [98)), the fact that the number Dyy is both the Minkowski
Dimension and a Complex Dimension of the Weierstrass IFD; see Corollary on page [100

vi. The fractality of the Weierstrass IFD, in the sense of [LyF06], [LRZ17b|, [Lap19]; i.e., the exis-
tence of nonreal Complex Dimensions (with real part Dyy) giving rise to geometric oscillations,
in the Fractal Tube Formula obtained in this paper (Theorem on page |78 and Theorem
on page , as described in 4. above. In fact, in the terminology of [LvF06] and [LRZ17b]|, the
Weierstrass IFD is fractal in countably many dimensions dj, with d, — —oo, as k — o0.

The Minkowski dimension (or box dimension) of the Weierstrass Curve, Dyy, coincides with the
maximum value of the real parts of the Complex Dimensions of the IFD. By considering the lower



Minkowski content, which we prove to be strictly positive, we show that Dy, is, as expected, a Com-
plex Dimension of the IFD. In fact, it is natural to expect that this is also true for the Complex
Dimensions themselves, which will be shown in [DL23b] to be the same for the Weierstrass IFD and

for the Weierstrass Curve.

We also briefly discuss, in Subsection on page the noninteger case, i.e., when b is any
positive real number satisfying Ab > 1. This case will be studied in detail in a future work.

Now, the determination of those dimensions, as important as it may be, is not an end in itself. In
fact, the Complex Dimensions directly echo the fractal cohomological properties of the Curve, which
is the subject of our second paper, [DL24d].

The results of this paper and of [DL24d] are announced in the survey article [DL24a], where their
main results are presented in a summarized form.

2 Geometric Framework

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame.
The usual Cartesian coordinates are denoted by (z,y). The horizontal and vertical axes will be re-
spectively referred to as (z'z) and (y'y).

Notation 1 (Set of all Natural Numbers and Intervals).

As in Bourbaki [Bou04] (Appendix E. 143), we denote by IN = {0, 1, 2, ...} the set of all natural
numbers, and set N* = IN'\ {0}.

Given a, b with —c0 € a < b < 00, ]a,b[ = (a,b) denotes an open interval, while, for example, ]a,b] = (a,b]

denotes a half-open, half-closed interval.

Notation 2 (Wave Inequality Symbol (see [Tao06], Preface, page xiv)).

Given two positive-valued functions f and g, defined on a subset Z of R, we use the following
notation, for all x € Z: f(x) < g(x) when there exists a strictly positive constant C' such that, for
all x € Z, f(x) < C g(x), which is equivalent to f = O (g). Note that in our forthcoming context, we
will often use O (1) to denote terms which depend on m € IN, but are bounded away from 0 and oo;
more precisely, those terms will always satisfy bounds of the following form

0 < Constant;, s < O (1) < Constantg,, < 00, (R1)

where Constant,, s and Constant,,, denote strictly positive and finite constants.

Notation 3 (Weierstrass Parameters).
In the sequel, A and N, are two real numbers such that

0<A<1l , NyeN' and AN, >1- (#) (R2)



As explained in [Davl19|], we deliberately made the choice to introduce the notation N, which
replaces the initial b, in so far as, in Hardy’s paper [Harl6] (in contrast to Weierstrass’s original
article [Wei75]), b is any positive real number satisfying Ab > 1 , whereas we deal here with the specific
case of a natural integer, which accounts for the natural notation Ny; see, however, Section [4.4]

Definition 2.1 (Weierstrass Function, Weierstrass Curve).

We consider the Weierstrass function W, defined, for any real number x, by

W(z) =) A" cos(27 Ny ) - (R3)

n=0

We call the associated graph the Weierstrass Curve.

Due to the one—periodicity of the W—function, from now on, and without loss of generality, we
restrict our study to the interval [0, 1[= [0,1).

Notation 4 (Logarithm).

Given y > 0, Iny denotes the natural logarithm of y, while, given a > 1, In, y = % denotes the

logarithm of y in base a; so that, in particular, In = In,.

Notation 5. For the parameters A and N, satisfying condition (&) (see Notation |3 on page , we
denote by

In A 1
DW_2+m_2_lanX€]1’2[ (R4)

the box—counting dimension (or Minkowski dimension) of the Weierstrass Curve I'}y,, which happens to
be equal to its Hausdorff dimension [KMPY84|, [BBR14], [ShelS], [Kell7]. As was mentioned earlier,
our results in this paper will also provide a direct geometric proof of the fact that D)y, the Minkowski
dimension (or box—counting dimension) of Iy, exists and takes the above value.

Remark 2.1. As can be found, for instance, in [Fal86], we recall that the box—counting dimension (or
box dimension, in short), of T'yy, is given by

.. InN;(Ty)
Dy = _51i%1+ Ind

o (0)
where Nj (I'yy) stands for any of the following quantities:

i. the smallest number of sets of diameter at most § that cover I'yy on [0, 1] ;
ii. the smallest number of closed balls of radius ¢ that cover T'y, on [0, 1] ;
iti. the smallest number of cubes of side § that cover I'yy, on [0, 1[;

iv. the number of —mesh cubes that intersect I'yy on [0, 1[;



v. the largest number of disjoint balls of radius § with centers in Iy on [0, 1[.

Furthermore, for the Weierstrass Curve I'yy, as, more generally, for any bounded subset of Eu-
clidean space — the box—counting dimension coincides with the Minkowski dimension.

We stress that our results will imply that the Minkowski (or box—counting) dimension of the
In A

Weierstrass Curve exists; more specifically, the above limit exists and is equal to Dyy = 2 + LN
b

Convention (The Weierstrass Curve as a Cyclic Curve).

In the sequel, we identify the points (0, W(0)) and (1, W(1)) = (1, W(0)). This is justified by the
fact that the Weierstrass function W is 1—periodic, since IV is an integer.

Remark 2.2. The above convention makes sense, because the points (0,/(0)) and (1, W(1)) have the
same vertical coordinate, in addition to the periodic properties of the WW—function.

1
Property 2.1. (Symmetry with Respect to the Vertical Line x = 5)

Since, for any x € [0,1],
o0
W(-2)=) A cos(2r Ny =27 Ny z) = W(a),
n=0
the Weierstrass Curve is symmetric with respect to the vertical straight line x =

5.

Proposition 2.2 (Nonlinear and Noncontractive Iterated Function System (IFS)).

Following our previous work [Davlsg|, we approzimate the restriction T'yy to [0,1[XR, of the
Weierstrass Curve, by a sequence of graphs, built via an iterative process. For this purpose, we use
the nonlinear iterated function system (IFS) of the family of C™ maps from R? to R* denoted by

TW = {T(]v"')TNb—l} )

where, for any integer i belonging to {0, ..., Ny — 1} and any point (z,y) of R?,

T+ T+
Ti(x,y) = Tb,/\y+cos 27 N, .

Remark 2.3. As is explained in [Dav19], it happens that the maps T}, with ¢ = 0,..., N, — 1, compris-
ing the IFS Ty, in the statement of Proposition on page [9] just above — are not contractions, in
the classical sense. As a result, the nonlinearity of the IFS, Ty, = {ﬂ}i]\j’o_l, does not enable one to
resort to the probabilistic approach of M. F. Barnsley and S. Demko [BDS85|, or to the earlier work
of J. E. Hutchinson [Hut81], which is applicable in the case of standard fractals such as the Sierpinski



Gasket and the Koch Curve. Interestingly, even if they are not contractions, our maps possess what
can be viewed as satisfying an equivalent property, since, at each step of the iterative process, they
reduce the two-dimensional Lebesgue measures of a given sequence of rectangles covering the Curve.
This is due to the fact that they correspond, in a sense, to the composition of a contraction of ratio r,
in the horizontal direction, and a dilatation of factor r, in the vertical direction, with r, r, < 1. Such
maps are considered, for example, in the book of Robert L. Devaney [Dev03|, where they play a part
in the first step of the horseshoe map process introduced by Stephen Smale.

Property 2.3 (Attractor of the IFS).

Np—1
The Weierstrass Curve is the attractor of the IFS Tyy: Ty = |J Ti(Tyy).
=0

Proof. We refer to our works [Dav18|, [Dav19].

Notation 6 (Fixed Points).

For any integer i belonging to {0, ..., N, — 1}, we denote by

? 1 2mi
Py = (@;,y:) = (m»m cos(m))

the unique fixed point of the map T; (see [Dav19]).

Definition 2.2 (Sets of Vertices, Prefractals).

We denote by Vj the ordered set (according to increasing abscissae), of the points

{Po,....Pyn,-1} -
The set of points Vy — where, for any i of {0,..., N, — 2}, the point P; is linked to the point P,
— constitutes an oriented finite graph, ordered according to increasing abscissa, which we will denote
by I'yw,. Then, Vj is called the set of vertices of the graph T'yy,.

Np—1
For any positive integer m, i.e., for m € IN*, we set V,, = U T (V1)
i=0
The set of points V,,,, where two consecutive points are linked, is an oriented finite graph, ordered
according to increasing abscissa, which we will call the m'™ order W-prefractal. Then, V,, is called

the set of vertices of the prefractal T'y, ; see Figures on pages and

Property 2.4 (Density of the Set V* = ] V,, in the Weierstrass Curve [DL24d]).
n€lN

The set V* = |J V,, is dense in the Weierstrass Curve T'yy.

nelN

10



Definition 2.3 (Adjacent Vertices, Edge Relation).

For any natural integer m, the prefractal graph I'yy, ~is equipped with an edge relation ~, as
m

follows: two vertices X and Y of Iy, , i.e. two points belonging to V,,, are said to be adjacent (i.e.,
neighboring or junction points) if and only if the line segment [X,Y] is an edge of ')y, ; we then
write X ~ Y. Note that this edge relation depends on m, which means that points adjacent in V,,

m
might not remain adjacent in V1.

=
~
=
=

> <

b

Figure 1: The prefractal graphs 'y, , 'y, , I'w,, I'wy, I'w,, T'yy,, in the case where A\ =
and N, = 3. For example, I'yy, is on the right side of the top row, while I'yy, is on t

left side of the bottom row.
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1
Figure 2: The prefractal graphs T'yy,,, 'y, , T'w,, T'w,, T'w,, T'w,, in the case where A =

and Ny = 4.
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Figure 3: The prefractal graphs 'y, 'y, , T'w,, T'w,, T'w,, T'w,, in the case where A\ =
and N, = 7.
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Property 2.5.
For any m € N, the following statements hold:

i. Vm C Vm+1 ¢
ii. #Vy = (Ny —1) Ny + 1, where #V,,, denotes the number of elements in the finite set V,,.
iii. The prefractal graph Ty, has exactly (N, — 1) Ny* edges.

iv. The consecutive vertices of the prefractal graph T'yy — are the vertices of Ny" simple nonregular
polygons P, . with Ny, sides. For any strictly positive integer m, the junction point between two
consecutive polygons is the point

(0= oy ( (oD

1<sk<N"-1-
(N, - 1) N Nb—l)Ng">) ’ b

Hence, the total number of junction points is Ny — 1. For instance, in the case N, = 3, the
polygons are all triangles; see Figure[], on page[T]}

In the sequel, we will denote by Py the initial polygon, whose vertices are the fixed points of
the maps T;, 0 < i < Ny — 1, introduced in Deﬂm’tion on page m i.e., {PO, cen PNb_l}.

y

A

initial polygon 2,

polygon 2, : polygon 24,
o :

P

Y
To (P2)=T1 (Po) Ti (P2) = T2 (Po)

-1+

1
Figure 4: The initial polygon Py, and the polygons P o, Pi,1, P1,2, in the case where A = 3
and N, = 3.
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Definition 2.4 (Vertices of the Prefractals, Elementary Lengths, Heights and Angles).

Given a strictly positive integer m, we denote by (Mj,m) the set of vertices of

0sjs(Np-1) Ny -1
the prefractal graph I'yy, . One thus has, for any integer j in {0, o (N = 1) N - 1},

Miim = (wb —]nzvg“’W((Nb —jl)N;”")) |

We also introduce, for any integer j in {0,..., (N, — 1) N;" — 2}, the following quantities:

1. the elementary horizontal lengths:

1

Ly, = m
(Nb - 1)Nb

1. the elementary lengths:

_ _ 2 2
Ljrtm = & (M, Mys1m) =\ Lo + 15 511

where h; i1, is defined in 7. just below.

111. the elementary heights:

- W(L) W( J )
sk = (N, = 1) N (N -1)N* )|

1. the minimal height:

inf .
hy, = f hiivlm s R5
" Osjs(N:I—ll)Ng"—l g1, (R5)
along with the maximal height:
b = sup hjjr1m s (R6)

0<j<(Ny—1) Ny -1
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v. the geometric angles:

[

0i-1jm = (W), (Mjo1,mM;jm)) 5 0je1.m = ((W'y), (M Mjz1m))

where (y'y) denotes the vertical axis, which yield the following value of the geometric angle
between consecutive edges