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Abstract

We establish fractal tube formulae for the sequence of prefractal graphs which converge to the
Weierstrass Curve, calledWeierstrass Iterated Fractal Drums (in short, Weierstrass IFDs), and
which give, for a suitable (and geometrically meaningful) sequence of values of the parameter�
tending to zero, explicit expressions for the volume of the associated� -neighborhoods. For this
purpose, we prove new geometric properties of the Curve and of the associated function, in relation
with its local H•older and reverse H•older continuity, with explicit estimates that had not been ob-
tained before. We also show that the Codimension 2� DW is the optimal H•older exponent for the
Weierstrass function W, from which it follows that, as is well known, W is nowhere di�erentiable.
Then, the formula, that yields the expression of the � -neighborhood, consists of a fractal power
series in � , with underlying exponents the Complex Codimensions of the sequence of prefractal
graphs. This enables us to obtain the associated (local and global, e�ective)tube and distance
fractal zeta functions, whose poles yield the corresponding set of Complex Dimensions. We prove
that the Complex Dimensions { apart from 0 and � 2 { are periodically distributed along countably
many vertical lines, with the same oscillatory period. By considering the lower and upper (e�ective)
Minkowski contents of the mth prefractal approximation to the Weierstrass Curve, which we prove
to be strictly positive, we then show that the Weierstrass IFD is Minkowski nondegenerate, as well
as not Minkowski measurable, but admits a nontrivial average Minkowski content { and that, as
expected, the Minkowski dimension (or box dimension)DW is the Complex Dimension with maxi-
mal real part, and zero imaginary part. An interesting (and likely general) new phenomenon arising
in our investigation is that, for all su�ciently large positive integers m, the Complex Dimensions
of the mth prefractal approximation to the Weierstrass Curve are the same and coincide with the
Complex Dimensions of the Weierstrass IFD.
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* The research of M. L. L. was supported by the Burton Jones Endowed Chair in Pure Mathematics, as well as by

grants from the U. S. National Science Foundation.

1



Keywords : Weierstrass Curve, prefractal approximations, best H•older exponent, iterated fractal
drum (IFD), Complex Dimensions of an IFD, box{counting (or Minkowski) dimension, fractal tube
formula, e�ective local and global tube zeta function, e�ective local and global distance zeta function,
(upper, lower and average) Minkowski contents, Minkowski non{measurability, Minkowski nondegen-
eracy, nowhere di�erentiability.

Contents

1 Introduction 2

2 Geometric Framework 7

3 Iterated Fractal Drums and Tubular Neighborhoods 35
3.1 The Tubular Neighborhoods, and Associated Geometric Characteristic Numbers . . . 37

4 Complex Dimensions and Average Minkowski Content 69
4.1 Prefractal Tube Formulas and Prefractal E�ective Zeta Functions . . . . . . . . . . . . 72
4.2 Complex Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Exceptional Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.3 Possible Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.4 Analogy with the General Theory of Complex Dimensions . . . . . . . . . . . . 94

4.3 Minkowski Dimension, Minkowski Nondegeneracy, and Average Minkowski Content . . 95
4.4 The Noninteger Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Concluding Comments 102

1 Introduction

Among the so-called \pathological objects" that appeared in the XIX th century, the Weierstrass
Curve (W-Curve) stands as one of the most fascinating and intriguing ones. At �rst, it was simply
designed and thought of in order to be continuous everywhere, while being nowhere di�erentiable.

Given � " � 0; 1� , and b such that � b %1 �
3�
2 , the associated function is de�ned as the sum of the

uniformly convergent trigonometric series

x " R (
™

=
n� 0

� n cos� � b n x� �

The original proof, by K. Weierstrass [Wei75], in the case whereb is an odd positive integer, can
also be found in [Tit39] (pages 351-353). It has been completed by the one, now classical, given
by G. H. Hardy [Har16], in the more general case, whereb is any real number such that � b %1.

As is discussed in [Dav22], the introduction of this function challenged all the existing theories that
went back to Andr�e-Marie Amp�ere, and has led to the emergence of many new functions possessing
the same type of properties.

History then left it aside for a while, before new discovered properties brought it back once again
to the forefront. It happened, in particular, that, in addition to its nowhere di�erentiability, the func-
tion { and the associated Curve { have self-similarity properties. After the works of A. S. Besicovitch
and H. D. Ursell [BU37], Benô�t Mandelbrot [Man77], [Man83], particularly highlighted the fractal
properties of the Weierstrass Curve. He also conjectured that the Hausdor� dimension of the graph
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is given by DW � 2 �
ln �
ln b

� 2 � lnb
1
�

, where Nb � b " N “ � N ¯ r 0x.

Interesting discussions and results in relation to this question may be found in the book of K. Fal-
coner [Fal86]. As for the box dimension, a �rst series of results have been obtained by J.-L. Kaplan,
J. Mallet-Paret and J. A. Yorke [KMPY84], where the authors show that it is equal to the Lyapunov
dimension of the equivalent attracting torus. Then, the problem was tackled by F. Przytycki and
M. Urba�nski [PU89], as well as by T.-Y. Hu and K.-S. Lau [HL93].

As for the Hausdor� dimension, the �rst key result was obtained by F. Ledrappier [Led92], where
the Curve is considered as \the repeller for some expanding self-mapping on� 0; 1� � R", in the case
whereb is an integer, an assumption that is of importance, in so far as a Markov partition for the map-
ping x ( b x mod 1 is involved. The resulting dynamics thus obeys the Markov property, a fact that
has naturally led the author of [Led92] to using such notions as topological { metric entropies, explored
in his earlier joint work with L. S. Young [LY85]. An interesting and useful connection was therefore
established between Lyapunov exponents and dimensions, in this context. Another result was then
obtained by B. Hunt [Hun98] in 1998 in the case where arbitrary phases are included in each cosinu-
soidal term of the summation. Later, in 2014, K. Bara�nsky, B. B�ar�any and J. Romanowska [BBR14]
showed that, for any value of the real numberb, there is a threshold value � b belonging to the in-

terval �
1
b

; 1� such that the Hausdor� dimension is equal to DW , for every b in � � b; 1� . The results

obtained by W. Shen in [She18] went further than the main result of [BBR14] and, in fact, showed
that the Hausdor� dimension of the Weierstrass Curve is equal toDW , for any (allowed) values of the
parameters. Furthermore, in [Kel17], G. Keller proposed a very original and much simpler proof of
the main results of [BBR14].

In [Dav18], the �rst author proved { in the case when b � Nb is an integer, and in contrast to the
then existing work { that the Minkowski dimension (or box{counting dimension) of the Weierstrass
Curve could be obtained in a simple way, without requiring any theoretical background in dynamical
systems theory. The proof relies on the use of prefractal approximations; that is, here, a suitable se-
quence of �nite graphs which converges towards the Weierstrass Curve. They are obtained by means
of a suitable nonlinear iterated function system (IFS) [Dav19], where, as in the case of the horse-
shoe attractor introduced by Stephen Smale, the nonlinear maps involved are not contractions, but
possess what can be viewed as an equivalent property, since, at each step of the iterative process,
they reduce the values of the two-dimensional Lebesgue measures of a given sequence of rectangles
covering the Curve. As expected, the Weierstrass Curve is invariant with respect to the family of those
maps, which provides us in this context with a result equivalent to the one that can be found in [BD85].

Interestingly, the intrinsic properties of the intriguing maps which constitute the nonlinear IFS
can be directly linked to the computation of the box dimension of the Weierstrass Curve, and to a
new proof of the nowhere di�erentiability of the Weierstrass function, as shown in [Dav22].

Yet, thus far, no connection has been established with the theory of Complex Dimensions. There-
fore, the following questions arise naturally in this setting: Can one prove that the Minkowski (or
box) dimension of the Weierstrass Curve is, also, a Complex Dimension? Can we also determine all of
the (possible) Complex Dimensions of this Curve, as well as obtain an associated fractal tube formula,
in the form of a fractal power series involving the underlying Complex Dimensions? (See [LR�Z17b],
Problem 6.2.24, page 560.)

The foundations of the theory of Complex Dimensions were laid by M. L. Lapidus and his col-
laborators in [Lap91], [Lap92], [Lap93], [LP93], [LM95], [LvF00], [LP06], [Lap08], [LPW11], [ELMR15],
[LvF06], [LR �Z17a], [LR�Z18], [Lap19], [HL21] and [Lap24], in particular. The theory provides a very
natural and intuitive way to characterize fractal strings or drums, in relation with their intrinsic vi-
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brational properties. Geometrically, in the latter case, this means studying the oscillations of a small
neighborhood of the boundary, i.e., of a tubular neighborhood, where points are located within an
epsilon distance from any edge. As is explained in [Lap19], a fractal may be viewed \as a musical
instrument tuned to play certain notes with frequencies (respectively, amplitudes) essentially equal
to the real parts (respectively, the imaginary parts) of the underlying complex dimensions". One can
also imagine a \geometric wavepropagating through the fractal" [Lap19].

The one-dimensional theory of Complex Dimensions (i.e., that of fractal strings) was developed,
in particular, in the books by the second author and M. van Frankenhuisjen [LvF00], [LvF06], where
general explicit formulas and fractal tube formulas were obtained for fractal strings (see [LvF06],
Chapters 5 and 8). Later, in the book [LR�Z17b] { as well as in a series of accompagnying papers,
including [LR �Z17a], [LR�Z17c] and [LR�Z18] { the higher-dimensional theory of Complex Dimensions
was developed by the second author, G. Radunovic and D.�Zubrini�c, in the general case of bounded
subsets of Euclidean spaceRN and of relative fractal drums of RN , with N ) 1 being an arbitrary
integer. General fractal tube formulas were also obtained in this context and applicable to a large
variety of examples; see [LR�Z17b], Chapter 5, and [LR�Z18]. In short, Complex Dimensions are de�ned
as the poles of the meromorphic continuation of suitable geometric or fractal zeta functions, associated
with the fractal under study. A geometric object is then said to be fractal if it admits at least one
nonreal Complex Dimension, thereby giving rise to geometric oscillations via the corresponding fractal
tube formula. For example, in agreement with one's intuition, the Devil's Staircase (i.e., the graph of
the Cantor{Lebesgue function) is shown to be fractal, in this sense, whereas it is not fractal according
to Benô�t B. Mandelbrot's de�nition in [Man83], because its topological and Hausdor� dimensions
coincide.

Under a mild assumption, the (upper) Minkowski dimension of the geometric object under study
is equal to the abscissa of convergence of the geometric, distance or tube, fractal zeta functions, and is
the only Complex Dimension located on the real axis and with maximal real part, therefore giving rise,
via the corresponding fractal tube formula, to geometric, spectral, or dynamical oscillations with the
largest amplitudes. We note that fractal tube formulas express the volume of (small)" -neighborhoods
of the fractal as a fractal power series, with exponents the underlying Complex Codimensions.

Building on the work on multifractal zeta functions and Complex Dimensions of multifractals
strings developed in [LR09], [LLVR09], [ELMR15], along with the work on Complex Dimensions and
fractal tube formulas in [LvF00], [LvF06]. L. O. R. Olsen [Ols13a], [Ols13b], also obtained a suitable
multifractal analog of fractal tube formulas in this context.

A clear summary of the theory of Complex Dimensions for fractal strings can be found in [Ols01],
while a long survey of the theory of Complex Dimensions, both for fractal strings and in higher di-
mensions, is given in [Lap19].

A question which naturally arises in this context is that of di�erential operators on such struc-
tures. In the case of fractal strings, as an echo to noncommutative geometry, wherespectral triples
are involved, ageometric zeta functionprovides the set of complex modes, while the dimensions stand
as its nonreal poles. The occurrence of the zeta function can be understood very intuitively, in so far
as it simply represents the trace of the di�erential operator at a complex orders. Thus, the poles are
nothing but the maximal orders of di�erentiation. Hence, dimensions.

The notion of a fractal drum extends that of a fractal string to higher-dimensional Euclidean
spaces, and involves an open subset with a fractal boundary. In the Euclidean plane, this boundary is
a curve. The word \drum" calls for vibrations: intuitively, one understands that they occur in a small
neighborhood of the boundary, a tubular neighborhood, the Lebesgue measure of which is associated
to a tube zeta function which, similarly, enables one to obtain the Complex Dimensions, which stand
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as characteristic numbers that account for speci�c geometric properties of the fractal boundary, here,
the underlying curve.

For the Koch Snowake Curve, a fractal tube formula was obtained by M. L. Lapidus and E. P. J. Pear-
se in [LP06]. As was pointed out in [LR�Z17b] (see Problem 6.2.24, page 560), the case ofthe Weier-
strass Curve remained adi�cult open problem , which we propose to solve in this paper. It is directly
associated to our previous work [Dav18], in so far as precise estimates are required for the elementary
heights of the sequence of natural prefractal approximations tending towards the Curve. As is often
the case in such a situation, we signi�cantly improve these estimates, which also enable us to obtain
the exact values of the local extrema, and to determine the optimal H•older exponent ofW. Those
extrema { which form a dense subset of the Weierstrass Curve { directly depend on the choice of an
initial set of points, which happen to be here the �xed points of the nonlinear iterated function system
involved in the construction of the Curve; see [Dav19] for further details. Moreover, we introducethe
concept of self-shape similarity , a more general one than the standard notion ofself-similarity .

The �rst novelty of our approach is that we de�ne the Complex Dimensions of the Weierstrass
Curve as the set of the Complex Dimensions of the sequence ofmth prefractal graphs which converge
to the Curve { Weierstrass Iterated Fractal Drum (in short, Weierstrass IFD), or, equivalently in our
context, of the sequence ofmth prefractal approximations which converge to the Curve. More speci�-
cally, we show that the set of (possible) Complex Dimensions is independent of the positive integerm
su�ciently large. For this IFD, our tubular neighborhoods are located on both sides of the involved
prefractals, which seems natural, because vibrations may occur on either side of the underlying frac-
tal drum. However, when it comes to computing the associated fractal tube zeta function, classical
methods, as in [LP06] and [LPW11] (see also [LvF00],§10.3, and [LvF06], §12.4), cannot be directly
applied, since our fractal tube formulas can only be obtained for a sequence of characteristic lengths
{ the cohomology in�nitesimals. More precisely, we only dispose of discrete values (but geometrically
natural) for the fractal tube formulas, instead of an explicit expression of the tube formula on an
interval of the form � 0; � 0� , where � 0 %0 stands for a small parameter. This di�culty can be overcome
isofar as the knowledge of the expression for the volume at this discrete value is simply the trace of the
continuous volume function corresponding to an evolving tubular neighborhood. We can thus obtain
fractal tube formulas. Then, we deduce from them the explicit form of the local and global fractal
(tube and distance) zeta functions, along with the Complex Dimensions of the IFD, which are the
same at any step of the process, for all prefractal approximations su�ciently close to the Weierstrass
Curve. Note that the later results obtained in [DL23b] corroborate and further justify our approach.
Indeed, not only the Complex Dimensions of the IFD are the same as the Complex Dimensions of
the fractal involved, as is proved in [DL23b], but, also, the determination of the Complex Dimensions
of the IFD is a compulsory step in order to know the Complex Dimensions of the limiting object {
in our case, the Weierstrass Curve. In the process, we introduce the new notions ofe�ective tubular
neighborhood, as well as ofe�ective local and global fractal zeta functions.

The main results obtained in this paper, where we consider the caseb � Nb being an integer, can
be found in the following places:

i. In Corollary 2.13, on page 24, and Theorem 2.14, on page 26, along with Corollary 2.15, on
page 27, where we prove the sharp local H•older continuity, and a sharp discrete version of re-
verse H•older continuity, with optimal H•older exponent, for the Weierstrass function W, equal

to the (Minkowski) Codimension 2 � DW � lnNb

1
�

. It follows, in particular, that W is nowhere
di�erentiable { as is well known, although our method of proof is completely di�erent from the
usual ones.

ii . In Theorem 4.5, on page 78 and Theorem 4.9, on page 90, wich yield, for speci�c (and geo-
metrically signi�cant) values of the positive parameter � , the expression of the area of the� -
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neighborhood of eachmth prefractal graph approximation, for all su�ciently large positive inte-
gersm { a Weierstrass Fractal Tube Formula, which (apart from two terms associated with the
Complex Dimensions 0 and� 2) consists of an expansion of the form

=
� real part of a Complex Dimension

� 2� � � � lnNb
�

1
� 

 ; � “ �

where, for any real part � of a Complex Dimension,G� denotes a continuous and one-periodic
function. Furthermore, for � � � max � DW , the Minkowski dimension of the Curve { i.e., for �
being equal to the maximal real part of the Complex Dimensions of the Weierstrass IFD { the
periodic function G� max is nonconstant, as well as bounded away from zero and in�nity. As
is the case in the general theory of fractal tube formulas (see [LvF06], [LR�Z17b], Chapter 8
and Chapter 5, respectively), the resulting fractal power series has for exponents the Com-
plex Codimensions of the Weierstrass Curve. Observe that each nonconstant periodic function
in � “ � gives rise to multiplicatively periodic (or log{periodic) oscillations in the scaling variable � .

iii . In Theorem 4.8, on page 88, where we exhibit the possible Complex Dimensions of the Weierstrass
IFD, as the poles of the associated (local and global) Tube Zeta Functions, themselves obtained
in Theorem 4.6, on page 82. Equivalently, in the light of [LR�Z17a], [LR�Z17b], sinceDW $ 2,
the Complex Dimensions are also the poles of the associated distance zeta functions. In par-
ticular, we show that the Complex Dimensions (other than � 2) are all simple and periodi-

cally distributed (with the same period p �
2 �

ln Nb
, the natural oscillatory period of the Weier-

strass Curve) along countably many vertical lines, with abscissaeDW � k � 2 � DW � and 1� 2k,
where k in N � r0; 1; 2; : : :x is arbitrary. In addition, � 2 and 0 are also Complex Dimensions,
and they are simple.

iv. In Theorem 4.10, on page 98 and Corollary 4.11, on page 100, where we prove the nondegeneracy
of the Weierstrass IFD, in the Minkowski sense (see [LR�Z17b]), coming from the fact that, for
all su�ciently large positive integers m, the upper and lower (e�ective) Minkowski contents of
the mth prefractal polygonal approximation to the Curve are respectively positive and �nite. As
a result, the Minkowski dimension (or box{counting dimension) DW of the Weierstrass IFD ex-
ists; i.e., the lower and upper Minkowski dimensions of the IFD coincide. Also, since the periodic
function GD W is not constant, it follows that the Weierstrass IFD is not Minkowski measurable.
Moreover, we show that the (e�ective) average Minkowski content of the Weierstrass IFD exists,
is positive and �nite, as well as coincides with the average value of the periodic functionGD W .

v. As a corollary of Theorem 4.10 (page 98), the fact that the numberDW is both the Minkowski
Dimension and a Complex Dimension of the Weierstrass IFD; see Corollary 4.11, on page 100.

vi. The fractality of the Weierstrass IFD, in the sense of [LvF06], [LR�Z17b], [Lap19]; i.e., the exis-
tence ofnonreal Complex Dimensions (with real part DW ) giving rise to geometric oscillations,
in the Fractal Tube Formula obtained in this paper (Theorem 4.5, on page 78 and Theorem 4.9,
on page 90), as described inii . above. In fact, in the terminology of [LvF06] and [LR�Z17b], the
Weierstrass IFD is fractal in countably many dimensionsdk , with dk � �™ , as k � ™.

The Minkowski dimension (or box dimension) of the Weierstrass Curve,DW , coincides with the
maximum value of the real parts of the Complex Dimensions of the IFD. By considering the lower
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Minkowski content, which we prove to be strictly positive, we show that DW is, as expected, a Com-
plex Dimension of the IFD. In fact, it is natural to expect that this is also true for the Complex
Dimensions themselves, which will be shown in [DL23b] to be the same for the Weierstrass IFD and
for the Weierstrass Curve.

We also briey discuss, in Subsection 4.4, on page 101, the noninteger case, i.e., whenb is any
positive real number satisfying � b %1. This case will be studied in detail in a future work.

Now, the determination of those dimensions, as important as it may be, is not an end in itself. In
fact, the Complex Dimensions directly echo the fractal cohomological properties of the Curve, which
is the subject of our second paper, [DL24d].

The results of this paper and of [DL24d] are announced in the survey article [DL24a], where their
main results are presented in a summarized form.

2 Geometric Framework

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame.
The usual Cartesian coordinates are denoted by� x; y� . The horizontal and vertical axes will be re-
spectively referred to as� x¬x� and � y¬y� .

Notation 1 (Set of all Natural Numbers and Intervals ).

As in Bourbaki [Bou04] (Appendix E. 143), we denote byN � r0; 1; 2; : : :x the set of all natural
numbers, and setN “ � N ¯ r 0x.

Given a, bwith �™ ( a ( b ( ™, � a; b� � � a; b� denotes an open interval, while, for example,� a; b� � � a; b�
denotes a half-open, half-closed interval.

Notation 2 (Wave Inequality Symbol (see [Tao06], Preface, page xiv) ).

Given two positive-valued functions f and g, de�ned on a subset I of R, we use the following
notation, for all x " I : f � x� , g� x� when there exists a strictly positive constant C such that, for
all x " I , f � x� ( C g� x� , which is equivalent to f � O � g� . Note that in our forthcoming context, we
will often use O � 1� to denote terms which depend onm " N, but are bounded away from 0 and™;
more precisely, those terms will always satisfy bounds of the following form

0 $ Constantinf ( O � 1� ( Constantsup $ ™ ; (R 1)

where Constantinf and Constantsup denote strictly positive and �nite constants.

Notation 3 (Weierstrass Parameters ).

In the sequel, � and Nb are two real numbers such that

0 $ � $ 1 ; Nb " N “ and � N b %1 � � º � (R 2)
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As explained in [Dav19], we deliberately made the choice to introduce the notationNb which
replaces the initial b, in so far as, in Hardy's paper [Har16] (in contrast to Weierstrass's original
article [Wei75]), b is any positive real number satisfying� b %1 , whereas we deal here with the speci�c
case of a natural integer, which accounts for the natural notationNb; see, however, Section 4.4.

De�nition 2.1 (Weierstrass Function, Weierstrass Curve ).

We consider theWeierstrass function W, de�ned, for any real number x, by

W� x� �
™

=
n� 0

� n cos� 2 � N n
b x� � (R 3)

We call the associated graph theWeierstrass Curve.

Due to the one{periodicity of the W{function, from now on, and without loss of generality, we
restrict our study to the interval � 0; 1� � � 0; 1� .

Notation 4 (Logarithm ).

Given y %0, ln y denotes the natural logarithm of y, while, given a %1, lna y �
ln y
ln a

denotes the
logarithm of y in basea; so that, in particular, ln � lne.

Notation 5. For the parameters � and Nb satisfying condition � º � (see Notation 3, on page 7), we
denote by

DW � 2 �
ln �

ln Nb
� 2 � lnNb

1
�

" � 1; 2� (R 4)

the box{counting dimension (or Minkowski dimension) of the Weierstrass Curve �W , which happens to
be equal to its Hausdor� dimension [KMPY84], [BBR14], [She18], [Kel17]. As was mentioned earlier,
our results in this paper will also provide a direct geometric proof of the fact that DW , the Minkowski
dimension (or box{counting dimension) of � W , exists and takes the above value.

Remark 2.1. As can be found, for instance, in [Fal86], we recall that thebox{counting dimension (or
box dimension, in short), of � W , is given by

DW � � lim
� � 0�

ln N � � � W �
ln �

; � • �

where N � � � W � stands for any of the following quantities:

i. the smallest number of sets of diameter at most� that cover � W on � 0; 1� ;

ii . the smallest number of closed balls of radius� that cover � W on � 0; 1� ;

iii . the smallest number of cubes of side� that cover � W on � 0; 1� ;

iv. the number of � {mesh cubes that intersect � W on � 0; 1� ;
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v. the largest number of disjoint balls of radius � with centers in � W on � 0; 1� .

Furthermore, for the Weierstrass Curve � W , as, more generally, for any bounded subset of Eu-
clidean space { the box{counting dimension coincides with the Minkowski dimension.

We stress that our results will imply that the Minkowski (or box{counting) dimension of the

Weierstrass Curve exists; more speci�cally, the above limit exists and is equal toDW � 2 �
ln �

ln Nb
.

Convention (The Weierstrass Curve as a Cyclic Curve ).

In the sequel, we identify the points � 0; W� 0�� and � 1; W� 1�� � � 1; W� 0�� . This is justi�ed by the
fact that the Weierstrass function W is 1{periodic, sinceNb is an integer.

Remark 2.2. The above convention makes sense, because the points� 0; W� 0�� and � 1; W� 1�� have the
same vertical coordinate, in addition to the periodic properties of theW{function.

Property 2.1. � Symmetry with Respect to the Vertical Line x �
1
2




Since, for any x " � 0; 1� ,

W� 1 � x� �
™

=
n� 0

� n cos� 2 � N n
b � 2 � N n

b x� � W� x� ;

the Weierstrass Curve is symmetric with respect to the vertical straight linex �
1
2.

Proposition 2.2 (Nonlinear and Noncontractive Iterated Function System (IFS) ).

Following our previous work [Dav18], we approximate the restriction � W to � 0; 1� � R, of the
Weierstrass Curve, by a sequence of graphs, built via an iterative process. For this purpose, we use
the nonlinear iterated function system (IFS) of the family of C™ maps from R2 to R2 denoted by

TW � sT0; : : : ; TNb� 1y ;

where, for any integer i belonging tor0; : : : ; Nb � 1x and any point � x; y� of R2,

Ti � x; y� � �
x � i
Nb

; � y � cos� 2 � �
x � i
Nb




 �

Remark 2.3. As is explained in [Dav19], it happens that the mapsTi , with i � 0; : : : ; Nb � 1, compris-
ing the IFS TW in the statement of Proposition 2.2, on page 9 just above { are not contractions,in
the classical sense. As a result, the nonlinearity of the IFS, TW � r Ti x

Nb� 1
i � 0 , does not enable one to

resort to the probabilistic approach of M. F. Barnsley and S. Demko [BD85], or to the earlier work
of J. E. Hutchinson [Hut81], which is applicable in the case of standard fractals such as the Sierpi�nski
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Gasket and the Koch Curve. Interestingly, even if they are not contractions, our maps possess what
can be viewed as satisfying an equivalent property, since, at each step of the iterative process, they
reduce the two-dimensional Lebesgue measures of a given sequence of rectangles covering the Curve.
This is due to the fact that they correspond, in a sense, to the composition of a contraction of ratior x

in the horizontal direction, and a dilatation of factor r y in the vertical direction, with r x r y $ 1. Such
maps are considered, for example, in the book of Robert L. Devaney [Dev03], where they play a part
in the �rst step of the horseshoe map process introduced by Stephen Smale.

Property 2.3 (Attractor of the IFS ).

The Weierstrass Curve is the attractor of the IFSTW : � W �
Nb� 1
�
i � 0

Ti � � W � .

Proof. We refer to our works [Dav18], [Dav19].

Notation 6 (Fixed Points ).

For any integer i belonging to r0; : : : ; Nb � 1x, we denote by

Pi � � x i ; yi � � �
i

Nb � 1
;

1
1 � �

cos�
2 � i

Nb � 1




the unique �xed point of the map Ti (see [Dav19]).

De�nition 2.2 (Sets of Vertices, Prefractals ).

We denote by V0 the ordered set (according to increasing abscissae), of the points

sP0; : : : ; PNb� 1y �

The set of points V0 { where, for any i of r0; : : : ; Nb � 2x, the point Pi is linked to the point Pi � 1

{ constitutes an oriented �nite graph, ordered according to increasing abscissa, which we will denote
by � W0 . Then, V0 is called the set of verticesof the graph � W0 .

For any positive integer m, i.e., for m " N “ , we setVm �
Nb� 1
�
i � 0

Ti � Vm� 1� .

The set of points Vm , where two consecutive points are linked, is an oriented �nite graph, ordered
according to increasing abscissa, which we will call them th order W -prefractal . Then, Vm is called
the set of verticesof the prefractal � Wm ; see Figures 1, 2, 3 on pages 11, 12, and 13.

Property 2.4 (Density of the Set V “ � �
n" N

Vn in the Weierstrass Curve [DL24d] ).

The set V “ � �
n" N

Vn is dense in the Weierstrass Curve� W .
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De�nition 2.3 (Adjacent Vertices, Edge Relation ).

For any natural integer m, the prefractal graph � Wm is equipped with an edge relation �
m

, as

follows: two vertices X and Y of � Wm , i.e. two points belonging to Vm , are said to beadjacent (i.e.,
neighboring or junction points) if and only if the line segment � X; Y � is an edge of �Wm ; we then
write X �

m
Y. Note that this edge relation depends onm, which means that points adjacent in Vm

might not remain adjacent in Vm� 1.

1
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- 1

1

y

1
x

- 1

1

y

1
x

- 1

1

y

1
x

- 1

1

y

1
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- 1

1

y

1
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- 1

1

y

Figure 1: The prefractal graphs � W 0 , � W 1 , � W 2 , � W 3 , � W 4 , � W 5 , in the case where � �
1
2

,
and N b � 3. For example, � W 1 is on the right side of the top row, while � W 4 is on the
left side of the bottom row.
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Figure 2: The prefractal graphs � W 0 , � W 1 , � W 2 , � W 3 , � W 4 , � W 5 , in the case where � �
1
2

and N b � 4.
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Figure 3: The prefractal graphs � W 0 , � W 1 , � W 2 , � W 3 , � W 4 , � W 5 , in the case where � �
1
2

and N b � 7.
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Property 2.5. [Dav18]
For any m " N, the following statements hold:

i. Vm L Vm� 1 �

ii. # Vm � � Nb � 1� N m
b � 1, where # Vm denotes the number of elements in the �nite setVm .

iii. The prefractal graph � Wm has exactly� Nb � 1� N m
b edges.

iv. The consecutive vertices of the prefractal graph� Wm are the vertices ofN m
b simple nonregular

polygonsPm;k with Nb sides. For any strictly positive integer m, the junction point between two
consecutive polygons is the point

�
� Nb � 1� k

� Nb � 1� N m
b

; W �
� Nb � 1� k

� Nb � 1� N m
b



 ; 1 ( k ( N m
b � 1 �

Hence, the total number of junction points is N m
b � 1. For instance, in the case Nb � 3, the

polygons are all triangles; see Figure 4, on page 14.

In the sequel, we will denote byP0 the initial polygon , whose vertices are the �xed points of
the mapsTi , 0 ( i ( Nb � 1, introduced in De�nition 2.2, on page 10, i.e., sP0; : : : ; PNb� 1y.

Figure 4: The initial polygon P 0 , and the polygons P 1;0 , P 1;1 , P 1;2 , in the case where � �
1
2

and N b � 3.
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De�nition 2.4 (Vertices of the Prefractals, Elementary Lengths, Heights and Angles ).

Given a strictly positive integer m, we denote by� M j;m � 0( j ( � N b � 1� N m
b � 1 the set of vertices of

the prefractal graph � Wm . One thus has, for any integerj in s0; : : : ; � Nb � 1� N m
b � 1y,

M j;m � �
j

� Nb � 1� N m
b

; W �
j

� Nb � 1� N m
b



 �

We also introduce, for any integerj in s0; : : : ; � Nb � 1� N m
b � 2y, the following quantities:

i. the elementary horizontal lengths:

L m �
1

� Nb � 1� N m
b

;

ii . the elementary lengths:

l j;j � 1;m � d � M j;m ; M j � 1;m � �
Ö

L 2
m � h2

j;j � 1;m ;

where hj;j � 1;m is de�ned in iii . just below.

iii . the elementary heights:

hj;j � 1;m �
»»»»»»»»
W �

j � 1
� Nb � 1� N m

b

 � W �

j
� Nb � 1� N m

b


»»»»»»»»

;

iv. the minimal height :

hinf
m � inf

0( j ( � Nb� 1� N m
b � 1

hj;j � 1;m ; (R 5)

along with the maximal height:

hm � sup
0( j ( � Nb� 1� N m

b � 1
hj;j � 1;m ; (R 6)
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v. the geometric angles:

� j � 1;j;m � w�� y¬y� ; � M j � 1;m M j;m �� ; � j;j � 1;m � w�� y¬y� ; � M j;m M j � 1;m �� ;

where� y¬y� denotes the vertical axis, which yieldthe following value of the geometric angle
between consecutive edges , namely, � M j � 1;m M j;m ; M j;m M j � 1;m � , with arctan � tan� 1:

� j � 1;j;m � � j;j � 1;m � arctan
L m

hj � 1;j;m
� arctan

L m

hj;j � 1;m
:

(Note that, of course, � j � 1;j;m � arctan
L m

hj � 1;j;m
and � j;j � 1;m � arctan

L m

hj;j � 1;m
.)

Property 2.6. For the geometric angle� j � 1;j;m , with 0 ( j ( � Nb � 1� N m
b � 1 and m " N, we have

the following relation:

tan � j � 1;j;m �
hj � 1;j;m

L m
�

One now requires, at a given stepm " N “ , the exact coordinates of the vertices of the prefractal
graph � Wm , i.e. of the following set of points:

�
j

� Nb � 1� N m
b

; W �
j

� Nb � 1� N m
b



 ; 0 ( j ( # Vm �

Thus far, they could not be found in the existing literature on the subject.

For this purpose, it is interesting to use the scaling properties of the Weierstrass function.

Property 2.7 (Scaling Properties of the Weierstrass Function, and Consequences ).

Since, for any real numberx, W� x� �
™

=
n� 0

� n cos� 2 � N n
b x� , one also has

W� Nb x� �
™

=
n� 0

� n cos� 2 � N n� 1
b x� �

1
�

™

=
n� 1

� n cos� 2 � N n
b x� �

1
�

� W� x� � cos� 2 � x �� ;

which yields, for any strictly positive integer m and any j in r0; : : : ; # Vm � � 1x,

W �
j

� Nb � 1� N m
b


 � � W �
j

� Nb � 1� N m� 1
b

� � cos�
2 � j

� Nb � 1� N m
b


 �

By induction, one then obtains that

W �
j

� Nb � 1� N m
b


 � � m W �
j

Nb � 1

 �

m� 1

=
k� 0

� k cos�
2 � N k

b j
� Nb � 1� N m

b
� �
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Property 2.8 (A Consequence of the Symmetry with Respect to the Vertical Line x �
1
2

).

For any strictly positive integer m and any j in r0; : : : ; # Vm � 1x, we have that

W �
j

� Nb � 1� N m
b


 � W �
� Nb � 1� N m

b � j
� Nb � 1� N m

b

 ;

which means that the points

�
� Nb � 1� N m

b � j
� Nb � 1� N m

b
; W �

� Nb � 1� N m
b � j

� Nb � 1� N m
b



 and �
j

� Nb � 1� N m
b

; W �
j

� Nb � 1� N m
b





are symmetric with respect to the vertical linex �
1
2.

De�nition 2.5 (Left-Side and Right-Side Vertices ).

Given natural integers m, k such that 0 ( k ( N m
b � 1, and a polygonPm;k , we de�ne:

i. The set of its left-side vertices as the set of the �rst �
Nb � 1

2 � vertices, where� y� denotes the

integer part of the real number y.

ii . The set of its right-side vertices as the set of the last�
Nb � 1

2 � vertices.

When the integer Nb is odd, we de�ne the bottom vertex as the �
Nb � 1

2 

th

one; see Figure 6, on

page 18.

Figure 5: Symmetric points with respect to the vertical line x �
1
2

.
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Figure 6: The left-side and right-side vertices.

Property 2.9. Since, for any natural integer n,

N n
b � � 1 � Nb � 1� n �

n

=
k� 0

�
n
k� � Nb � 1� k � 1 mod Nb � 1 ;

one obtains, for any integerj in r0; : : : ; Nb � 1x:

W �
j

Nb � 1

 �

™

=
n� 0

� n cos� 2 � N n
b

j
� Nb � 1�


 �
™

=
n� 0

� n cos�
2 � j

Nb � 1

 �

1
1 � �

cos�
2 � j

Nb � 1

 �

We observe that the point

�
j

Nb � 1
; W �

j
Nb � 1



 � �
j

Nb � 1
;

1
1 � �

cos�
2 � j

Nb � 1




is also the �xed point of the map Tj introduced in Proposition 2.2 page 9.

Property 2.10.

For 0 ( j (
� Nb � 1�

2 (resp., for
� Nb � 1�

2 ( j ( Nb � 1), we have that

W �
j � 1

Nb � 1

 � W �

j
Nb � 1


 ( 0 � resp., W �
j � 1

Nb � 1

 � W �

j
Nb � 1


 ) 0
 �

Proof. For any integer j in r0; : : : ; Nb � 1x,

W �
j � 1

Nb � 1

 � W �

j
Nb � 1


 �
1

1 � �
� cos�

2 � � j � 1�
Nb � 1


 � cos�
2 � j

Nb � 1


 �

i . For 0 ( j (
Nb � 1

2 :

0 (
2 � j

Nb � 1
( � ; 0 (

2 � � j � 1�
Nb � 1

( � � 1 �
2

Nb � 1

 �
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The limit case

2� � j � 1�
Nb � 1

� � � 1 �
2

Nb � 1



only occurs when the integerNb is odd, for the value j �
Nb � 1

2 , and corresponds to the bottom
vertex of the initial polygon P0. In this case, one has

W �
Nb � 1

2 
 � �
1

1 � �
�

This case can thus be left aside.

One may therefore only consider the cases when 0(
2� j

Nb � 1
(

2 � � j � 1�
Nb � 1

( � .

The cosine function being nonincreasing on� 0; � � , one obtains the expected result:

W �
j � 1

Nb � 1

 � W �

j
Nb � 1


 ( 0 �

ii . For
� Nb � 1�

2 ( j ( Nb � 1:

� (
2 � j

Nb � 1
( 2 � ; � � 1 �

2
Nb � 1


 (
2 � � j � 1�

Nb � 1
(

2 � N b

Nb � 1
�

As previously, the limit case

2� � j � 1�
Nb � 1

� � � 1 �
2

Nb � 1



can be left aside. The increasing property of the cosine function on� �; 2 � � then yields the
expected result:

W �
j � 1

Nb � 1

 � W �

j
Nb � 1


 ) 0 �

Notation 7 (Signum Function ).

The signum function of a real number x is de�ned by

sgn � x� �

~„„„‚„„„€

� 1; if x $ 0;
0; if x � 0;

� 1; if x %0�
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Property 2.11. Given any strictly positive integer m, we have the following properties:

i. For any j in r0; : : : ; # Vm � 1x, the point

�
j

� Nb � 1� N m
b

; W �
j

� Nb � 1� N m
b





is the image of the point

�
j

� Nb � 1� N m� 1
b

� i; W �
j

� Nb � 1� N m� 1
b

� i �� � �
j � i � Nb � 1� N m� 1

b

� Nb � 1� N m� 1
b

; W �
j � i � Nb � 1� N m� 1

b

� Nb � 1� N m� 1
b

��

under the mapTi , 0 ( i ( Nb � 1.

Consequently, for0 ( j ( Nb � 1, the j th vertex of the polygon Pm;k , 0 ( k ( N m
b � 1, i.e.,

the point

�
� Nb � 1� k � j
� Nb � 1� N m

b
; W �

� Nb � 1� k � j
� Nb � 1� N m

b




is the image of the point

�
�
�

� Nb � 1� � k � i � Nb � 1� N m� 1
b � � j

� Nb � 1� N m� 1
b

; W
�
�
�

� Nb � 1� � k � i � Nb � 1� N m� 1
b � � j

� Nb � 1� N m� 1
b


�
�


�
�

;

which is alsothe j th vertex of the polygon Pm� 1;k� i � Nb� 1� N m � 1
b

. Therefore, there is an exact
correspondance between vertices of the polygons at consecutive stepsm � 1, m.

ii. Given j in r0; : : : ; Nb � 2x and k in s0; : : : ; N m
b � 1y, we have that

sgn � W �
k � Nb � 1� � j � 1

� Nb � 1� N m
b


 � W �
k � Nb � 1� � j
� Nb � 1� N m

b


 � sgn � W �

j � 1
Nb � 1


 � W �
j

Nb � 1


 �

Proof.

i . One simply applies Proposition 2.3, on page 10, in conjunction with Property 2.9, on page 18.
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For i in r0; : : : ; Nb � 1x, we have that

Ti �
j � i � Nb � 1� N m� 1

b

� Nb � 1� N m� 1
b

; W �
j � i � Nb � 1� N m� 1

b

� Nb � 1� N m� 1
b

��

¶¶

�
j � i � Nb � 1� N m� 1

b

� Nb � 1� N m
b

�
i

Nb
; � W �

j � i � Nb � 1� N m� 1
b

� Nb � 1� N m� 1
b

� � cos� 2 � �
j � i � Nb � 1� N m� 1

b

� Nb � 1� N m
b

�
i

Nb
���

� �
j

� Nb � 1� N m
b

; W �
j

� Nb � 1� N m� 1
b

� i � � cos� 2 �
j

� Nb � 1� N m
b


 �

� �
j

� Nb � 1� N m
b

; W �
j

� Nb � 1� N m� 1
b

� i � � cos� 2 �
j � i

� Nb � 1� N m
b

�
i

Nb

 �

� �
j

� Nb � 1� N m
b

; � W �
j

� Nb � 1� N m� 1
b

� � cos� 2 �
j � i

� Nb � 1� N m
b


 �

� �
j

� Nb � 1� N m
b

; W �
j

� Nb � 1� N m
b



 �

ii . We prove the result by induction on m. Accordingly, let us consider j in r0; : : : ; Nb � 2x.

The result at the initial step m � 1 is satis�ed, in so far as, for any integerk in r0; : : : ; Nb � 1x :

W �
k � Nb � 1� � j � 1

� Nb � 1� Nb

 � W �

k � Nb � 1� � j
� Nb � 1� Nb


 � � � W �
k � Nb � 1� � j � 1

Nb � 1

 � W �

k � Nb � 1� � j
Nb � 1





� cos�
2 � � k � Nb � 1� � j � 1�

Nb � 1

 � cos�

2 � � k � Nb � 1� � j �
Nb � 1




� � � W � k �
j � 1

� Nb � 1�

 � W � k �

j
� Nb � 1�





� cos�
2 � � j � 1�
� Nb � 1�


 � cos�
2 � j

Nb � 1



� � � W �
j � 1

Nb � 1

 � W �

j
Nb � 1





� W �
j � 1

Nb � 1

 � W �

j
Nb � 1




� � 1 � � � � W �
j � 1

Nb � 1

 � W �

j
Nb � 1



 �

Let us now assume that, for any integerk in t 0; : : : ; N m� 1
b � 1z,

sgn � W �
k � Nb � 1� � j � 1

� Nb � 1� N m
b


 � W �
k � Nb � 1� j

� Nb � 1� N m
b



 � sgn � W �
j � 1

Nb � 1

 � W �

j
Nb � 1



 �
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Henceforth, we want to prove that, for any integer k in t 0; : : : ; N m� 1
b � 1z,

sgn � W �
k � Nb � 1� � j � 1

� Nb � 1� N m
b


 � W �
k � Nb � 1� j

� Nb � 1� N m
b



 � sgn � W �
j � 1

Nb � 1

 � W �

j
Nb � 1



 �

The induction hypothesis will be used in so far as anyk in t 0; : : : ; N m� 1
b � 1z can also be expressed

in the following form:

k � xk � i N m� 1
b ; 0 ( xk ( N m� 1

b � 1 ; 0 ( i ( Nb � 1 �

This will be useful because ofthe one{periodicity of the W{function , since, for any real numberx
and any integer i , we have that

W� x � i � � W� x� �

Due to the symmetry with respect to the vertical line x �
1
2 (see Property 2.1, on page 9), given

a natural integer m, one can, in addition, restrict oneself to the cases when

0 ( � Nb � 1� k � j $ � Nb � 1� k � j � 1 ( �
� Nb � 1� N m

b � 1
2 � �

� Nb � 1� N m
b

2 ;

which yields

0 (
� 2 � Nb � 1� k � 2 j � 1� �

2 � Nb � 1� N m
b

$
� 2 � Nb � 1� k � 2 j � 1� �

� Nb � 1� N m
b

( � �

Thus, we only have to consider the cases when

sin �
� 2 � Nb � 1� k � 2 j � 1� �

� Nb � 1� N m
b


 ) 0 and sin�
� 2 � Nb � 1� k � 2 j � 1� �

� Nb � 1� N m
b


 ) 0 �

The remaining ones, namely, the cases when

sin �
� 2 � Nb � 1� k � 2 j � 1� �

� Nb � 1� N m
b


 ( 0 and sin�
� 2 � Nb � 1� k � 2 j � 1� �

� Nb � 1� N m
b


 ( 0 ;

are then obtained by symmetry.

Hence,

W �
k � Nb � 1� � j � 1

� Nb � 1� N m
b


 � W �
j

� Nb � 1� N m
b




¶¶
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� � � W �
k � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

� � W �
k � Nb � 1� � j

� Nb � 1� N m� 1
b

��

� cos�
2 � � k � Nb � 1� � j � 1�

� Nb � 1� N m� 1
b

� � cos�
2 � � k � Nb � 1� � j �

� Nb � 1� N m� 1
b

�

� � � W �
k � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

� � W �
k � Nb � 1� � j

� Nb � 1� N m� 1
b

��

� 2 sin�
�

� Nb � 1� N m� 1
b

� sin �
� 2 � Nb � 1� k � 2 j � 1� �

� Nb � 1� N m� 1
b

�

� � � W �
xk � Nb � 1� � i � Nb � 1� N m� 1

b � j � 1

� Nb � 1� N m� 1
b

� � W �
xk � Nb � 1� � i � Nb � 1� N m� 1

b � j

� Nb � 1� N m� 1
b

��

� 2 sin�
�

� Nb � 1� N m� 1
b

� sin �
� 2 � Nb � 1� k � 2 j � 1� �

� Nb � 1� N m� 1
b

�

� � � W � i �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

� � W � i �
xk � Nb � 1� � j

� Nb � 1� N m� 1
b

��

� 2 sin�
�

� Nb � 1� N m� 1
b

� sin �
� 2 � Nb � 1� k � 2 j � 1� �

� Nb � 1� N m� 1
b

�

� � � W �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

� � W �
xk � Nb � 1� � j

� Nb � 1� N m� 1
b

��

� 2 sin�
�

� Nb � 1� N m� 1
b

� sin �
� 2 � Nb � 1� k � 2 j � 1� �

� Nb � 1� N m� 1
b

� �

In the case when

0 ( � Nb � 1� k � j � 1 ( �
� Nb � 1� N m

b � 1
2 � �

� Nb � 1� N m
b

2 ;

one thus has

� 2 sin�
�

� Nb � 1� N m� 1
b

� sin �
� 2 � Nb � 1� k � 2 j � 1� �

� Nb � 1� N m� 1
b

� ( 0 �

The con�guration of the initial polygon ensures, for 0 ( j (
Nb � 1

2 , that

W �
j � 1

Nb � 1

 � W �

j
Nb � 1


 ( 0

and therefore, thanks to the induction hypothesis,

W �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

� � W �
xk � Nb � 1� � j

� Nb � 1� N m� 1
b

� ( 0 �
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By induction, one thus obtains, for any natural integer m, any k in s0; : : : ; N m
b � 1y, and any j

in v0; : : : ;
Nb � 3

2 | , that

W �
� Nb � 1� k � j � 1

� Nb � 1� N m
b


 � W �
� Nb � 1� k � j
� Nb � 1� N m

b

 ( 0 ;

as required.

Corollary 2.12 (Lower Bound for the Elementary Heights (Coming from Property 2.11,
on page 20)).

For any strictly positive integer m, and any j in s0; : : : ; � Nb � 1� N m
b y, we have that

»»»»»»»»
W �

j � 1
� Nb � 1� N m

b

 � W �

j
� Nb � 1� N m

b


»»»»»»»»

) �
»»»»»»»»»
W �

j � 1

� Nb � 1� N m� 1
b

� � W �
j

� Nb � 1� N m� 1
b

�
»»»»»»»»»

;

which yields, by induction,

»»»»»»»»
W �

j � 1
� Nb � 1� N m

b

 � W �

j
� Nb � 1� N m

b


»»»»»»»»

) � m

ÍÒÑÒÏ
N

m � D W � 2�
b

»»»»»»»»
W �

j � 1
Nb � 1


 � W �
j

Nb � 1


»»»»»»»»

�

This improves our previous result in [Dav18].

Corollary 2.13 (Upper Bound for the Elementary Heights (Coming from Property 2.11,
on page 20)).

For any strictly positive integer m, and any j in s0; : : : ; � Nb � 1� N m
b y, we have that

»»»»»»»»
W �

j � 1
� Nb � 1� N m

b

 � W �

j
� Nb � 1� N m

b


»»»»»»»»

( � m �
»»»»»»»»
W �

j � 1
Nb � 1


 � W �
j

Nb � 1


»»»»»»»»

�
2 �

� Nb � 1� � � N b � 1�



( � m

ÍÒÑÒÏ
N

m � D W � 2�
b

�
»»»»»»»»
W �

j � 1
Nb � 1


 � W �
j

Nb � 1


»»»»»»»»

�
2 �

� Nb � 1� � � N b � 1�

 ;

which also improves our previous result in[Dav18].
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Proof. For any strictly positive integer m and any j in s0; : : : ; � Nb � 1� N m
b y, we have the following

estimates:

»»»»»»»»
W �

j � 1
� Nb � 1� N m

b

 � W �

j
� Nb � 1� N m

b


»»»»»»»»

( �
»»»»»»»»»
W �

j � 1

� Nb � 1� N m� 1
b

� � W �
j

� Nb � 1� N m� 1
b

�
»»»»»»»»»

�
»»»»»»»»»
cos�

2 � � j � 1�

� Nb � 1� N m� 1
b

� � cos�
2 � j

� Nb � 1� N m� 1
b

�
»»»»»»»»»

( �
»»»»»»»»»
W �

j � 1

� Nb � 1� N m� 1
b

� � W �
j

� Nb � 1� N m� 1
b

�
»»»»»»»»»

�
2 �

� Nb � 1� N m� 1
b

;

which yields, by induction,

»»»»»»»»
W �

j � 1
� Nb � 1� N m

b

 � W �

j
� Nb � 1� N m

b


»»»»»»»»

( � m
»»»»»»»»
W �

j � 1
Nb � 1


 � W �
j

Nb � 1


»»»»»»»»

�
m� 1

=
k� 0

� k 2� N k
b

� Nb � 1� N m
b

( � m
»»»»»»»»
W �

j � 1
Nb � 1


 � W �
j

Nb � 1


»»»»»»»»

�
2 � � m N m

b

� Nb � 1� N m
b � � N b � 1�

� � m �
»»»»»»»»
W �

j � 1
Nb � 1


 � W �
j

Nb � 1


»»»»»»»»

�
2 �

� Nb � 1� � � N b � 1�

 ;

as desired.

Remark 2.4. Corollaries 2.12 (page 24) and 2.13 (page 24) are important, because they enable one
to obtain exact and more accurate values of the bounding constantsCinf and Csup involved in the
following inequality:

Cinf L 2� D W
m ( ¶W �� j � 1� L m � � W � j L m �¶

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
hj;j � 1;m

( Csup L 2� D W
m ; m " N; 0 ( j ( � Nb � 1� N m

b ; � » �

(R 7)
where

Cinf � � Nb � 1� 2� D W min
0( j ( Nb� 1; W � j � 1

N b� 1 	 j W � j
N b� 1 	

»»»»»»»»
W �

j � 1
Nb � 1


 � W �
j

Nb � 1


»»»»»»»»

and

Csup � � Nb � 1� 2� D W � max
0( j ( Nb� 1

»»»»»»»»
W �

j � 1
Nb � 1


 � W �
j

Nb � 1


»»»»»»»»

�
2 �

� Nb � 1� � � N b � 1�

 �

One should note, in addition, that these constants depend on the initial polygonP0.
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Theorem 2.14 (Sharp Local Discrete Reverse H•older Properties of the Weierstrass Func-
tion (Coming from Corollary 2.12, on page 24) ).

For any natural integer m, let us consider a pair of real numbers� x; x ¬� such that

x �
� Nb � 1� k � j
� Nb � 1� N m

b
� �� Nb � 1� k � j � L m ; x¬ �

� Nb � 1� k � j � `
� Nb � 1� N m

b
� �� Nb � 1� k � j � ` � L m ;

where 0 ( k ( N m
b � 1, and

i. if the integer Nb is odd,

0 ( j $
Nb � 1

2 and 0 $ j � ` (
Nb � 1

2

or

Nb � 1
2 ( j $ Nb � 1 and

Nb � 1
2 $ j � ` ( Nb � 1 ;

ii. if the integer Nb is even,

0 ( j $
Nb

2 and 0 $ j � ` (
Nb

2

or

Nb

2 � 1 ( j $ Nb � 1 and
Nb

2 � 1 $ j � ` ( Nb � 1 �

This means that the points� x; W� x�� and � x¬; W� x¬�� are vertices of the polygonPm;k (see Prop-
erty 2.5, on page 14 above), both located on the left-side of the polygon, or both located on the right-side;
see Figure 6, on page 18.

Then, one has the following (discrete, local)reverse{H•older inequality , with sharp H•older expo-

nent �
ln �

ln Nb
� 2 � DW ,

Cinf ¶x¬� x¶2� D W (
»»»»»
W� x¬� � W� x�

»»»»»
�

Proof. In the light of Property 2.10, on page 18, one can restrict oneself to the case when

0 ( j $
Nb � 1

2 and 0 $ j � ` (
Nb � 1

2 �

The expected result in the remaining case can easily be proved in a similar way. Since

W ��� Nb � 1� k � j � ` � L m � ( : : : ( W ��� Nb � 1� k � j � 1� L m � ( W ��� Nb � 1� k � j � L m �

then, by applying the results of Remark 2.4, on page 25, we have the following̀ inequalities:

Cinf L 2� D W
m ( � W ��� Nb � 1� k � j � 1� L m � � W �� Nb � 1� k � j � L m �

Cinf L 2� D W
m ( � W ��� Nb � 1� k � j � 2� L m � � W ��� Nb � 1� k � j � 1� L m �

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
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Cinf L 2� D W
m ( � W ��� Nb � 1� k � j � ` � L m � � W ��� Nb � 1� k � ` � 1� L m � �

Thus, upon summation, we obtain that

` C inf L 2� D W
m ( � W ��� Nb � 1� k � j � ` � L m � � W ��� Nb � 1� k � j � L m � �

Since` ) `2� D W and ¶x¬� x¶� ` L m , one deduces the desired result.

Remark 2.5. Thus far, no such reverse H•older estimateshad been obtained for the Weierstrass func-
tion. The fact that they are discrete ones is natural, since the Weierstrass Curve is approximated by a
sequence of polygonal prefractal �nite graphs. Recall that the countable set of vertices of all of these
graphs is dense in the whole Weierstrass Curve.

Corollary 2.15 (Optimal H•older Exponent for the Weierstrass Function ).

The local reverse H•older property of Theorem 2.14, on page 26 { in conjunction with the H•older
condition satis�ed by the Weierstrass function (see also [Zyg02], Chapter II, Theorem 4.9, page 47) {

shows that the Codimension2 � DW � �
ln �

ln Nb
" � 0; 1� is the best (i.e., optimal) H•older exponent for

the Weierstrass function (as was originally shown, by a completely di�erent method, by G. H. Hardy
in [Har16]).

Note that, as a consequence, since the H•older exponent is strictly smaller than one, the Weierstrass
function W is nowhere di�erentiable.

Remark 2.6. Indeed, if W were di�erentiable at some point x0 " � 0; 1� , then it would have to be
locally Lipschitz at x0, and hence, its H•older exponent atx0 would be equal to 1, which is impossible.

Corollary 2.16 (Coming from Property 2.11, on page 20).

Thanks to Remark 2.4, on page 25, one may now write, for any strictly positive integerm and any
integer j in s0; : : : ; � Nb � 1� N m

b � 1y:

i. for the elementary heights:

hj � 1;j;m � L 2� D W
m O � 1� ; (R 8)

ii . for the elementary quotients:

hj � 1;j;m

L m
� L 1� D W

m O � 1� ; (R 9)

as follows from Remark 2.4, on page 25 above, and where

0 $ Cinf ( O � 1� ( Csup �
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Corollary 2.17 (Nonincreasing Sequence of Geometric Angles (Coming from Property 2.11)).

For the geometric angles � j � 1;j;m , 0 ( j ( � Nb � 1� N m
b � 1, m " N, we have the following result:

tan � j � 1;j;m �
L m

hj � 1;j;m
� Nb � 1� %tan � j � 1;j;m � 1 ;

which yields

� j � 1;j;m %� j � 1;j;m � 1 and � j � 1;j;m � 1 , L D W � 1
m �

Proof.

i . One simply writes, successively:

tan � j � 1;j;m �
L m

»»»»»»»»
W �

j
� Nb � 1� N m

b

 � W �

j � 1
� Nb � 1� N m

b


»»»»»»»»

)
� L m

»»»»»»»»»
W �

j

� Nb � 1� N m� 1
b

� � W �
j � 1

� Nb � 1� N m� 1
b

�
»»»»»»»»»

�
� � Nb � 1� Nb L m� 1

»»»»»»»»»
W �

j

� Nb � 1� N m� 1
b

� � W �
j � 1

� Nb � 1� N m� 1
b

�
»»»»»»»»»

� � � Nb � 1� Nb tan � j � 1;j;m � 1

% � Nb � 1� tan � j � 1;j;m � 1

since � N b %1. Then, i. holds.

ii . One also has

� j � 1;j;m � 1 $ arctan
� Nb � 1� L m

hj � 1;j;m
;

where

hj � 1;j;m � L 2� D W
m O � 1� and Cinf ( O � 1� ( Csup �

This yields

� Nb � 1� L m

hj � 1;j;m
� L D W � 1

m O � 1� and � Nb � 1� Cinf ( O � 1� ( � Nb � 1� Csup �

Consequently, � j � 1;j;m � 1 , L D W � 1
m , as claimed.
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Corollary 2.18 (Local Extrema of the Weierstrass Function (Coming from Property 2.11,
on page 20)).

i. The set of local maxima of the Weierstrass function on the interval� 0; 1� is given by

v�
� Nb � 1� k

N m
b

; W �
� Nb � 1� k

N m
b



 � 0 ( k ( N m
b � 1; m " N| ;

and corresponds to the extreme vertices of the polygons at a given stepm (vertices connecting
consecutive polygons).

ii. For odd values of Nb, the set of local minima of the Weierstrass function on the interval� 0; 1�
is given by

w�
� Nb � 1� k � Nb� 1

2

� Nb � 1� N m
b

; W �
� Nb � 1� k � Nb� 1

2

� Nb � 1� N m
b

�� � 0 ( k ( N m
b � 1; m " N} ;

and corresponds to the bottom vertices of the polygons at a given stepm.

Property 2.19 (Existence of Reentrant Angles ).

i . The initial polygon P0, admits reentrant interior angles , at a vertex Pj , with 0 $ j ( Nb � 1,
in the sense that, with the right-hand rule (according to which angles are measured in a coun-
terclockwise direction), we have that

w�� Pj Pj � 1� ; � Pj Pj � 1�� %� ;

for

0 $ j (
Nb � 3

4 or
3Nb � 1

4 ( j $ Nb � 1

(see Figure 7, on page 30), which does not occur for values ofNb $ 7.

The number of reentrant angles is then equal to2 �
Nb � 3

4 � .

ii. At a given step m " N “ , with the above convention, a polygonPm;k admits reentrant interior
angles in the sole cases whenNb ) 7, at vertices M k� j , 1 ( k ( N m

b , 0 $ j ( Nb � 1, as well as
in the case when

0 $ j (
Nb � 3

4 or
3Nb � 1

4 ( j $ Nb � 1 �

The number of reentrant angles is then equal to2N m
b �

Nb � 3
4 � .
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Figure 7: An interior reentrant angle. Here, N b � 7 and � �
1
2

.

Proof.

i . Due to the symmetry with respect to the vertical line x �
1
2 (see Property 2.1, on page 9), one can

restrict oneself to the verticesPj , with 0 $ j $
Nb � 1

2 .

The initial polygon P0, admits reentrant interior angles at a vertex Pj , with j � 1 $
Nb � 1

2 , in the
case when

w�� y¬y� ; � Pj � 1Pj �� % w�� y¬y� ; � Pj Pj � 1�� � ¹ � (R 10)

Since

Pj � � x j ; yj � � �
j

Nb � 1
; W �

j
Nb � 1



 � �
j

Nb � 1
;

1
1 � �

cos�
2 � j

Nb � 1


 ;

one has

tan w�� y¬y� ; � Pj � 1Pj �� �
L 0

»»»»»»»»
W �

j
Nb � 1


 � W �
j � 1�
Nb � 1



»»»»»»»»

and

tan w�� y¬y� ; � Pj Pj � 1�� �
L 0

»»»»»»»»
W �

j � 1
Nb � 1


 � W �
j

Nb � 1


»»»»»»»»

;

where L 0 �
1

Nb � 1
.

Therefore, condition (R10) { � ¹ � above corresponds to the case when

»»»»»»»»
W �

j � 1
Nb � 1


 � W �
j

Nb � 1


»»»»»»»»

%
»»»»»»»»
W �

j
Nb � 1


 � W �
j � 1

Nb � 1


»»»»»»»»

;
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i.e.,

»»»»»»»»
cos�

2 � � j � 1�
Nb � 1


 � cos�
2 � j

Nb � 1


»»»»»»»»

%
»»»»»»»»
cos�

2 � j
Nb � 1


 � cos�
2 � � j � 1�

Nb � 1


»»»»»»»»

;

or, equivalently,

»»»»»»»»
2 sin

�
Nb � 1

sin �
� � 2 j � 1�

Nb � 1


»»»»»»»»

%
»»»»»»»»
2 sin

�
Nb � 1

sin �
� � 2 j � 1�

Nb � 1


»»»»»»»»

;

and thus happens if

»»»»»»»»
sin �

� � 2 j � 1�
Nb � 1



»»»»»»»»

%
»»»»»»»»
sin �

� � 2 j � 1�
Nb � 1



»»»»»»»»

�

Since

0 $
� � 2 j � 1�

Nb � 1
$

� � 2 j � 1�
Nb � 1

$ � ;

we conclude that condition (R10) { � ¹ � , on page 30, occurs if

0 $ � � 2 j � 1� Nb � 1 $
� � 2 j � 1�

Nb � 1
(

�
2 ;

i.e., if 0 $ j (
Nb � 3

4 .

For vertices Pj , with
Nb � 1

2 $ j $ Nb � 1, the result is obtained thanks to the aforementioned
symmetry. The initial polygon P0, admits reentrant interior angles at a vertex Pj in the case

when
3Nb � 1

4 ( j $ Nb � 1.

ii . The result is obtained by strong induction on the integer m. We restrict ourselves to the val-

uesNb ) 7, and considerj in v0; : : : ; �
Nb � 3

4 �| .

We claim that the result is satis�ed at the initial step m � 1. Indeed, as was already encountered
in the proof of Property 2.11, on page 20, for any integerk in r0; : : : ; Nb � 1x, we have that

»»»»»»»»
W �

k � Nb � 1� � j � 1
� Nb � 1� Nb


 � W �
j

� Nb � 1� Nb


»»»»»»»»

�
»»»»»»»»
� 1 � � � vW �

j � 1
Nb � 1


 � W �
j

Nb � 1

|

»»»»»»»»

and

»»»»»»»»
W �

k � Nb � 1� � j
� Nb � 1� Nb


 � W �
j � 1

� Nb � 1� Nb


»»»»»»»»

�
»»»»»»»»
� 1 � � � vW �

j
Nb � 1


 � W �
j � 1

Nb � 1

|

»»»»»»»»
�
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Thus,

tan � k � Nb� 1� � j � 1;k � Nb� 1� � j; 1

tan � k � Nb� 1� � j;k � Nb� 1� � j � 1;1
�

»»»»»»»»
W �

k � Nb � 1� � j � 1
� Nb � 1� Nb


 � W �
k � Nb � 1� � j
� Nb � 1� Nb



»»»»»»»»

»»»»»»»»
W �

k � Nb � 1� � j
� Nb � 1� Nb


 � W �
k � Nb � 1� � j � 1

� Nb � 1� Nb


»»»»»»»»

�

»»»»»»»»
W �

j � 1
Nb � 1


 � W �
j � 1

Nb � 1


»»»»»»»»

»»»»»»»»
W �

j
Nb � 1


 � W �
j � 1

Nb � 1


»»»»»»»»

%1;

which implies that

� k � Nb� 1� � j � 1;k � Nb� 1� � j; 1 %� k � Nb� 1� � j;k � Nb� 1� � j � 1;1

and yields the existence of an interior reentrant angle at the vertex

�
k � Nb � 1� � j
� Nb � 1� Nb

; W �
k � Nb � 1� � j
� Nb � 1� Nb



 �

Let us now assume that, up to a given stepm ) 1, there is a reentrant interior angle at any vertex

�
k � Nb � 1� � j

� Nb � 1� N m� 1
b

; W �
k � Nb � 1� � j

� Nb � 1� N m� 1
b

�� ; with 0 ( k ( N m� 1
b � 1 �

We then want to prove that there is a reentrant interior angle at any vertex

�
k � Nb � 1� � j
� Nb � 1� N m

b
; W �

k � Nb � 1� � j
� Nb � 1� N m

b


 ; with 0 ( k ( N m

b � 1 �

As was the case in the proof of Property 2.11 (page 20 ), in order to be able to use the induction
hypothesis, we express any integerk in s0; : : : ; N m

b � 1y in the following form:

k � xk � i N m� 1
b ; 0 ( xk ( N m� 1

b � 1 ; 0 ( i ( Nb � 1 � (R 11)

Thus,

W �
k � Nb � 1� � j � 1

� Nb � 1� N m
b


 � W �
j

� Nb � 1� N m
b


 � � � W �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

� � W �
xk � Nb � 1� � j

� Nb � 1� N m� 1
b

��

� 2 sin�
�

� Nb � 1� N m� 1
b

� sin
�
�
�

� 2 � Nb � 1� xk � 2 j � 1� �

� Nb � 1� N m� 1
b


�
�

;

(R 12)
and

W �
k � Nb � 1� � j
� Nb � 1� N m

b

 � W �

j � 1
� Nb � 1� N m

b

 � � � W �

xk � Nb � 1� � j

� Nb � 1� N m� 1
b

� � W �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

��

� 2 sin�
�

� Nb � 1� N m� 1
b

� sin
�
�
�

� 2 � Nb � 1� xk � 2 j � 1� �

� Nb � 1� N m� 1
b


�
�

�

(R 13)
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In light of Property 2.11, on page 20, given such an integerk - and hence also,xk and j { and since

0 ( j ( �
Nb � 3

4 � (
Nb � 1

2 ;

the only con�guration to be considered corresponds to the case when

� xk � Nb� 1� � j � 1;xk � Nb� 1� � j;m � 1 %� xk � Nb� 1� � j; xk � Nb� 1� � j � 1;m� 1

and

W �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

� � W �
j

� Nb � 1� N m� 1
b

� %0 ; W �
xk � Nb � 1� � j

� Nb � 1� N m� 1
b

� � W �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

� %0�

Then,

tan � xk � Nb� 1� � j � 1;xk � Nb� 1� � j;m � 1 %tan � xk � Nb� 1� � j; xk � Nb� 1� � j � 1;m� 1 ;

i.e.,

L m� 1
»»»»»»»»»
W �

xk � Nb � 1� � j

� Nb � 1� N m� 1
b

� � W �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

�
»»»»»»»»»

%
L m� 1

»»»»»»»»»
W �

xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

� � W �
xk � Nb � 1� � j

� Nb � 1� N m� 1
b

�
»»»»»»»»»

;

which yields

»»»»»»»»»
W �

xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

� � W �
xk � Nb � 1� � j

� Nb � 1� N m� 1
b

�
»»»»»»»»»

%
»»»»»»»»»
W �

xk � Nb � 1� � j

� Nb � 1� N m� 1
b

� � W �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

�
»»»»»»»»»

;

or, equivalently,

W �
xk � Nb � 1� � j

� Nb � 1� N m� 1
b

� � W �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

� %W �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 1
b

� � W �
xk � Nb � 1� � j

� Nb � 1� N m� 1
b

� �

The strong induction hypothesis, which ensures the existence of a reentrant interior angle at the
vertex

�
� Nb � 1� xk � j

� Nb � 1� N m� 2
b

; W �
� Nb � 1� xk � j

� Nb � 1� N m� 2
b

�� ;

requires, in conjunction with

W �
xk � Nb � 1� � j

� Nb � 1� N m� 2
b

� � W �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 2
b

� %W �
xk � Nb � 1� � j � 1

� Nb � 1� N m� 2
b

� � W �
xk � Nb � 1� � j

� Nb � 1� N m� 2
b

� ;
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that

sin �
� � 2 xk � Nb � 1� � 2 j � 1�

� Nb � 1� N m� 2
b

� %sin �
� � 2 xk � Nb � 1� � 2 j � 1�

� Nb � 1� N m� 2
b

� ;

which corresponds to

0 $
� � 2 xk � Nb � 1� � 2 j � 1�

� Nb � 1� N m� 2
b

$
� � 2 xk � Nb � 1� � 2 j � 1�

� Nb � 1� N m� 2
b

(
�
2

and, as a matter of fact, ensures that

0 $
� � 2 xk � Nb � 1� � 2 j � 1�

� Nb � 1� N m� 1
b

$
� � 2 xk � Nb � 1� � 2 j � 1�

� Nb � 1� N m� 21
b

(
�

2Nb
$

�
2 �

One then has the following inequality:

� � W �
xk � Nb � 1� � j

� Nb � 1� N m � 1
b

� � W �
xk � Nb � 1� � j � 1

� Nb � 1� N m � 1
b

�� � 2 sin �
�

� Nb � 1� N m � 1
b

� sin �
� � 2 xk � Nb � 1� � 2 j � 1�

� Nb � 1� N m � 1
b

�

%� � W �
xk � Nb � 1� � j � 1

� Nb � 1� N m � 1
b

� � W �
xk � Nb � 1� � j

� Nb � 1� N m � 1
b

�� � 2 sin �
�

� Nb � 1� N m � 1
b

� sin �
� � 2 xk � Nb � 1� � 2 j � 1�

� Nb � 1� N m � 1
b

� �

Hence,

tan � xk � Nb� 1� � j � 1;xk � Nb� 1� � j;m

¶¶

L m

»»»»»»»»»
W �

xk � Nb � 1� � j
� Nb � 1� N m

b
� � W �

xk � Nb � 1� � j � 1
� Nb � 1� N m

b
�

»»»»»»»»»

�
L m

»»»»»»»»»
� � W �

xk � Nb � 1� � j
� Nb � 1� N m

b
� � W �

xk � Nb � 1� � j � 1
� Nb � 1� N m

b
�� � 2 sin �

�

� Nb � 1� N m � 1
b

� sin �
� � 2 xk � Nb � 1� � 2 j � 1�

� Nb � 1� N m � 1
b

�
»»»»»»»»»

�
L m

� � W �
xk � Nb � 1� � j � 1

� Nb � 1� N m
b

� � W �
j

� Nb � 1� N m
b


 � � 2 sin �
�

� Nb � 1� N m � 1
b

� sin �
� � 2 xk � Nb � 1� � 2 j � 1�

� Nb � 1� N m � 1
b

�

%
L m

� � W �
xk � Nb � 1� � j
� Nb � 1� N m

b
� � W �

xk � Nb � 1� � j � 1
� Nb � 1� N m

b
�� � 2 sin �

�

� Nb � 1� N m � 1
b

� sin �
� � 2 xk � Nb � 1� � 2 j � 1�

� Nb � 1� N m � 1
b

�

� tan � xk � N b � 1� � j; xk � N b � 1� � j � 1;m ;

which yields the expected result. Namely,

� xk � Nb� 1� � j � 1;xk � Nb� 1� � j;m %� xk � Nb� 1� � j;k � Nb� 1� � j � 1;m ;

i.e., the presence of a reentrant angle at thej th vertex of the polygon Pm;k .

The result in the remaining case
3Nb � 1

4 ( j $ Nb � 1 can be obtained in an entirely similar way.
It corresponds to the cases when
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� k � Nb� 1� � j � 1;xk � Nb� 1� � j;mc $ � k � Nb� 1� � j; xk � Nb� 1� � j � 1;m

and

W �
k � Nb � 1� � j � 1

� Nb � 1� N m
b


 � W �
k � Nb � 1� � j
� Nb � 1� N m

b

 $ 0 ; W �

k � Nb � 1� � j
� Nb � 1� N m

b

 � W �

k � Nb � 1� � j � 1
� Nb � 1� N m

b

 $ 0 �

Therefore, the shape of the initial polygonP0 governs the shape of any polygonPm;k , 0 ( k ( N m
b ,

which, if Nb ) 7, admits reentrant interior angles at verticesM � Nb� 1� k� j , 0 ( k ( N m
b � 1, 0 $ j ( Nb � 1,

in the case when

0 $ j (
Nb � 3

4 or
3Nb � 1

4 ( j $ Nb � 1 �

This concludes the proof of Property 2.19 given on page 29.

De�nition 2.6 (Self{Shape Similarity of the Weierstrass Curve ).

We will say that the Weierstrass Curve { as the two-dimensional Hausdor� and uniform limit curve
of a sequence of polygonal prefractals, which satisfy Property 2.11, on page 20 and Property 2.19, on
page 29 { hasself{shape similarity, in the sense that the shape of the initial polygonP0 governs
the shape of all the polygonsPm;k , with 0 ( k ( N m

b , at any step m of the prefractal approximation
process. Thisself{shape similarity property is apparent in Figure 1, on page 11, Figure 2, on page 12,
and Figure 3, on page 13. As for the existence of reentrant angles, it can be observed on the �rst two
graphs of Figure 3, on page 13, in the case whenNb � 7.

3 Iterated Fractal Drums and Tubular Neighborhoods

In the case of classical fractals, and when the associated geometry allows it, the values of the Com-
plex Dimensions are obtained by studying the oscillations of a small neighborhood of the boundary,
i.e., of a tubular neighborhood of the fractal, where points are located within an epsilon distance from
any edge; see, e.g., [LR�Z17a], [LR�Z17b], [LR�Z18]. In the case of our fractal Weierstrass Curve �W ,
which is, also, the limit of the sequence of (polygonal) prefractal graphs� � W � m " N , it is natural { and
consistent with the result of Property 3.13, on page 68 below { to envision the tubular neighborhood
of � W as the limit of the (obviously convergent) sequence� D � � Wm ; "m

m �� m " N of "m
m -neighborhoods

of � Wm , where " � � "m
m � m " N is a (suitable) in�nitesimal { the cohomology in�nitesimal { as intro-

duced in De�nition 3.1, on page 37 below. The cohomology in�nitesimal is completely determined by
the geometric characteristics of the fractal curve �W (or of the associated iterated fractal drum).

We note that, in a sense, the above description amounts to using a sequence of what we call
Weierstrass Iterated Fractal Drums (in short, Weierstrass IFDs), by analogy with the Relative Fractal
Drums (RFDs), for instance, in the case of the Cantor Staircase, in [LR�Z17b], Section 5.5.4, as well as
in [LR �Z17c] and in [LR�Z18]. In our present setting, the Weierstrass IFDs { i.e., the setsD � � Wm ; "m

m � ,
for m " N su�ciently large { contain the Weierstrass Curve � W , and are su�ciently close to � W , so
that we can expect their Complex Dimensions to be the same.
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For this purpose, one thus requires fractal tube formulas for the sequence of prefractal graphs
which converge to the Weierstrass Curve; i.e., here, the area of a two-sided"m

m -neighborhood of each
prefractal approximation (with m " N “ su�ciently large), which is expected to be of the following
form, in the case of simple Complex Dimensions:

=
! Complex Dimension

c! � "m
m � 2� ! ; c! " C ; � ““ �

where, for any Complex Dimension! , c! is directly expressed in terms of the residue at! of the
e�ective tube zeta function x� e

! (or of the e�ective distance zeta function � e
! ).

More speci�cally, consistent with the corresponding results in [LR�Z17a], [LR�Z17b] and [LR�Z18],

c! � res � x� e
! ; ! � �

1
2 � ! res � � e

! ; ! � �

We shall proceed as in [LP06], by the second author and E. P. J. Pearse, as well as in the later
paper [LPW11], by the same authors and S. Winter (see also [LvF00],§10.3, or [LvF06], §12.1). Note
that these two papers were written prior to the development of the higher-dimensional theory of Com-
plex Dimensions and fractal tube formulas, by the second author, G. Radunovic and D. Zubrinic, in the
book [LR�Z17b] and in a series of accompanying papers by the same authors, including [LR�Z17a], [LR�Z18].

The proper fractal zeta function to be used for this purpose, called the distance zeta function, was
discovered by the second author in 2009, while the equivalent, and equally convenient, tube zeta func-
tion, depending on the problem at hand, was later introduced by the aforementioned authors in the
above references. Both types of fractal zeta functions are connected via an explicit functional equation.

Consequently, once we have obtained the desired fractal tube formula for the Weierstrass IFD, we
will be able to use extensions of the general results and methods of the higher-dimensional theory of
Complex Dimensions in [LR�Z17a], [LR�Z17b] and [LR�Z18] in order to deduce the fractal zeta functions
of the Weierstrass IFD: �rst, the so-called e�ective tube zeta function and then, via the aforementioned
functional equation connecting those two zeta functions, thee�ective distance zeta function. We will
then conclude from the expression of either fractal zeta function (sinceDW $ 2, they yield the same
result here) the values of the possible Complex Dimensions of the Weierstrass IFD. For many of those
Complex Dimensions, including the principal ones, in the terminology of [LR�Z17b] (i.e., those with
real parts equal to the maximal real part DW $ 2), we will also be able to determine that they are
actual (and simple) Complex Dimensions of the Weierstrass IFD { that is, simple poles of the tube
zeta function, or, equivalently, of the distance zeta function.

An important comment to be made is that, contrary to classical cases of fractal strings or of
speci�c two-dimensional fractals (see [LR�Z17b]), we cannot, in our present context, work with exact
expressions for the tubular volumes. More precisely, we can obtain exact expressions for some of the
(geometric) contributions involved in the expressions for the tubular volumes (as is the case fo the
contribution of the rectangles; see Proposition 3.9, on page 62), but those exact expressions (with
very complicated and unexplicitable coe�cients) do not enable us to explicity determine the under-
lying Complex Dimensions. However, we can obtain the counterpart (in our context) of asympotic
expansions, which, this time, enable us to obtain the possible values for the underlying Complex Di-
mensions. By using the results in our work on polyhedral neighborhoods [DL23b], we will show that
those (possible) values �nally coincide with the exact values of the Complex Dimensions.

We note that the only possible exceptions to the latter statement would be the potential Complex
Dimensions with real part equal to 1 (except for 1 itself), some (or all) of which could have a vanishing
residue; further theoretical or numerical work will be needed in order to deal with this last remaining
issue.
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As is explained in [DL23b], the classical theory of Complex Dimensions (see, for instance, [LR�Z17b])
cannot be applied in the context of our fractal curve. Indeed, not only we cannot obtain the exact
expressions for the tubular neighborhood of the Weierstrass Curve, due to the extremely complicated
geometric context. Building on the previous work of the second author and E. P. J. Pearse in the (less
complicated) case of the Koch Curve [LP06], a possible method was to obtain an approximate expres-
sion for this tubular neighborood. Recall that in the theory of Complex Dimensions, the imaginary
part of the Complex Dimensions aims at characterizing the oscillations of the fractal under study.
Those oscillations are, also, connected to the evolution in scales { in real life (fractal-shaped living
forms), the occurrence of new details keeps on appearing with characteristic spatial oscillations. In
the aforementioned case of the Koch Curve (see [LP06]), the oscillations are involved by means of
Fourier series expansions of 1-periodic maps, where the 1-periodicity can be, intuitively, understood
in relation with the integers m " ; N of the mth prefractal approximations. An additional di�culty,
in our context, was thus to determine the involved oscillatory period (see [LR�Z17b], [LP06]). To this
purpose, we choose to consider our prefractal approximations �Wm , for m " N, as resulting from the

deformation of a set of horizontal fractal strings, each of length
N m

b

Nb � 1
(with associated oscillatory

period p �
2 �

ln Nb
). This is the only way to obtain, explicitly, the associated possibleComplex Dimen-

sions. Thus far, we do nota priori claim that those possible Complex Dimensions are theactual (i.e.,
exact) Complex Dimensions of the Weierstrass Curve. Facing the lack of mathematical results which
could be applied in our present context, we thus use a counterpart of asymptotic expansions which,
in the end, will provide the actual (i.e., exact) Complex Dimensions of the Weierstrass Curve.

3.1 The Tubular Neighborhoods, and Associated Geometric Characteristic Num-
bers

Notation 8 (Euclidean Distance ).

In the sequel, we denote byd the Euclidean distance onR2.

Our results on fractal cohomology obtained in [DL24d] have highlighted the part played by speci�c
threshold values for the number " %0 at any step m " N of the prefractal graph approximation;
namely, the mth cohomology in�nitesimal introduced in De�nition 3.1, on page 37 just below.

De�nition 3.1 (m th Cohomology In�nitesimal [DL24d] and Intrinsic m th Cohomology
In�nitesimal ).

From now on, given any m " N, we will call mth cohomology in�nitesimal the number "m
m %0

which, modulo a multiplicative constant equal to
1

Nb � 1
, i.e., "m

m �
1

Nb � 1
1

N m
b

(recall that Nb %1),

stands as the elementary horizontal length introduced in part i. of De�nition 2.4, on page 15, i.e.,

1
N m

b
:

Observe that, clearly, "m itself { and not just "m
m { depends on m; hence, we should really

write "m
m � � "m � m , for all m " N.

In addition, since Nb %1, "m
m satis�es the following asymptotic behavior,

"m
m � 0 ; as m � ™,
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which, naturally, results in the fact that the larger m, the smaller "m
m . It is for this reason that we

call "m
m { or rather, the in�nitesimal sequence � "m

m � ™
m� 0 of positive numbers tending to zero asm � ™,

with "m
m � � "m � m , for each m " N { an in�nitesimal . Note that this mth cohomology in�nitesimal is

the one naturally associated to the scaling relation of Property 2.7, on page 16.

In the sequel, it is also useful to keep in mind that the sequence of positive numbers� "m � ™
m� 0 itself

satis�es

"m �
1

Nb
; as m � ™ ;

i.e., "m �
1

Nb
, as m � ™. In particular, "m ©� 0, as m � ™, but, instead, "m tends to a strictly

positive and �nite limit.

We also introduce, given anym " N, the mth intrinsic cohomology in�nitesimal , denoted by"m %0,
such that

"m �
1

N m
b

;

where

" �
1

Nb
:

We call " the intrinsic scale, or intrinsic subdivision scale.

Note that

"m
m �

"m

Nb � 1
:

and that the mth intrinsic cohomology in�nitesimal "m is asymptotic (when m tends to ™) to the mth

cohomology in�nitesimal "m
m .

Remark 3.1 (Addressing Numerical Estimates ).

From a practical point of view, an important question is the value of the ratio

Cohomology in�nitesimal
Maximal height

�
"m

m

hm
;

see relation (R6), on page 15.

Thanks to the estimates given in relation (R9), on page 27, we have that

"m
m

hm
� L 1� D W

m O � 1� � "m � 1� D W �
m O � 1� ;

with
0 $ Cinf ( O � 1� ( Csup �

Given q " N “ , we then have

1
10q Cinf (

"m
m

hm
(

1
10q Csup
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when

Cinf

10q ( e� 1� D W � ln L m (
Csup

10q ;

or, equivalently, when

�
1

ln Nb
ln � � Nb � 1� �

Csup

10q 


1
1� D W

� ( m ( �
1

ln Nb
ln � � Nb � 1� �

Cinf

10q 


1
1� D W

� �

Numerical values for Nb � 3 and � �
1
2 yield:

i . For q � 1: 2 ( m ( 3.

ii . For q � 2: 7 ( m ( 9.

iii . For q � 3: 13( m ( 15.

Hence, whenm increases, the ratio
"m

m

hm
decreases, and tends to 0. This numerical { but very

practical and explicit argument { also applies to our forthcoming neighborhoods, of width equal to
the cohomology in�nitesimal.

De�nition 3.2 (Cohomological Vertex Integers [DL24c] ).

Given m " N, and a vertexM j;m � M � Nb� 1� k¬� k" ;m " Vm , of abscissa�� Nb � 1� k¬� k" � "m
m , where

0 ( k¬( N m
b � 1 and 0( k" ( Nb � 1, we introduce thecohomological vertex integer̀ j;m associated to

the vertex M j;m (which is also the � k" � th vertex of the polygon Pm;k ¬; see part iv . of Property 2.5, on
page 14), as

` j;m � `k¬;k" ;m � � Nb � 1� k¬� k" : (R 14)

Depending on the context; that is,

i . when the cohomological vertex integer enables one to locate the vertexM j;m .

ii . When it is used in a more general framework, i.e., in order to describe the generators of coho-
mology groups (see [DL24b]);

we will use the best suited notation betweeǹ j;m , in casei: , or `k¬;k" ;m , in caseii .

Proposition 3.1 (Cross-Scales Paths, and Associated Sequence of Vertex Integers ).

Given m " N, 0 ( j ( # Vm � 1 and a vertexM j;m � M � Nb� 1� k¬� k" ;m in Vm , with
0 ( k¬( N m

b � 1 and 0 ( k" ( Nb � 1, we introduce the cross-scales pathPath � Pk" ; M j;m � , where Pk¬

is the � k¬� th �xed point of the map Tk¬ (see Proposition 2.2, on page 9, along with Notation??, on
page??), as the ordered set� M j k;m ;k �

0( k( m
such that:

i . For 0 ( k ( m, each vertexM j k;m ;k is in Vk ¯ Vk = Vm (which means thatM j k;m ;k strictly belongs

to Vk , i.e., it is in the kth prefractal approximation � Wk , and not in � Wk � 1 ).
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ii . For 1 ( k ( m, each vertexM j k;m ;k � M � Nb� 1� k¬
k;m � k" ;k , with 0 ( k¬

k;m ( N k
b � 1, is the image of

the point M j k � 1;m ;k � 1 under the mapTi (see again Proposition 2.2, on page 9), wherei " r 0; : : : ; Nb � 1x
is the smallest admissible value. We thus also have that

M j k � 1;m ;k � 1 �
�
�
�

� Nb � 1� � k¬
k;m � i � Nb � 1� N k� 1

b � � k"

� Nb � 1� N k� 1
b

; W
�
�
�

� Nb � 1� � k¬
k;m � i � Nb � 1� N k� 1

b � � k"

� Nb � 1� N k� 1
b


�
�


�
�

:

This latter point is also the � k " � th vertex of the polygon k¬
k;m � i � Nb � 1� N k� 1

b (see part iv .
of Property 2.5, on page 14).

The sequence of vertex integers associated with the cross-scales pathPath � Pk" ; M j;m � (or, in
short, and equivalently, also refered to as the sequence of vertex integers associated withM j;m ) is the
sequence� ` j k;m ;k �

0( k( m
, where, for 0 ( k ( m, ` j k;m ;k is the cohomological vertex integer associated

with the vertex M j k;m ;k (see De�nition 3.2, on page 39).

Proof. We simply use the results of Property 2.11, on page 20.

Theorem 3.2 (Complex Dimensions Series Expansion of the Complexi�ed Weierstrass
function W comp [DL24d], and of the Weierstrass function W).

For any su�ciently large positive integer m and any j in r0; : : : ; # Vm � 1x, we have the following
exact expansion, indexed by the Complex Codimensionsk � DW � 2� � i k ` j k;m ;k p, with 0 ( k ( m,

Wcomp � j " m
m � � Wcomp �

j " m

Nb � 1



� "m � 2� D W � Wcomp �
j

Nb � 1

 �

m� 1

=
k� 0

ck;j;m " k � 2� D W � " i ` j k ;m;k p

�
m

=
k� 0

ck;j;m " k � 2� D W � " i ` j k;m ;k p ;

(R 15)

where, for 0 ( k ( m, " k is the kth intrinsic cohomology in�nitesimal, introduced in De�nition 3.1, on

page 37, withp �
2 �

ln Nb
denoting the oscillatory period of the Weierstrass Curve and where:

i . ` j k;m ;k " Z is the cohomological vertex integer associated with the vertexM j k;m ;k (see De�ni-
tion 3.2, on page 39);

ii . cm;j;m � Wcomp �
j

Nb � 1

 and, for 0 ( k ( m � 1, ck;j;m " C is given by

ck;j;m � exp �
2 i �

Nb � 1
j " m� k 
 : � •• � (R 16)
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for 0 ( k ( m, the coe�cient ck;j;m will also be referred to asthe kth Weierstrass coe�cient asso-
ciated with the vertex M j k;m ;k " Vk .

For any m " N, the complex numberssc0;j;m � 1; : : : ; cm� 1;j;m � 1y satisfy the following recurrence
relations:

cm� 1;j;m � 1 � W �
j

Nb � 1

 � cm;j;m (R 17)

and

¾k " r1; : : : ; mx � ck;j;m � 1 � ck� 1;j;m : (R 18)

In addition, since relation ( R15) is valid for any m " N “ (and since, clearly, relation (R16)
implies that the coe�cients ck;j;m are nonzero for 0 ( k ( m), we deduce that the associated Complex
Dimensions (i.e., in fact, the Complex Dimensions associated with the Weierstrass function) are

DW � k � 2 � DW � � i ` j k;m ;k p

0 ( k ( m and ` j k;m ;k " Z is the cohomological vertex integer associated with the vertexM j k;m ;k (see
De�nition 3.2, on page 39). Those Complex Dimensions are all exact and simple.

This immediately ensures, for the Weierstrass function (i.e., the real part of the Complexi�ed
Weierstrass function Wcomp), that, for any strictly positive integer m and for any j in r0; : : : ; # Vm � 1x,

W � j " m
m � � "m � 2� D W � Wcomp �

j
Nb � 1


 �
m� 1

=
k� 0

" k � 2� D W � Re � ck;j;m "
i ` j k;m ;k p

k 


� "m � 2� D W � Wcomp �
j

Nb � 1

 �

1
2

m� 1

=
k� 0

" k � 2� D W � � ck;j;m " i ` j k;m ;k p � ck;j;m " � i ` j k;m ;k p �

�
1
2

m

=
k� 0

" k � 2� D W � � ck;j;m " i ` j k;m ;k p � ck;j;m " � i ` j k;m ;k p � ;

(R 19)
where �z denotes the complex conjugate ofz " C.

More generally, for any strictly positive integer m and for any integer j ,

Wcomp � j " m � �
™

=
k� 0

" k � 2� D W � ck;j;m " k � 2� D W � " i ` j k;m ;k p ; (R 20)

where, for all k " N,

ck;j;m � "2 i � N k
b j " m

: (R 21)

We also note that, if a vertexM j;m � M j ¬;m � m¬ is in Vm = Vm� m¬, for m¬ " N, we of course have
that, for 0 ( k ( m

ck;j;m � ck;j ¬;m � m¬; (R 22)

along with

" i ` j k;m ;k � " i ` j k;m � m " ;k : (R 23)
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For m � 1 ( k ( m � m¬, we have that

ck;j;m � ck;j ¬;m � m¬ � 0 : (R 24)

In addition, we have that, for m¬ " N,

ck;j;m � m¬ � � m¬

ck;j;m � "m¬� 2� D W � ck;j;m : (R 25)

Corollary 3.3 ((of Property 3.2, given on page 40)).

For any su�ciently large positive integer m and any j in r1; � ; # Vm � 1x, we have the following
exact expansion, indexed by the Complex Codimensionsk � DW � 2� � i k ` j k ;m;k p, with 0 ( k ( m,

h2
j � 1;j;m �

m

=
k� 0

m

=
k¬� 0

" � k� k¬� � 2� D W � dk;k ¬;j;m " i ` k;k ¬;j;m p

�
2 m

=
k¬¬� 0

" k¬¬� 2� D W � dk¬¬;j;m "
i ` j k ¬¬;m;k ¬¬p

;
(R 26)

where

dk;k ¬;j;m � � ck;j;m � ck;j;m � ck;j � 1;m � ck;j � 1;m � � ck¬;j;m � ck¬;j;m � ck¬;j � 1;m � ck¬;j � 1;m � (R 27)

and

`k;k ¬;j;m � ` j k ;m;k � ` j k ¬;m;k ¬ (R 28)

and, for 0 ( k¬¬( 2m,

dk¬¬;j;m � dk;k ¬;j;m with 0 ( k; k¬( m ;

where, for 0 ( k ( m, " k is the kth intrinsic cohomology in�nitesimal, introduced in De�nition 3.1,

on page 37, withp �
2 �

ln Nb
denoting the oscillatory period of the Weierstrass Curve and where the

coe�cients ck;j;m " C, ck¬;j;m " C, along with the integers ` j k ;m;k " Z and ` j k ¬;m;k ¬ " Z have been
introduced in Property 3.2, on page 40 above.

We then obtain, for any integer a " N,

h2 a
j � 1;j;m �

m a

=
k¬¬¬� 0

" k¬¬¬� 2� D W � dk¬¬¬;j;m "
i ` j k ¬¬¬;m;k ¬¬¬p

(R 29)

where, for 0 ( k¬¬¬( m a,

dk¬¬¬;j;m � dk0 ;j;m : : : dk2 m ;j;m with k0 � : : : � k2 m � a

and

` j k ¬¬¬;m;k ¬¬¬� ` j k 0 ;m;k 0 � : : : � 2m dk2 m ;j;m with k0 � : : : � k2 m � a :
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Proof. We simply use Property 3.2, on page 40. Since, for any su�ciently large positive integerm
and any j in r1; � ; # Vm � 1x,

Wcomp � j " m
m � � Wcomp �� j � 1� "m

m � �
m

=
k� 0

" k � 2� D W � � ck;j;m " i ` j k ;m;k p � ck;j � 1;m " i ` j k � 1;m;k p � ;

(R 30)
we deduce that

2Re � Wcomp � j " m
m � � Wcomp �� j � 1� "m

m �� �

�
m

=
k� 0

" k � 2� D W � � ck;j;m " i ` j k ;m;k p � ck;j;m " � i ` j k ;m;k p � � ck;j � 1;m " i ` j k � 1;m;k p � ck;j � 1;m " � i ` j k � 1;m;k p �

�
m

=
k� 0

" k � 2� D W � � ck;j;m � ck;j;m � ck;j � 1;m � ck;j � 1;m � " i ` j k ;m;k p

Note that since the integers` j k ;m;k " Z and ` j k ¬;m;k ¬ " Z are arbitrary, we obviously have that

" i ` j k ;m;k p � " � i ` j k ;m;k p � "
i ` j k ¬;m;k ¬p

� "
� i ` j k ¬;m;k ¬p

:

We then obtain that

2Re � Wcomp � j " m
m � � Wcomp �� j � 1� "m

m �� �

�
m

=
k� 0

" k � 2� D W � � ck;j;m " i ` j k ;m;k p � ck;j;m " � i ` j k ;m;k p � � ck;j � 1;m " i ` j k � 1;m;k p � ck;j � 1;m " � i ` j k � 1;m;k p �

�
m

=
k� 0

" k � 2� D W � � ck;j;m � ck;j;m � ck;j � 1;m � ck;j � 1;m � " i ` j k ;m;k p :

This ensures that

hj � 1;j;m � ·Re � Wcomp � j " m
m � � Wcomp �� j � 1� "m

m ��· �

�
»»»»»»»»»»

m

=
k� 0

" k � 2� D W � � ck;j;m � ck;j;m � ck;j � 1;m � ck;j � 1;m � " i ` j k ;m;k p
»»»»»»»»»»

and
h2

j � 1;j;m �

�
m

=
k � 0

m

=
k ¬� 0

" � k � k ¬� � 2� D W � � ck;j;m � ck;j;m � ck;j � 1;m � ck;j � 1;m � � ck ¬;j;m � ck ¬;j;m � ck ¬;j � 1;m � ck ¬;j � 1;m � "
i � ` j k ;m;k � ` j k ¬;m;k ¬
 p

:

For the sake of concision, we set, for 0( k; k¬( m,

dk;k ¬;j;m � � ck;j;m � ck;j;m � ck;j � 1;m � ck;j � 1;m � � ck¬;j;m � ck¬;j;m � ck¬;j � 1;m � ck¬;j � 1;m � (R 31)
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and

`k;k ¬;j;m � ` j k ;m;k � ` j k ¬;m;k ¬: (R 32)

We thus have that

h2
j � 1;j;m �

m

=
k� 0

m

=
k¬� 0

" � k� k¬� � 2� D W � dk;k ¬;j;m " i ` k;k ¬;j;m p

�
2 m

=
k¬¬� 0

" k¬¬� 2� D W � dk¬¬;j;m "
i ` j k ¬¬;m;k ¬¬p

;
(R 33)

where, for 0( k¬¬( 2m,

dk¬¬;j;m � dk;k ¬;j;m with 0 ( k; k¬( m :

By applying the Newton multinomial theorem, we then obtain, for any integer a " N,

h2 a
j � 1;j;m � �

m

=
k� 0

m

=
k¬� 0

" � k� k¬� � 2� D W � dk;k ¬;j;m " i ` k;k ¬;j;m p �

a

� =
k0 � :::� k2 m � a

�
a

k0; : : : ; k2 m
� " � k0 � :::� 2 m k 2 m � � 2� D W � dk0 ;j;m : : : dk2 m ;j;m " i � `k 0 ;j;m � :::� 2 m` k 2 m ;j;m � p

�
m a

=
k¬¬¬� 0

" k¬¬¬� 2� D W � dk¬¬¬;j;m "
i ` j k ¬¬¬;m;k ¬¬¬p

(R 34)
where, for 0( k0; : : : ; k2 m ( a,

�
a

k0; : : : ; k2 m
� �

a !
k0 ! : : : k2 m !

:

For the sake of concision, we will writeh2 a
j � 1;j;m in the following form

h2 a
j � 1;j;m �

m a

=
k¬¬¬� 0

" k¬¬¬� 2� D W � dk¬¬¬;j;m "
i ` j k ¬¬¬;m;k ¬¬¬p

(R 35)

where, for 0( k¬¬¬( m a,

dk¬¬¬;j;m � dk0 ;j;m : : : dk2 m ;j;m with k0 � : : : � k2 m � a

and

` j k ¬¬¬;m;k ¬¬¬� `k0 ;j;m � : : : � 2m dk2 m ;j;m with k0 � : : : � k2 m � a :
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De�nition 3.3 (Iterated Fractal Drums (IFDs) ).

Let us consider a fractal curveF L R2, obtained by means of a suitable IFSTF (consisting, in
particular, of a family of C™ maps from R2 to R2). For each m " N, we denote byFm the mth pre-
fractal approximation to the fractal F . We restrict ourselves to the case when there exists a natural
scaling relation associated to the sequence� � F m � m " N , involving a sequence of elementary lengths (or
cohomology in�nitesimals) � "m

m;F � m " N , and, as in De�nition 3.1, on page 37 above.

We then call Iterated Fractal Drum (in short, IFD ), and denote by F I , the sequence of ordered
pairs � Fm ; "m

m;F � m " N , where, for eachm " N, Fm is the mth prefractal (graph) approximation asso-
ciated with the fractal F .

De�nition 3.4 (Weierstrass Iterated Fractal Drum (Weierstrass IFD) ).

We call Weierstrass Iterated Fractal Drum (in short, Weierstrass IFD), and denote by � I
W , the

sequence of ordered pairs� � Wm ; "m
m � m " N where, for each m " N, � Wm is the mth prefractal ap-

proximation to the Weierstrass Curve � W , as introduced in De�nition 2.2, on page 10, and where"m
m

is the mth cohomology in�nitesimal, as introduced in De�nition 3.1, on page 37 above. Note that
the mth prefractal graph approximation (viewed as an oriented curve) determines themth prefractal
curve (viewed as an oriented polygonal curve), and conversely. Indeed, the line segments of which the
latter polygonal curve is comprised are nothing but the edges of the former prefractal graph.

In the sequel, � "m � m " N stands for the intrinsic cohomology in�nitesimal, as introduced in De�ni-
tion 3.1, on page 37 above.

Proposition 3.4 (Integer to Cohomology In�nitesimal Map ). Given m " N “ , we heerafter
introduce the map

"m
m ( m� "m

m � � � � lnNb � "m
m �� ;

where� :� denotes the integer part. Note that this map is only applied for themth cohomology in�nites-

imal "m
m � � "m � m �

1
Nb � 1

1
N m

b
, introduced in De�nition 3.1, on page 37.

Property 3.5 (Fourier Series Expansion of the One-Periodic Map x ( N
� r x x
b [LvF06] ).

The fractional part map r :x is one-periodic. Hence, it is also the case of the mapx ( N
� r xx
b , which

admits, with respect to the real variablex, the following Fourier Series expansion:

N
� r xx
b � =

` " Z

c` e2 i � ` x �
Nb � 1

Nb
=

` " Z

e2 i � ` x

ln Nb � 2 i ` �
;

where, for each` " Z , the exponential Fourier coe�cients c` have been obtained through
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c` � E
1

0
N � t

b e� 2 i � ` t dt � E
1

0
e� t ln Nb e� 2 i � ` t dt � �

1
ln Nb � 2 i ` �

� e� t ln Nb e� 2 i � ` t �
1

t � 0

�
1

ln Nb � 2 i ` �
� 1 �

1
Nb

� �
Nb � 1

Nb

1
ln Nb � 2 i ` �

:

In the speci�c case wherex � � lnNb � "m
m � , we obtain that

N
� r xx
b �

Nb � 1
Nb

=
` " Z

ei p ` x ln Nb

ln Nb � 2 i ` �

�
Nb � 1

Nb
=

` " Z

e� i p ` ln " m
m

ln Nb � 2 i ` �

�
Nb � 1

Nb
=

` " Z

" � i m ` p
m

ln Nb � 2 i ` �
:

De�nition 3.5 (Oscillatory Period ).

Following [LvF00], [LvF06], [LR �Z17b], we introduce theoscillatory period of the Weierstrass IFD:

p �
2 �

ln Nb
:

De�nition 3.6 (` th -Order Vibration Mode ).

Given ` " Z , we de�ne the ` th order vibration mode as the one associated tò p.

De�nition 3.7 (� m; " m � -Upper and Lower Neighborhoods ).

Given x " � 0; 1� , m " N, and a point M " R2, we denote byd � M; � Wm � the distance from M
to � Wm . Then, for any su�ciently large m (so that "m be a su�ciently small positive number), we
introduce:

i. The � m; " m
m � -upper neighborhood of themth prefractal approximation � Wm :

D � � � Wm ; "m � � t M � � x; y� " R2 ; y ) W� x� and d � M; � Wm � ( "m
m z ;

ii . The � m; " m
m � -lower neighborhood of themth prefractal approximation � Wm :

D � � � Wm ; "m � � t M � � x; y� " R2 ; y ( W� x� and d � M; � Wm � ( "m
m z �
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De�nition 3.8 (� m; " m
m � -Neighborhood ).

Given x " � 0; 1� , m " N su�ciently large (as in De�nition 3.7, on page 46 just above), along
with D � � � Wm ; "m

m � and D � � � Wm ; "m
m � , we de�ne the � m; " m

m � -Neighborhood as the union of the upper
and lower ones, as follows:

D � � Wm ; "m
m � � D � � � Wm ; "m

m � < D � � � Wm ; "m
m � �

De�nition 3.9 (Left-Side and Right-Side � m; " m
m � -Neighborhoods ).

Given x " � 0; 1� and m " N su�ciently large, we introduce:

i. the Left-Side � m; " m
m � -Neighborhood of the mth prefractal approximation � Wm as

DLeft � � Wm ; "m
m � � vM � � x; y� " � 0;

1
2� � R ; d � M; � Wm � ( "m

m | ;

ii . the Right{Side � m; " m
m � -Neighborhood of the mth prefractal approximation � Wm as

DRight � � Wm ; "m
m � � vM � � x; y� " �

1
2; 1� � R ; d � M; � Wm � ( "m

m | �

Those neighborhoods are symmetric with respect to the vertical linex �
1
2; see Figure 5, on

page 17, and Figure 13, on page 53. They constitute, in a sense, a partition of the whole tubular
neighborhood.

Previous works give a very unfriendly expression for the absolute value of theelementary heights, ·hj;m · ,

for
3Nb � 1

4 ( j $ Nb � 1, and � i 1; : : : ; i m � " r 0; : : : ; Nb � 1xm , as

·hj;m · �
»»»»»»»»»»
� m � yj � 1 � yj � � 2

m

=
k� 1

� m� k sin � �
N k � 1

b � Nb� 1�

 sin � � � 2 j � 1�

N k � 1
b � Nb� 1�

� 2 �
k

=
q� 0

i m� q

N
k� q
b

�
»»»»»»»»»»

�

Although it is su�cient to compute the Minkowski dimension of the Curve, one also requires, in
the present work, an explicit expression for the elementary lengthsL m , m " N “ .

The � m; " m
m � -upper and lower Neighborhoods introduced in De�nition 3.7, on page 46, are then

obtained by means of rectangles and wedges, as depicted in Figures 8{14 (on pages 49{54).

Proposition 3.6 (� m; " m
m � -Upper Neighborhood ).

According to Property 2.5, on page 14 (and De�nition 2.4, on page 15), givenx " � 0; 1� and a
strictly positive integer m, the � m; " m

m � -upper neighborhood consists of:
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i. � Nb � 1� N m
b rectangles , each of length` j � 1;j;m , for 1 ( j ( N m

b � 1, and height "m .

Those rectangles are alsooverlapping ones , at least at their bottom. If we denote byM j;m the
common vertex between two consecutive overlapping rectangles (see Figure 10, on page 51), the
area that is thus counted twice corresponds to parallelograms, of height"m

m and basis
"m cotan � � � � j � 1;j;m � � j;j � 1;m � ; i.e., this area is equal to � "m � 2 cotan � � j � 1;j;m � � j;j � 1;m � .

Since one deals here with an upper neighborhood, one also has to substract the areas of theextra

outer lower triangles , i.e.,
1
2 "m

m � bj � 1;j;m � bj;j � 1;m � .

ii. N m
b � 1 � 2 �

Nb � 3
4 �
 � 1 upper wedges (to be understood in the strict sense, which means

that the extreme ones are not taken into account here). If we denote byM j;m the vertex from
which is issued the wedge (see Figure 14, on page 54), the area of this latter wedge is given by

1
2 � � � � j � 1;j;m � � j;j � 1;m � � "m

m � 2 ; for 1 ( j ( N m
b � 2 �

The number of wedges is determined by the shape of the initial polygonP0, as well by the
existence of reentrant angles. This directly follows from Property 2.19, on page 29. For the sake
of simplicity, we set

r �
b � 1 � 2 �

Nb � 3
4 � � (R 36)

iii. Two extreme wedges (see Figure 15, on page 55), each of area equal to
1
2 � � "m

m � 2.

Proposition 3.7 (� m; " m � -Lower Neighborhood ).

In the same way, givenx " � 0; 1� and a strictly positive integer m, the � m; " m
m � -lower neighborhood

consists of:

i. � Nb � 1� N m
b rectangles , each of length` j � 1;j;m , for 1 ( j ( N m

b � 1, and height "m
m .

Those rectangles are alsooverlapping ones , this time at least at their top. If we denote byM j;m

the common vertex between two consecutive overlapping rectangles, the area that is thus counted
twice again corresponds to parallelograms, of height"m

m and basis"m cotan � � � � j � 1;j;m � � j;j � 1;m � ;

i.e., this area is equal to � "m
m � 2 cotan � � j � 1;j;m � � j;j � 1;m � .

Since one deals here with a lower neighborhood, one has this time to substract the areas of the

extra outer upper triangles , namely, amounting to
1
2 "m

m � bj � 1;j;m � bj;j � 1;m � .

ii. N m
b � Nb � 2 �

Nb � 3
4 �
 � 1 lower wedges . If we denote by M j;m the vertex from which is

issued the wedge, the area of this latter wedge is obtained as previously, and is given by

1
2 � � � � j � 1;j;m � � j;j � 1;m � � "m

m � 2 ; for 1 ( j ( N m
b � 2 �

The number of lower wedges is determined by the shape of the initial polygonP0, as well as by
the existence of reentrant angles. This directly comes from Property 2.19, on page 29. For the
sake of simplicity, we set

r �
b � Nb � 2 �

Nb � 3
4 � � (R 37)
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Remark 3.2.

i. The number of upper overlapping rectangles is equal to the number of lower extra triangles, and
also to the number of upper wedges.

ii . The number of lower overlapping rectangles is equal to the number of upper extra triangles, and
also to the number of lower wedges.

iii . In light of i. and ii . just above, those numbers can be respectively calculated as being equal to

� r �
b � 1� N m

b and � r �
b � 1� N m

b ;

where the coe�cients r �
b and r �

b are respectively de�ned in formulas (R37), page 48 and (R36),
page 48.

iv. Note that the small parameter "m
m has to be su�ciently small (say 0 $ "m

m $ "m0
m0

, for some"m0
m0

%0
which exists, but appears di�cult to specify explicitly) in order to avoid more unfriendly overlaps
than the parallelograms; see Figure 16, on page 56.

Figure 8: The � 1; " 1
1 � -Upper and Lower Neighborhoods, in the case when � �

1
2

and N b � 3.
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Figure 9: The � 1; " 1
1 � -Upper Neighborhood, in the case when � �

1
2

and N b � 3.

50



Figure 10: Two overlapping rectangles, in the case when � �
1
2

and N b � 3.
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Figure 11: The � 1; " 1
1 � , � 2; " 2

2m � and � 3; " m
m � -Neighborhoods, in the case when � �

1
2

and N b � 3.

Figure 12: The � 1; " 1
1 � , � 2; " 2

2 � and � 3; " 3
3 � -Upper Neighborhoods, in the case when � �

1
2

and N b � 4.
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Figure 13: The � 3; " 3
3 � -Left and Right-Side Neighborhoods, in the case when � �

1
2

and N b � 3.
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Figure 14: An upper wedge.
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Figure 15: The extreme wedges, in the case when � �
1
2

and N b � 3.
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Figure 16: Two overlapping rectangles, when the parameter " m
m is not su�ciently small:

the overlap is a pentagon.
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Proposition 3.8 (Basis of the Parallelograms in Common to Overlapping Rectangles ).

Given m " N “ , and j in s1; : : : ; � Nb � 1� N m
b � 1y, the basisbj � 1;j;m of the parallelogram in com-

mon to overlapping rectangles associated to the vertexM j;m is such that

bj � 1;j;m � N
� 3 D W � 2� r xx
b � "m

m � 2 O � 1� ;

where,

0 $ C3
inf ( O � 1� ( C3

sup $ ™ �

Proof. One has, according to Figure 10, on page 51,

tan � j � 1;j;m �
"m

m

bj � 1;j;m � xbj � 1;j;m

;

where bj � 1;j;m � xbj � 1;j;m is the side-length of the parallelogram of basis"m
m

tan � � j � 1;j;m � � j;j � 1;m � �
"m

m

xbj � 1;j;m

�

Hence,

bj � 1;j;m � xbj � 1;j;m � "m
m ·cotan� j � 1;j;m · ;

which yields

bj � 1;j;m � "m
m ·cotan� j � 1;j;m · � xbj � 1;j;m � "m

m s·cotan� j � 1;j;m · � ·cotan � � j � 1;j;m � � j;j � 1;m �·y ;

i.e.,

bj � 1;j;m � "m
m �

hj � 1;j;m

L m
�

»»»»»»»»
cotan � arctan

L m

hj � 1;j;m
� arctan

L m

hj;j � 1;m


»»»»»»»»



� "m
m

�
��
�

hj � 1;j;m

L m
�

»»»»»»»»»»»»

L m
h j � 1;j;m

L m
h j;j � 1;m

� 1

L m
h j � 1;j;m

� L m
h j;j � 1;m

»»»»»»»»»»»»


��
�

� "m
m

�
��
�

hj � 1;j;m

L m
�

1 � L m
h j � 1;j;m

L m
h j;j � 1;m

L m
h j � 1;j;m

� L m
h j;j � 1;m


��
�

�

(R 38)

Thanks to Proposition ??, on page??, we have that

hj � 1;j;m

L m
� N

� D W � 1� r xx
b "m

m O � 1� ; with 0 $ Cinf ( O � 1� ( Csup �

In order to obtain the corresponding estimate for bj � 1;j;m , we need an asymptotic expansion
for bj � 1;j;m . A slight di�culty occurs, coming from the term

1
L m

h j � 1;j;m
� L m

h j;j � 1;m

�

The apparent problem is the following:
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i . Either one uses, as previously, expressions of the form

1
L m

h j � 1;j;m
� L m

h j;j � 1;m

� N
� D W � 1� r xx
b O � 1� ;

with nothing but a black box(which means, unknown terms) in factor of constants, that would
yield Complex Dimensions with a real part equal to two, and would therefore lead to a contra-
diction because the Weierstrass Curve has box dimensionDW $ 2.

ii . Either, knowing that, which is not the more satisfactorily way of reasoning, from a mathemati-
cian's point of view, one copes with it and tries to �nd how to get rid of those terms.

Two con�gurations occur:

ˆ If hj � 1;j;m $ hj;j � 1;m , and, thus,
L m

hj � 1;j;m
%

L m

hj;j � 1;m
, in which case we have that

hj � 1;j;m

L m
�

1 � L m
h j � 1 ;j;m

L m
h j;j � 1 ;m

L m
h j � 1 ;j;m

� L m
h j;j � 1 ;m

�
hj � 1;j;m

L m
�

1 � L m
h j � 1 ;j;m

L m
h j;j � 1 ;m

L m
h j � 1 ;j;m

� 1 � hj � 1;j;m hj;j � 1;m �

�
hj � 1;j;m

L m

�
hj � 1;j;m

L m
� 1 �

L 2
m

hj � 1;j;m hj;j � 1;m
� � 1 � hj � 1;j;m hj;j � 1;m � smaller order terms�

�
hj � 1;j;m

L m

�
hj � 1;j;m

L m
� 1 � hj � 1;j;m hj;j � 1;m �

L 2
m

hj � 1;j;m hj;j � 1;m
� L 2

m � smaller order terms�

�
h2

j � 1;j;m hj;j � 1;m

L m
�

L m

hj;j � 1;m
� L m hj � 1;j;m

� smaller order and negligeable terms.

Since

h2
j � 1;j;m hj;j � 1;m

L m
� N

2 � 2� D W � r xx
b "m

m N
� D W � 1� r xx
b O � 1� � N

� 3� D W � r xx
b "m

m O � 1� ;

along with

L m hj � 1;j;m � N
� 3� D W � r xx
b � "m

m � 2 O � 1� ;

and

L m

hj;j � 1;m
� N

� 1� D W � r xx
b � "m

m � 2 O � 1� $$
h2

j � 1;j;m hj;j � 1;m

L m
;

the terms that have to be taken into account in relation (R38), on page 57 above, are then

N
� 3� D W � r xx
b � "m

m � 2 O � 1� � bj � 1;j;m �
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ˆ If hj � 1;j;m $ hj;j � 1;m , and, thus,
L m

hj � 1;j;m
$

L m

hj;j � 1;m
, in which case we have that

hj � 1;j;m

L m
�

1
L m

h j � 1;j;m
� L m

h j;j � 1;m

�
hj � 1;j;m

L m
�

hj;j � 1;m

L m
� smaller order and negligeable terms�

Fortunately, due to results obtained in the proof of Property 2.19, on page 29, this situation

occurs only in the case of reentrant angles, whenNb ) 7, twice, for respectively �
Nb � 3

4 �

consecutive vertices of polygonsPm;k , 0 ( k ( N m
b � 1. Given a polygon Pm;k , and as

already encountered, one just has to reason on the associated �rst set of consecutive vertices.
The annoying terms simplify two by two in a telescopic sum, from the �rst reentrant
vertex, to the penultimate one. There remains the term coming from the �rst vertex with
an interior reentrant angle, that will be denoted M j;m , and the term coming from the

ultimate one, M j � p� 1;m : due to the symmetry with respect to the vertical line x �
1
2 (see

Property 2.1, on page 9), they are cancelled by those coming from the symmetric polygon,
see Figure 17, on page 60). To summarize, one obtains a sum of the form

hj � 1;j;m

L m
�

hj;j � 1;m

L m
�

hj;j � 1;m

L m
�

hj � 1;j � 2;m

L m
�

hj � 1;j � 2;m

L m
: : :

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
telescoping sum

�
hj � p;j � p� 1;m

L m
�

The remaining terms
hj � 1;j;m

L m
and �

hj � p;j � p� 1;m

L m
are the ones which will simplify with the

exact opposites coming from the symmetric polygon with respect to the vertical linex �
1
2

(see Figure 17, on page 60), since

hj � p;j � p� 1;m

L m
�

1
L m

»»»»»»»»
W �

j � p � 1
� Nb � 1� N m

b

 � W �

j � p
� Nb � 1� N m

b


»»»»»»»»

�
1

L m

»»»»»»»»
W �

� Nb � 1� N m
b � j � p � 1

� Nb � 1� N m
b


 � W �
� Nb � 1� N m

b j � p
� Nb � 1� N m

b


»»»»»»»»

�
h� Nb� 1� N m

b � j � p� 1;� Nb� 1� N m
b � j � p;m

L m
�

Thus, in the end, there is no problem.

In the light of the above results, one may now rewritebj � 1;j;m as follows:

bj � 1;j;m � N
� 3� D W � r xx
b � "m

m � 2 O � 1� ; (R 39)

where, thanks to inequality (R7) given in Remark 25, on page 25,

0 $ C3
inf ( O � 1� ( C3

sup $ ™ �

This concludes the proof of Proposition 3.8, stated on page 57.
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Figure 17: The symmetric points with respect to the vertical

line x �
1
2

, leading to terms that cancel each other out in the proof of Proposition 3.8.

In the sequel, we will use the following two power series expansions:

i . ¾z " � 0; 1� �
Ó

1 � z �
™

=
k� 0

�
1
2

k
� zk ,

where, for any integerk " N, �
1
2

k
� is the generalized binomial coe�cient

�
1
2

k
� �

1
2 � � 1

2 � 1� � � 1
2 � 2� � : : : � � 1

2 � k � 1�

k !
�

� 1
2 �

k

k !
� (R 40)

This expansion is thus valid for

z �
L 2

m

h2
j � 1;j;m

� O � L 2 � D W � 1�
m 	 8 1 �

ii . ¾z " � 0; 1� � tan� 1 z � arctan z �
™

=
k� 0

� � 1� k z2 k� 1

2k � 1
, which is also valid for

z �
L 2

m

h2
j � 1;j;m

� O � L 2 � D W � 1�
m 	 8 1 �
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iii . ¾� z; z¬� " C2 such that ¶z¶$ ¶z¬¶ :

� z � z¬�
1
2 �

™

=
k� 0

�
1
2

k
� zk � z¬�

1
2 � k

;

where, for any integerk " N, �
1
2

k
� has been given in relation (R40) just above.

Notation 9. In the sequel, for the sake of simplicity, we will use the following notation:

i. =
j rectangle

: : : , to denote a sum involving all the upper and lower rectangles, which amounts to

taking into accounts indices j such that 1 ( j ( � Nb � 1� N m
b .

ii . =
j lower wedge

: : : , to denote a sum involving all the lower wedges, which amounts to taking into

accounts indicesj such that N m
b � Nb � 2 �

Nb � 3
4 �
 � 1.

iii . =
j upper wedge

: : : , to denote ta sum involving all the upper wedges, which amounts to taking into

accounts indicesj such that N m
b � 1 � 2 �

Nb � 3
4 �
 � 1.

And, similarly:

iv. =
j upper triangle

: : : , to denote a sum involving all the extra outer upper triangles.

v. =
j lower triangle

: : : , to denote a sum involving all the extra outer lower triangles.

vi. =
j lower parallelogram

: : : , to denote a sum involving all the upper overlapping rectangles.

vii . =
j upper parallelogram

: : : , to denote a sum involving all the lower overlapping rectangles.
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Proposition 3.9 (Contribution of the Rectangles to the Tubular Volume ).

Given m " N “ , the (exact) contribution of the � Nb � 1� N m
b rectangles to the tubular volume is

given by

Vm; � W m ;Rectangles � 2 =
j rectangle

"m
m ` j � 1;j;m

� 2 =
j rectangle

"m
m

Ö
L 2

m � h2
j � 1;j;m

� 2 =
j rectangle

"m
m hj � 1;j;m

Ù
ÛÛÛÛÛÚ 1 �

L 2
m

h2
j � 1;j;m

� 2 =
j rectangle

"m
m hj � 1;j;m

Ù
ÛÛÛÛÛÚ 1 �

L 2
m

h2
j � 1;j;m

� 2 =
j rectangle

"m
m hj � 1;j;m

™

=
k� 0

�
1
2

k
�

L 2 k
m

h2 k
j � 1;j;m

� 2 =
j rectangle

"m
m

™

=
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(R 41)
where the coe�cients dk¬¬;j;m are given in Corollary 3.3, on page 42.

Note that the contribution of the rectangles to the tubular volume is, geometrically, the main one.
For this reason, we have used the cap letterR, contrary to the other { and forthcoming { contributions.

Given x " � 0; 1� and m " N “ su�ciently large, the (approximate) contribution of the � Nb � 1� N m
b

rectangles to the tubular volume is given by
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(R 42)
where, for notational simplicity, we have used the estimates obtained in relation (R9), given on page 27,

for the elementary quotients
L m

hj � 1;j;m
, in the form

L m

hj � 1;j;m
� L D W � 1

m O � 1� ;

where O � 1� may depend onm, but is uniformly bounded away from 0 and™; more speci�cally,

0 $ O � 1� $ ™ :

This ensures here that, for allk " N,

2 �
1
2

k
� � "m

m � 2� D W � k � 2� D W � O � 1� %0� (R 43)
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Proposition 3.10 (Contribution of the Extreme, Upper and Lower Wedges to the Tubular
Volume ).

i. Given m " N “ su�ciently large, the (exact) contribution of the extreme wedges to the tubular
volume is given by

Vm; � W m ;extreme wedges � � � "m
m � 2 �

ii. Given m " N “ su�ciently large, the (exact) contribution of the r �
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(R 44)

where the coe�cients dk¬¬;j;m are given in Corollary 3.3, on page 42.

Given m " N “ su�ciently large, the (approximate) contribution of the r �
b N m

b � 1 upper wedges
to the tubular volume is given by
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(R 45)

i.e., by using the Fourier series expansion given in Property 3.5, on page 45,
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(R 46)

where, for notational simplicity, and as done previously in Proposition 3.9, on page 62, we
have used the estimates obtained in relation (R9), given on page 27, for the elementary quo-

tients
L m

hj � 1;j;m
, in the form

L m

hj � 1;j;m
� L D W � 1

m O � 1� ;

where, as in Proposition 3.9, on page 62 above,O � 1� may depend onm, but is uniformly bounded
away from 0 and™; more speci�cally,

0 $ O � 1� $ ™ �

This ensures here that, for allk " N,
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iii. In the same way, given m " N “ su�ciently large, the (exact) contribution of the r �
b N m

b � 1
lower wedges to the tubular volume is given by

Vm; � W m ;upper wedges � Clower wedges"m
# Vm � 1

=
j � 1

=
k " N ; ` " Z

c¬¬
k;j;`;m " � 2� D W � k � 2� D W � � i ` p ;

(R 48)

where Clower wedges denotes a strictly positive and �nite constant, depending onm " N “ , but
uniformly bounded away from 0 and™ (i.e., here and in the sequel, independently ofm " N “

large enough).

The (approximate) contribution of the r �
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b � 1 lower wedges to the tubular volume is given
by
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(R 49)

i.e., by using the Fourier series expansion given in Property 3.5, on page 45,
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(R 50)

As previously, we obtain that, for all k " N,

� � 1� k
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� "m
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66



Proposition 3.11 (Negative Contribution of the Extra Outer Triangles to the Tubular
Volume ).

i. Given m " N “ su�ciently large, the negative contribution of the � Nb � r �
b � 1� N m

b extra outer
lower triangles to the tubular volume is given by
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where the coe�cient r �
b is de�ned in formula ( R36) page 48, and where, as in Proposition 3.9,

on page 62 above,O � 1� may depend onm, but is uniformly bounded away from 0 and™; more
speci�cally,

0 $ O � 1� $ ™ :

This ensures here that,

� � 1� k

2k � 1
O � 1� j 0 : (R 53)

ii. In the same way, givenm " N “ su�ciently large, the negative contribution of the � Nb � r �
b � 1� N m

b
extra outer upper triangles to the tubular volume is given by
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(R 54)

again where, as in Proposition 3.9, on page 62 above,O � 1� may depend onm, but is uniformly
bounded away from 0 and™, and where the coe�cient r �

b is de�ned in formula ( R37), on
page 48.
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Proposition 3.12 (Negative Contribution of the Overlapping Rectangles to the Tubular
Volume ).

Given m " N “ su�ciently large, the negative contribution of the upper and lower overlapping
rectangles to the tubular volume is given by

Vm; � W m ;upper and lower parallelograms � � "m
m =

j upper and lower parallelogram
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(R 55)
where, as in Proposition 3.9, on page 62 above,O � 1� may depend onm, but is uniformly bounded
away from 0 and™; more speci�cally,

0 $ O � 1� $ ™ :

Property 3.13 (Staggered Sequence of � m; " m
m � -Neighborhoods ).

Given m " N, there exists an integerkm " N such that, for each integerk ) km , the � m � k; " m� k
m� k � -

neighborhood of themth prefractal approximation � Wm (where "m� k
m� k is the � m � k� th cohomolgy in-

�nitesimal, as introduced in De�nition 3.1, on page 37),

D � � Wm � k ; "m� k
m� k � � t M � � x; y� " R2 ; d � M; � Wm � k � ( "m� k

m� kz ; (R 56)

is contained in the � m; " m
m � -neighborhood of themth prefractal approximation � Wm ,

D � � Wm ; "m
m � � t M � � x; y� " R2 ; d � M; � Wm � ( "m

m z ; (R 57)

namely,

D � � Wm � k ; "m� k
m� k � L D � � Wm ; "m

m � : (R 58)

Proof. This proof is based on the fact that the sequence of sets of vertices� Vm � m " N is increasing (see
part i. of Property 2.5, on page 14), and thatV “ � �

n" N
Vn is dense in the Weierstrass Curve �W , along

with the fact that the prefractal graph sequence � � Wm � m " N converges to the Weierstrass Curve �W
(for example, in the sense of the Hausdor� metric onR2).

Given m " N, there exists an integerk0;m " N such that, for each integerk ) k0;m , we have that

d � � Wm ; � Wm � k � � inf
0 ( j ( # Vm � 1

0 ( j ¬( # Vm � k � 1

sd � M j;m ; M j ¬;m � k � ; M j;m " Vm ; M j ¬;m � k " Vm� k ¯ Vm y ( "m
m :

We then deduce that for all k ) k0;m ,
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� Wm � k L D � � Wm ; "m
m � :

At the same time, since, for any� m; k� " N2,

"m� k
m� k ( "m

m ;

along with the fact that, for any m " N,

lim
k� ™

"m� k
m� k � 0 ;

we can �nd another integer k1;m " N such that, for each integerk ) k1;m , we have that

D � � Wm � k ; "m� k
m� k � L D � � Wm ; "m

m � :

The desired result is obtained by letting km � max sk0;m ; k1;m y.

Remark 3.3 (Connection Between Fractality and the Cohomology In�nitesimal ).

As is mentioned in [DL24d], the cohomology in�nitesimal (or, equivalently, the elementary length)
{ which obviously depends on the magni�cation scale (i.e., the chosen prefractal approximation) {
can be seen as a transition scale between the fractal domain and the classical (or Euclidean) one.
In fact, we could say that the system is fractal below this scale, and classical above (for the level of
magni�cation considered). In the limit when the integer m associated with the prefractal approxima-
tion tends to in�nity, the system is fractal below the cohomological in�nitesimal (which is really an
in�nitesimal, in this case), i.e., at small scales, and is classical beyond, i.e., on a large scale. Note that
this is in perfect agreement with what is evoked by the French physicist Laurent Nottale in [Not98]
about scale{relativity.

The Complex Dimensions of a fractal set characterize their intrinsic vibrational properties. Thus
far, the values of the Complex Dimensions were obtained by studying the oscillations of a small neigh-
borhood of the boundary, i.e., of a tubular neighborhood, where points are located within an epsilon
distance from any edge. In the case of our fractal Weierstrass Curve �W , which is, also, the limit of
the sequence of (polygonal) prefractal approximations� � Wm � m " N , it is natural { and consistent with
the result of Property 3.13, on page 68 above { to envision the in�nitesimal tubular neighborhood
of � W associated with the cohomology in�nitesimal � "m

m � m " N , as the limit of the (obviously conver-
gent) sequence� D � � Wm ; "m

m �� m " N of "m
m -neighborhoods of �Wm , where, for each integerm " N, "m

m

is the mth cohomology in�nitesimal introduced in De�nition 3.1, on page 37 above.

4 Complex Dimensions and Average Minkowski Content

De�nition 4.1 (Natural Volume Extension { E�ective Distance and Tube Zeta Functions
Associated to an Arbitrary IFD of R2).

Let F I be an iterated fractal drum of R2; i.e., given a cohomology in�nitesimal "F � � "m
m;F � m " N ,

as introduced in De�nition 3.3, on page 45, F I is a sequence of ordered pairs� F m ; "m
m;F � m " N , where,
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for each m " N, Fm is the mth prefractal approximation to a fractal curve F .

We are assuming here that� "m
m;F � m " N is a decreasing sequence of positive numbers tending to 0

as m � ™, such that, for all �xed m " N, lim
km � ™

� "m
m;F � "m� km

m� km ;F � � 0. Also, for all m " N, we

de�ne "m;F %0 by "m
m;F � � "m;F � m . This is the case, in particular, for the Weierstrass IFD, ac-

cording to De�nition 3.1, on page 37. Indeed, with the notation of the latter de�nition, we have

that "m� 1
m� 1;F � "m� 1

m� 1;F �
"m

m;F

Nb
, for all m " N. Hence, for anykm " N, "m� km

m� km ;F � "m� km
m� km ;F �

"m
m;F

N km
b

.

Back to the general case ofF I , we hereafter consider the"m
m;F -neighborhood (or "m

m;F -tubular
neighborhood) ofFm ,

D � Fm ; "m
m;F � � t M " R2 ; d � M; Fm � ( "m

m;F z ; (R 59)

of tubular volume (i.e., area) denotedVm;F m .

In our present context, when it comes to obtaining the associated fractal tube zeta function, we
cannot, a priori , as in the case of an arbitrary bounded subset ofR2 (see [LR�Z17b], De�nition 2.2.8,
page 118), directly use an integral formula of the form (for all s " C with Re� s� su�ciently large,
and for all m " N “ large enough),

x� m;F m � s� � E
�

0
ts� 3 Vm;F m � t � dt � E

�

0
ts� 2 Vm;F m � t �

dt
t ; (R 60)

where � %0 is chosen su�ciently small, since the tube formulas that we will obtain in Subsection 4.1
below can only be expressed in an explicit way at a value"m

m;F of the cohomology in�nitesimal.

In order to bypass this di�culty, we introduce, for all su�ciently large m " N “ , the continuous
function xVm;F m de�ned for all t " � 0; "m

m;F � and obtained by substituting t for "m
m;F on the right-

hand side of the expression forVm;F m . This simply amounts to considering an evolving (continuous)
tubular neighborhood, for 0 ( t ( "m

m;F . Indeed, as was evoked in the introduction, the knowledge
of the expression for the volume at this discrete value is simply the trace, at the valuet � "m

m;F , of
the continuous volume function corresponding to an evolving (continuous) tubular neighborhood; see
Figure 18, on page 71. So, in a sense, we recover, in an adapted, extended but equivalent manner, the
initial theory developed in [LR �Z17b].

As for the resulting mth e�ective local tube zeta function x� e
m;F { a generalization to IFDs of the

usual de�nition referred to just above { we de�ne it, for all s in C with su�ciently large real part
(in fact, for Re� s� %Dm;F m , where Dm;F m is the abscissa of convergence ofx� m;F m ), by the following
truncated Mellin transform,

x� e
m;F m

� s� � E
" F

0
ts� 3 xVm;F m � t � dt � E

" F

0
ts� 2 xVm;F m � t �

dt
t ; (R 61)

where"F � lim
m� ™

"m;F . We further assume that "F %0. (Note that in the case of the Weierstrass IFD,

we have"F �
1

Nb
and so, "F %0.)

The choice of the value"F for the upper bound of the integral in relation (R61) (instead of an
arbitrary positive number � %0 as in the classical theory; see [LR�Z17b], De�nition 2.2.8, on page 118)
plays an essential role in our present context. Indeed, it corresponds to anintrinsic scale, in connex-
ion with the number of divisions (when applying the IFS TF ; see De�nition 3.3, on page 45). More
precisely, the oscillations of the IFD can be characterized by means of (complex powers) of"F , with
exponents the underlying Complex Dimensions.
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As for the mth e�ective local distance zeta function � e
m;F , it can be deduced by the following

functional equation (in the present case, whenFm L R2), for the same value of"F %0,

� e
m;F m

� s� � " s� 2
F xVm;F m � "F � � � 2 � s� x� e

m;F m
� s� ; � ¶ � (R 62)

where " s� 2
F � � "F � s� 2.

The associated functional equation of relation (R62) just above is the exact analog of the functional
equation connecting the usual tube and zeta functions of a bounded set (or, more generally, of a rela-
tive fractal drum) in the standard higher-dimensional of Complex Dimensions developed in [LR�Z17b],
as well as in [LR�Z17a], [LR�Z17c] and [LR�Z18].

This notation and terminology apply, in particular, to the di�erent volume functions involved in
the discussion of the Weierstrass IFD in Subsection 4.1 below.

Figure 18: The evolving tubular neighborhood, for 0 ( t ( " m
m; F .

Remark 4.1. We stress the fact that x� e
m;F m

does not coincide with the usual tube zeta functionx� F m

associated with the mth polygonal prefractal approximation Fm L R2 to the fractal curve F , given,
as in [LR�Z17b], for all s " C with Re� s� su�ciently large, by

x� F m � s� � E
" F

0
ts� 3 Vm;F m � t � dt � E

" F

0
ts� 2 Vm;F m � t �

dt
t :

Similarly, � e
m;F m

does not coincide with the usual distance zeta function� F m associated with

the mth polygonal prefractal approximation Fm L R2 to the fractal curve F , given, as in [LR�Z17b],
for all s " C with Re� s� su�ciently large and for all m " N “ large enough (with d � M; Fm � denoting
the Euclidean distance fromM " R2 to Fm ), by

� F m � s� � E
M " D� � F m ;" m

m; F �
� d � M; Fm �� s� 2 dt ;

where D � � F m ; "m
m;F � is the "m

m;F -neighborhood (or "m
m;F -tubular neighborhood) of Fm , given by

D � � F m ; "m
m;F � � t M " R2 ; d � M; Fm � ( "m

m;F z :

This entire comment applies, in particular, to the Weierstrass IFD, which is the central object of
this paper.
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Remark 4.2 (Consistency of our Approach in the Case of the Weierstrass IFD { Connec-
tion with Reality ).

As shown in Remark 3.1, on page 38, themth prefractal approximations to the Weierstrass Curve
become closer and closer to one another and to the Weierstrass fractal Curve, asm increases. Hence,
it makes sense to consider a continuous version of the tubular volume, where the discrete and the
continuous, in a sense, eventually merge, for allm " N “ su�ciently large.

We can also note that, in real life, fractality is not always the result of a discrete process. On the
contrary, fractal shapes develop continuously, as is the case, for instance, in biology.

Remark 4.3. It follows from the above relation (R62), on page 71, along with the results (and their
proofs) in [LR�Z17b], Corollary 2.2.20, on page 127, that, in a given domain ofC, the e�ective fractal
zeta functions � e

m;F m
and x� e

m;F m
have the same poles (denoted by! ) with residues connected by the

relation

res � x� e
m;F m

; ! � �
1

2 � ! res � � e
m;F m

; ! � ; � ¶ ¶ � (R 63)

in case ! j 2 is a simple pole; and, similarly for the principal parts of � e
m;F m

and x� e
m;F m

at ! , in
case! j 2 is a multiple pole. It follows, in particular, that, in the present new sense, the Complex
Dimensions of Fm can be indi�erently de�ned as the (visible) poles of the e�ective distance zeta
function � e

m;F m
or of the e�ective tube zeta function x� e

m;F m
.

We will show in Subsection 4.1 below that, in the case of the Weierstrass IFD, and for all integersm
su�ciently large, x� e

m;F m
(and hence also,� e

m;F m
, in light of relation ( R63), on page 72 above), has a

meromorphic continuation to all of C and has Minkowski dimension strictly smaller than 2; so that its
Complex Dimensions are simple and have real part strictly smaller than 2. Hence, for any Complex
Dimension ! of the Weierstrass IFD, we have that! is simple and! j 2. (See, especially, Theorem 4.6,
on page 82, and Theorem 4.8, on page 88, along with Corollary 4.7, on page 87.)

4.1 Prefractal Tube Formulas and Prefractal E�ective Zeta Functions

In order to obtain the main results of this section { namely, Theorem 4.5, on page 78, Theorem 4.6,
on page 82, and 4.9, on page 90, along with Corollary 4.7, on page 87, and Theorem 4.8, on page 88
below, we consider the contribution to the (pre)fractal tube formulas brought by the various types of
geometric elements in the"m

m {neighborhood of � Wm , here, the rectangles and the wedges (in Prop-
erty 4.1, on page 73, and Property 4.2, on page 75 respectively), thereby supplementing the study of
the positive or negative contributions of the rectangles, triangles and extreme wedges carried out earlier
in Section 3, and synthetized in Propositions 3.9{3.12, on pages 62{68 above. We stress the fact that,
due to the above computations, the value of themth cohomology in�nitesimal "m

m has to besu�ciently
small. This means, in particular, that m " N “ has to be su�ciently large, throughout this subsection.

We invite the interested reader to eventually consult Remark 4.6, on page 81, for further informa-
tion about the e�ective volumes and the e�ective local zeta functions used in the present subsection
and in Subsection 4.2.

In the sequel, in the case whenF is the Weierstrass IFD, we will write, for example, xVm; � W m
, Vm; � W m

,
x� e
m; � W

, � e
m; � W

, instead of xVm;F m , Vm;F m , x� e
m;F m

, � e
m;F m

, respectively. And similarly for the corre-
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sponding expressions associated with the contributions of the rectangles, wedges, outer triangles and
parallelograms, for instance, as in Section 3 above.

Property 4.1 (Tube Formula and E�ective Tube Zeta Function Associated to the Contri-
bution of the Rectangles to the Tubular Volume ).

Given m " N “ su�ciently large, the contribution (volume) function xVm; � W m ;Rectangles of the

2� Nb � 1� N m
b rectangles to the e�ective tubular volume xVm; � W m

is the continuous function given,
for all t " � 0; "m

m � , by

xVm; � W m ;Rectangles� t � � 2
™

=
k� 0

�
1
2

k
�

N
1� k � 2� D W �
b � 1

N
1� k � 2� D W �
b

=
` " Z

t2� D W � k � 2� D W � � i ` p

� 1 � k � 2 � DW �� ln Nb � 2 i ` �
O � 1� :

(R 64)
Recall that, by construction,

xVm; � W m ;Rectangles � "m
m � � Vm; � W m ;Rectangles �

For the sake of clarity, and in order to avoid confusion between various occurrences ofO � 1� , we
will write relation ( R64) in the form

xVm; � W m ;Rectangles� t � � CRectangles

™

=
k� 0

�
1
2

k
�

N
1� k � 2� D W �
b � 1

N
1� k � 2� D W �
b

=
` " Z

t2� D W � k � 2� D W � � i ` p

� 1 � k � 2 � DW �� ln Nb � 2 i ` �
;

(R 65)
where CRectangles denotes a strictly positive and �nite constant, depending onm " N “ , but uniformly
bounded away from 0 and™ (i.e., here and in the sequel, independently ofm " N “ large enough);
see Proposition 3.9, on page 62.

The associatedmth (local) e�ective tube zeta function (see De�nition 4.1, on page 69 above) is
�rst obtained, for any complex number s such that Re� s� %DW , as follows:

x� e
m; Rectangles � s� � E

"

0
ts� 3 xVm; � W m ;Rectangles � t � dt

� CRectangles

™

=
k � 0

�
1
2

k
�

N
1� k � 2� D W �
b � 1

N
1� k � 2� D W �
b

=
` " Z

1
� 1 � k � 2 � D W �� ln Nb � 2 i ` �

E
"

0
ts� 3 t2� D W � k � 2� D W � � i ` p dt

� CRectangles

™

=
k � 0

�
1
2

k
�

N
1� k � 2� D W �
b � 1

N
1� k � 2� D W �
b

=
` " Z

1
� 1 � k � 2 � D W �� ln Nb � 2 i ` �

" s� D W � k � 2� D W � � i ` p

s � D W � k � 2 � D W � � i ` p
�

(R 66)

Note that the upper bound" �
1

Nb
in the integral de�ning x� e

m;Rectangles is the intrinsic scale intro-

duced in De�nition 3.1, on page 37. It also corresponds to the limit, whenm � ™, of "m .

We call this zeta function x� e
m;Rectangles the mth local e�ective tube zeta function (associated with

the rectangles), because it is the zeta function associatednot only with the mth prefractal approxima-
tion to the Weierstrass Curve � W , but, also, with the in�nitesimal "m

m which conveysthe scaling
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relation associated to the limit fractal object ; i.e., � W . The same comment holds for the forth-
coming local zeta functions introduced in Properties 4.2{4.4, on pages 75|77.

By meromorphic continuation to all of C, one then obtains the (local) e�ective tube zeta func-
tion x� e

m;Rectangles for all s " C, as given by the last two equalities in relation (R66) just above.

Furthermore, the abscissa of absolute convergence of the Dirichlet{type integral (DTI) involved in
the de�nition of x� e

m;Rectangles, in the sense of [LR�Z17b] (Appendix A), is equal to DW .

The associated Complex Dimensions arise as

DW � k � 2 � DW � � i ` p ; with k " N ; ` " Z :

Remark 4.4. In the proof of Theorem 4.6, on page 82, we will show that the series appearing on the
right{hand side of the expression of xVm; � W m ;Rectangles � "m

m � in formulas (R64){( R65) in Property 4.1,
on page 73 (for allm ) 1 large enough) is absolutely convergent { and hence also, convergent. (See
also Remark 4.6, on page 81, for further information.) We will also explain how to derive the ex-
pression for the tube zeta function x� m;Rectangles (again, for all m ) 1 large enough), via an application
of the (truncated) Mellin transform to the function t ( xVm;Rectangles� t � , de�ned for all t " � 0; "m

m � ,
followed by meromorphic continuation to all of C. We refer to that same proof for the other state-
ments concerningx� e

m;Rectangles and the associated (possible) poles (i.e., the Complex Dimensions of the
Weierstrass IFD).

An entirely similar comment could be made (still for all m ) 1 su�ciently large) about xVm; � W m ;wedges

and x� e
m;wedges in Property 4.2, on page 75, xVm; � W m ;extra outer triangles � "m

m � and x� e
m;extra outer triangles in

Property 4.3, on page 76,xVm; � W m ;parallelograms � "m
m � and x� e

m;parallelograms in Property 4.4, on page 77, as
well as about

xVm; � W m
� xVm; � W m ;Rectangles � xVm; � W m ;wedges

� xVm; � W m ;extra outer triangles � xVm; � W m ;parallelograms ;
(R 67)

and

x� e
m;Wm

� s� � x� e
m;Rectangles� s� � x� e

m;wedges� s� � x� e
m;extra outer triangles � s� � x� e

m;parallelograms � s� ; (R 68)

in Theorem 4.5, on page 78, and Theorem 4.6, on page 82.

Remark 4.5. Recall from [LR�Z17b] that the abscissa of convergence� m of x�
e;strict
m;Rectangles is the unique

(possibly extended) real number� m such that the DTI de�ning x� e
m;Rectangles (in the �rst equality in

relation (R66) above, on page 73), converges forRe� s� %� m and diverges forRe� s� $ � m . Here, in
the light of the identity ( R66), we have that � m � DW , for all m " N “ large enough. An analogous
comment applies to all the other DTIs encountered in this subsection, and in Subsection 4.2, including,
especially, x� e

m;wedges, x� e
m;extra outer triangles , x� e

m;parallelograms .
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Property 4.2 (Tube Formula and E�ective Tube Zeta Function Associated to the Contri-
bution of the Wedges to the Tubular Volume ).

Given m " N “ su�ciently large, the contribution (volume) function of the wedges to the e�ective
tubular volume function xVm; � W m

is the continuous function given, for all t " � 0; "m
m � , by

xVm; � W m ;wedges� t � � xVm; � W m ;upper wedges� t � � xVm; � W m ;lower wedges� t � � xVm; � W m ;extreme wedges� t �

�
rb �
8

Nb � 1
Nb

=
` " Z

t3� i ` p

ln Nb � 2 i ` �
�

� t 4

2 � � t 2

�
1
4 rb

™

=
k� 0

� � 1� k

2k � 1
N

�� 2 k� 1� D W � 2 k�
b � 1

N
�� 2 k� 1� D W � 2 k�
b

=
` " Z

t2 k� 1� i ` p

�� 2k � 1� DW � 2k� ln Nb � 2 i ` �
O � 1�

�
1
2

™

=
k� 0

� � 1� k

2k � 1
N

� 2 k� 1� � D W � 1�
b � 1

N
� 2 k� 1� � D W � 1�
b

=
` " Z

t5� 2 k� i ` p

�� 2k � 1� DW � 2k � 1� ln Nb � 2 i ` �
�

(R 69)

Recall that
xVm; � W m ;“ ;wedges� "m

m � � Vm; � W m ;“ ;wedges;

where “ � upper; lower; or extreme. Hence, in light of the �rst equality in relation ( R69), an anal-
ogous identity holds if “ ; wedgesis replaced by \wedges" .

As before, for the sake of clarity, we will rewrite relation (R69) in the form

xVm; � W m ;wedges� t � � C1
wedges =

` " Z

t3� i ` p

ln Nb � 2 i ` �
�

� t 4

2 � � t 2

� C2
wedges

™

=
k� 0

� � 1� k

2k � 1
N

�� 2 k� 1� D W � 2 k�
b � 1

N
�� 2 k� 1� D W � 2 k�
b

=
` " Z

t2 k� 1� i ` p

�� 2k � 1� DW � 2k� ln Nb � 2 i ` �

� C3
wedges

™

=
k� 0

� � 1� k

2k � 1
N

� 2 k� 1� � D W � 1�
b � 1

N
� 2 k� 1� � D W � 1�
b

=
` " Z

t5� 2 k� i ` p

�� 2k � 1� DW � 2k � 1� ln Nb � 2 i ` �
;

(R 70)
where C1

wedges, C2
wedges, and C3

wedges denote strictly positive and �nite constants depending onm, but
uniformly bounded away from0 and ™ (see Proposition 3.10, on page 64).

The associated(local) e�ective tube zeta function (see De�nition 4.1, on page 69 above) is �rst
obtained, for any complex numbers such that Re� s� %DW , as follows:
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x� e
m; wedges � s� � E

"

0
ts� 3 xVm;; � W m ;wedges � t � dt

� C1
wedges =

` " Z

� Nb � 1� � i ` p

ln Nb � 2 i ` �
E

"

0
ts� i ` p dt � � E

"

0
ts� 1 dt �

�
2 E

"

0
ts� 1 dt

� C2
wedges

™

=
k � 0

� � 1� k

2k � 1
N

�� 2 k � 1� D W � 2 k �
b � 1

N
�� 2 k � 1� D W � 2 k �
b

=
` " Z

1
�� 2k � 1� D W � 2k� ln Nb � 2 i ` �

E
"

0
ts� 2 k � 1� i ` p dt

� C3
wedges

™

=
k � 0

� � 1� k

2k � 1
� � 1� k

2k � 1
N

� 2 k � 1� � D W � 2 k � 1�
b � 1

N
� 2 k � 1� D W � 2 k � 1�
b

1
�� 2k � 1� D W � 2k � 1� ln Nb � 2 i ` �

E
"

0
ts� 2� 2 k � i ` p dt

� C1
wedges =

` " Z

1
ln Nb � 2 i ` �

" s� 1� i ` p

s � 1 � i ` p
�

� " s

s �
� " s� 2

2 � s � 2�

� C2
wedges

™

=
k � 0

� � 1� k

2k � 1
N

�� 2 k � 1� D W � 2 k �
b � 1

N
�� 2 k � 1� D W � 2 k �
b

=
` " Z

1
�� 2k � 1� D W � 2k� ln Nb � 2 i ` �

" s� 2 k � 1� i ` p

s � 2k � 1 � i ` p

� C3
wedges

™

=
k � 0

� � 1� k

2k � 1
N

� 2 k � 1� � D W � 2 k � 1�
b � 1

N
� 2 k � 1� D W � 2 k � 1�
b

=
` " Z

1
�� 2k � 1� D W � 2k � 1� ln Nb � 2 i ` �

" s� 3� 2 k � i ` p

s � 3 � 2k � i ` p
:

(R 71)

By meromorphic continuation to all of C, one then obtains x� e
m;wedges, the (local) e�ective tube zeta

function (associated with the wedges), for alls " C, as given by the last two equalities in relation (R71)
just above.

The associated Complex Dimensions arise as

� 1 � i ` p ; 1 � 2k � i ` p ; � 3 � 2k � i ` p ; with k " N ; ` " Z ; along with 0 and � 2:

Note that for k ) 2 (and any ` " Z ), the last two families of (possible) Complex Dimensions fully
overlap. We will take this fact into account in Theorem 4.8, on page 88, and Theorem 4.9, on page 90
below.

Property 4.3 (Tube Formula and E�ective Tube Zeta Function Associated to the Contri-
bution of the Extra Outer Triangles to the Tubular Volume ).

Given m " N “ su�ciently large, the negative (volume function) contribution of the extra outer
triangles to the e�ective tubular volume xVm; � W m

is the continuous function given, for all t " � 0; "m
m � ,

by

xVm; � W m ;extra outer triangles � t � � xVm; � W m ;extra outer lower triangles � t � � xVm; � W m ;extra outer upper triangles � t �

� �
N D W � 3

b � 1

N D W � 3
b

=
` " Z

t2� i ` p

� DW � 3� ln Nb � 2 i ` �
O � 1� ;

(R 72)
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with
0 $ C3

inf ( O � 1� ( C3
sup $ ™ :

Recall that xVm; � W m ;“ � "m
m � � Vm; � W m ;“ � "m

m � , where “ � extra outer lower triangles, or
extra outer upper triangles. Hence, in light of the �rst equality in relation ( R72), we also have
that xVm; � W m ;extra outer triangles � "m

m � � Vm; � W m ;extra outer triangles � "m
m � .

As previously, for the sake of clarity, we will write relation (R72) in the following form:

xVm;; � W m ;extra outer triangles � t � � � Ctriangles =
` " Z

t2� i ` p

� DW � 3� ln Nb � 2 i ` �
;

(R 73)

whereCtriangles denotes a strictly positive and �nite constant, depending onm, but uniformly bounded
away from 0 and ™ (in m " N “ su�ciently large); see Proposition 3.11, on page 67. More speci�cally,

0 $ C3
inf ( Ctriangles ( C3

sup $ ™ :

The associated(local) e�ective tube zeta function (see De�nition 4.1, on page 69 above) is �rst
obtained, for any complex numbers such that Re� s� %DW , as follows:

x� e
m;extra outer triangles � s� � E

"

0
ts� 3 xVm;; � W m ;extra outer triangles � t � dt

� � Ctriangles =
` " Z

1
� 2 � 3DW � ln Nb � 2 i ` �

E
"

0
ts� 2� i ` p dt

� � Ctriangles =
` " Z

1
� DW � 3� ln Nb � 2 i ` �

" s� 1� i ` p

s � 1 � i ` p
:

(R 74)
By meromorphic continuation to all of C, one then obtains x� e

m;extra triangles , the (local) e�ective
tube zeta function (associated with the extra outer triangles), for alls " C, as given by the last two
equalities in relation (R74) just above.

The associated Complex Dimensions arise as

1 � i ` p ; with ` " Z :

Property 4.4 (Tube Formula and E�ective Tube Zeta Function Associated to the Contri-
bution of the Parallelograms to the Tubular Volume ).

Given m " N “ su�ciently large, the last (volume function) contribution to the e�ective tubular vol-
ume xVm; � W m

� "m
m � , coming from the parallelograms, is the continuous function given, for allt " � 0; "m

m � ,
by

xVm; � W m ;parallelograms � t � � xVm; � W m ;lower parallelograms � t � � xVm; � W m ;upper parallelograms � t �

� � Cparallelograms =
` " Z

t2� i ` p

� DW � 3� ln Nb � 2 i ` �
;

(R 75)
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where Cparallelograms denotes a strictly positive and �nite constant, depending onm, but uniformly
bounded away from0 and ™ (see Proposition 3.12, on page 68). More speci�cally, again,

0 $ C3
inf ( Cparallelograms ( C3

sup $ ™ :

Also, recall that, by construction,

xVm; � W m ;lower parallelograms � "m
m � � Vm; � W m ;lower parallelograms ;

and similarly, if \lower parallelograms" is replaced by \upper parallelograms". Hence, an entirely
analogous relation holds if \parallelograms" is substituted for \lower parallelograms".

The associated (local) e�ective tube zeta function x� e
m;parallelograms (see De�nition 4.1, on page 69

above) is then �rst obtained, for any complex numbers such that Re� s� %DW , as follows:

x� e
m;parallelograms � s� � E

"

0
ts� 3 xVm; � W m ;parallelograms � t � dt

� � Cparallelograms =
` " Z

1
� 2 � 3DW � ln Nb � 2 i ` �

E
"

0
ts� 2� i ` p dt

� � Cparallelograms =
` " Z

1
� DW � 3� ln Nb � 2 i ` �

" s� 1� i ` p

s � 1 � i ` p
:

(R 76)
By meromorphic continuation to all of C, one then obtainsx� e

m;parallelograms , the (local) e�ective tube
zeta function (associated with the parallelograms), for alls " C, as given by the last two equalities in
relation ( R76) just above.

The associated Complex Dimensions arise as

1 � i ` p ; with ` " Z :

The above results stated in Properties 4.1{4.4, on pages 73{77, can now be combined in order to
yield the following key theorems:

Theorem 4.5 (Fractal Tube Formula for The Weierstrass IFD ).

Given m " N su�ciently large, the mth total (volume function) contribution to the e�ective tubu-
lar volume xVm; � W m

, associated with the tubular volume (or) xVm; � W m
or two-dimensional Lebesgue

measure of the"m
m -neighborhood of themth prefractal approximation � Wm ,

D � "m
m � � t M � � x; y� " R2 ; d � M; � Wm � ( "m

m z ; (R 77)

where " � � "m
m � m " N is the cohomology in�nitesimal, as introduced in De�nition 3.1, on page 37, is

the continuous function given, for all t " � 0; "m
m � , by

xVm; � W m
� t � � xVm; � W m ;Rectangles � t � � xVm; � W m ;wedges � t �

� xVm; � W m ; � W m ;extra outer triangles � t � � xVm; � W m ;parallelograms � t � ;
(R 78)

i.e.,
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xVm; � W m
� t � � CRectangles

™

=
k � 0

�
1
2

k
�

N
1� k � 2� D W �
b � 1

N
1� k � 2� D W �
b

=
` " Z

1
� 1 � k � 2 � D W �� ln Nb � 2 i ` �

� " m
m �

2� D W � k � 2� D W � � i ` p

� C1
wedges =

` " Z

t3� i ` p

ln Nb � 2 i ` �
� � � " m

m �
2

�
� t 4

2

� C2
wedges

™

=
k � 0

� � 1� k

2k � 1
N

�� 2 k � 1� D W � 2 k �
b � 1

N
�� 2 k � 1� D W � 2 k �
b

=
` " Z

� t2 k � 1� i ` p

�� 2k � 1� D W � 2k� ln Nb � 2 i ` �

� C3
wedges

™

=
k � 0

� � 1� k

2k � 1
N

� 2 k � 1� � D W � 1�
b � 1

N
� 2 k � 1� � D W � 1�
b

=
` " Z

t5� 2 k � i ` p

�� 2k � 1� D W � 2k � 1� ln Nb � 2 i ` �

� � Ctriangles � Cparallelograms � =
` " Z

1
� 2 � 3D W � ln Nb � 2 i ` �

t2� i ` p ;

(R 79)

whereCrectangles, C`
wedges, ` � 1; 2; 3, Ctriangles , and Cparallelograms denote the strictly positive and �nite

constants respectively introduced in Properties 4.1{4.4, on pages 73{77 above. Recall that these con-
stants depend onm, but are uniformly bounded away from0 and ™ (in m " N “ large enough).

Also, recall that, by construction,

xVm; � W m
� "m

m � � Vm; � W m
:

Actually, this identity follows from the corresponding identity for each of the terms on the right{
hand side of relation (R78).

For the sake of clarity, and in order to highlight the role played by the one{periodic functions (with
respect to the variablelnNb � "m

m � � 1, see Property 3.5, on page 45), one can exchange the sums overk
and m, which enables one to obtain an expression of the following form:

xVm; � W m
� t � � =

` " Z ; k " N

f k;`; Rectangles t2� D W � k � 2� D W � � i ` p

� =
` " Z ; k " N

� f k;`; wedges;1 t3� i ` p � f k;`; wedges;2 t1� 2 k � i ` p � f k;`; wedges;3 t5� 2 k � i ` p �

� =
` " Z ; k " N

f k;`; triangles, parallelograms t2� i ` p � � t 2 �
� t 4

2 ;

(R 80)

where the notation f k;`; Rectangles, f k;`; wedges;`¬, 1 ( `¬( 3, and f k;`; triangles, parallelograms , respectively ac-
count for the nonzero coe�cients associated to the sums corresponding to the contribution of the
rectangles, wedges, triangles and parallelograms, respectively given by:

f k;`; Rectangles � CRectangles �
1
2

k
�

N
1� k � 2� D W �
b � 1

N
1� k � 2� D W �
b

1
� 1 � k � 2 � DW �� ln Nb � 2 i ` �

; (R 81)

f k;`; wedges;1 � C1
wedges

1
ln Nb � 2 i ` �

; (R 82)

f k;`; wedges;2 � � C2
wedges

™

=
k� 0

� � 1� k

2k � 1
N

�� 2 k� 1� D W � 2 k�
b � 1

N
�� 2 k� 1� D W � 2 k�
b

1
�� 2k � 1� DW � 2k� ln Nb � 2 i ` �

;

(R 83)
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f k;`; wedges;3 � C3
wedges

� � 1� k

2 k� 1

N
� 2 k� 1� � D W � 1�
b � 1

N
� 2 k� 1� � D W � 1�
b

1
�� 2k � 1� DW � 2k � 1� ln Nb � 2 i ` �

; (R 84)

f k;`; triangles, parallelograms � � � Ctriangles � Cparallelograms �
1

� 2 � 3DW � ln Nb � 2 i ` �
: (R 85)

Note that those coe�cients do not depend on "m
m , and satisfy the following uniform estimates

(independent of m " N “ su�ciently large):

·f k;`; Rectangles· ( CRectangles �
1
2

k
�

1
2` �

; (R 86)

·f k;`; wedges;1· (
C1

wedges

2` �
; (R 87)

·f k;`; wedges;2· (
C2

wedges

2k � 1
1

2` �
; (R 88)

·f k;`; wedges;3· (
C3

wedges

2k � 1
1

2` �
; (R 89)

·f k;`; triangles, parallelograms · ( � Ctriangles � Cparallelograms � � (R 90)

Finally, each of the double sums in formulae (R78), on page 78, and (R80), on page 79, is
absolutely convergent (and hence, convergent).

Proof. Indeed, by construction, the identity ( R78), on page 78, holds. Therefore, all of the main state-
ments in the theorem concerning themth e�ective tubular volume xVm; � W m

� "m
m � follow by combining

Properties 4.1{4.4, on pages 73{77 above.

Finally, we justify the uniform estimates ( R86){ ( R90) in the following manner:

We have that

·f k;`; Rectangles· ( CRectangles �
1
2

k
�

»»»»»»
N

1� k � 2� D W �
b � 1

»»»»»»
N

1� k � 2� D W �
b

1
Õ

� 1 � k � 2 � DW �� 2 � ln Nb�
2 � 4 `2 � 2

( CRectangles �
1
2

k
�

1
Õ

� 1 � k � 2 � DW �� 2 � ln Nb�
2 � 4 `2 � 2

( CRectangles �
1
2

k
�

1
2` �

;

· f k;`; wedges;1· ( C1
wedges

1
Õ

� ln Nb�
2 � 4 `2 � 2

(
C1

wedges

2` �
;
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· f k;`; wedges;2· (
C2

wedges

2k � 1

»»»»»»»»»»»

N
�� 2 k� 1� D W � 2 k�
b � 1

N
�� 2 k� 1� D W � 2 k�
b

»»»»»»»»»»»

1
Õ

�� 2k � 1� DW � 2k� 2 � ln Nb�
2 � 4 `2 � 2

(
C2

wedges

2k � 1
1

Õ
�� 2k � 1� DW � 2k� 2 � ln Nb�

2 � 4 `2 � 2

(
C2

wedges

2k � 1
1

2` �
;

· f k;`; wedges;3· (
C3

wedges

2k � 1

»»»»»»»»»»»

N
� 2 k� 1� � D W � 1�
b � 1

N
� 2 k� 1� � D W � 1�
b

»»»»»»»»»»»

1
Õ

�� 2k � 1� DW � 2k � 1� 2 � ln Nb�
2 � 4 `2 � 2

(
C3

wedges

2k � 1
1

Õ
�� 2k � 1� DW � 2k � 1� 2 � ln Nb�

2 � 4 `2 � 2

(
C3

wedges

2k � 1
1

2` �
;

· f k;`; triangles, parallelograms · ( � Ctriangles � Cparallelograms �
1

Õ
� 2 � 3DW � 2 � ln Nb�

2 � 4 `2 � 2

( � Ctriangles � Cparallelograms �
1

2` �
�

This concludes the proof of the theorem.

Remark 4.6. We point out that the various e�ective volumes used in Properties 4.1{4.4, on pages 73{77,
and in Theorem 4.5, on page 78 { namely,xVm; � W m

� t � (as well as xVm; � W m ;Rectangles� t � , xVm; � W m ;wedges� t � ,
etc.) { are not only de�ned for all t " � 0; "m

m � , but also for all t " � 0; 1� . Indeed, each of them is
the sum of a locally normally (and hence also, locally uniformly) convergent series of continuous
functions on � 0; 1� . (In fact, for any 0 $ � $ 1, the general term of the corresponding series can
be uniformly bounded by the general term of a geometric series with ratio� .) Naturally, we have
that xVm; � W m

� 0� � xVm; � W m ;Rectangles� 0� � : : : � 0.

Since the intrinsic scale" �
1

Nb
belongs to � 0; 1� � � 0; 1� , this observation justi�es, in particular,

the fact that the Lebesgue integral initially de�ning x� e
m; � W m

in relation ( R91) below, on page 82 { as

well as x� e
m;Rectangles in relation ( R66), on page 73, etc. { is well-de�ned and convergent.

Moreover, for the same reasons as above in the �rst paragraph of this remark (but now by replacing
continuous by holomorphic, as well as� 0; 1� by D “ ), xVm; � W m

� t � (and also, xVm; � W m ;Rectangles� t � , etc.)
admits a necessarily unique holomorphic continuation to the (open, connected) pointed unit disk
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D “ � r t " C ; ¶t¶$ 1x ¯ r 0x ;

still given by the same corresponding fractal power series (as in Theorem 4.5, on page 78, Prop-
erty 4.1, on page 73, etc., respectively), and where the complex powers involved are de�ned by using
the principal determination of the complex logarithm (which, as is well-known, is holomorphic on the
domain C ¯ � �™ ; 0� ).

4.2 Complex Dimensions

We deduce at once the Complex Dimensions of the Weierstrass IFD from the fractal tube formula
and the expression for the (local) e�ective tube zeta function obtained in Theorem 4.5, on page 78
above, and Theorem 4.6, on page 82 below, respectively.

4.2.1 Main Results

Following (as well as adapting to IFDs) [LR�Z17b], we hereafter de�ne the local and global e�ective
tube zeta functions of the sequence of Weierstrass IFDs associated to the cohomology in�nitesimal,
as introduced in De�nition 3.1, on page 37.

De�nition 4.2 (Local Tube Zeta Function for the Weierstrass Iterated Fractal Drums ).

In the sequel, for eachm " N, x� e
m; � W m

denotes themth e�ective tubular zeta function associated
with Vm; � W m

� "m
m � { and hence also, associated with the corresponding natural volume extension

function xVm; � W m
� "m

m � ; see De�nition 4.1, on page 69. More speci�cally, it is initially de�ned by the
following truncated Mellin transform, for all s " C with Re� s� su�ciently large (in fact, for all s " C
with Re� s� %DW ),

x� e
m; � W m

� s� � E
"

0
ts� 3 xVm; � W m

� t � dt : (R 91)

We also call x� e
m; � W m

the mth local e�ective tube zeta function (or the mth prefractal e�ective tube
zeta function) of the Weierstrass IFD, for the same reason as the one provided in Property 4.1, on
page 73.

Theorem 4.6 (Local and Global Tube Zeta Function for the Weierstrass Iterated Fractal
Drums [DL23b] ).

With the notation and terminology of De�nition 4.2 just above, x� e
� W

, the global e�ective tube zeta
function of the Weierstrass IFD, de�ned by analogy with the work in [LR�Z17b], admits a (necessarily
unique) meromorphic continuation to all of C, and is given, for anys " C, by the following expression
(see [DL23b] for the proof of the existence of the limit, which is locally uniform onC):

x� e
� W

� s� � lim
m� ™

x�
e;trict
m; � W m

� s� ; (R 92)

where, for all m " N “ su�ciently large, and all s " C:

x�
e;strict
m; � W m

� s� � x� e
m; � W m

� s� �
� " s

s �
� " s� 2

4� s � 2�
;
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since the contribution of the mth prefractal approximation � Wm to x� e
� W

, the global e�ective tube zeta

function of the Weierstrass IFD, is obtained by excluding the (arti�cial) terms
� " s

s and �
� " s� 2

4� s � 2�
coming from the extreme wedges, and where themth (strict) local e�ective tube zeta function x� e

m;W is
given, for any s " C, by

x� e;strict
m; � W m

� s� � =
` " Z ; k " N

f k;`; Rectangles
" s� D W � k � 2� D W � � i ` p

s � D W � k � 2 � D W � � i ` p
� =

` " Z ; k " N

f `;k; wedges
" s� 2 k � 1� i ` p

s � 2k � 1 � i ` p

� =
` " Z ; k " N

f k;`; triangles, parallelograms
" s� 1� i ` p

s � 1 � i ` p
;

(R 93)

where, as already introduced in Theorem 4.5, on page 78, the coe�cientsf k;`; Rectangles, f `;k; wedges;j ,
for 1 ( j ( 3, and f `;k; triangles, parallelograms , respectively, depend onm, but are uniformly bounded
(in m " N “ large enough) and account for the nonzero coe�cients associated to the sums correspond-
ing to the contribution of the rectangles, wedges, triangles and parallelograms.

Note that, in light of De�nition 4.1, on page 69, x� e
m; � W m

is a (tamed) Dirichlet-type integral (in
the sense of [LR�Z17b], Appendix A) and hence, admits an abscissa of (absolute) convergence.

Furthermore, still for all m " N “ su�ciently large, the abscissa of convergence ofx�
e;strict
m; � W m

is equal
to

DW � 2 �
ln �
ln b

� 2 � lnb
1
�

:

As is proved in [DL23b], x� e
m; � W m

, the mth local tube zeta function of the Weierstrass IFD, is the

contribution of the mth prefractal approximation � Wm to x� e
� W

, the global e�ective tube zeta function
of the Weierstrass IFD.

Proof. Since, by de�nition (see De�nition 4.2, on page 82),

x� e
m; � W m

� s� � E
"

0
ts� 3 xVm; � W m

� t � dt ; (R 94)

for all s " C with Re� s� su�ciently large (in fact, for Re� s� %DW ), and according to Theorem 4.6,
on page 82 in Section 4.1, for allt " � 0; "m

m � ,

xVm; � W m
� t � � xVm; � W m ;Rectangles� t � � xVm; � W m ;wedges� t �

� xVm; � W m ;extra outer triangles � t � � xVm; � W m ;parallelograms � t � ;
(R 95)

we have that (still for Re� s� %DW ),

x� e
m; � W m

� s� � x� e
m;Rectangles� s� � x� e

m;wedges� s�

� x� e
m;extra outer triangles � s� � x� e

m;parallelograms � s� ;
(R 96)

it follows that, for all m " N “ su�ciently large, x� e
m; � W m

has a meromorphic continuation to all of C
given by formula (R93) in Theorem 4.6, on page 82.

83



Finally, the fact that, for all m su�ciently large, the abscissa of convergence ofx� e
m; � W m

coincides
with DW follows by combining formula (R93), on page 83 (for alls " C) and the method of proof of
Theorem 2:1 on page 57 in [LR�Z17b].

Alternatively, the fact that, for all m " N su�ciently large, the abscissa of convergenceDm

of x� e
m; � W m

is given by

DW � 2 �
ln �
ln b

� 2 � lnb
1
�

; (R 97)

follows from relation (R93), given on page 83. Indeed, by de�nition, x� e
m; � W m

is a tamed Dirichlet-type
integral (DTI), in the sense of [LR �Z17b], Appendix A, De�nitions A.1.2 and A.1.3, on page 579.
Hence, sincex� e

m; � W m
is meromorphic in all of C and, in particular, in a neighborhood of DW , the ab-

scissa of convergence ofx� e
m; � W m

exists and coincides with the largest real part of the poles ofx� e
m; � W m

;
that is, here, in light of relation ( R93) and of Theorem 4.8, on page 88 below (a corollary of the above
Theorem 4.6, given on page 82, and which implies thatDW is an actual pole of x� e

m; � W m
), Dm coincides

with DW , as given by relation (R97) above.

The fact that the �rst series, � Rectangles � � Rectangles � t � (appearing in relation (R99)), is locally
uniformly convergent (and hence, pointwise convergent), follows from the following uniform estimate
(valid for all s " C, with Re� s� ) � , where � " R is arbitrary),

¾� k; ` � " N � Z �
»»»»»
" s� D W � k � 2� D W � � i ` p »»»»»

( " � � D W � k � 2� D W � � i ` p

, � �
1
2


2� D W

�

k

;
(R 98)

since 0$ " (
1
2.

More speci�cally, we combine the uniform estimate of relation (R98), on page 84, together with the
fact that, for � k; ` � " N � Z and independently ofm " N “ large enough), the coe�cients f k;`; Rectangles

are uniformly bounded.

Also, we reason in exactly the same manner with each of the two double sums in relation (R93),
on page 83, de�ning the remaining e�ective tube zeta functions contributing to x� e

m; � W m
.

It then su�ces to apply the same reasoning as the one described in Remark 4.7, on page 87 just
below to conclude that, for all m large enough,x� e

m; � W m
is meromorphic on all of C, as desired.

Next, we justify the fact that, for all s " C, x� e
m; � W m

� s� is given by relation (R93) in Theorem 4.6,
on page 82 above.

In order to see this, we apply De�nition 4.1, on page 69, of the mth e�ective tubular vol-
ume xVm; � W m

� t � , for all t " � 0; "m
m � . Accordingly, as was alluded to above, for these values oft,

and for all m " N “ su�ciently large, xVm; � W m
� t � is given by (the sum of) the fractal power series

appearing on the right{hand side of relation (R79), on page 79 (or, equivalently, in relation (R80), on
page 79), in the fractal tube formula for the Weierstrass IFD obtained in Theorem 4.5, on page 78,
but where "m

m is replaced byt " � 0; "m
m � .

Then, the same estimate as in relation (R98), on page 84 just above, but now still with"m
m replaced

by t, and m0 large enough such that 0$ "q
q (

1
2, for all q ) m0 (and hence, also, 0$ t (

1
2) shows that
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the general term of the �rst series, namely,

=
k " N ; ` " Z

�
1
2

k
�

N
1� k � 2� D W �
b � 1

N
1� k � 2� D W �
b

1
� 1 � k � 2 � D W �� ln Nb � 2 i ` �

t2� D W � k � 2� D W � � i ` p ;

appearing in the �rst term of the right{hand side of relation ( R78) in Theorem 4.5, on page 78
(yielding Vm; � W m

) implies easily that

� Rectangles � t � � E
"

0
ts� 3 =

k " N ; ` " Z

�
1
2

k
�

N
1� k � 2� D W �
b � 1

N
1� k � 2� D W �
b

1
� 1 � k � 2 � D W �� ln Nb � 2 i ` �

t2� D W � k � 2� D W � � i ` p dt

� =
k " N ; ` " Z

�
1
2

k
�

N
1� k � 2� D W �
b � 1

N
1� k � 2� D W �
b

1
� 1 � k � 2 � D W �� ln Nb � 2 i ` �

E
"

0
ts� 3 t2� D W � k � 2� D W � � i ` p ;

(R 99)

viewed as a function oft " � 0; " � , still for a �xed m ) m0 { converges normally (and thus also, uni-
formly) in t on � 0; " � .

The same reasoning can be applied to each of the remaining series; i.e.,

� 1
wedges� t � � =

` " Z

t3� i ` p

ln Nb � 2 i ` �
; (R 100)

� 2
wedges� t � � =

k " N ; ` " Z

� � 1� k

2k � 1
N

�� 2 k� 1� D W � 2 k�
b � 1

N
�� 2 k� 1� D W � 2 k�
b

=
` " Z

t2 k� 1� i ` p

�� 2k � 1� DW � 2k� ln Nb � 2 i ` �
; (R 101)

� 3
wedges� t � � =

k " N ; ` " Z

� � 1� k

2k � 1
N

� 2 k� 1� � D W � 1�
b � 1

N
� 2 k� 1� � D W � 1�
b

t5� 2 k� i ` p

� 2k � 1� � DW � 1� ln Nb � 2 i ` �
; (R 102)

� triangles and parallelograms � t � � =
` " Z

t2� i ` p

� 2 � 3DW � ln Nb � 2 i ` �
; (R 103)

appearing on the right{hand side of the second equality of relation (R78) in Theorem 4.5, on page 78.
Hence, by Weierstrass' theorem (for uniformly convergent series of functions), we can interchange series
and integrals in the expression forx� e

m; � W m
� s� , given for a �xed arbitrary s " C, such that Re� s� %DW ,

by the truncated Mellin transform,

x� e
m; � W m

� s� � E
"

0
ts� 3 xVm; � W m

� t � dt � (R 104)

In fact, with the notation of Properties 4.1{4.4, on pages 73{77, we have that (still for all m ) m0,
x� e
m; � W m

� s� is given by relation (R80), on page 79, �rst for all s " C with Re� s� ) DW { and then, by
the principle of analytic (i.e., meromorphic) continuation, for all s " C, since, as was explained above,
each of the series in relations (R99){( R103), on pages 85{85 above, converges and is a meromorphic
function of s on all of C.

Here is a direct way to establish the meromorphicity of x� e
m; � W m

(for all m ) m0) and to identify its
(possible) poles, without using the chordal metric on the Riemann sphere (see Remark 4.7, on page 87
below, for a closely related use of this latter metric.)

Let ! be a potential pole (i.e., a possible Complex Dimension, as given by Theorem 4.8, on page 88
below), say,

! � ! k;` � DW � k � 2 � DW � � i ` p ;
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with k " N and ` " Z .

Then, by excizing an arbitrary small compact disk D! centered at ! from a slightly larger open
disk D �

! (also centered at ! ), it follows, much as in the above discussion, that the corresponding
double series of holomorphoc functions in the resulting domainD �

! ¯ D! is normally { and hence, also
uniformly { convergent in D �

! ¯ D! .

Hence, sinceD! can be chosen arbitrarily small, we deduce from Weierstrass' theorem for se-
ries of holomorphic functions that the sum of the double series appearing in the right-hand side of
formula (R93) in Theorem 4.6, on page 82, is holomorphic inD �

! ¯ D! , which is an arbitrary small
pointed neighborhood of! { and thus, that

� � s� � =
` " Z ; k " N

f k;`; Rectangles
" s� D W � k � 2� D W � � i ` p

s � DW � k � 2 � DW � � i ` p

� =
` " Z ; k " N

wf `;k; wedges;1
" s� 1� i ` p

s � 1 � i ` p
� f `;k; wedges;2

" s� 2 k� 1� i ` p

s � 2k � 1 � i ` p
� f `;k; wedges;3

" s� 3� 2 k� i ` p

s � 3 � 2k � i ` p
}

� =
` " Z ; k " N

f k;`; triangles, parallelograms
" s� 1� i ` p

s � 1 � i ` p
�

� " s

s �
� " s� 2

4� s � 2�

(R 105)
is holomorphic away from any potential singularity ! k;` � DW � k � 2 � DW � � i ` p.

Now, by using the uniform convergence inD �
! ¯ D! , we can interchange limits and deduce that the

following limits exist in C, and are given as follows:

res � � ; ! k;` � � lim
s� ! k;`

� s � ! k;` � � � s� ; (R 106)

from which we deduce that � has at most a simple pole at ! � ! k;` . Sincef k;`; Rectangles j 0, then ! � ! k;`

is a simple pole of �, with associated residuef k;` j 0, as implied by formula (R106).

We conclude from the above discussion that � is meromorphic in all of C, with potential poles
(necessarily simple poles) the possible Complex Dimensions listed in Theorem 4.8, on page 88 below.
Since we know that still for all su�ciently large values of the positive integer m,

x� e
m; � W m

� s� � � � s� ; (R 107)

for all s in the domain (open right-half plane) Re� s� %DW , we deduce from the principle of analytic
(i.e., meromorphic) continuation that x� e

m; � W m
has a meromorphic continuation to all of C, co•�nciding

with � in C { and hence, having the same potential (as well as actual) poles as �, and the same
associated residues.

We note that the expression in relation (R105) above a priori involved terms of the form
� " s

s

and �
� " s� 2

4� s � 2�
, respectively associated with the poless � 0 and s � 2, which came from the Euclidean

extreme wedges involved in the sequence of tubular neighborhoods (see Proposition 3.10, on page 64).
For this reason, we hereafter exclude those terms from the expression for �� s� and set

x�
e;strict
m; � W m

� s� � x� e
m; � W m

� s� �
� " s

s �
� " s� 2

4� s � 2�
� � � s� �

� " s

s �
� " s� 2

4� s � 2�
:
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This completes the proof of Theorem 4.6 (page 82), which will also be used in part in order to
prove Theorem 4.8, on page 88 (about the possible Complex Dimensions ofx�

e;strict
m; � W m

) and Remark 4.7,

on page 87 below; see also Remark 4.7 below for a proof of the meromorphicity ofx� � W .

In closing, we note that the fact that the global e�ective tube zeta function x� � W exists, is meromor-
phic on C, and is given by the limit appearing in relation (R92), on page 82, is established in [DL23b].

Remark 4.7. The fact that the global e�ective tube zeta function x� e
� W

admits a meromorphic con-
tinuation to all of C is obtained by applying Weierstrass' theorem for (locally) uniformly convergent
sequences of holomorphic functions. First, we note that, for all su�ciently large m " N, the set Z
of possible poles of the local tube zeta functionx� e

m; � W m
� s� does not depend onm, and is given by

Theorem 4.8, page 88 below. Note thatZ is discrete, and thus closed inC. It then makes sense to
consider any of thoses poles, that we will denote by! . The local tube zeta function x� e

m; � W m
is then

holomorphic on the connected open subset ofC given by C ¯ Z . We can clearly see that the sequence
of functions � x� e

m; � W m
�

m) m0
converges normally (and hence, uniformly) in a connected open (and rel-

atively compact) neighborhood of any given! " Z { i.e., for s � x � i y " C close to! . Weierstrass'
theorem, applied once again, then ensures the holomorphicity of the limitx� e

� W
on the domain C ¯ Z .

It follows that the global tube zeta function x� e
� W

is meromorphic in all of C, with possible set of poles
given by Z .

Corollary 4.7 ((of Theorem 4.6, on page 82) Local and Global Distance Zeta Function
for the Weierstrass Iterated Fractal Drums ).

By analogy with the functional equation given in[LR �Z17b] (Theorem 2.2.1, page 112), along with
Theorem 4.6, on page 82 just above, theglobal e�ective distance zeta function � e

� W
is given, for any

complex numbers, by the following expression:

� e
� W

� s� � lim
m� ™

� e
m; � W m

� s� ; (R 108)

where, for all m " N su�ciently large, � e
m; � W m

, the mth local e�ective distance zeta function of the
Weierstrass IFD, is given, for any complex numbers, by

� e
m; � W m

� s� � " s� 2 xVm; � W m
� "m

m � � � 2 � s� E
"

0
ts� 3 xVm; � W m

� t � dt

� " s� 2 xVm; � W m
� "m

m � � � 2 � s� x� e
m; � W m

� s� ; (R 109)

where "m
m is the mth cohomology in�nitesimal (see De�nition 3.1, on page 37), while xVm; � W m

de-

notes the mth local e�ective tubular volume obtained in relations (R79){( R80) of Theorem 4.5, on
page 78, and wherex� e

m; � W m
� s� is given in relation (R93) of Theorem 4.6, on page 82 (note that, by

construction, xVm; � W m
� "m

m � � Vm; � W m
). The �rst equality in relation ( R109) is only valid for

Re� s� %Dm � DW ;

while the last one is valid for alls in C. Furthermore, still for all m " N su�ciently large, the distance
zeta function � e

m; � W m
admits a meromorphic continuation to all of C, given by the last equality of

relation ( R109) just above, with x� e
m; � W m

given as in Theorem 4.6, on page 82.
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Remark 4.8. It follows from the above functional equation (R109), on page 87, as well from the general
theory developed in [LR�Z17b], that � e

m; � W m
and x� e

m; � W m
have exactly the same poles, with precisely

related residues, for simple poles, which is the case here. Hence, they de�ne the same Complex
Dimensions. In light of Remark 4.7, on page 87 above, an analogous comment can be made about the
global e�ective tube and distance zeta functions x� e

� W
and � e

� W
.

We recall from [LR�Z17b] that the Complex Dimensions are de�ned as the poles of the meromorphic
continuation of the tube (or, equivalently, the distance) zeta function. In our present setting, the set
of Complex Dimensions of the Weierstrass IFD is the set of Complex Dimensions of the sequence of
Weierstrass IFDs introduced in Remark 3.3, on page 69. Hence, those Complex Dimensions are the
poles of the e�ective tube zeta functions { or, equivalently, the e�ective distance zeta functions { associ-
ated to those IFDs, respectively obtained in Theorem 4.6, on page 82 and Corollary 4.7, page 87 above.

Remarkably, in light of Theorem 4.6, on page 82, it turns out that the set of (possible) Complex
Dimensions, de�ned as the set of (possible) poles of themth local e�ective tube zeta function x� e

m; � W m

(or, equivalently, of � e
m; � W m

), does not change, for all su�ciently large m " N “ ; i.e., this set of (possi-
ble) Complex Dimensions { viewed as a multiset taking into account the multiplicities of the possible
poles { stabilizes for all su�ciently large m " N “ .

By de�nition, this set is then called the set of (possible) Complex Dimensions of the Weierstrass
IFD � I

W .

We expect this \stabilization phenomenon" to be common to a large class of tubular IFDs associ-
ated with complicated fractals.

Observe that also in light of Theorem 4.6, on page 82, we could equivalenty de�ne the set of
(possible) Complex Dimensions of the present (tubular) Weierstrass IFD as the set of (possible) poles
of the global e�ective tube zeta function x� e

� W
(or, equivalently, of the global e�ective distance zeta

function � e
� W

) of the Weierstrass IFD.

Theorem 4.8 (Complex Dimensions of the Weierstrass IFD ).

The possible Complex Dimensions of the Weierstrass IFD� I
W are all simple, and given as follows:

DW � k � 2 � DW � � i ` p ; with k " N ; ` " Z ;

1 � 2k � i ` p ; with k " N ; ` " Z ; along with � 2 and 0;

where p �
2 �

ln Nb
is the oscillatory period of the Weierstrass IFD.

Furthermore, the one-periodic functions (with respect to the variablelnNb " � 1, see Property 3.5, on
page 45), respectively associated to the valuesDW � k � 2 � DW � , k " N, are nonconstant. (See also
Subsection 4.2.2, on page 90 below for the exceptional cases.)

In addition, all of the Fourier coe�cients of the latter periodic functions are nonzero, which implies
that there are in�nitely many Complex Dimensions that are nonreal, including all of those with maxi-
mal real part DW , which are the principal Complex Dimensions, in the terminology of [LR�Z17b], and
therefore give rise to geometric oscillations (or vibrations) with the largest amplitude, in the fractal tube
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formula obtained in Theorem 4.5, on page 78 above and reformulated in Theorem 4.9, on page 90 below.

Finally, for each k " N and ` " Z , DW � k � 2 � DW � � i ` p, 1 � i ` p, � 2 and 0 are all simple
Complex Dimensions of the Weierstrass IFD; i.e., they are simple poles of themth tube (or, equiva-
lently, of the distance) zeta functions, for allm " N “ su�ciently large.

Consequently, the Weierstrass IFD� I
W is fractal, in the sense of the theory of Complex Dimen-

sions developed in [LvF00], [LvF06], [LvF13], [LR�Z17b] and [Lap19].

We refer to Subsection 4.2.2, on page 90, for a discussion of the exceptional cases, and to Subsec-
tion 4.2.3, on page 92 for a possible interpretation of our results.

Proof. The proof of this theorem is included in the latter part of the proof of Theorem 4.6, on page 82.

Remark 4.9. The justi�cation of this remark is also included in the latter part of proof of Theorem 4.6,
given on page 82. Note, however, that we are giving here more precise statements and informations
than in the aforementioned proof.

i . Let m " N be arbitrary, but su�ciently large, so that both Theorem 4.6 (page 82) and Corol-
lary 4.7 (page 87) are valid. Let! be a potential pole (necessary simple) ofx� e

m; � W m
{ or, equivalently,

of � e
m; � W m

(since DW $ 2); ! is a possible Complex Dimension of the Weierstrass IFD, as given in
Theorem 4.8, on page 88.

Say, for notational simplicity, that

! � ! k;` � DW � k � 2 � DW � � i ` p ; (R 110)

for some k " N and ` " Z . Then, with the notation and the latter part of Theorem 4.6, given on
page 82, we have that

res � x� e
m; � W m

; ! k;` � � lim
s� ! k;`

� s � ! k;` � x� e
m; � W m

� s� � f k;`; Rectangles (R 111)

and

res � � e
m; � W m

; ! k;` � � lim
s� ! k;`

� s � ! k;` � � e
m; � W m

� s� � � 2 � ! k;` � f k;`; Rectangles � � 2 � ! k;` � res � x� e
m; � W m

; ! k;` � ;

(R 112)
where the last equality follows from the functional equation connecting� e

m; � W m
and x� e

m; � W m
(much as

in [LR �Z17b]), and as stated in relation (R109) in Corollary 4.7, on page 87. Therefore, we see (much
as in the end of the proof of Theorem 4.5, page 78), that! � ! k;` is a pole (necessarily a simple pole
of � e

m; � W m
, or, equivalently, of x� e

m; � W m
) { i.e., ! is a simple Complex Dimension of the Weierstrass

IFD { if and only if f k;`; Rectangles j 0, which, according to Theorem 4.5, on page 78, is always the case.

Furthermore, in this case, the residue of x� e
m; � W m

(respectively, � e
m; � W m

) at ! is given by rela-
tion ( R111) (resp., by relation (R112) just above.

ii . Moreover, also in agreement with the higher-dimensional theory developed in [LR�Z17b] (see
also [LR�Z17a] and [LR�Z18], for example), the Complex Dimensions of the Weierstrass IFD can be
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de�ned indi�erently via the mth local e�ective tube zeta functions x� e
m; � W m

or via the mth local e�ec-
tive distance zeta functions � e

m; � W m
, for all m " N “ su�ciently large.

iii . Parts i . and ii . of this remark are valid both for the potential (or possible) Complex Dimensions
and for the exact Complex Dimensions of the Weierstrass IFD.

Theorem 4.9 (Condensed Fractal Tube Formula for The Weierstrass IFD (Corollary of
Theorem 4.5, on page 78 ).

Given m " N su�ciently large, the tubular e�ective volume xVm; � W m
� "m

m � of the "m
m -neighborhoodD � "m

m �
of the Weierstrass IFD, can be expressed in the following manner:

xVm; � W m
� "m

m � �
™

=
k� 0

"2� � D W � k � 2� D W �� Gk;D W
� lnNb

�
1

"m
m





�
™

=
k� 0

"2� � 1� 2 k� Gk;1 � lnNb
�

1
"m

m


 � � " 2 �

� " 4

2 ;
(R 113)

where, for any �xed (but arbitrary) k " N, Gk;D W and Gk;1 denote, respectively, continuous one-
periodic functions (with respect to the variablelnNb " � 1, see Property 3.5, on page 45) associated to
all of the Complex Dimensions of real partsDW � k � 2 � DW � and 1 � 2k. Furthermore, all of the
Fourier coe�cients of the periodic functions Gk;D W (for any k " N) and G0;1 are nonzero. In partic-
ular, these periodic functions are not constant. Moreover, the functionsG0;D W and G0;1 are bounded
away from zero and in�nity.

This amounts to an expression of the form

xVm; � W m
� "m

m � � =

� real part of a Complex Dimension
� Š r � 2; 0x

"2� � G� � lnNb
�

1
"m



 � � " 2 �
� " 4

2 ; (R 114)

where, for any real part � of a Complex Dimension, with � Š r � 2; 0x, G� denotes a continuous and
one-periodic function.

4.2.2 Exceptional Cases

One might naturally question the following exceptional cases:

i. DW � k0 � 2 � DW � � 0, for somek0 " N, which occurs when

DW �
2k0

1 � k0
; i.e., 2 �

ln �
ln Nb

�
2k0

1 � k0
; or � � N

� 2
1� k 0

b :

According to the terminology of [LR �Z17b], Chapter 4, or [LvF06], Chapter 12, this �rst case
corresponds to the situation when the Weierstrass Curve isfractal in dimension 0. We then
happen to have a discrete line of Complex Dimensions with real part 0,

L 0 � r 0 � i ` p ; ` " Zx � r i ` p ; ` " Zx ;
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which is obtained by merger with the discrete line ofactual Complex Dimensions,

L D W ;k0 �

~„„„„‚„„„„€

DW � k0 � 2 � DW �
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

0 here

� i ` p ; ` " Z

•„„„„ƒ„„„„•

:

Note that the actual Complex Dimensions arenot double(i.e., of multiplicity two). This directly
comes from the expression obtained in relation (R93) of Theorem 4.6, on page 82 for the e�ective
fractal tube zeta function x� e

m; � W m
, which becomes here, for allm su�ciently large, and for any

complex number s,

x� e
m; � W m

� s� � =
` " Z

f k;` 0 ;Rectangles
" s� i ` p

s � i ` p

� =
` " Z ; k " N ; k j k 0

f k;`; Rectangles
" s� D W � k � 2� D W � � i ` p

s � D W � k � 2 � D W � � i ` p

� =
` " Z ; k " N

f k;`; wedges
" s� 2 k � 1� i ` p

s � 2k � 1 � i ` p

� =
` " Z ; k " N

f `;k; triangles, parallelograms
" s� 1� i ` p

s � 1 � i ` p
�

� " s

s �
� " s� 2

4 � s � 2�
;

(R 115)

where, as was already seen in Theorem 4.5, on page 78 the notationf k;`; Rectangles, f k;`; wedges;` ,
with 1 ( ` ( 3, and f k;`; triangles, parallelograms , respectively account for the coe�cients associated
to the sums corresponding to the contribution of the rectangles, wedges, triangles and parallel-
ograms.

This could also be deduced from the fact if the poles � 0 were double, we would have terms
involving ln "m

m in the expression of x� e
m; � W m

, because, for any integer̀ " Z and any complex
number s,

" s� i ` p � e� s� i ` p � ln " m
m ;

see [LvF06], Subsection 6.1.1, pages 180{182.

The novelty of this case is that we have Complex Dimensions above 0.

ii . DW � k1 � 2 � DW � � 1, for somek1 " N, which occurs when

DW �
1 � 2k1

1 � k1
; i.e., 2 �

ln �
ln Nb

�
1 � 2k1

1 � k1
or, equivalently, � � N

� 1
1� k 1

b :

Since, here,� N b j 1, it follows that k1 j 0.

According to the terminology mentioned in i., this second case corresponds to the situation
when the Weierstrass Curve isfractal in dimension 1. We then happen to have a discrete line
of Complex Dimensions with real part 1,

L 1 � r 1 � i ` p ; ` " Z x ;

which is obtained by merger with the discrete line ofactual Complex Dimensions,
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L D W ;k1 �

~„„„„‚„„„„€

DW � k1 � 2 � DW �
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

1 here

� i ` p ; ` " Z

•„„„„ƒ„„„„•

:

Note again that the actual Complex Dimensions arenot double. As above, this directly comes
from the expression obtained in relation (R93) of Theorem 4.6, on page 82 for the fractal tube
zeta function x� e

m; � W m
, which becomes here, for any complex numbers,

x� e
m; � W m

� s� � =
` " Z

� f k;` 1 ;Rectangles � f `;0;wedges;2�
" s� 1� i ` p

s � 1 � i ` p

� =
` " Z ; k " N ; kj k1

f k;`; Rectangles
" s� D W � k � 2� D W � � i ` p

s � DW � k � 2 � DW � � i ` p

� =
` " Z ; k " N “

f k;`; wedges;2
" s� 2 k� 1� i ` p

s � 2k � 1 � i ` p

� =
` " Z ; k " N

� f k;`; wedges;1
" s� 1� i ` p

s � 1 � i ` p
� f `;k; wedges;3

" s� 3� 2 k� i ` p

s � 3 � 2k � i ` p
�

� =
` " Z ; k " N

f k;`; triangles, parallelograms
" s� 1� i ` p

s � 1 � i ` p
�

� " s

s �
� " s� 2

4� s � 2�
:

(R 116)

What is new in this case is that we are sure that every possible Complex Dimension onL 1, i.e.,
every complex number 1� i ` p, with ` " Z , is an actual Complex Dimension of the Weierstrass
Curve, because the same is true for each point ofL D W ;k1 .

4.2.3 Possible Interpretation

Figure 19, on page 93, givesthe distribution of Complex Dimensions. In order to understand their
deeper meaning, one may consider an horizontal` p line, of equation y � ` p, where` " Z is arbitrary
(but �xed). Such a line corresponds to the ` th order vibration mode, but which can also be interpreted
as coming from:

i. The vertical line x � 0, or, in other words, oscillations coming frompoints: indeed, the prefractal
graph � Wm is, at �rst, constituted of points.

ii . The vertical line x � 1, which this time correspond to oscillations coming fromlines (or, rather,
line segments): prefractal as it is, �Wm is constituted of lines, in an Euclidean space of dimension
two.

iii . The vertical line x � DW , which, this time, corresponds to oscillations coming from the whole
prefractal � Wm itself.
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Figure 19: The Complex Dimensions of the Weierstrass IFD. The nonzero Complex

Dimensions are periodically distributed (with the same period p �
2 �

ln N b
, the oscilla-

tory period of the Weierstrass IFD) along countably many vertical lines, with abscis-
sae D W � k � 2 � D W � and 1 � 2 k , where k " N is arbitrary. In addition, 0 and � 2 are
possible Complex Dimensions of the Weierstrass IFD.
For the sake of representation, there is a di�erent color for each vertical line, and a spe-
ci�c symbol is used to plot the imaginary parts of the Complex Dimensions associated
with a given vertical line. (See also Subsection 4.2.2, on page 90 for the exceptional
cases.)

iv. The vertical lines x � DW � k � 2 � DW � , with k in N “ � N ¯ r 0x.

For k ( m, it corresponds to oscillations coming from the prefractal graphs �Wm � k , a phenomenon
which can be understood via the following consideration:

Switching from the � m � k� th prefractal graph, to the mth one, 0$ k ( m, is done by applyingk
iterates of the Tj maps,

Tj 1 :::j k � Tj 1 ` : : : ` Tj k : (R 117)

In terms of the vertical distance between consecutive vertices, this amounts to a multiplication
of the amplitudes by the factor � k � N

� k � 2� D W �
b , associated to a sum of cosine expressions.

It thus provides an interesting interpretation of the real parts
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DW � k � 2 � DW � ; for 0 $ k ( m ; (R 118)

insofar as themth prefractal graph bears { or, in a sense,feels{ the oscillations of its predecessors.

There remains the linesx � DW � k � 2 � DW � , with k %m.

In order to interpret them, one could think in the same way, but, without associated graphs,
how? Except if they could exist, in some way. This will be the purpose of a later extension of
the prefractal sequence� � Wm � m" N , a priori indexed by nonnegative integers, to negative ones,
via the new concept ofantefractals. However, this point will not be discussed in the present
paper.

4.2.4 Analogy with the General Theory of Complex Dimensions

Our results in Theorem 4.5, on page 78 and Theorem 4.9, on page 90 above, on the fractal tube
formula for the Weierstrass IFD are similar to the general (exact, pointwise) fractal tube formulas
(via either tube or distance zeta functions) obtained in the higher-dimensional theory of Complex
Dimensions in [LR�Z17b] (Chapter 5), or in [LR �Z18], and extending the fractal tube formulas for frac-
tal strings obtained in [LvF00] and [LvF06] (Chapter 8). Compare, e.g., in the case of simple poles
and under the hypothesis of strong languidity (a strong form of polynomial growth condition) of ei-
ther x� e

m; � W m
or � e

m; � W m
[LR �Z17b], Theorem 5.1.16, page 427, or Theorem 5.3.17, page 449, respectively.

There is a notable di�erence, however, due to the great complexity of the Weierstrass Curve �W and
of the associated IFD � I

W . Namely, the fractal tube formula is only given for the volume Vm; � W m
� "m

m �

of the mth prefractal approximation � Wm , and evaluated at the mth cohomology in�nitesimal "m
m , for

all su�ciently large m " N.

Indeed, according to the aforementioned results from [LR�Z17b] and [LR�Z18], we would have, in
particular, that the tubular volume is given as follows:

Vm; � W m
� "m

m � � =
!

res � x� e
m; � W m

; ! � "2� ! � =
!

res � � e
m; � W m

; ! �

2 � ! "2� ! ; (R 119)

where, in each of these two sums,! ranges through all of the Complex Dimensions of �IW (i.e., the
poles of either x� e

m; � W m
or, equivalently, � e

m; � W m
).

Recall from equation (R63){ � ¶¶ � in Remark 4.3, on page 72 above that

res � � e
m; � W m

; ! � � � 2 � ! � res � x� e
m; � W m

; ! � : (R 120)

In order to obtain the fractal tube formula in Theorem 4.5, on page 78 (and hence also, in Theo-
rem 4.9, on page 90), however, we did not need to appeal to the aforementioned results of the general
theory, by �rst calculating x� e

m; � W m
or � e

m; � W m
(using their basic scaling and symmetry properties de-

scribed in [LR�Z17b], along with the geometric properties of �W described in Section 2 above) and
then, verifying that the appropriate notion of strong languidity is satis�ed. This could have been
done, but was unnecessary in our present situation.

Instead, as was explained earlier, we �rst directly calculated the tubular volume Vm; � W m
� "m

m �
in Theorem 4.5, on page 78, and then deduced from the resulting fractal tube formula, via Mellin
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transformation, an explicit expression for the mth local e�ective tube zeta function x� e
m; � W m

{ and

further, for the mth local e�ective distance zeta function � e
m; � W m

, via the functional equation re-
called in relation � ¶ � of Remark 4.3, on page 72. Finally, as would have been the case if we had
adopted the �rst method outlined above, we deduced (in Theorem 4.8, on page 88) the values of the
(possible) Complex Dimensions of the Weierstrass IFD �IW , as the poles ofx� e

m; � W m
(or, equivalently,

of � e
m; � W m

, sinceDW $ 2).

Remark 4.10 (About the Oscillatory Period ).

The value of the oscillatory period p �
2 �

ln Nb
(obtained in Sections 3 and 4) can be understood

as follows: it is easy to check that the fractal string L intr consisting of the sequence of positive

lenghsL intr � � "m � m " N � �
1

N m
b



m " N

has for set of (principal) Complex Dimensionsv
2i k �
ln Nb

; k " Z | .

(Indeed, the associated geometric zeta function is given by� L intr � s� �
1

1 � " s , for all s " C.)

Accordingly, they are periodically distributed along a single vertical line, with oscillatory pe-

riod
2�

ln Nb
� p, which is the natural oscillatory period of the Weierstrass IFD. Exactly the same

comment can be made about the ordinary fractalL EH � L CI � � "m
m � m " N � �

1
Nb � 1

1
N m

b



m " N
asso-

ciated with the elementary horizontal lengths (see parti . of De�nition 2.4, on page 15) or, equivalently,
with the cohomological in�nitesimal (see De�nition 3.1, on page 37). It has the same Complex Di-
mensions and oscillatory period asL intr just above. (Indeed, its geometric zeta function is given

by � L CI � s� �
1

� Nb � 1� s
1

1 � " s �
1

� Nb � 1� s � L intr � s� , for all s " C.)

4.3 Minkowski Dimension, Minkowski Nondegeneracy, and Average Minkowski
Content

We next obtain new and re�ned results concerning the geometry { and, in particular, the Minkowski
nondegeneracy, non Minkowski measurability, as well as the average Minkowski content of the Weier-
strass IFD. For this purpose, and for the bene�t of the reader who may not be familiar with these
notions, we �rst state several de�nitions, which are now suitably adapted to our current setting and
to the notions of e�ective tubular volumes.

In the spirit of the remainder of this paper, the de�nition of (upper, lower) Minkowski contents and
dimensions, for example, will be given in terms of the cohomology in�nitesimal� "m

m � ™
m� 0, viewed as a

sequence of positive scales tending to zero, asm � ™. So will the notions of Minkowski nondegeneracy
and Minkowski measurability, as well as of e�ective average Minkowski content.

De�nition 4.3 (Lower and Upper r -Dimensional Minkowski Contents { Lower and Upper
Minkowski Dimensions, and Minkowski Dimension of an IFD ).

Let F I be an arbitrary iterated fractal drum of R2; see De�nition 3.3, on page 45. More precisely,
we hereafter consider the sequence of ordered pairs� F m ; "m

F ;m � m " N , where, for eachm " N, Fm is

the mth prefractal approximation to a fractal set F , and where"m
F ;m is the associatedmth cohomology

in�nitesimal.
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Then, given r ) 0, m " N, and the "m
F ;m {neighborhood (or tubular neighborhood) of Fm ,

DF m � "m
F ;m � � t M " R2 ; d � M; Fm � ( "m

F ;m z ; (R 121)

of tubular volume Vm;F m � "m
F ;m � , we de�ne, much as in [LR�Z17b], the lower r -dimensional Minkowski

content (resp., the upper r -dimensional Minkowski content) of the IFD as

M “
r � F I � � lim inf

m� ™

Vm;F m � "m
F ;m �

� "m
F ;m �

2� r � resp., M “ ;r � F I � � lim sup
m� ™

Vm;F m � "m
F ;m �

"2� r � : (R 122)

Recall that lim
m� ™

"m
F ;m � 0; see De�nition 3.3, on page 45, along with De�nition 3.1, on page 37,

for the special case of the Weierstrass IFD, for which we also have (in the present notation),

Vm;F m � "m
F ;m � � xVm;F m � "m

F ;m � ;

for all m " N.

Note that, by de�nition, we have that

0 ( M “
r � F I � ( M “ ;r

� F I � ( ™ : (R 123)

We then de�ne the lower Minkowski dimension (resp., the upper Minkowski dimension) of the IFD
by

D � F I � � inf t r ) 0 ; M “
r � F I � $ ™z (R 124)

� resp., D � F I � � inf t r ) 0 ; M “ r
� F I � $ ™z� : (R 125)

As usual, by de�nition, the Minkowski dimension DF I � D � F I � of the IFD exists if

D � F I � � D � F I � ; (R 126)

in which case, of course, we have that

DF I � D � F I � � D � F I � � D � F I � : (R 127)

De�nition 4.4 (Minkowski Nondegeneracy and Minkowski Measurability of an IFD ).

Let F I be an arbitrary IFD. Assume that its Minkowski dimension DF I exists, in the sense of
De�nition 4.3, on page 95 just above.

Then, with the same notation as in De�nition 4.3, the IFD F I is said to beMinkowski nondegen-
erate if the lower and upper Minkowski contents,

M “
D F I � F I � � lim inf

m� ™

Vm;F m � "m
F ;m �

� "m
F ;m �

2� D F I
and M “ ;D F I � F I � � lim sup

m� ™

Vm;F m � "m
F ;m �

� "m
F ;m �

2� D F I
;

are respectively positive and �nite. Recall that the inequalities in (R123) always hold.

Finally, the IFD F I is said to beMinkowski measurableif it is Minkowski nondegenerate and
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M “
D F I � F I � � M “ ;D F I � F I � ; (R 128)

i.e., if the following limit exists in � 0; �™ � (and necessarily equals this common value, denoted
by M D F I � F I � ):

M D F I � F I � � lim
m� ™

Vm;F m � "m
F ;m �

� "m
F ;m �

2� D F I
: (R 129)

Then, M D F I � F I � is called the Minkowski content of the IFD.

Remark 4.11. As was mentioned in De�nition 4.4, on page 96 above, the IFD is said to beMinkowski
nondegenerateif

0 $ M “
D F I � F I � $ M “ ;D F I � F I � $ ™ : (R 130)

Equivalently, the IFD is Minkowski nondegenerate if there exists d ) 0 such that,

0 $ M “
d � F I � $ M “ d

� F I � ; (R 131)

which implies that the Minkowski dimension DF I of the IFD exists and is equal to d.

De�nition 4.5 (Average Lower and Upper Minkowski Contents of an IFD ).

We hereafter use the same notation as in De�nition 4.3, on page 95, and in De�nition 4.4, on
page 96 just above, whereF I denotes an arbitrary iterated fractal drum of R2.

Then, by analogy with what can be found in [LR�Z17b], De�nition 2.4.1, on page 178, we de�ne,
for all m " N su�ciently large, the mth e�ective average lower-dimensional Minkowski content(resp.,
the mth e�ective average upper-dimensional Minkowski content) of Fm as

zM D m ;e
“ � Fm � � lim inf

r � �™

1
ln r

E
" m

F ;m

1
r

tD m � 3 xVm;F m � t � dt (R 132)

� resp., zM “ ;D m ;e � Fm � � lim sup
r � �™

1
ln r

E
" m

F ;m

1
r

tD m � 3 xVm;F m � t � dt� ; (R 133)

where xVm;F m is the natural volume extension ofF I (or mth e�ective tubular volume of Fm ; see No-
tation ??, on page??, along with De�nition 4.1, on page 69), and whereDm denotes the abscissa of
convergence of themth local e�ective tube zeta function x� e

m;F m
.

In the case when both of these values coincide, their common value, denoted byzM D m ;e � Fm � , is
called themth local e�ective average Minkowski contentof Fm , which is then said to exist. Accordingly,

zM D m ;e � Fm � � lim
r � �™

1
ln r

E
" m

F ;m

1
r

tD m � 3 xVm;F m � t �� t � dt : (R 134)
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We can now state several new geometric consequences of our above results, especially, Theorem 4.5,
on page 78 and Theorem 4.9, on page 90.

Theorem 4.10 (Lower, Upper and Average D W -dimensional Minkowski Contents of the
Weierstrass IFD ).

For any m " N, let us denote byDm the abscissa of convergence of themth local e�ective
tube zeta function x� e

m;W . Then, the Minkowski dimension of the Weierstrass IFD � I
W exists and

equalsDm � DW , for any su�ciently large m " N “ , whereDW � 2 � lnNb

1
�

" � 1; 2� is the Minkowski
dimension of the Weierstrass Curve; see Theorem 4.6, on page 82 above. Moreover, the lower and up-
per DW -dimensional Minkowski contents of the Weierstrass IFD� I

W , respectively

M “
D m � � I

W � � M “
D W � � I

W � and M “ ;D m � � I
W � � M “ ;D W � � I

W � ;

take strictly positive and �nite values; more speci�cally, they are such that

0 $
CRectangles

Nb
$ M “

D m � � I
W � $ M “ ;D m � � I

W � ( CRectangles $ ™ ; (R 135)

whereCRectangles denotes the strictly positive and �nite constant introduced in Property 4.1, on page 73.

Recall that CRectangles may depend onm " N “ , but is uniformly bounded away from 0 and in�nity
(with bounds independent ofm " N “ large enough). Hence, the same is true of

M “
D m � � I

W � � M “
D W � � I

W � and M “ ;D m � � I
W � � M “ ;D W � � I

W � ;

where Dm � DW , for all su�ciently large m " N “ .

In addition, the values of M “
D W � � I

W � and M “ ;D W � � I
W � are respectively equal to the minimum

and maximum value of the one-periodic functionGD W � G0;D W introduced in Theorem 4.9, on page 90,
associated toDm in the expression of the fractal tube formula given in the same theorem (recall that
the periodicity is with respect to the variablelnNb " � 1, see Property 3.5, on page 45).

Finally, for all su�ciently large m " N “ , the mth local e�ective average Minkowski content exists
and is given by the mean value of the one-periodic functionGD m � GD W , as well as by the residues
of x� e

m; � W m
at s � Dm � DW :

zM D m ;e � � Wm � � E
1

0
GD W � x� dx � res � x� e

m; � W m
; Dm � �

res � � e
m; � W m

; Dm �

2 � Dm
: (R 136)

Hence, zM D m ;e � � Wm � is nontrivial; in fact,

0 $ M “
D m � � I

W � $ zM D m ;e � � Wm � $ M “ ;D m � � I
W � $ ™ :

More speci�cally, still for all m large enough and thus, withDm � DW , the mth local e�ective
average Minkowski content zM D m ;e � � Wm � may depend onm " N “ , but is uniformly bounded away
from 0 and ™ (with bounds independent ofm " N “ large enough).

Proof. In light of Theorem 4.5, on page 78 (and of De�nition 4.3, on page 95), one has
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M “ ;D m � � I
W � � lim sup

m � ™
v =

` " Z ; k " N

f k;`; Rectangles " k � 2� D W � � i ` p

� " D W =
` " Z ; k " N

t f k;`; wedges ;1 " 1� i ` p � f k;`; wedges ;2 " � 1� 2 k � i ` p � f k;`; wedges ;3 " 3� 2 k � i ` p z

� " D W =
` " Z ; k " N

f k;`; triangles, parallelograms " � i ` p � " D W � � " D W � " 2

2 |

� lim sup
m � ™

=
` " Z

f m; 0;Rectangles " � i ` p

� lim sup
m � ™

CRectangles
Nb � 1

Nb
=
` " Z

1
ln Nb � 2 i ` �

" � i ` p � lim sup
x � �™

CRectangles N
� r x x
b :

(R 137)

In the same way,

M “
D W � � I

W � � lim inf
x� �™

CRectangles N
� r xx
b : (R 138)

Thanks to Property 3.5, on page 45, and since 0( r xx $ 1, whererxx denotes the fractional part
of x " R, we have that

N
� r xx
b �

Nb � 1
Nb

=
` " Z

� "m
m � � i ` p

ln Nb � 2 i ` �
; with x � � lnNb � "m

m � ; (R 139)

This yields
1

Nb
$ N

� r xx
b ( 1, and thus, in light of Theorem 4.6, on page 82, and withDm � DW

given as in the theorem, we have that, for allm " N “ large enough,

CRectangles

Nb
$ M “

D m � � I
W � $ M “ ;D m � � I

W � ( CRectangles : (R 140)

The constant CRectangles being strictly positive and �nite (see Property 4.1, on page 73), this ac-
counts for a strictly positive (resp., �nite) value of the lower (resp., upper) Minkowski content M “

D m � � I
W �

(resp., M “ ;D m � � I
W � ).

Also, still for all m " N su�ciently large, the one-periodic function (with respect to the vari-
able lnNb " � 1, see Property 3.5, on page 45),

GD W � G0;D W � x (
Nb � 1

Nb
CRectangles =

` " Z

� "m
m � � i ` p

ln Nb � 2 i ` �
� N

� r xx
b ; (R 141)

associated to the valueDW � Dm is nonconstant, because it has nonzeromth Fourier coe�cients,
with m j 0, as can be seen from the fractal tube formula, and as stated in Theorem 4.9, on page 90.
(Note that the function GD W � GD m may depend onm su�ciently large.)

The last part of the theorem, regarding themth local e�ective average Minkowski content zM D m ;e � � Wm �
of the Weierstrass IFD (as introduced in De�nition 4.5, on page 97), follows at once from the method
of proof of [LR�Z17b], Theorem 2.3.25, on page 157. Note that the fact thatzM D m ;e � � Wm � is uniformly
bounded away from 0 and in�nity (in m " N “ large enough) follows from relation (R111) on page 89.
Indeed, recall from Property 4.1 on page 73 that the coe�cients f k;`; Rectangles are uniformly bounded
away from 0 and in�nity (with bounds independent of m " N “ large enough).
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Corollary 4.11 ((of Theorem 4.10) Minkowski Dimension { Minkowski Nondegeneracy ).

The Weierstrass IFD is Minkowski nondegenerate. Furthermore, the numberDW � 2 � lnNb

1
�

is a
simple Complex Dimension of the IFD, and it coincides with the Minkowski Dimension of� W , which
must also exist. Moreover, the Weierstrass IFD is not Minkowski measurable.

Proof. In light of Theorem 4.10, on page 98, the nondegeneracy directly follows from the de�nition.
The statement concerningDm � DW (for all m " N su�ciently large) then follows from De�nition 4.4,
on page 96, in particular.

Furthermore, the Weierstrass IFD is not Minkowski measurable; i.e., here,

M “
D m � � I

W � $ M “ ;D m � � I
W � :

This last statement also follows from Theorem 4.10, on page 98, because the one{periodic func-
tion GD W � GD m is nonconstant, and so, by the method of proof of the results in [LR�Z17b], Theo-
rem 2.3.25, on page 157,

{M “
D m ;e

� � Wm � � min
� 0;1�

GD W $ max
� 0;1�

GD W � zM “ ;D m ;e � � Wm � : (R 142)

Moreover, since, for all m " N su�ciently large, the mth local e�ective distance zeta func-
tion � e

m; � W m
associated to the Weierstrass IFD can clearly be meromorphically extended to a connected

neighborhood ofs � DW in the Complex Plane, DW is a simple pole of� e
m; � W m

. As was pointed out
at the end of Theorem 4.10, given on page 98, in agreement with the general theory in [LR�Z17b] (see
Theorem 2.3.25, page 157).

Remark 4.12. Let us call the global lower (resp., upper) e�ective average Minkowski content of the

Weierstrass IFD � I
W , and denote by {M “

D W ;e
� � I

W � (resp., |M “
D W ;e

� � I
W � ) the following lower (resp.,

upper) limit of the corresponding mth local e�ective average Minkowski contents, with Dm � DW , for
all m " N “ su�ciently large:

{M “
D W ;e

� � I
W � � lim inf

m� ™
{M “

D m ;e
� � Wm � (R 143)

� resp., {M “ D W ;e
� � I

W � � lim sup
m� ™

|M “
D m ;e

� � Wm � 


Then, it follows from Theorem 4.10, on page 98, that the above quantities are well de�ned and
bouded away from 0 and™. Furthermore, they coincide; so that the global e�ective average Minkowski
content of the Weierstrass IFD � I

W , denoted by zM D W ;e � � I
W � ), exists.

In light of relation ( R135), and sinceDm � DW , for all m " N “ su�ciently large, we obtain that

0 $
CRectangles

Nb
$ M “

D W � � I
W � ( zM “ ;D W ;e � � Wm � ( M “ D W � � I

W � ( CRectangles $ ™ : (R 144)

In addition, since Dm � DW , and, by relation (R136),
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zM D W ;e � � Wm � � res � x� e
m; � W m

; DW � �
res � � e

m; � W m
; DW �

2 � DW
; (R 145)

for all m " N “ su�ciently large, as well as (see Theorem 4.6, on page 82, and its proof),

res � x� e
� W

; DW � � lim
m� ™

res � x� e
m; � W m

; DW � ; (R 146)

which follows from the local uniform convergence (asm � ™) on C of x� e
m; � W m

(resp., � e
m; � W m

) to x� e
� W

(resp., to � e
� W

).

By combining relation (R145) and relation (R146), we see that zM D W ;e � � I
W � exists and satis�es

zM D W ;e � � I
W � � lim

m� ™
M “ ;D W ;e � � Wm � � res � x� e

� W
; DW � �

res � � e
� W

; DW �
2 � DW

: (R 147)

Finally, in light of relation ( R144), we deduce from relation (R147) that

0 $
1

Nb
lim inf
m� ™

CRectangles ( M “
D W � � I

W � ( zM D W ;e � � I
W � ( M “ D W � � I

W � ( lim sup
m� ™

CRectangles $ ™ :

(R 148)
In conclusion, the global e�ective average Minkowski content zM D W ;e � � I

W � of the Weierstrass

IFD � I
W , exists, is positive and �nite, satis�es the estimates in relation (R148), and is expressed via

relation (R147 ) in terms of the residues ats � DW of the global e�ective tube and distance zeta
functions of � I

W .

Accordingly, in particular, the relation between the mth local e�ective average Minkowski content
and the residues ats � DW of the mth local e�ective tube and distance zeta functions, for allm " N “

su�ciently large (see relation ( R136), on page 98) remains precisely the same between their global
counterparts.

4.4 The Noninteger Case

An interesting question is the generalization of our previous results tothe noninteger case; i.e., to
the case when the Weierstrass functionW is de�ned, for any real number x, by

W� x� �
™

=
n� 0

� n cos� 2 � b n x� ; (R 149)

where the real numberb does not belong to the set of natural integers.

We plan to provide the details in a later work, but for now limit ourselves to a few comments.

From the geometric point of view, one cannot handle things in the same way. For instance, one
cannot resort to a �nite IFS, and the function, apart from its parity, has no periodicity property.

Yet, the associated graph being the attractor of the in�nite set of maps, TW � r Ti xi " Z , such that,
for any integer i and � x; y� in R2,

Ti � x; y� � �
x � i

b
; � y � cos� 2 � �

x � i
b




 ; (R 150)
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it is natural to consider the associatedin�nite IFS (IIFS), TW . As a consequence, the resulting pre-
fractal graphs are in�nite ones.

The local H•older and reverse{H•older continuity properties of the Weierstrass function then enable
us to resort to estimates that are equivalent to the ones obtained in Corollary 2.12, on page 24, and
Corollary 2.13, on page 24, and, consequently, to the resulting ones about the elementary heights
obtained in Corollary 2.16, on page 27.

As for the e�ective tubular neighborhood, due to the polygonal approximations induced by the
prefractals, it is still obtained by means of rectangles and wedges.

In the integer case, extra terms coming from overlapping rectangles vanished, thanks to the sym-

metry with respect to the vertical line x �
1
2, as described in Proposition 3.8, on page 57. In the

non-integer case, one simply replaces this symmetry with the one with respect to the vertical axisx � 0.

In this light, it is expected that a similar method, suitably adapted, would lead to a fractal tube
formula of the same type as the one obtained in Theorem 4.5, on page 78, where the powers of the
small parameter "m

m would be, respectively, and as previously,

"2� D W � k � 2� D W � � i ` p ; "3� i ` p ; "1� 2 k� i ` p ; "5� 2 k� i ` p ; "2� i ` p ; "2 ; "4 ; (R 151)

which would yield the same results concerning the possible Complex Dimensions, along with the upper
and lower, as well as the average, Minkowski contents of the Weierstrass Curve.

As in the integer case, the terms involving"2� D W � k � 2� D W � � i ` p come from the contribution of the
rectangles. The one{periodic functions (with respect to the variable lnb " � 1 this time), respectively
associated to the valuesDW � k � 2 � DW � , k " N, are thus nonconstant, with all of their Fourier
coe�cients being nonzero. Hence, as in Theorem 4.8, on page 88, for eachk " N and ` " Z ,
DW � k � 2 � DW � � i ` p, are all simple Complex Dimensions of the Weierstrass Curve; i.e., they are
simple poles of the tube (or, equivalently, of the distance) zeta function.

We also mention that we could deal with the case� b $ 1, exactly in the same manner, and with
the same conclusions. Actually, it is noteworthy that, in the present paper, all of our results remain
valid when � N b $ 1, whereb � Nb is an integer greater than or equal to two. Observe that in the latter
case, the Weierstrass Curve �W is of class C1, but is still fractal, because it has nonreal Complex
Dimensions (in fact, in�nitely many of them).

5 Concluding Comments

In the light of our results, the box dimension DW stands as a simple pole of the tube and distance
zeta functions associated to the Weierstrass IFD. It is also the abscissa of holomorphic continuation
of those functions, which therefore cannot be extended holomorphically to the left ofDW . Accord-
ing to [LR �Z17b], part c. of Theorem 2.1.11, page 57, and the last statement of Theorem 2.2.11,
page 121, this additional result follows from the fact that, for all m " N su�ciently large, Dm � DW

exists, M “
D W � � I

W � %0 and DW $ 2. It can also be deduced from Theorem 4.5, on page 78, or else
from Theorem 4.8, on page 88.

A natural question which arises is wether the Complex Dimensions of the considered fractal { in
our case, the Weierstrass Curve { are the same as those of the prefractal approximations. In [DL23b],
by means of the exact sequence of the local e�ective fractal zeta functions associated with the sequence
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of polygonal neighborhoods which converge to the Curve, we prove that the limit (or global) fractal
zeta function { the one associated with the limit fractal object { has the same poles as the fractal
zeta function at each step of the prefractal approximation, and, hence, that the Complex Dimensions
of the fractal are the same as the Complex Dimensions of each prefractal approximation. As is shown
in [DL23b], the determination of the explicit Complex Dimensions of the IFD is a compulsory step in
order to obtain the Complex Dimensions of the limit fractal Curve.

Now, as was alluded to in the Introduction, the determination of the possible Complex Dimensions
of a fractal object, being deeply connected with its intrinsic vibrational properties, is thus directly as-
sociated to its cohomological properties: what are the topological invariants of the Weierstrass Curve?
This is the question we try to answer in the second part of our study, [DL24d], where we determine
the fractal cohomology of the Weierstrass Curve.

Behind the fractal series expansion of the Weierstrass function, another expansion, indexed by
the Complex Dimensions obtained in our fractal tube formulas (see Theorem 4.5, on page 78 and
Theprem 4.9, on page 90 above), naturally arises. Intuitively, one understands that the terms of the
expansion come from the cohomology groups associated to the prefractal sequence of �nite graphs
that converges towards the Curve. This is all the more interesting, as those groups possess the same
symmetries as the Curve, which means that a speci�c di�erentiation could be achieved on this, how-
ever, everywhere singular object; see [DL24a] and [DL24d].

As was mentioned in Subsection 4.4, on page 101, we also intend, in a future work, to extend our
results to the general case, i.e., when the Weierstrass functionW is de�ned, for any real number x, by

W� x� �
™

=
n� 0

� n cos� 2 � b n x�

where the real numberb does not belong to the set of natural integers. This goes along with a gen-
eralization of the results of the present paper to a large class of Weierstrass-like functions (see the
paper [Dav19]), including the Takagi function, the Knopp functions and the Koch parametrized Curve;
see [DL23a].

The reader may wonder where there is an intrinsic way of obtaining the global fractal zeta functions
introduced and studied in Theorem 4.6 and Corollary 4.7 (on pages 82 and 87, respectively), that
would be more in keeping with the general theory of Complex Dimensions (as developed in [LR�Z17a]{
[LR �Z17c] and [LR�Z18]) and its natural extensions (e.g., in [LW23]). This question is addressed by the
authors in [DL23b], by using the polyhedral measure introduced in [DL24c].
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[Man83] Benô�t B. Mandelbrot. The Fractal Geometry of Nature. English translation, revised and
enlarged edition (of the 1977 edition). W. H. Freeman & Co, New York, 1983.

[Not98] Laurent Nottale. La relativit�e dans tous ses �etats. Hachette Litt�eratures; Hachette �edition,
Paris, 1998.

[Ols01] Lars Ole Ronnow Olsen. Review: Fractal Geometry and Number Theory. Complex Di-
mensions of Fractal Strings and Zeros of Zeta Functions by M. L. Lapidus and M. van
Frankenhuijsen, Birkh•auser. Bulletin of the London Mathematical Society, 33:254{255,
2001.

[Ols13a] Lars Ole Ronnow Olsen. Multifractal tubes. In Further Developments in Fractals and
Related Fields, Trends Math., pages 161{191. Birkh•auser/Springer, New York, 2013.

[Ols13b] Lars Ole Ronnow Olsen. Multifractal tubes: Multifractal zeta-functions, multifractal
Steiner formulas and explicit formulas. In Fractal Geometry and Dynamical Systems in
Pure and Applied Mathematics.I. Fractals in Pure Mathematics, volume 600 ofContemp.
Math., pages 291{326. Amer. Math. Soc., Providence, RI, 2013.

[PU89] Feliks Przytycki and Mariusz Urba�nski. On the Hausdor� dimension of some fractal sets.
Studia Mathematica, 93(2):155{186, 1989.

[She18] Weixiao Shen. Hausdor� dimension of the graphs of the classical Weierstrass functions.
Mathematische Zeitschrift, 289:223{266, 2018.

[Tao06] Terence Tao. Nonlinear dispersive equations, volume 106 ofCBMS Regional Conference
Series in Mathematics. Published for the Conference Board of the Mathematical Sciences,
Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and
global analysis.

[Tit39] Edward Charles Titschmarsh. The Theory of Functions. Oxford University Press, second
edition, 1939.

[Wei75] Karl Weierstrass. •Uber continuirliche Funktionen eines reellen Arguments, die f•ur keinen
Werth des letzteren einen bestimmten Di�erential quotienten besitzen. Journal f•ur die
reine und angewandte Mathematik, 79:29{31, 1875.

[Zyg02] Antoni Zygmund. Trigonometric Series. Vols. I, II . Cambridge Mathematical Library.
Cambridge University Press, Cambridge, third edition, 2002. With a foreword by Robert
A. Fe�erman.

107


	Introduction
	Geometric Framework

