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Abstract

We establish fractal tube formulae for the sequence of prefractal graphs which converge to the
Weierstrass Curve, calledWeierstrass lterated Fractal Drums (in short, Weierstrass IFDs), and
which give, for a suitable (and geometrically meaningful) sequence of values of the parameter
tending to zero, explicit expressions for the volume of the associated-neighborhoods. For this
purpose, we prove new geometric properties of the Curve and of the associated function, in relation
with its local Helder and reverse Helder continuity, with explicit estimates that had not been ob-
tained before. We also show that the Codimension 2 Dy is the optimal Helder exponent for the
Weierstrass function W, from which it follows that, as is well known, W is nowhere di erentiable.
Then, the formula, that yields the expression of the -neighborhood, consists of a fractal power
series in , with underlying exponents the Complex Codimensions of the sequence of prefractal
graphs. This enables us to obtain the associated (local and global, e ectivejube and distance
fractal zeta functions, whose poles yield the corresponding set of Complex Dimensions. We prove
that the Complex Dimensions { apart from 0 and 2 { are periodically distributed along countably
many vertical lines, with the same oscillatory period. By considering the lower and upper (e ective)
Minkowski contents of the m" prefractal approximation to the Weierstrass Curve, which we prove
to be strictly positive, we then show that the Weierstrass IFD is Minkowski nondegenerate, as well
as not Minkowski measurable, but admits a nontrivial average Minkowski content { and that, as
expected, the Minkowski dimension (or box dimension)D, is the Complex Dimension with maxi-
mal real part, and zero imaginary part. An interesting (and likely general) new phenomenon arising
in our investigation is that, for all su ciently large positive integers m, the Complex Dimensions
of the m™ prefractal approximation to the Weierstrass Curve are the same and coincide with the
Complex Dimensions of the Weierstrass IFD.
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1 Introduction

Among the so-called \pathological objects” that appeared in the Xix™ century, the Weierstrass
Curve (W-Curve) stands as one of the most fascinating and intriguing ones. At rst, it was simply
designed and thought of in order to be continuous everywhere, while being nowhere di erentiable.

Given " 0;1, and bsuch that b %1 3? the associated function is de ned as the sum of the
uniformly convergent trigonometric series
x" R( = "cos b"x
n 0
The original proof, by K. Weierstrass [Wei75], in the case wheréb is an odd positive integer, can
also be found in [Tit39] (pages 351-353). It has been completed by the one, now classical, given
by G. H. Hardy [Har16], in the more general case, wherd is any real number such that b %1.

As is discussed in[[Dav2R], the introduction of this function challenged all the existing theories that
went back to Ande-Marie Amgere, and has led to the emergence of many new functions possessing
the same type of properties.

History then left it aside for a while, before new discovered properties brought it back once again
to the forefront. It happened, in particular, that, in addition to its nowhere di erentiability, the func-
tion { and the associated Curve { have self-similarity properties. After the works of A. S. Besicovitch
and H. D. Ursell [BU37], Benot Mandelbrot [Man77], [Man83], particularly highlighted the fractal
properties of the Weierstrass Curve. He also conjectured that the Hausdor dimension of the graph



is given byDy, 2 Ilr;—b 2 Iny E whereNp b" N~ Nrox

Interesting discussions and results in relation to this question may be found in the book of K. Fal-
coner [Fal86]. As for the box dimension, a rst series of results have been obtained by J.-L. Kaplan,
J. Mallet-Paret and J. A. Yorke [KMPY®84]| where the authors show that it is equal to the Lyapunov
dimension of the equivalent attracting torus. Then, the problem was tackled by F. Przytycki and
M. Urbanski [PU89], as well as by T.-Y. Hu and K.-S. Lau [HL93].

As for the Hausdor dimension, the rst key result was obtained by F. Ledrappier [Led92], where
the Curve is considered as \the repeller for some expanding self-mapping o0;1  R", in the case
wherebis an integer, an assumption that is of importance, in so far as a Markov partition for the map-
ping x ( bx mod 1 is involved. The resulting dynamics thus obeys the Markov property, a fact that
has naturally led the author of [Led92] to using such notions as topological { metric entropies, explored
in his earlier joint work with L. S. Young [LY85]. An interesting and useful connection was therefore
established between Lyapunov exponents and dimensions, in this context. Another result was then
obtained by B. Hunt [Hun98] in 1998 in the case where arbitrary phases are included in each cosinu-
soidal term of the summation. Later, in 2014, K. Baransky, B. Baany and J. Romanowska [BBR14]
showed that, for any value of the real numberb, there is a threshold value , belonging to the in-

1 . _ .
terval B 1 such that the Hausdor dimension is equal to Dy, for every bin ;1. The results

obtained by W. Shen in [Shel8] went further than the main result of [BBR14] and, in fact, showed
that the Hausdor dimension of the Weierstrass Curve is equal toDy, for any (allowed) values of the
parameters. Furthermore, in [Kell7], G. Keller proposed a very original and much simpler proof of
the main results of [BBR14].

In [Dav18], the rst author proved { in the case when b Ny is an integer, and in contrast to the
then existing work { that the Minkowski dimension (or box{counting dimension) of the Weierstrass
Curve could be obtained in a simple way, without requiring any theoretical background in dynamical
systems theory. The proof relies on the use of prefractal approximations; that is, here, a suitable se-
guence of nite graphs which converges towards the Weierstrass Curve. They are obtained by means
of a suitable nonlinear iterated function system (IFS) [Dav19], where, as in the case of the horse-
shoe attractor introduced by Stephen Smale, the nonlinear maps involved are not contractions, but
possess what can be viewed as an equivalent property, since, at each step of the iterative process,
they reduce the values of the two-dimensional Lebesgue measures of a given sequence of rectangles
covering the Curve. As expected, the Weierstrass Curve is invariant with respect to the family of those
maps, which provides us in this context with a result equivalent to the one that can be found in[[BD85].

Interestingly, the intrinsic properties of the intriguing maps which constitute the nonlinear IFS
can be directly linked to the computation of the box dimension of the Weierstrass Curve, and to a
new proof of the nowhere di erentiability of the Weierstrass function, as shown in [Dav22].

Yet, thus far, no connection has been established with the theory of Complex Dimensions. There-
fore, the following questions arise naturally in this setting: Can one prove that the Minkowski (or
box) dimension of the Weierstrass Curve is, also, a Complex Dimension? Can we also determine all of
the (possible) Complex Dimensions of this Curve, as well as obtain an associated fractal tube formula,
in the form of a fractal power series involving the underlying Complex Dimensions? (See [LRL7D],
Problem 6.2.24, page 560.)

The foundations of the theory of Complex Dimensions  were laid by M. L. Lapidus and his col-
laborators in [Lap91]], [Lap92], [Lap93], [LP93], [LM95], [LvFQ0], [LPO6], [Lap08],[LPW11],[ELMR15],
[LvEQ6], [LRZ17&], [LRZ18], [Lap19], [HL21] and [[Lap24], in particular. The theory provides a very
natural and intuitive way to characterize fractal strings or drums, in relation with their intrinsic vi-



brational properties. Geometrically, in the latter case, this means studying the oscillations of a small
neighborhood of the boundary, i.e., of a tubular neighborhood, where points are located within an
epsilon distance from any edge. As is explained irf [Lapl19], a fractal may be viewed \as a musical
instrument tuned to play certain notes with frequencies (respectively, amplitudes) essentially equal
to the real parts (respectively, the imaginary parts) of the underlying complex dimensions". One can
also imagine a \geometric wavepropagating through the fractal" [Lap19].

The one-dimensional theory of Complex Dimensions (i.e., that of fractal strings) was developed,
in particular, in the books by the second author and M. van Frankenhuisjen [[LvFQO0], [LvF06], where
general explicit formulas and fractal tube formulas were obtained for fractal strings (seel[LvF06],
Chapters 5 and 8). Later, in the book [LRZ17h] { as well as in a series of accompagnying papers,
including [LRZ172], [LRZ17¢] and [LRZ18] { the higher-dimensional theory of Complex Dimensions
was developed by the second author, G. Radunovic and DZubrinc, in the general case of bounded
subsets of Euclidean spaceRN and of relative fractal drums of RN, with N ) 1 being an arbitrary
integer. General fractal tube formulas were also obtained in this context and applicable to a large
variety of examples; see [LZ170], Chapter 5, and [LRZ18]. In short, Complex Dimensions are de ned
as the poles of the meromorphic continuation of suitable geometric or fractal zeta functions, associated
with the fractal under study. A geometric object is then said to be fractal if it admits at least one
nonreal Complex Dimension thereby giving rise to geometric oscillations via the corresponding fractal
tube formula. For example, in agreement with one's intuition, the Devil's Staircase (i.e., the graph of
the Cantor{Lebesgue function) is shown to be fractal, in this sense, whereas it is not fractal according
to Benot B. Mandelbrot's de nition in [Man83], because its topological and Hausdor dimensions
coincide.

Under a mild assumption, the (upper) Minkowski dimension of the geometric object under study
is equal to the abscissa of convergence of the geometric, distance or tube, fractal zeta functions, and is
the only Complex Dimension located on the real axis and with maximal real part, therefore giving rise,
via the corresponding fractal tube formula, to geometric, spectral, or dynamical oscillations with the
largest amplitudes. We note that fractal tube formulas express the volume of (small)'-neighborhoods
of the fractal as a fractal power series, with exponents the underlying Complex Codimensions.

Building on the work on multifractal zeta functions and Complex Dimensions of multifractals
strings developed in [LR0O9], [LLVR09], [ELMR1E], along with the work on Complex Dimensions and
fractal tube formulas in [LvF0O], [LvFO6]. L. O. R. Olsen [Ols13&], [OIs13b], also obtained a suitable
multifractal analog of fractal tube formulas in this context.

A clear summary of the theory of Complex Dimensions for fractal strings can be found in [OIs01],
while a long survey of the theory of Complex Dimensions, both for fractal strings and in higher di-
mensions, is given in|[[Lap1P].

A question which naturally arises in this context is that of di erential operators on such struc-
tures. In the case of fractal strings, as an echo to honcommutative geometry, wherspectral triples
are involved, ageometric zeta functionprovides the set of complex modes, while the dimensions stand
as its nonreal poles. The occurrence of the zeta function can be understood very intuitively, in so far
as it simply represents the trace of the di erential operator at a complex orders. Thus, the poles are
nothing but the maximal orders of di erentiation. Hence, dimensions.

The notion of a fractal drum extends that of a fractal string to higher-dimensional Euclidean
spaces, and involves an open subset with a fractal boundary. In the Euclidean plane, this boundary is
a curve. The word \drum" calls for vibrations: intuitively, one understands that they occur in a small
neighborhood of the boundary, a tubular neighborhood, the Lebesgue measure of which is associated
to a tube zeta function which, similarly, enables one to obtain the Complex Dimensions, which stand



as characteristic numbers that account for speci ¢ geometric properties of the fractal boundary, here,
the underlying curve.

For the Koch Snow ake Curve, afractal tube formula was obtained by M. L. Lapidus and E. P. J. Pear-
se in [LP06]. As was pointed out in [LRZ17h] (see Problem 6.2.24, page 560), the case thie Weier-
strass Curve remained adi cult open problem , which we propose to solve in this paper. It is directly
associated to our previous work[[Dav18], in so far as precise estimates are required for the elementary
heights of the sequence of natural prefractal approximations tending towards the Curve. As is often
the case in such a situation, we signi cantly improve these estimates, which also enable us to obtain
the exact values of the local extrema, and to determine the optimal Helder exponent ofW. Those
extrema { which form a dense subset of the Weierstrass Curve { directly depend on the choice of an
initial set of points, which happen to be here the xed points of the nonlinear iterated function system
involved in the construction of the Curve; see [[Dav19] for further details. Moreover, we introducehe
concept ofself-shape similarity , a more general one than the standard notion ofelf-similarity .

The rst novelty of our approach is that we de ne the Complex Dimensions of the Weierstrass
Curve as the set of the Complex Dimensions of the sequence of" prefractal graphs which converge
to the Curve { Weierstrass lterated Fractal Drum (in short, Weierstrass IFD), or, equivalently in our
context, of the sequence om™ prefractal approximations which converge to the Curve. More speci -
cally, we show that the set of (possible) Complex Dimensions is independent of the positive integen
su ciently large. For this IFD, our tubular neighborhoods are located on both sides of the involved
prefractals, which seems natural, because vibrations may occur on either side of the underlying frac-
tal drum. However, when it comes to computing the associated fractal tube zeta function, classical
methods, as in [LP06] and [[LPW11] (see alsa [LvFQ0]§10.3, and [LvF06], 812.4), cannot be directly
applied, since our fractal tube formulas can only be obtained for a sequence of characteristic lengths
{ the cohomology in nitesimals. More precisely, we only dispose of discrete values (but geometrically
natural) for the fractal tube formulas, instead of an explicit expression of the tube formula on an
interval of the form 0; ¢ , where g %0 stands for a small parameter. This di culty can be overcome
isofar as the knowledge of the expression for the volume at this discrete value is simply the trace of the
continuous volume function corresponding to an evolving tubular neighborhood. We can thus obtain
fractal tube formulas. Then, we deduce from them the explicit form of the local and global fractal
(tube and distance) zeta functions, along with the Complex Dimensions of the IFD, which are the
same at any step of the process, for all prefractal approximations su ciently close to the Weierstrass
Curve. Note that the later results obtained in [DL23b] corroborate and further justify our approach.
Indeed, not only the Complex Dimensions of the IFD are the same as the Complex Dimensions of
the fractal involved, as is proved in [DL230], but, also, the determination of the Complex Dimensions
of the IFD is a compulsory step in order to know the Complex Dimensions of the limiting object {
in our case, the Weierstrass Curve. In the process, we introduce the new notions efective tubular
neighborhood as well as ofe ective local and global fractal zeta functions

The main results obtained in this paper, where we consider the cask Ny being an integer, can
be found in the following places:

i. In Corollary .13, on page[24, and Theorenj 2.14, on pade 6, along with Corollafy 215, on
page[27, where we prove the sharp local Helder continuity, and a sharp discrete version of re-

verse Helder continuity, with optimal Helder exponent, for the Weierstrass function W, equal

to the (Minkowski) Codimension 2 Dy  Iny, —. It follows, in particular, that W is nowhere

di erentiable { as is well known, although our method of proof is completely di erent from the
usual ones.

ii. In Theorem [4.5, on page 7B and Theorem 4]9, on pade |90, wich yield, for specic (and geo-
metrically signi cant) values of the positive parameter , the expression of the area of the -
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neighborhood of eachm™ prefractal graph approximation, for all su ciently large positive inte-
gersm { a Weierstrass Fractal Tube Formula, which (apart from two terms associated with the
Complex Dimensions 0 and 2) consists of an expansion of the form

— 2 .
- |an - ’
real part of a Complex Dimension

where, for any real part of a Complex Dimension,G denotes a continuous and one-periodic
function. Furthermore, for max Dw, the Minkowski dimension of the Curve { i.e., for
being equal to the maximal real part of the Complex Dimensions of the Weierstrass IFD { the
periodic function G __ is nonconstant, as well as bounded away from zero and in nity. As
is the case in the general theory of fractal tube formulas (see [LvF06]/ [LR17b], Chapter 8
and Chapter 5, respectively), the resulting fractal power series has for exponents the Com-
plex Codimensions of the Weierstrass Curve. Observe that each nonconstant periodic function
in “ gives rise to multiplicatively periodic (or log{periodic) oscillations in the scaling variable .

iii . In Theorem[4.§, on pagé¢ 88, where we exhibit the possible Complex Dimensions of the Weierstrass
IFD, as the poles of the associated (local and global) Tube Zeta Functions, themselves obtained
in Theorem , on pag. Equivalently, in the light of [LRZ17zg], [LRZ17b], sinceDy $ 2,
the Complex Dimensions are also the poles of the associated distance zeta functions. In par-
ticular, we show that the Complex Dimensions (other than 2) are all simple and periodi-

cally distributed (with the same period p , the natural oscillatory period of the Weier-

In Nb
strass Curve) along countably many vertical lines, with abscissa®y k 2 Dy andl 2k,
wherek in N r0;1;2;:::x is arbitrary. In addition, 2 and 0 are also Complex Dimensions,
and they are simple.

iv. In Theorem[4.10, on pag¢ 98 and Corollary 4.11, on page 100, where we prove the nondegeneracy
of the Weierstrass IFD, in the Minkowski sense (see [LR17k]), coming from the fact that, for

all su ciently large positive integers m, the upper and lower (e ective) Minkowski contents of
the m™ prefractal polygonal approximation to the Curve are respectively positive and nite. As
a result, the Minkowski dimension (or box{counting dimension) D\, of the Weierstrass IFD ex-
ists; i.e., the lower and upper Minkowski dimensions of the IFD coincide. Also, since the periodic
function Gp,, is not constant, it follows that the Weierstrass IFD is not Minkowski measurable.
Moreover, we show that the (e ective) average Minkowski content of the Weierstrass IFD exists,
is positive and nite, as well as coincides with the average value of the periodic functiorGp, .

v. As a corollary of Theorem[4.10 (page 98), the fact that the numberDyy is both the Minkowski
Dimension and a Complex Dimension of the Weierstrass IFD; see Corollary 4.11, on page 100.

vi. The fractality of the Weierstrass IFD, in the sense of [LvF0B],[[LRZ17h], [Lap19]; i.e., the exis-
tence ofnonreal Complex Dimensions (with real part D) giving rise to geometric oscillations,
in the Fractal Tube Formula obtained in this paper (Theorem {.5, on page 78 and Theoren 4]9,
on page{ 90), as described iii. above. In fact, in the terminology of [LvFO6] and [LRZ174], the
Weierstrass IFD is fractal in countably many dimensionsdy, with dy ™ “ask ™,

The Minkowski dimension (or box dimension) of the Weierstrass Curve,Dyy, coincides with the
maximum value of the real parts of the Complex Dimensions of the IFD. By considering the lower



Minkowski content, which we prove to be strictly positive, we show that Dy is, as expected, a Com-
plex Dimension of the IFD. In fact, it is natural to expect that this is also true for the Complex
Dimensions themselves, which will be shown in [DL23b] to be the same for the Weierstrass IFD and
for the Weierstrass Curve.

We also briey discuss, in Subsection] 4.4, on pagg 101, the noninteger case, i.e., wherns any
positive real number satisfying b %1. This case will be studied in detail in a future work.

Now, the determination of those dimensions, as important as it may be, is not an end in itself. In
fact, the Complex Dimensions directly echo the fractal cohomological properties of the Curve, which
is the subject of our second paper,/[DL24d].

The results of this paper and of [DL24d] are announced in the survey article [DL24a], where their
main results are presented in a summarized form.

2 Geometric Framework

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame.
The usual Cartesian coordinates are denoted byx;y . The horizontal and vertical axes will be re-
spectively referred to as xx and yYy .

Notation 1 (Set of all Natural Numbers and Intervals ).

As in Bourbaki [BouO4] (Appendix E. 143), we denote byN  r0; 1; 2; :::x the set of all natural
numbers, and setN N 1 Ox.

Givena,bwith ™ (a( b( ™, a;b a; b denotes an open interval, while, for example, a; b a;b
denotes a half-open, half-closed interval.

Notation 2 (Wave Inequality Symbol (see [Tad06], Preface, page xiv) ).

Given two positive-valued functions f and g, de ned on a subsetl of R, we use the following
notation, for all x " 1:f x , g x when there exists a strictly positive constant C such that, for
alx" I,f x ( Cgx ,whichisequivalenttof O g . Note that in our forthcoming context, we
will often use O 1 to denote terms which depend onrm " N, but are bounded away from 0 and™;
more precisely, those terms will always satisfy bounds of the following form

0$ Constantj,y ( O 1 ( Constantgy, $ ™ ; (R1)
P

where Constant,y and Constantg,, denote strictly positive and nite constants.

Notation 3 (Weierstrass Parameters ).
In the sequel, and Ny are two real numbers such that

0$ $1 : Np" N and N %1 0 (R 2)



As explained in [Dav19], we deliberately made the choice to introduce the notationN which
replaces the initial b, in so far as, in Hardy's paper [Harl6] (in contrast to Weierstrass's original
article [Wei75]), bis any positive real number satisfying b %1 , whereas we deal here with the specic
case of a natural integer, which accounts for the natural notationNy,; see, however, Sectiof 44.

De nition 2.1  (Weierstrass Function, Weierstrass Curve ).

We consider theWeierstrass function W, de ned, for any real number x, by

™

Wx = "cos2 Njx (R 3)
n 0

We call the associated graph theWeierstrass Curve

Due to the one{periodicity of the W{function, from now on, and without loss of generality, we
restrict our study to the interval 0;1 0;1.

Notation 4 (Logarithm ).

iny

denotes the
Ina

Given y %0, Iny denotes the natural logarithm of y, while, given a %1, Inyy
logarithm of y in basea; so that, in particular, In  Ing.

Notation 5. For the parameters and Ny satisfying condition °© (see Notation B on pageD?), we
denote by

In 1. .
m 2 Ian— 1,2 (R 4)

the box{counting dimension (or Minkowski dimension) of the Weierstrass Curve \y, which happens to
be equal to its Hausdor dimension [KMPY84], [BBR14], [Shel8d], [Kell7]. As was mentioned earlier,

our results in this paper will also provide a direct geometric proof of the fact thatDy , the Minkowski
dimension (or box{counting dimension) of y, exists and takes the above value.

Dw 2

Remark 2.1. As can be found, for instance, in([Fal86], we recall that thebox{counting dimension (or
box dimension in short), of \y, is given by

. InN
Dw im ———% . .
0 In

whereN  stands for any of the following quantities:

i. the smallest number of sets of diameter at most that cover  on 0;1 ;
ii. the smallest number of closed balls of radius that cover  on 0O;1 ;
iii . the smallest number of cubes of side that cover  on 0;1 ;

iv. the number of {mesh cubes that intersect  on 0;1;



v. the largest number of disjoint balls of radius with centersin  on 0;1 .

Furthermore, for the Weierstrass Curve , as, more generally, for any bounded subset of Eu-
clidean space { the box{counting dimension coincides with the Minkowski dimension.

We stress that our results will imply that the Minkowski (or box{counting) dimension of the
In

Weierstrass Curve exists; more speci cally, the above limit exists and is equal tdy, 2 N
b

Convention (The Weierstrass Curve as a Cyclic Curve ).

In the sequel, we identify the points O;W 0 and 1,W 1 1;W 0 . This is justi ed by the
fact that the Weierstrass function W is 1{periodic, since Ny, is an integer.

Remark 2.2. The above convention makes sense, because the poinW 0 and 1;W 1 have the
same vertical coordinate, in addition to the periodic properties of theW {function.

, . . 1
Property 2.1. Symmetry with Respect to the Vertical Line X 5
Since, foranyx " 0;1,
W1l x = "cos2Np 2Npgx Wx:;
n 0
the Weierstrass Curve is symmetric with respect to the vertical straight linex 5
Proposition 2.2  (Nonlinear and Noncontractive Iterated Function System (IFS) ).

Following our previous work [Dav18], we approximate the restriction  to 0;1 R, of the
Weierstrass Curve, by a sequence of graphs, built via an itegﬁltive process. For this purpose, we use
the nonlinear iterated function system (IFS) of the family of C  maps from R? to R? denoted by

Tw  STo;:iii; T, 1Y s

X X
Ti X;y ——; Y cos 2 Ny

Remark 2.3. As is explained in [Dav19], it happens that the mapsT;, with i  0;:::;Ny 1, compris-
ing the IFS Ty in the statement of Proposition [2.2, on pagg D just above { are not contractions,n
the classical sense As a result, the nonlinearity of the IFS, Ty rTixiNbo ' does not enable one to
resort to the probabilistic approach of M. F. Barnsley and S. Demko [BD85], or to the earlier work
of J. E. Hutchinson [Hut81], which is applicable in the case of standard fractals such as the Sierpnski
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Gasket and the Koch Curve. Interestingly, even if they are not contractions, our maps possess what
can be viewed as satisfying an equivalent property, since, at each step of the iterative process, they
reduce the two-dimensional Lebesgue measures of a given sequence of rectangles covering the Curve.
This is due to the fact that they correspond, in a sense, to the composition of a contraction of ratia

in the horizontal direction, and a dilatation of factor ry in the vertical direction, with ryry $ 1. Such
maps are considered, for example, in the book of Robert L. Devaney [Dev03], where they play a part

in the rst step of the horseshoe map process introduced by Stephen Smale.

Property 2.3 (Attractor of the IFS ).

Np 1
The Weierstrass Curve is the attractor of the IFSTyw: w T w .
i 0
Proof. We refer to our works [Dav18], [Dav19].
O
Notation 6 (Fixed Points ).
For any integer i belonging tor0;:::;Np 1x, we denote by
P. . i1 2
i Xi’ Vi —Nb 1,—1 cos Nb 1

the unique xed point of the map T; (see [Dav19]).

De nition 2.2  (Sets of Vertices, Prefractals ).

We denote by V; the ordered set (according to increasing abscissae), of the points

The set of points Vy { where, for any i of r0;:::; Ny 2x, the point P; is linked to the point P; 1
{ constitutes an oriented nite graph, ordered according to increasing abscissa, which we will denote
by w,. Then, V, is calledthe set of verticesof the graph .

« Np 1
N , we setVy Ti Vi 1.
i 0

For any positive integer m, i.e., for m

The set of points V,,, where two consecutive points are linked, is an oriented nite graph, ordered
according to increasing abscissa, which we will call then " order W -prefractal . Then, V,, is called

the set of verticesof the prefractal v, ; see Figureg [LJ 2} |3 on paggs [T,]12, ahd|13.

Property 2.4 (Density of the Set A V, in the Weierstrass Curve [DL24d] ).
n"N

The setV' V, is dense in the Weierstrass Curve yy .
n"N

10



De nition 2.3  (Adjacent Vertices, Edge Relation ).

For any natural integer m, the prefractal graph \,_ is equipped with an edge relationm, as

follows: two verticesX and Y of , _,i.e. two points belonging to Vy,, are said to beadjacent (i.e.,
neighboring or junction points) if and only if the line segment X;Y is an edge of ,  ; we then
write X - Y. Note that this edge relation depends onm, which means that points adjacent in Vy,

might not remain adjacent in V, 1.

<
» <

=
~
=
=

<<
<
<
<7

<

I

M WAL

1
Figure 1: The prefractal graphs Wor Wis W, Wi Wy, Wss IN the case where >
and N, 3. For example, w, Iis on the right side of the top row, while w, is on the

left side of the bottom row.
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Figure 2: The prefractal graphs Wor Wis Wy, Wi Wyas W inthe case where

and N, 4.
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N| =



Figure 3: The prefractal graphs
and N, 7.

W

W s

Wps

13

W31

W4

w 5. in the case where

N =



Property 2.5. [Dav18]
Forany m " N, the following statements hold

ii. #Vm N, 1 Ntr," 1, where # V,, denotes the number of elements in the nite sev,,.

iii. The prefractal graph ,_ has exactly N, 1 Ny' edges.

iv. The consecutive vertices of the prefractal graph \, , are the vertices of Ny simple nonregular

polygonsP .k with Ny, sides. For any strictly positive integer m, the junction point between two
consecutive polygons is the point

N, 1Kk N, 1Kk "
- 1 ( k(NI 1
N, 1 NI Npb 1 NT 7 LOK(No

Hence, the total number of junction points isN"
polygons are all triangles; see Figuré|4, on pade [L4.

In the sequel, we will denote byq the initial polygon

1. For instance, in the caseN, 3, the

, whose vertices are the xed points of

Figure 4: The initial polygon  Pg, and the polygons

P1.0, P1:1, P12, in the case where
and Ny, 3.

N| =
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De nition 2.4  (Vertices of the Prefractals, Elementary Lengths, Heights and Angles ).
Given a strictly positive integer m, we denote by M 0( Np 1 NI 1 the set of vertices of
the prefractal graph . One thus has, for any integerj in sO;:::; Ny 1 Ng' 1y,
V. RV
bm N, 1 N N, 1 N[
We also introduce, for any integerj in s0;:::; N, 1 N{' 2y, the following quantities:
i. the elementary horizontal lengths
1
L ;
M Np 1N}
ii. the elementary lengths
o
lij 1m  d Mjm:iMj 1m L& hjz;j 1m >
wherehj; 1., is de ned in iii . just below.
ii . the elementary heights
j 1 j
i Lm §N Npb 1 NT Np 1 N[ §
iv. the minimal height:
hm' inf hij 1m R5
Mo N 1 NP 1 (RS)
along with the maximal height:
hm sup hii 1m (R 6)

0(j( Np 1N 1

15



v. the geometric angles

j Lim Yy W gmMijm v ji Lm Yy WmMj 1m
where yVy denotes the vertical axis, which yieldthe following value of the geometric angle
between consecutive edges , namely, Mj 1:m Mjm ;Mjm Mj 1 , With arctan

tan '
Lm Lm
i1 THET arctan arctan :
bome hj 1m hij  1m
Lm
(Note that, of course, | 1jm arctan and j; 1m arctan )
i Lim hij  1m
Property 2.6.  For the geometric angle j 1jm, with O( j ( Np 1 Ng' landm " N, we have
the following relation:
h 1
i Lim
tan j 1jm L,

One now requires, at a given stegm " N, the exact coordinates of the vertices of the prefractal
graph , , i.e. of the following set of points:

j . j
Ny 1 N] W

v 0(j (#V
Thus far, they could not be found in the existing literature on the subject.

For this purpose, it is interesting to use the scaling properties of the Weierstrass function.
Property 2.7

(Scaling Properties of the Weierstrass Function, and Consequences

).
Since, for any real numberx, W x "cos 2 N ¢ x , one also has
n 0
™ 1 ™
W NpXx "cos2 Np'x == "cos2Npgx = Wx cos2x ;
n 0 n 1l
which yields, for any strictly positive integerm and anyj in r0;:::;# Vpy 1x,
j i 2 ]
w w cos
Ny 1 NJ Ny 1 NP1 Np 1 Ny
By induction, one then obtains that
. . m 1 k.
J m J k 2 Nyj
w w = cos
N, 1 N No 1 Np 1 N[

16



N| =
—

Property 2.8 (A Consequence of the Symmetry with Respect to the Vertical Line X

For any strictly positive integer m and anyj in r0;:::;#V, 1x, we have that

j Np 1 Ng' ]
W — W ;
Np 1 N[ Np 1 NJ
which means that the points
Np 1 Ng' j Np 1 Ng' j ' '

b b _ J ; b b _ J and J W J _

Np, 1 Np Np, 1 Ng Np 1 Ng Np 1 Ny

N : . 1
are symmetric with respect to the vertical linex 5

De nition 2.5 (Left-Side and Right-Side Vertices ).

Given natural integers m, k such that 0 ( k ( Nj' 1, and a polygon Pmk, we de ne:

Ny

i. The set of its left-side vertices as the set of the rst 5

vertices, where y denotes the
integer part of the real numbery.

ii. The set of its right-side vertices as the set of the last vertices.

When the integer Ny, is odd, we de ne the bottom vertex as the b2 one; see Figureﬂs, on
page[18.

N -

Figure 5: Symmetric points with respect to the vertical line X

17



Figure 6: The left-side and right-side vertices.

Property 2.9. Since, for any natural integer n,

n
Ng 1 Np 1" = . Ny 1° 1 modN, 1;
k 0

one obtains, for any integerj in r0;:::;Ny 1x

j ™ , N J ™ N 2 J 1 2 J
W = cos 2 N = cos
Np 1 Np 1 - Np 1 1 Np
We observe that the point
- i i1 2 ]
N, TV N, 1 Ny 1'1 N, 1

is alsothe xed point of the mapT; introduced in Proposition P2.2] page[9.

Property 2.10.

. N 1 N 1 .
For 0( j ( bT (resp., for bT( i ( Np 1), we have that

j 1 i i 1 j
W Np 1 w Np 1 (0 resp., W Ng 1 w N 1
Proof. For any integerj in r0;:::;Ny 1X,
j 1 J 1 2 ] 1 2]
W N 1 W N, 1 1 cos N, 1 cos Ng
. . Np 1
i. Foro(j ( bz :
2] . 2 j 1 2
0 Ny 1 + 0 Np, 1 ( 1 Ny, 1




The limit case

1
, and corresponds to the bottom

only occurs when the integerNy, is odd, for the value]j
vertex of the initial polygon Pg. In this case, one has

Ny, 1 1
W T

This case can thus be left aside.

2j(2j1(
Np 1' Np 1

One may therefore only consider the cases when (0

The cosine function being nonincreasing on0; , one obtains the expected result:

i 1 j
w Np 1 w Np 1 (0
Np 1 .
ii. For b2 (J(Np 1
2 ] _ 2 2 j 1, 2Ny
(Nbl(z’ 1Nbl(Nbl(Nbl
As previously, the limit case
2 j 1 1 2
Np 1 Np 1

can be left aside. The increasing property of the cosine function on ; 2  then yields the
expected result:
j 1 j

Ng 1 VN, 1

) O

Notation 7 (Signum Function ).

The signum function of a real numberx is de ned by

~ 1 if x$0;
sgn x % 0O if x O
E 1 if x%0

19



Property 2.11. Given any strictly positive integer m, we have the following properties:
i. Forany j inrQ;:::;#Vy 1x, the point

j
No 1 NT

j
;W
No 1 NI

is the image of the point

i PN INSY O i Ny 1N

’

j
N, 1 N*? N, 1 N2 N, 1 N1T N, 1 N*?

under the mapT;, O( i ( Np 1

Consequently, forO( j ( Ny, 1, the jth vertex of the polygon Ppk, 0( k( Ng' 1, ie.,

the point
Ny 1k j N, 1k |
N, 1N’ Np 1 N[
is the image of the point
Ny 1 k i Np INIY N, 1 k i Np INMY
;W ;
N, 1 NM1? Np 1 NM?

which is alsothe jth vertex of the polygon P, 14 i n, 1 N 2. Therefore, there is an exact
correspondance between vertices of the polygons at consecutive steps 1, m.

ii. Given j inr0;:::;Np 2xandKk in sO;:::;Nén ly, we have that

kNy 1 j 1 k Np 1 |

j 1 j
W
No 1 NT No 1 NT

N, 1 N, 1

sgn W sgn W

Proof.

i. One simply applies Proposition[2.3, on pagé¢ 10, in conjunction with Property 2.p, on page 18.
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Foriinr0;:::;Ny 1x, we have that

j i Np INSY ) i N INY

N, NPT Np 1 N2
blAll
jiNb1Ng”1i__WjiNblr\n;”l cos 2 j PNy LN
Np 1 Ny’ Np’ Npb 1 N1t Np 1 Ny Np
J W J i cos 2 J—
Np 1 NJ Ny 1 NI? Np 1 Ny
j j j i i
;W i cos 2
Np 1 Np Np 1Ntf)"1 Np 1 N" Np
i j j i
w 2
Np 1 NI Np NPT 0 N, 1N
j i
W
N, 1 N N, 1 N[
ii. We prove the result by induction on m. Accordingly, let us considerj in r0;:::;Np 2X

k Ny, 1 j 1 k Np 1 j k Ny, 1 j 1 k N, 1
W W — W W —)
Np 1 Ny N, 1 Np Np 1 Np 1
2 kN, 1 j 1 2 k Np
cos Ny 1 cos N,
] 1 J
W k W k
Np 1 Np 1
cos 2 J 1 cos 2]
Np 1 Np, 1
] 1 J
w Np 1 w Np 1
] 1 J
w Np 1 w Np 1
] 1 J
1 w Np 1 w Np 1
Let us now assume that, for any integerk in t0;:::; Ny o1z,
k Ny 1 j 1 k Np 1j J J
sgn W W —- sgn W
J No 1N No 1N 9 Np 1 Np 1
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Henceforth, we want to prove that, for any integer k in t0;:::; N}’ o1z,

k Ny, 1 j 1 Kk Np 1] j 1 j
sgn W W —= sgn W w
g No 1N Np 1N 9 Ny 1 N, 1
The induction hypothesis will be used in so far as anyk in t0;:::; Ny 1 1z can also be expressed

in the following form:

k K iNg' bt ; O(K(NS ' 1 ; 0(i(Np 1

This will be useful because othe one{periodicity of the W{function , since, for any real numberx
and any integeri, we have that

W x i W x

. . . 1 .
Due to the symmetry with respect to the vertical line x > (see Property, on pag+]9), given
a natural integer m, one can, in addition, restrict oneself to the cases when

N, 1 N 1 Np 1 N

O( Nb, 1k j$ N, 1k j 1( 5 5 ;
which yields
2N, 1k 2 1 2N, 1k 2 1
0( ;N lNJm $ bN lem (
b b b b

Thus, we only have to consider the cases when

. 2Np, 1k 2 1 . 2Np 1k 2 1
sin Ny 1 N7 ) 0 and sin Ny 1 NI ) 0
The remaining ones, namely, the cases when
. 2Np 1k 2 1 . 2N, 1k 2 1 ]
sin Ny 1 NI (0 and sin Ny 1 NI ( 0;
are then obtained by symmetry.
Hence,
k Ny, 1 j 1 j
W w —
N, 1 N[ N, 1 N[
Al
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N, 1N N, 1 N2
2 kN, 1 j 1 2 kNp 1 |j
cos mo1 COSs m1
N, 1 Nb N, 1 Nb
k Ny 1 ] 1 k Ny 1 J
N, 1N N, 1 N*?
. 2N, 1k 2j 1
2 sin — Sin b n{ I
w KNo 1 i Np 1IN o2 w KNo 1 i Np 1 NS
N, 1 N*? N, 1 N1T
. 2N, 1k 2j 1
2 sin —7 sin b n{ i
W K Nb 1 ] 1 K Nb 1 J
Npb 1 N1 Np 1 N1
2N, 1k 2 1
2 sin —7 Sin b n{ I
b 1 Ny Np 1 Ny
KN, 1 | 1 KNy 1 ]
Np 1 N1 Np 1 NM?
2N, 1k 2 1
2 sin — sin b n{ I

In the case when

. N, 1N 1 Ny, 1 Nf
0( N, 1k j 1¢( 2b 2*’;

one thus has

. : 2Ny, 1k 2 1
2sin —————— sin —
Np 1 NJ Np 1 N,
. .. Np 1
The con guration of the initial polygon ensures, for 0 ( j ( —5 that
j 1 j (
Ny, 1 Ny, 1

and therefore, thanks to the induction hypothesis,

K Ny, 1 J 1 W K N, 1 ]

— (0
N, 1 NM1? Np 1Ng“1(

w
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By induction, one thus obtains, for any natural integer m, any k in s0;:::;Ngy' 1y, and any j

..... b 3
in vO;:::; 5 | , that
Ny 1k j 1 Np 1Kk |
w W —— (0;
Np 1 N} Np 1 NJ (
as required. O
Corollary 2.12 (Lower Bound for the Elementary Heights (Coming from Property ,
on page[2D))
For any strictly positive integer m, and anyj in s0;:::; N, 1 Ng'y, we have that

j 1 j g j 1 j :
— = W — — W —— &
%N Np 1 Ny Np 1 Ny ) %N N, 1 N1 N, 1 NT1?

which yields, by induction,

j 1 j m j 1 j
W -— e s . B w
§W N, 1 Ntr)n Np 1 Ngn §) IONOI§N Ny 1 N, 1 %

N[T)T’I Dw 2
This improves our previous result in [Dav18].
Corollary 2.13 (Upper Bound for the Elementary Heights (Coming from Property — [2.17,
on page[20))
For any strictly positive integer m, and anyj in s0;:::; N, 1 Ng'y, we have that

j 1 ] m j 1 j 2
§N Np 1 N WNble)"§( §NNb1WNb1§ Npb 1 Ny 1

m i1 ] 2 :
( iONOT%M No 1 N 1% Ny 1 Ny 1 '

m Dw 2

Np

which also improves our previous result in[Dav18].
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Proof. For any strictly positive integer m and anyj in sO;:::; N, 1 Np'y, we have the following
estimates:

j 1 j § j 1 j
_J = W o— - - w -
%%N Np 1 Ny Np 1 N ( §N Npb 1 NI? N, 1 Nm 1

Ny 1 N1 N, 1 N1
j 1 j
( m 1 m 1
Np 1N} N, 1N}
2
Np 1Nm1’

which yields, by induction,

1 . 1 . m 1 2Nk
AR el L (s Bt
Np 1 N Npb 1 N N, 1 N 1§ Npb 1 N;

(o j 1 j 2 "Ny
N, 1 N, 1 Np 1 N Np 1
m ] 1 | 2
Np 1 Np 1 Ny 1 N, 1 '
as desired. O

Remark 2.4. Corollaries[2.12 (pag€g 24) and 2.13 (page P4) are important, because they enable one
to obtain exact and more accurate values of the bounding constant<iys and Cgy, involved in the
following inequality:

L2 Dw

2 D
Cin L5 OV oM N O Ny NG >
inf (|oodooo080ooo60636068080ooéooooodoéééoo&ooodbooooooooooc
5 Lm
(R7)
where
- .
Coi Np 1720w min | §N ﬁ“? W NJ 1%
0(i(Np LW g2 jW gl b b
and

2 D i 1 j 2
C N, 1 w max w
sup T OU(Nb1§ Np 1 Np 1 % Nob 1 Np 1

One should note, in addition, that these constants depend on the initial polygorP.
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Theorem 2.14 (Sharp Local Discrete Reverse Hslder Properties of the Weierstrass Func-
tion (Coming from Corollary 2.12] on jpage 24) [ ).
For any natural integer m, let us consider a pair of real numbers x;x " such that

Np 1Kk j Np 1k j °

Xl\lb—lNk’)“ Ny 1k j Lpm ; X' Ng L NP Ny 1k j ° Lm;
where0 ( k ( Ng" 1, and
i. if the integer Ny is odd,
o(jse X and 0s) (Mt
or
Np 1 N, 1

(j$N, 1 and

2

ii. if the integer Ny is even,

. N . ., N
0(j$-~ and 0] (=
or
% 1(j$N, 1 and % 18] " (Np 1

This means that the points x; W x and x;W x  are vertices of the polygonP . (see Prop-
erty 2.5, on page 14 above), both located on the left-side of the polygon, or both located on the right-side;
see Figure[6, on pagé¢ 18.

Then, one has the following (discrete, local)reverse{Helder inequality, with sharp Helder expo-

In
nent m 2 Dy,

Cint X XTIZDW(E X" Wxg

Proof. In the light of Property 2.10] on page[18, one can restrict oneself to the case when

SNy 1 Ny 1
0(j$—2— and 0] (2%

The expected result in the remaining case can easily be proved in a similar way. Since
W N, 1k j “Lp (:2:(W Np 1k j 1Ln (W N, 1k j Lp
then, by applying the results of Remark[2.4, on pag¢ 25, we have the following inequalities:

Cor LZP" (W Np 1k j 1 Lnm W Np 1k j Ly



Cof LZP" (W Np 1k j “Lmw W Np 1k > 1Lp

Thus, upon summation, we obtain that

Cot L2PW (W Np 1k j Ly W Ny 1k j Lp

Since ) 2 Dw 4nd ™% xT "L, one deduces the desired result.

Remark 2.5. Thus far, no suchreverse Helder estimateshad been obtained for the Weierstrass func-
tion. The fact that they are discrete ones is natural, since the Weierstrass Curve is approximated by a
sequence of polygonal prefractal nite graphs. Recall that the countable set of vertices of all of these
graphs is dense in the whole Weierstrass Curve.

Corollary 2.15 (Optimal Hdlder Exponent for the Weierstrass Function ).

The local reverse Helder property of Theorem 2.14, on pagg 26 { in conjunction with the Helder

condition satis ed by the Weierstrass function (see also[[Zyg(02], Chapter Il, Theorem 4.9, page 47) {

. : In ) . .
shows that the Codimensior2 Dy NG " 0;1 is the best (i.e., optimal) Helder exponent for
b

the Weierstrass function (as was originally shown, by a completely di erent method, by G. H. Hardy
in [Harl16)).

Note that, as a consequence, since the Helder exponent is strictly smaller than one, the Weierstrass
function W is nowhere di erentiable.

Remark 2.6. Indeed, if W were di erentiable at some point xo " 0;1, then it would have to be
locally Lipschitz at xg, and hence, its Helder exponent atxy would be equal to 1, which is impossible.

Corollary 2.16 (Coming from Property  [2.11, on pageg 20)

Thanks to Remark[2.4, on pag¢ 25, one may now write, for any strictly positive integem and any
integerj in sO;:::; Np 1 NJ' 1y

i. for the elementary heights

i 1jm I—rzn Pvo 1 ; (R8)
ii. for the elementary quotients

hj 1im 1 Dw .

E— Ly, YO 1 ; (R9)

as follows from Remark 2.4, on pagé 25 above, and where
0% Cint (O 1 ( Csyp
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Corollary 2.17 (Nonincreasing Sequence of Geometric Angles (Coming from Property  [2.11))).

For the geometric angles 1jm,0( j ( Np 1 Np' 1, m " N, we have the following result:
Lm 0 _
tan i Ljm h 1. Np 1 %tan j 1jm 1.
j Ljim
which yields
Dw 1
j Ljm %j Ljim 1 and i Ljm 1, I—mW
Proof.

i. One simply writes, successively:

L
tan j 1jm J - 1
W
%\/ Np 1 N[ Np 1 NJ §
: j - j 1
W
%N N, 1 N1T Np 1Ng‘1§§
Np 1 Nplm 2
j j 1
W
%N N, 1N Np 1N,;“1§
Nb 1 than i Ljm 1
% Nb 1 tan i Ljm 1

since N p%1. Then, i. holds.

ii. One also has

Ny 1L
i Ljm 1$arctan%;
i Ljm
where
hj zim Lm "0 1 and Cir (O 1 ( Coup
This yields
N, 1L
% LanW 10 1 and Ny 1Cn (O1( Np 12 Csup
i Ljm

Consequently, j 1jm 1. L,[T),V" 1, as claimed.
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Corollary 2.18 (Local Extrema of the Weierstrass Function (Coming from Property  [2.11,
on page[20))

i. The set of local maxima of the Weierstrass function on the interval 0;1 is given by

N, 1Kk N, 1k
b = .w —P O(k( NS Lm" N|;
Nb Nb

and corresponds to the extreme vertices of the polygons at a given stap (vertices connecting
consecutive polygons).

ii. For odd values of Ny, the set of local minima of the Weierstrass function on the interval 0;1
is given by

Ny 1k Mol N, 1k Nel
W 2 O(K(N Lm" N} :

w

and corresponds to the bottom vertices of the polygons at a given stap

Property 2.19 (Existence of Reentrant Angles ).

i. The initial polygon P, admits reentrant interior angles  , at a vertexP;, with 0$ j ( Np 1,
in the sense that, with the right-hand rule (according to which angles are measured in a coun-
terclockwise direction), we have that
Pij iN; Pijl % ;

for

N Ny 1
b30r3b (J$Np 1

081 (=7 a4

(see Figure[7, on pagg 30), which does not occur for values df, $ 7.

N, 3

The number of reentrant angles is then equal t@ i

ii. At a given step m N, with the above convention, a polygorP, admits reentrant interior
angles in the sole cases wheNy) 7, at vertices My j, 1( Kk ( Ng', 08j ( Np 1, as well as
in the case when

. Np 3 3N, 1 .
0%j ( 7 or 7 (J$Np 1
The number of reentrant angles is then equal t@N, — -
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N|

Figure 7: An interior reentrant angle. Here, N, 7 and

Proof.

1
i. Due to the symmetry with respect to the vertical line x 3 (see Property, on pagg9), one can
Np 1
5

restrict oneself to the verticesP;, with 0 $ j $

_— . . I Np 1.
The initial polygon Pg, admits reentrant interior angles at a vertex P;, with j  1$ b , in the

2
case when
yy WP aP % yy R ' (R 10)
Since
. . J 1 2] .
Pi XY N, 1,W N, 1 Ny, 11 cos N 1
one has
L
tan yy WP 1P j 0 1
W oW
and
L
tan yi/ yVPij 1 J il 0 J :
W owd
1
where Lo m

Therefore, condition (R) { * above corresponds to the case when

b vl e vl

30



0S u cosS 2 J 0/ oS 2 J cosS u .
N, 1 N, 1§ N, 1 N, 1 &’
or, equivalently,
. . 2j 1 . . 2j 1
0, .
% sin N, 1 sin N, 1 A)% sin Np 1 sin N, 1 §

and thus happens if
. 2] 1 % % 2j 1
Sl & U

2j 1, 2 1
N, 1 N, 1

we conclude that condition (R[10) { * , on page[30, occurs if

Since

0% $ ;

. 2j 1 _
0% 2] le 1$W( E’
N, 3

e, if0$] (=

: . Np 1 . . , ,
For vertices Pj, with bT $j $Np 1, the result is obtained thanks to the aforementioned

symmetry. The initial polygon Pg, admits reentrant interior angles at a vertex P; in the case

N, 1 .
Z_ (j$Nb 1.

3
when

ii. The result is obtained by strong induction on the integer m. We restrict ourselves to the val-
Np 3
4 .

KkNp 1 | 1 i i 1 i
w—31 1 wi = w
§W No 1 Np Np 1 Np § § YWON, 1 Np 1!

and

KNp 1 ] j 1 j j 1
%” N TNy N 1Nb§ %1 W1 W o1l
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Thus,

%M kNp 1 ) 1 kNp 1 | §

tan k Ny 1 1k Np 1 i1 N, 1 Np N, 1 Np

tan « Ny 1 ik Np 1§ L1 %\/kol j Wkol j 1%
N, 1 N, Np 1 N,

which implies that
KNe 10 1 105 . R
b ] 1;k Np 1 5l k Np 1 ],k Np 1 j 11
and yields the existence of an interior reentrant angle at the vertex

kNo 1 j . kNp 1 ]
N, 1 Np' N, 1 N

Let us now assume that, up to a given stepm ) 1, there is a reentrant interior angle at any vertex

k Np, 1 k Np, 1 .
b~ L, b = L owitho (k(NM Y 1
Np, 1 Ny Np, 1 Ny
We then want to prove that there is a reentrant interior angle at any vertex
K Np, 1 k Np, 1 ] , m
_ W — ; thO( k(N 1
No 1 N Np 1N with O (k (N

As was the case in the proof of Property 2.1l1 (pagg 20 ), in order to be able to use the induction
hypothesis, we express any integek in s0;:::;Ny' 1y in the following form:

k K iNg' ' O(K(ND Y 1 : 0(i(Np 1 (R 11)
Thus,
kNp 1 j 1 i KNy, 1 j 1 K Np 1 |
w wo— w w —2 - 1
N, 1 N N, 1 N[ Np 1 N1 Ny, 1 NT?
- 2N, 1K 2j 1
sin —— = SIn
Np 1 NM*? Np 1 NI
(R12)
and
k Np 1 j i 1 K Np 1 j KNp 1 j 1
w—2 - 2 w — - _ w —2 - L w
Np 1 NI Np 1 NI N, 1 NT1 Np 1 NJ*t
2Ny, 1K 2j 1
2 sin sin
Np 1 NM? Np 1 NI

(R 13)
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In light of Property on page, given such an integek - and hence alsoX and j { and since

.. Np 3 , Np 1
0(j( —4— (—5—;

the only con guration to be considered corresponds to the case when

0
K Np 1 j L,KNp 1 jm 1/°KNb1j;KNb1j1;m1
and

K N 1 i 1 K N 1 i K N 1 i 1
: rJn 1 w : m 1 %0 ’ w : mjl : r!n 1
Ny, 1N Ny, 1N N, 1N Ny, 1N
b b b b
Then,
tan xony 1 ) 1k Ny 1 jm 1%0M@N jNg 1 R NG 1) 1m 10
i.e.,

I—ml % Lml

K Np 1 j KN, 1 j 1 KN, 1 j 1 K Ny ‘
m 1 w m 1 m 1 w m 1
N, 1 Nj Np 1 N} Np 1 N} N, 1 N

which yields

1

]

J

i 1 K N 1 i K N 1 i K N
K Np 1 rJnl W b mll % b mJl W b
Np 1 N Np 1N Np 1 N Nj

or, equivalently,
K N 1 K N 1 j 1 K N 1 j 1 K N
b J1 W b J = %W b rJnl W b
Np 1 N/ Np 1 N/ Np, 1 Ny Np

1 N2

1

j

1 N2

|

%0

The strong induction hypothesis which ensures the existence of a reentrant interior angle at the

vertex
Np 1K | N, 1K j
Np 1 NI 2 Np 1 N2 7
requires, in conjunction with
K N 1 K N 1 j 1 K N 1 j 1 K N 1
b 12 W b J %W b J ; W b mlz
Ny, 1 N[ N, 1 N[ N, 1 N[ Np 1 NJ
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that

2K N, 1 2] 2K N, 1 2]

1

sin %sin

N, 1 N2 N, 1 N2

which corresponds to

2K N, 1 2 1 2K N, 1 2j 1

0% 5
N, 1 N2 Npb 1 N2 2
and, as a matter of fact, ensures that
2K N, 1 2 1 2K N, 1 2 1
0% m J1 m 211 ( 2N $ 2
Np 1 Np Np, 1 Np b
One then has the following inequality:
W KN, 1 Jl KN, 1 111 » sin _ sin 2K Ny 1 211 1
Np 1 NI Np 1 NI N, 1 N Ny 1 NI
KN, 1 j 1 KN, 1 | . . 2K Np 1 2j 1
% W o= W St 2sin R
N, 1 N} N, 1 N} N, 1 N} N, 1 N}
Hence,
tan x N, 1 ) LK Np 1 jm
11
L
N, 1 N[ N, 1 NI
L
KNy, 1 | KN, 1 j 1 _ ) 2K Np 1 2j 1
W W 2 sin sin
3% Np 1 NI Np 1 NI N, 1 NI? Ny, 1 N1
L
KN, 1 j 1 j . . 2K Np 1 2j 1
W w 2 sin sin
N, 1 NI N, 1 NI N, 1 N1 N, 1 NI1*
% Lo
KNy, 1 | KN, 1 j 1 _ ) 2K Ny, 1 2j 1
W Ww — 2 sin sin
Np 1 NI Np 1 N N, 1 NI1? Ny, 1 NI1

fan x N, 1 jrNp 1) 1m s
which yields the expected result. Namely,

. . 0, . . .
K Np 1 j L;K Np 1 J;m/OKNbl jk Np 1 j Im>

i.e., the presence of a reentrant angle at the}th vertex of the polygon P, .

. - 3N, 1 .
The result in the remaining casebT (J$Ny
It corresponds to the cases when
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k Np 1 j LK Np 1 j;mc$ k Np 1 ;KNp 1 j 1Im
and

kN 1 j 1 . kNp 1 ] w KNo 1 j 1

W - b - : b -
Ny 1 N Ny 1 N Ny 1 N Ny 1 N

$0

Therefore, the shape of the initial polygonPy governs the shape of any polygo® .k, 0 ( k ( Ng',
which, if Ny) 7, admits reentrant interior angles at verticesM y, 1« j,0( k( Np' 1,0$j ( Np 1,
in the case when

SN, 3 3Ny 1,
08 ( 27— or —o—(j$N, 1

This concludes the proof of Property[2.19 given on page 29.

De nition 2.6  (Self{Shape Similarity of the Weierstrass Curve ).

We will say that the Weierstrass Curve { as the two-dimensional Hausdor and uniform limit curve
of a sequence of polygonal prefractals, which satisfy Property 2.11, on page]20 and Propefty 219, on
page[29 { hasself{shape similarity, in the sense that the shape of the initial polygonP, governs
the shape of all the polygonsP ., with O ( k ( Ng', at any step m of the prefractal approximation
process. Thisself{shape similarity property is apparent in Figure[, on pagd 1IJL, Figur¢ |2, on pade 12,
and Figure[3, on pagq IB. As for the existence of reentrant angles, it can be observed on the rst two
graphs of Figure[3, on pagé¢ 13, in the case wheNy, 7.

3 Iterated Fractal Drums and Tubular Neighborhoods

In the case of classical fractals, and when the associated geometry allows it, the values of the Com-
plex Dimensions are obtained by studying the oscillations of a small neighborhood of the boundary,
i.e., of a tubular neighborhood of the fractal, where points are located within an epsilon distance from
any edge; see, e.g.. [LR173g], [LRZ17b], [LRZ18]. In the case of our fractal Weierstrass Curve y,
which is, also, the limit of the sequence of (polygonal) prefractal graphs w , n, it is natural { and
consistent with the result of Property B.13, on page 6B below { to envision the tubular neighborhood
of  as the limit of the (obviously convergent) sequence D v m» N Of "m-neighborhoods
of w, ., where" "m m- N IS @ (suitable) in nitesimal { the cohomology in nitesimal { as intro-
duced in De nition on page[37 below. The cohomology in nitesimal is completely determined by
the geometric characteristics of the fractal curve  (or of the associated iterated fractal drum).

We note that, in a sense, the above description amounts to using a sequence of what we call
Weierstrass lterated Fractal Drums (in short, Weierstrass IFDs), by analogy with the Relative Fractal
Drums (RFDs), for instance, in the case of the Cantor Staircase, in [LRZ17h], Section 5.5.4, as well as
in [LRZ17¢] and in [LRZ18]. In our present setting, the Weierstrass IFDs { i.e., the setsD S
form " N su ciently large { contain the Weierstrass Curve y, and are su ciently close to y, SO

that we can expect their Complex Dimensions to be the same.
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For this purpose, one thus requires fractal tube formulas for the sequence of prefractal graphs
which converge to the Weierstrass Curve; i.e., here, the area of a two-sidetfy -neighborhood of each
prefractal approximation (with m " N su ciently large), which is expected to be of the following
form, in the case of simple Complex Dimensions:

- ¢ ,,m 2! G "
I Complex Dimension

C;

where, for any Complex Dimension! , ¢ is directly expressed in terms of the residue at of the
e ective tube zeta function X (or of the e ective distance zeta function ).

More speci cally, consistent with the corresponding results in [LRZ17&], [LRZ17h] and [LRZ18],

1
c res X;! > es A

We shall proceed as in[[LP0B], by the second author and E. P. J. Pearse, as well as in the later
paper [LPW11], by the same authors and S. Winter (see alsd_[LvF00E10.3, or [LvF0€], 812.1). Note
that these two papers were written prior to the development of the higher-dimensional theory of Com-
plex Dimensions and fractal tube formulas, by the second author, G. Radunovic and D. Zubrinic, in the
book [LRZ17k] and in a series of accompanying papers by the same authors, including [[ZR73], [LRZ18].

The proper fractal zeta function to be used for this purpose, called the distance zeta function, was
discovered by the second author in 2009, while the equivalent, and equally convenient, tube zeta func-
tion, depending on the problem at hand, was later introduced by the aforementioned authors in the
above references. Both types of fractal zeta functions are connected via an explicit functional equation.

Consequently, once we have obtained the desired fractal tube formula for the Weierstrass IFD, we
will be able to use extensions of the general results and methods of the higher-dimensional theory of
Complex Dimensions in [LRZ17&], [LRZ17k] and [LRZ18] in order to deduce the fractal zeta functions
of the Weierstrass IFD: rst, the so-called e ective tube zeta function and then, via the aforementioned
functional equation connecting those two zeta functions, thee ective distance zeta function. We will
then conclude from the expression of either fractal zeta function (sincdy $ 2, they yield the same
result here) the values of the possible Complex Dimensions of the Weierstrass IFD. For many of those
Complex Dimensions, including the principal ones, in the terminology of [[LRZ17h] (i.e., those with
real parts equal to the maximal real part Dy $ 2), we will also be able to determine that they are
actual (and simple) Complex Dimensions of the Weierstrass IFD { that is, simple poles of the tube
zeta function, or, equivalently, of the distance zeta function.

An important comment to be made is that, contrary to classical cases of fractal strings or of
speci ¢ two-dimensional fractals (see|[LRZ17h]), we cannot, in our present context, work with exact
expressions for the tubular volumes. More precisely, we can obtain exact expressions for some of the
(geometric) contributions involved in the expressions for the tubular volumes (as is the case fo the
contribution of the rectangles; see Proposition, on pagEQSZ), but those exact expressions (with
very complicated and unexplicitable coe cients) do not enable us to explicity determine the under-
lying Complex Dimensions. However, we can obtain the counterpart (in our context) of asympotic
expansions, which, this time, enable us to obtain the possible values for the underlying Complex Di-
mensions. By using the results in our work on polyhedral neighborhoods [DL23b], we will show that
those (possible) values nally coincide with the exact values of the Complex Dimensions.

We note that the only possible exceptions to the latter statement would be the potential Complex
Dimensions with real part equal to 1 (except for 1 itself), some (or all) of which could have a vanishing
residue; further theoretical or numerical work will be needed in order to deal with this last remaining
issue.
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As is explained in [DL23L], the classical theory of Complex Dimensions (see, for instance, [LAR7h])
cannot be applied in the context of our fractal curve. Indeed, not only we cannot obtain the exact
expressions for the tubular neighborhood of the Weierstrass Curve, due to the extremely complicated
geometric context. Building on the previous work of the second author and E. P. J. Pearse in the (less
complicated) case of the Koch Curvel[LP0B], a possible method was to obtain an approximate expres-
sion for this tubular neighborood. Recall that in the theory of Complex Dimensions, the imaginary
part of the Complex Dimensions aims at characterizing the oscillations of the fractal under study.
Those oscillations are, also, connected to the evolution in scales { in real life (fractal-shaped living
forms), the occurrence of new details keeps on appearing with characteristic spatial oscillations. In
the aforementioned case of the Koch Curve (seé [LP06]), the oscillations are involved by means of
Fourier series expansions of 1-periodic maps, where the 1-periodicity can be, intuitively, understood
in relation with the integers m " ; N of the m™" prefractal approximations. An additional di culty,
in our context, was thus to determine the involved oscillatory period (seel[LR”Z17b], [LP0OE@]). To this
purpose, we choose to consider our prefractal approximations \_, for m " N, as resulting from the

m

. . , N , . .
deformation of a set of horizontal fractal strings, each of length N—bl (with associated oscillatory
b

period p m). This is the only way to obtain, explicitly, the associated possibleComplex Dimen-

sions. Thus far, we do nota priori claim that those possible Complex Dimensions are theactual (i.e.,
exact) Complex Dimensions of the Weierstrass Curve. Facing the lack of mathematical results which
could be applied in our present context, we thus use a counterpart of asymptotic expansions which,
in the end, will provide the actual (i.e., exact) Complex Dimensions of the Weierstrass Curve.

3.1 The Tubular Neighborhoods, and Associated Geometric Characteristic Num-
bers

Notation 8 (Euclidean Distance ).

In the sequel, we denote byd the Euclidean distance onR?.

Our results on fractal cohomology obtained in [DL24d] have highlighted the part played by speci ¢
threshold values for the number” %0 at any stepm " N of the prefractal graph approximation;
namely, the m™ cohomology in nitesimal introduced in De nition Zion paget?ljust below.

th th

De nition 3.1 (m~ Cohomology In nitesimal [DL24d] and Intrinsic m " Cohomology

In nitesimal ).

n

From now on, given anym " N, we will call m™" cohomology in nitesimal the number " %0

. e . 1
which, modulo a multiplicative constant equal to ———, i.e.,, "1 ——— — (recall that Ny %1),
Np 1 Np 1N
stands as the elementary horizontal length introduced in parti. of De nition ZJE] on page[15, i.e.,
1 .
NG

Observe that, clearly, ", itself { and not just "m { depends on m; hence, we should really

write "l ", ", forallm " N.

In addition, since N %1, "} satis es the following asymptotic behavior,
Ilm

m 0;asm ™,
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which, naturally, results in the fact that the larger m, the smaller "m. It is for this reason that we

call " { or rather, the in nitesimal sequence " m o Of positive numbers tending to zero asm ™,
with "m ", ™, foreachm " N {an in nitesimal . Note that this m™" cohomology in nitesimal is

the one naturally associated to the scaling relation of Property 2.}, on pagg 16.

In the sequel, it is also useful to keep in mind that the sequence of positive numbers', :,A o itself
satis es

1
—, asm ™ -
m Nb

i.e., "m asm ™_ In particular, ",, ©0, asm ™ but, instead, ", tends to a strictly

1
Np’
positive and nite limit.

We also introduce, givenanym " N, the m™ intrinsic cohomology in nitesimal , denoted by"™ %0,
such that

llm l -
Ng'
where

1 .
Np
We call " the intrinsic scale, or intrinsic subdivision scale.

Note that

um
Tl

m N, 1

and that the m™ intrinsic cohomology in nitesimal "™ is asymptotic (when m tends to ™) to the m™"

cohomology in nitesimal " .

Remark 3.1 (Addressing Numerical Estimates ).

From a practical point of view, an important question is the value of the ratio

Cohomology in nitesimal "
Maximal height hm

see relation R[6), on page| 15.

Thanks to the estimates given in relation (R[9), on page[ 2}, we have that
nm
ﬁ LhPYo 1 "M1Pw g
with
08Cinr (O 1 (Cyyp
Givenq " N , we then have

1 " 1
1o Cinf ( m( 707 Csup
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when

Cint 1 Dw InLy , Csup
ior (@ STk
or, equivalently, when
1y, 1 S T 1oy, 1 Smo T
NN P 107 (mC mag i No 107
. 1 .
Numerical values forN, 3 and 3 yield:
i. Forg 1:2( m( 3.
i. Forg 2:7( m( 9.
iii. Forq 3:13( m( 15.
nm
Hence, whenm increases, the ratioh—m decreases, and tends to 0. This numerical { but very

practical and explicit argument { also apprTies to our forthcoming neighborhoods, of width equal to
the cohomology in nitesimal.

De nition 3.2  (Cohomological Vertex Integers [DL24c] ).

Givenm " N, andavertexM;, M n, 1k k*:m " Vm,Ofabscissa N, 1 k" k" ", where

0( k’( Ng" 1ando( k" ( Np 1, we introduce the cohomological vertex integer ., associated to
the vertex M, (which is also the k" ™ vertex of the polygon P~ see partiv. of Property @ on

page[14), as
imo kwem Npo 1 kKTOK' (R14)
Depending on the context; that is,
i. when the cohomological vertex integer enables one to locate the verteM ., .

ii. When it is used in a more general framework, i.e., in order to describe the generators of coho-
mology groups (seel[DL24b]);

we will use the best suited notation between .y, , in casei:, or “y-x".m, in caseii.

Proposition 3.1 (Cross-Scales Paths, and Associated Sequence of Vertex Integers ).

Givenm " N,0(j( #Vn landavertexMjn M N, 1k k":m IN Vi, with
O( kK'( Ng' 1andO( k" ( Np 1, we introduce the cross-scales pattP ath Pk ;Mjm , where Py-
is the k™™ xed point of the map Ty- (see Proposition , on page[|9, along with Notation??, on

page??), as the ordered set Mj,. oCk( m such that:

i. For 0( k ( m, each vertexMj, .« isin Vi Vi = Vi, (which means thatM;, . . strictly belongs
to V, i.e., itis in the k™ prefractal approximation \y,, and notin , ,).
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. For 1( k( m, each vertexMj,. .« My, 1k k ko With O( Ki:m ( Nt'f 1, is the image of

the point M;, , . 1 under the mapT; (see again Propositio, on pagﬂg), where " r0;:::;Np
is the smallest admissible value. We thus also have that

No 1 Kem i Np 1 NE' Kk No 1 Kem i Np 1 NE' Kk
Mj, 1ok ;W
Jeam ik Np 1 Nf? Np 1 Nf?

This latter point is also the k" th

of Property 2.5, on page{ 1#).

vertex of the polygon kg, i Np 1 Nl')‘ ! (see partiv.

The sequence of vertex integers associated with the cross-scales p&hth Py-;Mjy (or, in
short, and equivalently, also refered to as the sequence of vertex integers associated Wiy, ) is the

sequence j,.. ik o(k(m’ where, for 0 ( k ( m, 7, .« is the cohomological vertex integer associated
with the vertexM;, . (see De nition on page ).

Proof. We simply use the results of Property[2.11, on pagg 20.

Theorem 3.2 (Complex Dimensions Series Expansion of the Complexi ed Weierstrass
function W omp [DL24d]; and of the Weierstrass function W).

For any su ciently large positive integer m and anyj in r0;:::;#Vy, 1x, we have the following
exact expansion, indexed by the Complex Codimensioris Dy 2 iK™ jm kP With O ( k(- m,

TR
n J
Weomp | m W comp N, 1
2 j mt k2D
n D n "I m
" " Weomp N, 1 = Cgm v mi P (R 15)
k 0

_rn uk 2 Dw i jkm k P
= Ckjm
k 0

"X is the k™ intrinsic cohomology in nitesimal, introduced in De nition 3.n

. 2 . . . :
page| 37, withp nN- denoting the oscillatory period of the Weierstrass Curve and where:
b

where, forO( k ( m,

i. nk " Z is the cohomological vertex integer associated with the verteM;, .« (see De ni-
tlon - on page.)
b
cam oK

2i
G~ €XP {7 Do (R 16)
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for 0 ( k ( m, the coe cient ¢m Wwill also be referred to asthe k™ Weierstrass coe cient asso-
ciated with the vertex My, .« " V.

For any m "
relations:

j
Cm Ljm 1 W —Nb 1 Cm;j;m (R 17)
and

Yak " rl;ii; Ckjim 1 Ck Ljm - (R 18)
In addition, since relation (R) is valid for any m " N’ (and since, clearly, relation (R)

implies that the coe cients ¢m are nonzero forO ( k ( m), we deduce that the associated Complex
Dimensions (i.e., in fact, the Complex Dimensions associated with the Weierstrass function) are

DW k 2 DW i\jk;m ,kp
O(k(mand’,

k " Z is the cohomological vertex integer associated with the vertew;, . (see
De nition 3.2,Jon page B9). Those Complex Dimensions are all exact and simple.

This immediately ensures, for the Weierstrass function (i.e., the real part of the Complexied

..... #Vm 1X,
e m .m 2 Dw j ™t k2 oy Wik Kk P
W I'm Wcomp m - Re Ck;j;m k
k 0
. m 1
am 2 DW W J 1‘ - nk 2 DW lli‘jk;m k p Ck n i‘jk;m k p
comp Nb 1 2 sm sm
k0
1" N N
2 - e P Gjm " e P g [ m kP
k 0
(R 19)
where z denotes the complex conjugate of " C.
More generally, for any strictly positive integer m and for any integerj,
HETl ||k 2D nk 2 D n"' . B
Weomp " = W Ck;j:m Wt dkm P ; (R 20)
k 0
where, for allk " N,
W2i NS
We also note that, if a vertexMj,  Mj-m m=iSin Vin = Vi -~ for m™" N, we of course have
that, for O( k( m
C;jm Ck;jom m™ (R 22)
along with
"i‘J'k;m k "i‘jk;m m ik . (R 23)
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Form 1( k( m m, we have that

Ceim  Ckj-m m- O (R 24)
In addition, we have that, form™" N,

.

m wm" 2 Dy

Ck;im m- Ck;jm Cijim - (R 25)

Corollary 3.3 ((of Property given on page] 40))

For any su ciently large positive integer m and anyj in rl;, ;#V, 1x, we have the following
exact expansion, indexed by the Complex Codimensiorts Dy 2 ik j, .mx P, With O( k ( m,

m m KK 2D .
2 = = " w III‘ e T P
hj Ljm = = dk;kﬂ,j;m kik Tjm
k 0Ok~ 0
zm . (R 26)
wk2 D I -
= w dkﬂ;.];m L
k™0

where

ik j:m Ckim  Ckgm Cij tm G tm  Gaim  Geajm Gy zm Gaj 1m (R 27)
and

(R 28)

\k;kﬁ,j;m \jk;m;k \jkim;kﬁ
and, for 0( k'{ 2m,
digm  Okkjm  With O ( kik'( m;

where, for 0 ( k ( m, "k is the k™ intrinsic cohomology in nitesimal, introduced in De nition 3.
on page| 37, withp ——— denoting the oscillatory period of the Weierstrass Curve and where the

In Np
coe cients Cgjm " C, Gym " C, along with the integers'j.mx " Z and 'j mk-" Z have been

introduced in Property on page[40 above.

We then obtain, for any integera " N,

ma .

2a «k2 D Wl ik P

hi ;... = W gy i~

I Lim k™ hm

0 (R 29)
where, forO( k™ ( ma,
despm Okgipm it m  With kg i0 ko @
and
kT eimiko 2mdy, im With ko i kyy a:
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Proof. We simply use Property[3.2, on pagd 40. Since, for any su ciently large positive integerm

and anyj inrl;, ;#V, 1x
m k 2
s Mm nm — n DW ui" mk P ..i\' 1mk P
Weomp 1" m Weomp | 1 "m = Ckjom T Cj 1m = <" ;
k 0
(R 30)
we deduce that
s M . nm
2Re Weomp " m Weomp | 1 "m
m k
_ uk 2 Dw wl jmk P w i jemk P wi’j mk P om———u 1 mk P
= Ciiym 1< Cijim T Cej 1m " 'F " Ccj 1m s
k O
m k 2 i
— mn DW e —_— |||" mk P
= Cejim  Cim G um G 1m Tem
k 0

Note that since the integers’j,;mk " Z and 'j, jmk-"

ui\jk;m;k p n i\jk;m;k P ui‘jk-.'m;k -p n i‘jk_;m;k -p .
We then obtain that
TR . nm
2Re Weomp 1" m Weomp ] 1 "m
_ .|k2D "i\' ;;kp n i\' ;;kp "i\- }?kp - .
= w Ck;J jkim Ck;j;m jKkim Ck;j ik Lim Ck;j Tm
k 0
m k 2 D i
—_ n W  — Y ul jmik p.
= Caim  CGim G um Gk 1m TemE
k 0
This ensures that
s M nm
hi 1jm Re Weomp |"m Weomp | 1 'm
nk 2 Dw — i mk P
Ck;j;m Ck;j;m Ck;j 1;m Ck;j 1m Tem
0
and
2
hj Lj;m
m
. _ .k Kk 2Dw _ .
= = Cicjzm Ciim G tm G 1m  Ckjm Ciim Gy 1m Gy 1m
k 0k~ 0
For the sake of concision, we set, for @ k;k'( m,
di:kjim Cim  Cim G ym G ozm Gaim Gojm G zm Gaj o1m
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Z are arbitrary, we obviously have that

w T Lmk P

wl o ikimk i amk 7 P,

(R 31)



and

kUM jemk jesmke (R32)
We thus have that
mom k k7 2 D it
2 — —_ n w nl e P
hj 1;j;m - - dk;kﬂ,j;m kil 7im
k 0k~ 0
(R 33)
wk™2 D I
= w dkﬂ;'];m i ik ‘P;
k™0

where, for 0( k'{ 2m,

digm  Okkym  With O ( kik'( m:

By applying the Newton multinomial theorem, we then obtain, for any integer a " N,

M kK 2D i :
2a —_ —_ n " nl ki p
hj Ljm = = dk;kﬂ,j;m kil Thim
k Ok~ 0
— a w ko i 2mkom 2 Dw wi Tkggm o D 2Mk,mim P
- Ko;:::; Kam Oioim © 2 Gy sm ° zm
ko k2m a
ma - N
uk 2 DW dk“?j‘;m ul jk_.-;m;k -p
k™0
(R 34)
where, for 0( Kkog;:::;kom ( &,
a al
kO;”.;kZm ko' k2m|
For the sake of concision, we will Writehjzal;j;m in the following form
ma k™2 D i’ p
2a n n'oj sk T
hi ;... = W gy i~
I Lim k™ hm
0 (R 35)
where, for 0( k™ '( ma,
espm Okgijpm =il im  With ko i0 ko @
and
ek kogm i 2mMdk, gm With Ko in kom Al
O
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De nition 3.3  (lterated Fractal Drums (IFDs) ).

Let us consider a fractal curveF L Rz, obtained by means of a suitable IFSTg (consisting, in
particular, of a family of c” maps from R% to Rz). For eachm " N, we denote byF, the m™" pre-
fractal approximation to the fractal F. We restrict ourselves to the case when there exists a natural
scaling relation associated to the sequence ¢ .. mvoIvrng a sequence of elementary lengths (or
cohomology in nitesimals) "Q;F m- N and, asin De nition 8.1 on page. above

We then call Iterated Fractal Drum (in short, IFD ), and denote by F', the sequence of ordered

pairs Fm;"m F - N Where, for eachm " N, Fp, is the m™ prefractal (graph) approximation asso-

ciated with the fractal F.

De nition 3.4  (Weierstrass Iterated Fractal Drum (Weierstrass IFD) ).

We call Weierstrass Iterated Fractal Drum (in short, Weierstrass IFD), and denote by {N the

sequence of ordered pairs , ;"m m- N Where, for each m " W is the m™ prefractal ap-

proximation to the Weierstrass Curve y, as introduced in De nrtron on p e[10, and where',

is the m th cohomology in nitesimal, as introduced in De nrtron on page 3 above Note that
the m™ prefractal graph approximation (viewed as an oriented curve) determines them" prefractal
curve (viewed as an oriented polygonal curve), and conversely. Indeed, the line segments of which the
latter polygonal curve is comprised are nothing but the edges of the former prefractal graph.

In the sequel, "™ m+ N Stands for the intrinsic cohomology in nitesimal, as introduced in De ni-

tion B.1, on page[ 37 above.

n

Proposition 3.4 (Integer to Cohomology In nitesimal Map ). Given m N, we heerafter

introduce the map

nm nm nm

( m m Ian m ;

where : denotes the integer part. Note that this map is only applied for then™ cohomology in nites-
1
m

1 . : .
—_ 3
Ny 1N introduced in De nition on page

imal "l "

rxx

Property 3.5 (Fourier Series Expansion of the One-Periodic Map X ( Ny [LvFO6]! ).
The fractional part map r:x is one-periodic. Hence, it is also the case of the map ( N, P which

admits, with respect to the real variablex, the following Fourier Series expansion:

XX . 2i "X Nb 1 _ e2i k .

Np T 2 In Np 2 it

where, for each™ " Z, the exponential Fourier coe cients ¢ have been obtained through
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1

1
t 20t tInNp _ 20 't 1 tihNp, 2i°t 1
c E0 N, e dt EO e e dt nNe 2 e ‘o
1 1 1 Np, 1 1
InNp 2i° Np Np InNp 2i°
In the speci ¢ case wherex InN, "™ we obtain that
e N, 1 eip‘x In Ny
Nb Np TZIan 2i°
No 1 _ e Mnm
Nb ‘TZIan 2i°
Nb 1 _ ||mim\p
Np "ZIan 2i°

De nition 3.5  (Oscillatory Period ).

Following [LvFQ0], [LvE06], [LR Z17h], we introduce theoscillatory period of the Weierstrass IFD:

2

P InN

De nition 3.6 ("™ -Order Vibration Mode ).

t

Given = " Z, we de ne the "

T

De nition 3.7 ( m;

o .

" order vibration mode as the one associated to p.

-Upper and Lower Neighborhoods ).

Givenx " 0;1,m " N, and a pointM " RZ, we denote byd M; , _ the distance from M

to w, . Then, for any suciently large m (so that
introduce:

am

be a su ciently small positive humber), we

i. The m;"n -upper neighborhood of them™ prefractal approximation

.um

D w,: tM

Xy " R2;y)Wx andd M; . (

llm .
mz’

i. The m;"] -lower neighborhood of them™ prefractal approximation

.am

D w,; tM
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m

De nition 3.8 ( m;" , -Neighborhood ).
Given x " 0;1, m " N suciently large (as in De nition 3[7, Jon page 46 Jjust above), along
with D w, ;"m andD w, _;"m ,wedenethe m;"§ -Neighborhood as the union of the upper

and lower ones, as follows:

.am .um Lam
D Wpns m D Wnhs m <D Wpn m

De nition 3.9 (Left-Side and Right-Side m;" m -Neighborhoods ).

n

Given x 0;1 andm " N su ciently large, we introduce:

i. the Left-Side m:" -Neighborhood of the m™ prefractal approximation ,_ as

1
Diett Wm;"m vM Xy " 0;z R:d M; " ..m ;

ii. the Right{Side m;", -Neighborhood of the m™" prefractal approximation ,  as

1
Dright  wyi'm VM xiy " 51 Rid M ow, ("nl

. L , . 1 .
Those neighborhoods are symmetric with respect to the vertical linex 5 See FlgureBS, on
page[1T, and Figure IB, on pagg $3. They constitute, in a sense, a partition of the whole tubular
neighborhood.

Previous works give a very unfriendly expression for the absolute value of thelementary heights -h;., -,

3N 1 . . .
for Z (j$Ny, 1,and iq;:::5im " r0;:::;Np X", as
" K 2j 1 <
‘i - m Vi Vi 2= " *sn —— sin 2L o = 1A
J;m j 1 j K K
§ ‘1 NE LN 1 NE LN 2 qutI,(q

Although it is su cient to compute the Minkowski dimension of the Curve, one also requires, in
the present work, an explicit expression for the elementary lengthd.,,, m " N .

The m;" -upper and lower Neighborhoods introduced in De nition [3.7, on pagd 4B, are then
obtained by means of rectangles and wedges, as depicted in Figureld 8[14 (on pa@e}[49{54).

Proposition 3.6 ( m;" m -Upper Neighborhood ).

According to Property 2.5, on page[1# (and De nition 2.4, on page[15), givenx " 0;1 and a
strictly positive integer m, the m;" 1, -upper neighborhood consists of:
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Proposition 3.7 ( m;

In the same way, giverx

um

Np 1 Np' rectangles , each of length; 1m, for 1( j ( Np' 1, and height"™.

Those rectangles are alsmverlapping ones , at least at their bottom. If we denote byM;, the
common vertex between two consecutive overlapping rectangles (see Figur¢ 10, on gade 51), the
area that is thus counted twice corresponds to parallelograms, of heighf, and basis

"™ cotan i 1jm  jj 1m ,i-e,thisareaisequalto "™ “cotan | 1jm i 1m -

Since one deals here with an upper neighborhood, one also has to substract the areas ofetttea

outer lower triangles | i.e., 5'm B 1jm B 1m -

Np
4

that the extreme ones are not taken into account here). If we denote byl the vertex from

which is issued the wedge (see Figu@l4, on pa@ 54), the area of this latter wedge is given by

Npg' 1 2

1 upper wedges (to be understood in the strict sense, which means

1 wm 2 .

5 i Lijm i Lm m ; for 1(j ( ngn 2
The number of wedges is determined by the shape of the initial polygd®y, as well by the
existence of reentrant angles. This directly follows from Property 2.19, on page 29. For the sake
of simplicity, we set

Ny 3

M 1 2 )

(R 36)

wm 2

. 1
Two extreme wedges (see Flgure, on pag@S), each of area equal tﬁ m

n m

-Lower Neighborhood ).

0;1 and a strictly positive integerm, the m;",, -lower neighborhood

consists of:

Np, 1 Np rectangles , each of length’j 15m, for 1( j ( Ng' 1, and height"[.

Those rectangles are alsmverlapping ones , this time at least at their top. If we denote byMj;,
the common vertex between two consecutive overlapping rectangles, the area that is thus counted

twice again corresponds to parallelograms, of heighty, and basis"™ cotan i Lpm i Lm o
. . . am 2
i.e., this area is equal to "§ “cotan  1jm i 1m -

Since one deals here with a lower neighborhood, one has this time to substract the areas of the
. . 1
extra outer upper triangles , namely, amounting to Q"m B 1ijm B 1m -

N
NS Ny 2 b4

issued the wedge, the area of this latter wedge is obtained as previously, and is given by

1 lower wedges . If we denote byM;, the vertex from which is

1 wm 2 .

5 i Lijm i Lm m ; for 1(j ( ngn 2
The number of lower wedges is determined by the shape of the initial polyg@q, as well as by
the existence of reentrant angles. This directly comes from Property 2.19, on pade |29. For the
sake of simplicity, we set

N, 3
4

r, Np 2 (R 37)
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Remark 3.2.

i. The number of upper overlapping rectangles is equal to the number of lower extra triangles, and
also to the number of upper wedges.

iit. The number of lower overlapping rectangles is equal to the number of upper extra triangles, and
also to the number of lower wedges.

iii . Inlight of i. andii. just above, those numbers can be respectively calculated as being equal to

r, 1 Np and r, 1 NJ';

where the coe cients ry, and ry, are respectively de ned in formulas R[37), pag and R[36),
page[48.

iv. Note that the small parameter " has to be su ciently small (say 0 $ "/ $ mg for some"mg %0
which exists, but appears di cult to specify explicitly) in order to avoid more unfriendly overlaps
than the parallelograms; see Figurg 16, on page b6.

Figure 8: The 1, i -Upper and Lower Neighborhoods, in the case when =and N, 3.
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Figure 9: The 1;"} -Upper Neighborhood, in the case when =and N, 3.
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Figure 10: Two overlapping rectangles, in the case when 5 and Ny 3.
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Figure 11. The
and N, 3.

Figure 12: The
and N, 4.

1;"% , 2;"§m and 3;"$ -Neighborhoods, in the case when

1;"% , 2;"% and 3;"% -Upper Neighborhoods, in the case when

52
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Figure 13: The
and N, 3.

3;"% -Left and Right-Side Neighborhoods, in the case when

53

N



Figure 14: An upper wedge.
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Figure 15: The extreme wedges, in the case when 5 and Ny, 3.
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Figure 16: Two overlapping rectangles, when the parameter
the overlap is a pentagon.

m IS not su ciently small:
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Proposition 3.8 (Basis of the Parallelograms in Common to Overlapping Rectangles ).
Givenm " N“, andj insl;:::; N, 1 Né" 1y, the basisly 1;;m of the parallelogram in com-
mon to overlapping rectangles associated to the verteM;, is such that

3Dw 2rxx ,m 2

B 1im  Np m O1;

where,

0$Cpr (O 1 (Cop$™

Proof. One has, according to Figurd 1D, on pagg b1,

nm
m .
tan j gjm ;
B 1im B 1im
wherely 1jm B 1;m is the side-length of the parallelogram of basis
nm
m
tan j gim i um
8 1jm
Hence,
Ilm -
t] 1;j;m !% 1;j;m m -cotan i Ljm
which yields
wm wm .
B 1im  mo-cotan j oypm- B 1ym "moS-cotan joggm- -cotan  joygm g oum Y
i.e.,
wm hj Ljm m m
B 1jm m —— otan arctan arctan
Lm hj 15m hij 1m
S
wmo N 1jm %hj tim N 1m
m L Lm Lm
m
§ hi ggm i am (R 38)
L L
omo Ny 1gm hi 1gm Njj o 1m
m L Lm Lm
m
hj 15m hjj  1m
Thanks to Proposition ??, on page??, we have that
hj 1;j;m Dw 21rxx,m . .
T Nb mO 1 , W|th0$Cinf ( O1 ( Csup

In order to obtain the corresponding estimate forly 1, , we need an asymptotic expansion
fory 1;m . A slight di culty occurs, coming from the term

1
[ L
hj 15m hjj  1m
The apparent problem is the following:
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. Either one uses, as previously, expressions of the form

1 N Dw 1rxx
Ly Lm b

hj 1m hij  1m

Oo1;

with nothing but a black box(which means, unknown terms) in factor of constants, that would
yield Complex Dimensions with a real part equal to two, and would therefore lead to a contra-
diction because the Weierstrass Curve has box dimensioby $ 2.

ii. Either, knowing that, which is not the more satisfactorily way of reasoning, from a mathemati-

cian's point of view, one copes with it and tries to nd how to get rid of those terms.
Two con gurations occur:

Lm Lm

~ . . . 0, i i
If hy 15m $ h; 1m, and, thus, — /oh-.- —, in which case we have that
j Ljm i 1Lm
Lm Lm 1 Lm  _Lm
hj 1jm hj 1jm  hjj 1m hj 1jm hj 1jm  hjj 1im
L _lm  _lm L L - .
" A ym - " o M sim My am
hJ' 1jm
Lm
h 1y L3
j 1jm m
1 1 h .. h. .. smaller order terms
Lm hj 1;jm hj;i Lm b T
hJ’ 1jm
Lm
hi 1 L2
L 1 by g By 1 o L2 smaller order terms
Lm hj Ljm hj;j Lm
2
hj 1;;m hj:J 1m Lm Lo h 1
Lm hj;j 1m mo

smaller order and negligeable terms.

Since
hj2 Ljm hj;j 1m 2 2 Dw rxX,m Dw 1rxx 3 Dw rxx,m
3 Ny m Np O1 Ny mO 1 ;
m
along with
3 Dw rxx ,m 2 .
and
2
L 1 Dw rxx ,m 2 i 15:m hj:j 1m
—m NP m20 1 $¢ L ;
hjj 1m Lm

the terms that have to be taken into account in relation (R), on pag above, are then

3 Dw rxx ,m 2
Np m O1 l31;];m
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L L , .
If hy 15m $ hyj 1m, and, thus, — —— $ o ~—, in which case we have that
i Ljm inm

hj 1jm 1 hj 1jm  hjj 1m
L., Lo Lo L., Lo
hj 1;i;m hj;j 1m

smaller order and negligeable terms

Fortunately, due to results obtained in the proof of Property 2.19, on pagd 2p, this situation
Np 3
4

consecutive vertices of polygonsPi, 0( k ( Np' 1. Given a polygon Py, and as
already encountered, one just has to reason on the associated rst set of consecutive vertices.
The annoying terms simplify two by two in a telescopic sum, from the rst reentrant
vertex, to the penultimate one. There remains the term coming from the rst vertex with

an interior reentrant angle, that will be denoted Mj, , and the term coming from the

occurs only in the case of reentrant angles, wheiNy) 7, twice, for respectively

, . . , 1
ultimate one, M; , 1.m: due to the symmetry with respect to the vertical line x 3 (see

Property P.1] on page[ ), they are cancelled by those coming from the symmetric polygon,
see Figure 1], on pagg 60). To summarize, one obtains a sum of the form

hj Ljm hj;j 1m hj;j 1m hj 1Lj 2m hj Lj 2m | hj pij p Lm

Cm oo olp ool o Lo o e o - S T
T [00dOOOOOIDOOOOOTOOOOOOTOOOOOOOOOBTOOOOOOOOOOOOOOC

telescoping sum

h Ljm

- hj i p 1m
The remaining terms — and 2P -0

. . . . . . 1
exact opposites coming from the symmetric polygon with respect to the vertical linex 3
(see Figure[ 17, on pagg 60), since

are the ones which will simplify with the

hj pj p 1m 1 i p 1 W i p
Lm Lm Np 1 N[ Np 1 NN
1 No 1Ny j p 1\ No 1Ngj p
Lm N, 1 N[ N, 1 N

PNg NP p LNy LN pim
Lm

Thus, in the end, there is no problem.

In the light of the above results, one may now rewritely 1, as follows:

3D wm 2 ,
B oyjm N, VRSO L (R 39)
where, thanks to inequality (R[7) given in Remark[253, on pag¢ 25,
0$Cpr (O 1 (Cop$™
This concludes the proof of Proposition 3.8, stated on pagp 57.
O
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Figure 17: The  symmetric  points  with respect to the  vertical

line x leading to terms that cancel each other out in the proof of Proposition 3.8.

Ea

In the sequel, we will use the following two power series expansions:

O ™ l
i. %z " 01 1 z = Ii z,
k0
1

where, for any integerk " N, Ii is the generalized binomial coe cient
1 11 1 1 1
: 32 3 1 5 2 2 K1 3y R 40
k k! k! ( )

This expansion is thus valid for

L2
z " oLy’ *' 81
h2 ..
I Ljm
. ™ 1 k,2k 1
i. %z" 01 tan “z arctanz = Sk 1 which is also valid for
k 0
L2
z " oLyt 81
hi Ljm
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i . % z:27 " C? such that 1% &£ 7:

1 ™ l 1
=5 =5 k
z 7% = E AL
k0
1
where, for any integerk " N, Ii has been given in relation R[40) just above.

Notation 9. In the sequel, for the sake of simplicity, we will use the following notation:

i. = :::, to denote a sum involving all the upper and lower rectangles, which amounts to
j rectangle
taking into accounts indicesj suchthat 1 ( j ( Np 1 Ng'.

i, = ..., to denote a sum involving all the lower wedges, which amounts to taking into
j lower wedge

N, 3
4

accounts indicesj such that NJ' Np 2

iii . = ..., to denote ta sum involving all the upper wedges, which amounts to taking into
j upper wedge
Np 3
4

accounts indicesj such that NJ' 1 2

And, similarly:
iv. = .11, to denote a sum involving all the extra outer upper triangles.
j upper triangle

V. = ::1, to denote a sum involving all the extra outer lower triangles.
j lower triangle

Vi. = .11, to denote a sum involving all the upper overlapping rectangles.
j lower parallelogram

Vi = ..., to denote a sum involving all the lower overlapping rectangles.
j upper parallelogram
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Proposition 3.9 (Contribution of the Rectangles to the Tubular Volume ).

Givenm " N’ , the (exact) contribution of the N, 1 N rectangles to the tubular volume is
given by

— Ilm A
Vim; w,, ;Rectangles 2 = m i Lim
j rectangle o)
— um 2 2
2 = m Lm0 yjm
j rectangle ';J
o 2
- wm L
2 = m Ny Ljim é 1 h2
j rectangle Q i 1jim
W L2
—_— Ilm m
2 = mhj 1im g 1 "
j rectangle i 1j;m
™oLl 2k
2 —_ T h . _ 2 m
- m ' 1jm — K —th
j rectangle kK 0 i Ljim
™ 1 % k
_ umo_ 2 2k K2 Dy W e P
2 = m= Lm = gy "
j rectangle k 0 K0
1
#Vp 1™ 1 2m . 5 k
— — 2 «m 12k _ ,k72 Dy w5 ik P
2 = Tk m - dk*;‘];m S
i1 ko K0
1
g 1 2kemk 2" kT2 D s 3k
" nm " I
2 m _ = Ii Nb 1 = w dk";‘];m J ik P :
i1 ko K0
(R 41)

where the coe cients dy-;;m are given in Corollary [3.3, on pagef 4P.

Note that the contribution of the rectangles to the tubular volume is, geometrically, the main one.
For this reason, we have used the cap letteR, contrary to the other { and forthcoming { contributions.

Givenx " 0;1 andm " N su ciently large, the (approximate) contribution ofthe Ny 1 Np'
rectangles to the tubular volume is given by
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— ||m N
Vin: w m ;Rectangles 2 = mj Ljm

j rectangle O
— nm 2 2
2 = m Lm hj Ljm
j rectangle Q
B L2
_ um m
2 m N} 1jm é 1 h2
j rectangle U i Ljm
_ auMm m
2 = m hJ’ Ljm é 1 h2
j rectangle i Ljm
™ l 2k
2 —_ nm h X —_ 2 Lm
- m Ut Ljm — k h2k
j rectangle k O i Ljm
™ 1
_ wm _ 2 k 2 Dw rxx ,m k 2 Dy
j rectangle k 0
™ 1
" .m 2 D 2 k 2 Dy rxx ,m k 2 D
2 = moerfEtW ol = i Np % m Y 01
j rectangle k O
™ 1
m ,m 2DW _ E kZDW rxx ,m lk2DW
2Ny m 01 = K N, m 01
k 0
™ 1
maem .m 2 Dw _ 2 k 2 Dy rxx ,m k 2 Dw
2Np I Ng"m "m = K Ny m 01
k O
™ 1
rXx ,m 2 Dw 2 k 2 Dw rxx ,m k 2 Dw
2N, m L m 01
k 0
™ 1
2 k 2 D 1r " 2 D k 2 D
2= li N, = oW ST e S Pw Y01,
k 0
™ 1 k2 Dw 1 woim’

2_ ENb 1_ m P ||m2DWk2DWOl.
- k2 Dy 1 - k 2 Dw 1 N m '
Ko K Ny W rz InNy " 2i

(R 42)
where, for notational simplicity, we have used the estimates obtained in relatiorR[9), given on pagg 27,
for the elementary quotientsh M__ in the form
i Lim

L
e m LPw 1o 1
i Ljm

whereO 1 may depend onm, but is uniformly bounded away from 0 and™; more speci cally,

0$0 1 $™:

This ensures here that, for allk " N,

M 2 Dw K 2Dw g 7 g4 (R 43)

N
X NI
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Proposition 3.10 (Contribution of the Extreme, Upper and Lower Wedges to the Tubular
Volume ).

i. Givenm " N su ciently large, the (exact) contribution of the extreme wedges to the tubular
volume is given by

V, wm 2
m; w , ;extreme wedges m

i. Given m " N su ciently large, the (exact) contribution of the r, N’ 1 upper wedges to
the tubular volume is given by

1 wm 2
) - j 1m i 1m m

Vm; W, supper wedges
j upper wedge

am 2 I—m

= m arctan
j upper wedge
aum 2 ™ k 2k 1 ™ k 2k 1
m _ wm 2 1 I—m 1 I—m
2k 1 2k 1
02k 1 K 02k 1h“- T

i Lim k

m

arctan
hj 1jm hj;j 1;m

NI =

- m -
j upper wedge k

k 2m AN
m wm 2 1 L2k 1 w2 0w g Wl g,k P
m k7 m k

j upper wedge k 0 K™0

[N
=~

15 o " P P
2k 1 «k72 D LA
= = " e am " 'k ik
k 0 K™0
(R 44)

where the coe cients d¢-;m are given in Corollary [3.3, on page{ 4R.

Givenm " N su ciently large, the (approximate) contribution of the r, Nj' 1 upper wedges
to the tubular volume is given by
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1
Vm; W m upper wedges ) = j 1Iim i Lm
j upper wedge
1 2 L L
5 = "m arctan h—m arctan o
j upper wedge ioLim ioLm
wm 2 ™ k 2k 1 ™ k 2k 1
m _ am 2 _ 1 L _ 1 L
2 - m - 2k 1 - 2k 1
j upper wedge k 0 2k 1 hj Lijm k 0 2k 1 hj;j 1;m
2 " 1% 11 2k 1
FXX
2 - = 2k 1Ne ’ m o1
j upper wedge k 0
am 2 ™ 1 k K 2k
m m _ 2 1 1 Dw rxx ,m 1
2 Iy Nb 1 - 2k 1Nb m o1
k 0
um 2 um am 2 ™ 1 k ok ok 1
m m XX m 1 1 Dw rxx ,m
— Iy N . = N o1
2 4 bp 2 2k 1P m
k 0
wm 3 wm 4 wm 3 ™ 1 k 2k 1D ok 2k 1
rXXx m m W rXx u.m
— r. N r, = N o1
2 4 b7 2 4 b7 2k 1°® "
k 0
e 1k 2k 1Dy 2k 1 2k 1
m w rxx ,m
4 b m ’
ko 2k 1
(R 45)

i.e., by using the Fourier series expansion given in Property 3]5, on padge %5,

am 3 N 1 w im'p am 4
v _ m r b - m _ m
m; w m ;upper wedges 2 4 b N, S INnN, 2i° 2 2
am 3 ™ K 2k 1 Dw 2k woim
m - 1° Ny Y 1 _ mo wm 2k 1
b~ 2k 1 Dw 2k - 2k 1 Dw 2k . m
4 Kok 1 Ny W cvz IN N W 2i
wm 4 ™ K 2k 1 Dw 2k 1 wime
m _ 1 Nb " 1 _ mIm P am 2k 1 0
- 2k 1 Dw 2k 1 - 2k 1 Dw 2k 1 AN m
4 K 02k 1 Nb w - Ian w 2|
(R 46)

where, for notational simplicity, and as done previously in Proposition[3.9, on pagé §2, we
have used the estimates obtained in relationR[9), given on page[ 27, for the elementary quo-

. L )
tients —=— in the form
hi Ljm
L
e m Lo o 1 ;
j 1jm

where, as in Proposition[3.9, on pagé¢ 62 abov&) 1 may depend orm, but is uniformly bounded
away from 0 and ™; more speci cally,

0$0 1™

This ensures here that, for allk " N,

k
1 Wm 2k 1 .
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iii. In the same way, givenm " N su ciently large, the (exact) contribution of the r, Nj' 1
lower wedges to the tubular volume is given by

#Vp 1
nm 1 n 2 DW k 2 DW i p.
Jim J

(R 48)

where Ciower wedges denotes a strictly positive and nite constant, depending onm " N , but
uniformly bounded away from 0 and™ (i.e., here and in the sequel, independently ofn " N
large enough).

Vm; w m supper wedges Clower wedges =
j 1 k"N;""Zz

The (approximate) contribution of the r, Nj' 1 lower wedges to the tubular volume is given
by

nm 3 am 4
r
Vim: W ;lower wedges 2 2 r, Ny XX n21
meo K 2k 1 Dw 2k 2k
m _ w rxx ,m 1
2~ = 2k 1M mo 01
k 0
mh ok 2k 2k K
m _ 1 Dw lrxx ,m 2k 1
27 2k 1M mo 015
k0
(R 49)
i.e., by using the Fourier series expansion given in Property 315, on pade 45,
" 3 n i ) " 4
m; w, ;lower wedges 2 4 b Nb —Z |an 27 > )
wm 3 ™ 2k 1 Dy 2k T
m r = lko Y 1_ m|mp ..m2klo
b — - m
4 ko2k 1 N, 2k 1 Dy 2k S ZInN, 2k 1 Dy 2K i
n 4 ™ Zk 1 D 2k 1 " i ~
m _ 1ko v 1_ mImp am 2k1O
- - m
4 I(02k 1 N, 2k 1 Dw 2k 1 Sz NN, 2k 1Dw 2k 1 5.
(R 50)
As previously, we obtain that, for allk " N,
1" 2k 1
m .
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Proposition 3.11 (Negative Contribution of the Extra Outer Triangles to the Tubular

Volume ).

i. Givenm " N su ciently large, the negative contribution ofthe N, r, 1 Np' extra outer

lower triangles to the tubular volume is given by

um
m —
Vm; W m ;€xtra outer lower triangles 7 - SQ 1;;m l:];j 1;my
j triangle
m 3 2
D rxXx ,m
2 = NI m20 1
j lower triangle
nm 3D )
m rXx ,m
- No 1o 1 Ng'Ny " "o 1
m 3 Dw w im'p
N 1 2
m m
N, r, 1 Np 2 = m "m0 1
2 3 Dw 3 Dw N
b nz In Ny 2i

(R 52)

where the coe cient r,, is de ned in formula ( R[36) page[48, and where, as in Propositiof 39,
on page] 62 above® 1 may depend onm, but is uniformly bounded away from 0 and™; more

speci cally,
0$0 1 $™:
This ensures here that,

1k
570 1] 0: (R 53)
ii. Inthe same way, givenm " N su ciently large, the negative contribution ofthe N, r, 1 Ng'

extra outer upper triangles to the tubular volume is given by

nm 2
3 Dwr
Vm; w m ;€Xtra outer upper triangles 2 Nb Mp 1 Nb W XXO 1,
nm 2 3 DW n |m‘p
N 1
nqubrblb3D = 33 — 01
N, " cmzInNg” 7V 200

(R 54)

again where, as in Proposition[3.9, on pagé 62 abov&) 1 may depend onm, but is uniformly
bounded away from 0 and™, and where the coe cient ry, is de ned in formula (R[37), on

page[48.
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Proposition 3.12 (Negative Contribution of the Overlapping Rectangles to the Tubular
Volume ).

Givenm " N su ciently large, the negative contribution of the upper and lower overlapping
rectangles to the tubular volume is given by

llm —_—
Vm; w , ;upper and lower parallelograms m - h L;jm
j upper and lower parallelogram
am 2 3 Dy rxx
m N O1 .
3 DW woim’®
wm 2 Nb 1 _ m P
m 3D = 3D 01
N2> " cezInNg” 7Y 20

(R 55)
where, as in Proposition[3.9, on paggq 62 aboveD 1 may depend onm, but is uniformly bounded
away from 0 and ™; more speci cally,

0$0 1 $™:

Property 3.13 (Staggered Sequence of m;" m -Neighborhoods ).

Givenm " N, there exists an integerk,, " N such that, for eachkintegerk) Km,the m k"7 'ﬁ -
Ilm

neighborhood of them™ prefractal approximation ,_ (where",  isthe m k th cohomolgy in-
nitesimal, as introduced in De nition 3[1, pn page 37),

D w,.i'mk tMxy " RZ%GdA M ow,, ("mz; (R 56)
is contained in the m;" | -neighborhood of them™ prefractal approximation

D woi'm tMxy " R%id M ow, ("mz; (R 57)
namely,
D wni'mk LD woi'm (R 58)

Proof. This proof is based on the fact that the sequence of sets of verticed/,, - n IS increasing (see

part i. of Property ﬁ on pag), and thatV V, is dense in the Weierstrass Curve y, along
n"N

with the fact that the prefractal graph sequence ,, - CONverges to the Weierstrass Curve

(for example, in the sense of the Hausdor metric onRZ).

Givenm " N, there exists an integerko., " N such that, for each integerk ) Ko.m, we have that

. 1 . . n . n - am .
d wni Wn o« 0(,‘(”;](/ L sd Mjm iMjm « ; Mjm Vini Mjmm k" Vim k VY ( "m:
0(j7(#Vm «k 1

We then deduce that for allk ) ko.m,
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I'Im
Won « LD wyi'm

At the same time, since, for any m;k " N2,

along with the fact that, forany m " N,
lim ";m & 0;
k ™ m k

we can nd another integer k., N such that, for each integerk ) ki.,, we have that

.um k T
D Wmn k» m k LD Wh m

The desired result is obtained by letting ky, max sko.m; Ki:mY.

Remark 3.3 (Connection Between Fractality and the Cohomology In nitesimal ).

As is mentioned in [DL24d], the cohomology in nitesimal (or, equivalently, the elementary length)
{ which obviously depends on the magni cation scale (i.e., the chosen prefractal approximation) {
can be seen as a transition scale between the fractal domain and the classical (or Euclidean) one.
In fact, we could say that the system is fractal below this scale, and classical above (for the level of
magni cation considered). In the limit when the integer m associated with the prefractal approxima-
tion tends to in nity, the system is fractal below the cohomological in nitesimal (which is really an
in nitesimal, in this case), i.e., at small scales, and is classical beyond, i.e., on a large scale. Note that
this is in perfect agreement with what is evoked by the French physicist Laurent Nottale in [Not98]
about scale{relativity.

The Complex Dimensions of a fractal set characterize their intrinsic vibrational properties. Thus
far, the values of the Complex Dimensions were obtained by studying the oscillations of a small neigh-
borhood of the boundary, i.e., of a tubular neighborhood, where points are located within an epsilon
distance from any edge. In the case of our fractal Weierstrass Curveyy, which is, also, the limit of
the sequence of (polygonal) prefractal approximations .y itis natural { and consistent with
the result of Property B.13, on page[ 6B above { to envision the in nitesimal tubular neighborhood

of  associated with the cohomology in nitesimal ", m~ N as the limit of the (obviously conver-

gent) sequence D o m- N Of "m-neighborhoods of \_, where, for each integerm " N, "o

is the m™ cohomology in nitesimal introduced in De nition on page above.

4 Complex Dimensions and Average Minkowski Content

De nition 4.1  (Natural Volume Extension { E ective Distance and Tube Zeta Functions
Associated to an Arbitrary IFD of Rz).

Let F' be an iterated fractal drum of R i.e., given a cohomology in nitesimal "¢ "m;F R

nm

as introduced in De nition on page, Flisa sequence of ordered pairsk_;"m:r . s Where,
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for eachm " N, F, is the m™" prefractal approximation to a fractal curve F.

We are assuming here that "m;F m- N IS @ decreasing sequence of positive numbers tending to 0

n H n mn k mn
asm ™, such that, for all xed m " N, k“mm mE " «p 0. Also, forallm" N, we
m

dene "m.p %0 by "Q;F "mF ™ This is the case, in particular, for the Weierstrass IFD, ac-
cording to De nition 3I]mon page [37. Indeed, with the notation of the latter de nition, wemhave

m kpy oM Km m;F
m Km;F m km;F m
Nb
nm

Back to the general case o', we hereafter consider the"m;F—neighborhood (or " m. g -tubular
neighborhood) of F,,

F
that "m ¢ "m 1F E—’b, forall m " N. Hence, for anyk, " N,"

D Fmi"me tM " R%;d M;Fp ( "Mez; (R 59)

of tubular volume (i.e., area) denotedVp,.r .

In our present context, when it comes to obtaining the associated fractal tube zeta function, we
cannot, a priori, as in the case of an arbitrary bounded subset oR? (see [LRZ17h], De nition 2.2.8,
page 118), directly use an integral formula of the form (for alls " C with Re s su ciently large,
and forall m " N large enough),

dt
Xup. s E 23V tdt E tP Vg t T
0 0
where %0 is chosen su ciently small, since the tube formulas that we will obtain in Subsection[4.1
below can only be expressed in an explicit way at a valuém;F of the cohomology in nitesimal.

(R 60)

In order to bypass this di culty, we introduce, for all su ciently large m " N’ , the continuous
function ¥y,.r dened forall t " O "m:e and obtained by substituting t for "¢ on the right-
hand side of the expression foV,.r . This simply amounts to considering an evolving (continuous)

tubular neighborhood, for 0( t ( "m;F. Indeed, as was evoked in the introduction, the knowledge

of the expression for the volume at this discrete value is simply the trace, at the valud “m;F, of
the continuous volume function corresponding to an evolving (continuous) tubular neighborhood; see
Figure [18, on pagg 7[L. So, in a sense, we recover, in an adapted, extended but equivalent manner, the

initial theory developed in [LRZ17b].

As for the resulting m™ e ective local tube zeta function >ﬁ1;F { a generalization to IFDs of the
usual de nition referred to just above { we de ne it, for all s in C with su ciently large real part
(in fact, for Re's %Dp.g, , Where Dy, is the abscissa of convergence of,.¢ ), by the following
truncated Mellin transform,

nF

' dt
X s E t° S Wpp. todt E t° Wpp t T (R 61)

m:F - We further assume that"g %0. (Note that in the case of the Weierstrass IFD,

where" g lim
m ™

we have"r N_lb and so,"r %0.)

The choice of the value"g for the upper bound of the integral in relation (R[61) (instead of an
arbitrary positive number %0 as in the classical theory; see [LR17h], De nition 2.2.8, on page 118)
plays an essential role in our present context. Indeed, it corresponds to amtrinsic scale, in connex-
ion with the number of divisions (when applying the IFS Tg; see De nition @] on page). More
precisely, the oscillations of the IFD can be characterized by means of (complex powers) df , with
exponents the underlying Complex Dimensions.
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As for the m™ e ective local distance zeta function mE, it can be deduced by the following
functional equation (in the present case, wherF,, L Rz), for the same value of"g %0,

mF, S HIS: 2\)(m;Fm F 2 s )ﬁ;Fm S, 1 (R 62)

where",sz 2 " s 2.

The associated functional equation of relation R[62) just above is the exact analog of the functional
equation connecting the usual tube and zeta functions of a bounded set (or, more generally, of a rela-
tive fractal drum) in the standard higher-dimensional of Complex Dimensions developed in [LRZ17k],
as well as in[LRz17&], [LRZ17¢] and [LRZ18].

This notation and terminology apply, in particular, to the di erent volume functions involved in
the discussion of the Weierstrass IFD in Subsection 4]1 below.

Figure 18: The evolving tubular neighborhood, for 0 (t( m F-

Remark 4.1. We stress the fact that >§1;Fm does not coincide with the usual tube zeta functionX:

associated with the m™ polygonal prefractal approximation F, L R? to the fractal curve F, given,
as in [LRZ17h], for alls " C with Re s su ciently large, by

'F s 3 'F
0 0

dt

Similarly, ,?q;Fm does not coincide with the usual distance zeta function ¢ associated with

the m™ polygonal prefractal approximation F, L R? to the fractal curve F, given, as in [LRZ17h],
forall s " Cwith Re s suciently large and forall m " N large enough (withd M; F,, denoting
the Euclidean distance fromM " R? to Fm), by

.S E d M;Fp, °7? dt;
M"D Fpi'me
whereD ¢ _; "m;F is the "m;p-neighborhood (or "m;p-tubular neighborhood) of F,, given by

u nm

D Fr,:"mF tM " Rz;d M;Fm ( "mpZ:

This entire comment applies, in particular, to the Weierstrass IFD, which is the central object of
this paper.
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Remark 4.2 (Consistency of our Approach in the Case of the Weierstrass IFD { Connec-
tion with Reality ).

As shown in Remark, on pag@& then™ prefractal approximations to the Weierstrass Curve
become closer and closer to one another and to the Weierstrass fractal Curve, as increases. Hence,
it makes sense to consider a continuous version of the tubular volume, where the discrete and the
continuous, in a sense, eventually merge, for aln " N su ciently large.

We can also note that, in real life, fractality is not always the result of a discrete process. On the
contrary, fractal shapes develop continuously, as is the case, for instance, in biology.

Remark 4.3. It follows from the above relation (R[62), on page| 7L, along with the results (and their
proofs) in [LRZ17b], Corollary 2.2.20, on page 127, that, in a given domain o€, the e ective fractal
zeta functions r?-”':m and >§,;Fm have the same poles (denoted by ) with residues connected by the
relation

1
res )ﬁ;Fm;! ﬁres rjen;l:m;! ; 11 (R 63)

in case! | 2 is a simple pole; and, similarly for the principal parts of ﬁ;’];pm and >ﬁ,;Fm at!, in

case! j 2 is a multiple pole. It follows, in particular, that, in the present new sense, the Complex
Dimensions of F, can be indi erently de ned as the (visible) poles of the e ective distance zeta
function ¢ or of the e ective tube zeta function ;¢ .

We will show in Subsectior[4.] below that, in the case of the Weierstrass IFD, and for all integerm
su ciently large, >§,;Fm (and hence also, ren;Fm, in light of relation ( R@), on pag above), has a
meromorphic continuation to all of C and has Minkowski dimension strictly smaller than 2; so that its
Complex Dimensions are simple and have real part strictly smaller than 2. Hence, for any Complex
Dimension! of the Weierstrass IFD, we have that! is simple and! j 2. (See, especially, Theorerh 4]6,

on page[82, and Theoren) 418, on pade B8, along with Corollafy 4.7, on pafe| 87.)

4.1 Prefractal Tube Formulas and Prefractal E ective Zeta Functions

In order to obtain the main results of this section { namely, Theorem[4.5, on pag¢ 78, Theorer 4,6,
on page[82, and 4.9, on page 90, along with Corollary 4.7, on pa@e]87, and Theorém|4.8, on phge 88
below, we consider the contribution to the (pre)fractal tube formulas brought by the various types of
geometric elements in the"{neighborhood of _, here, the rectangles and the wedges (in Prop-
erty .1, on page] 78, and Property 4.2, on page T5 respectively), thereby supplementing the study of
the positive or negative contributions of the rectangles, triangles and extreme wedges carried out earlier
in Section[3, and synthetized in Proposition@@, on pages BR{68 above. We stress the fact that,
due to the above computations, the value of them™ cohomology in nitesimal ", has to besu ciently
small. This means, in particular, that m " N has to be su ciently large, throughout this subsection.

We invite the interested reader to eventually consult Remark[4.6, on pagé 81, for further informa-
tion about the e ective volumes and the e ective local zeta functions used in the present subsection
and in Subsection[4.2.

In the sequel, in the case wherfr is the Weierstrass IFD, we will write, for example, ¥y, W » Vm: Wi *

X0 wo m o instead of Ynr , Vi, X0F . m,. . respectively. And similarly for the corre-
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sponding expressions associated with the contributions of the rectangles, wedges, outer triangles and
parallelograms, for instance, as in Sectiofi|3 above.

Property 4.1 (Tube Formula and E ective Tube Zeta Function Associated to the Contri-
bution of the Rectangles to the Tubular Volume ).

n

Givenm " N su ciently large, the contribution (volume) function ¥ |, Rectangles Of the
2 Np 1 Ny rectangles to the e ective tubular volume Ym; ., is the continuous function given,

forallt" 0"} , by

™ 1 1 k 2 Dw 2 Dw k2Dyw i'p
N 1 t
Mm; . :Rectangles 1 2= 2 b K 2 = —0 1
m kOk N; Dw N k 2 Dw InNyp 2i
(R 64)
Recall that, by construction,
llm
vm; wm 'Rectangles  m Vm; w m Rectangles

For the sake of clarity, and in order to avoid confusion between various occurrences @ 1 , we
will write relation ( R[64) in the form

™ 1 N 1k 2 Dw 1 t2 Dw k 2 Dy i'p
\xm' w m ;Rectangles t CRectangles = z b = RN ,
D W o K N;k2Dw ;1 k2 Dy InNp 2i

. (R 65)
where Crectangles denotes a strictly positive and nite constant, depending onm " N , but uniformly
bounded away from 0 and™ (i.e., here and in the sequel, independently ofn " N large enough);

see Proposition[3.9, on pagé¢ 62.

The associatedm" (local) e ective tube zeta function (see De nition on page@ above) is
rst obtained, for any complex number s such thatRe s %D,y , as follows:

s 3
)ﬁl; Rectangles S E t

o \xm; W, ;Rectangles t dt

™

1k 2 Dy

Cr — %Nb 1: 1 E"tsstzow k 2 Dw i‘pdt
cendes o kNS K2ZPw D1 k2 Dy N, 200 T
K o N, w o .,, 1 k2 Dw InNp 2i s Dw k 2 Dy i'p
(R 66)
Note that the upper bound" Ni in the integral de ning )ﬁl;Rectangles is the intrinsic scale intro-

b
duced in De nition 8.1) on page[37. It also corresponds to the limit, whenm ™, of ",.

We call this zeta function ﬁ;Rectang,es the m" local e ective tube zeta function (associated with

the rectangles), because it is the zeta function associatetbt only with the m™" prefractal approxima-
tion to the Weierstrass Curve y, but, also, with the in nitesimal "m Which conveysthe scaling
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relation associated to the limit fractal object ;i.e., w. The same comment holds for the forth-
coming local zeta functions introduced in Propertie§ 4.2{4.4, on pagek 75(77.

By meromorphic continuation to all of C, one then obtains the (local) e ective tube zeta func-
tion @;Rectangbs forall s " C, as given by the last two equalities in relation R[66) just above.

Furthermore, the abscissa of absolute convergence of the Dirichlet{type integral (DTI) involved in
the de nition of >§1;Rectang|es, in the sense of [LRZ171] (Appendix A), is equal toDyy .

The associated Complex Dimensions arise as

Dw k 2 Dy i'p ; withk" N; " Z:

Remark 4.4. In the proof of Theorem[4.6, on pagd 82, we will show that the series appearing on the
right{hand side of the expression of¥y. |, Rrectangles "m in formulas (R64){(R[65) in Property ,
on page[ 78 (for allm ) 1 large enough) is absolutely convergent { and hence also, convergent. (See
also Remark, on pag@l, for further information.) We will also explain how to derive the ex-
pression for the tube zeta function X, rectangles (@gain, for all m) 1 large enough), via an application
of the (truncated) Mellin transform to the function t ( Wy Rrectangles t » dened for all t " 0; "
followed by meromorphic continuation to all of C. We refer to that same proof for the other state-
ments concerningpﬁ;Rectang|es and the associated (possible) poles (i.e., the Complex Dimensions of the
Weierstrass IFD).

An entirely similar comment could be made (still for all m) 1 su ciently large) about ¥m. |, -wedges

and )ﬁmwedges in Property E on page. Wi wn (extra outer triangles “m and )ﬁ extra outer triangles in

wm
Property 4.3, on pag' Mm: . ;parallelograms ' m and )ﬁ parallelograms IN Property 4.4{ on page y as
well as about

Vm; Wm Vm; w m ;Rectangles Vm; w m wedges
(R 67)
vm; w m ;€xtra outer triangles vm; w m, ;Parallelograms ;
and
)ﬁ;wm S )ﬁl;Rectangles S )ﬁ;wedges S )ﬁ;extra outer triangles S )ﬁ;parallelograms S, (R 68)
in Theorem[4.5, on pagd 78, and Theorerh 416, on page|82.
Remark 4.5. Recall from [LRZ17k] that the abscissa of convergence, of @?fg‘eﬁangles is the unique

(possibly extended) real number , such that the DTI de ning >ﬁ;Rectang|es (in the rst equality in
relation (R@) above, on pag@?)), converges fdke s % , and diverges forRes $ . Here, in
the light of the identity ( R[66]), we have that , Dy, forall m " N large enough. An analogous
comment applies to all the other DTIs encountered in this subsection, and in Subsectioh 42, including,

especially, )ﬁl;wedgeSa )ﬁ;extra outer triangles » >ﬁl;parallelograms :
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Property 4.2 (Tube Formula and E ective Tube Zeta Function Associated to the Contri-
bution of the Wedges to the Tubular Volume ).

Givenm " N’ su ciently large, the contribution (volume) function of the wedges to the e ective
tubular volume function %y, Wi is the continuous function given, for allt " 0; m , by

vm; Wm;wedgest \xm; W m supper Wedgest vm; W, ;lower Wedgest \xm; W, ;extreme Wedgest
ry Np 1 _ t3 P t4 t2
8 Np _Z INNp 2i° 2
lr _TM 1ko2k1DW 2k 1_ t2kli\p o1
2 Ip = = <
4 ko2k 1 Nb2k1Dw 2k g 2k 1 Dyw 2k InNp 2i
1_TM 1ko2kl Dw 1 1_ t52ki\p
2,2k 1 N KT Pw Do, 2k 1Dw 2k 1IN, 27
(R 69)
Recall that
IIm .
Vm; W iwedges m Vm; W swedges:

where“  upper; lower; or extreme. Hence, in light of the rst equality in relation ( R[69), an anal-
ogous identity holds if* ; wedgesis replaced by Wwedges .

As before, for the sake of clarity, we will rewrite relation R[69) in the form

3i'p 4
1 B t t 2
VYm: Wm;wedgest CWEdges ~_InNp, 210 2 t
"z
™ 2k 1 Dw 2k i”
CZ T 1 K Nb w 1 B t2k l1i'p
does = = —
we gesk J2k 1 N, 2k 1Dw 2k 2k 1 Dw 2k InNp 2i
™ 2k 1 D 1 it
\ 1 K Nb w 1 t5 2k i'p

C = —,
wedgeskozk 1 Nb2k1 Dw 1 2k 1 Dw 2k 1 InNp 2i

"Z
) (R 70)

where C\,lvedges Clvedges and Cf\,edges denote strictly positive and nite constants depending onm, but
uniformly bounded away from0 and ™ (see Proposition[3.10, on pag¢ 64).

The associated (local) e ective tube zeta function (see De nition on page[69 above) is rst
obtained, for any complex numbers such thatRe s %Dy, as follows:
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3
)ﬁu wedges S Eo t° \xm;; W m ;wedges t dt

Nb 1 e ’ s i ’ s 1 ’ s 1
cl = 2 - _ Et'Pdt E tt'dt sE t°tdt
wedges o |an 2i o o 2 0
™ 1k N 2K TDw 2k g 1 " .
Cledges b = E 8217 Pyt

o2k 1 N, 2¢ 1 Ow 2K ., 2k 1Dy 2k InN, 2i° o
2k 1 D 2k 1 "
- Nb Y 1 1 E ts 2 2k i'p dt
o N, 26 L Ow 2k 1 2k 1 Dy 2k 1 InN, 2i° 0

3 1
Cwedges

(%)
(%)
N

ws 1 i p
Cl = 1 - -
Wedges‘,,zlan 2i° s 1 i p S 2s 2

™ Kk

, 1 szk 1ow 2k 4 1 ws 2k 10 p
Cuedges k202k 1 szk 1Dw 2k :z 2k 1 Dw 2k InN, 2i° s 2k 1 i'p
, ™ 1 Kk Nb2k 1 Dw 2k 1 1 1 ws 3 2k i'p
Cwedge5k=02k 1 szk 1Dw 2k 1 :z 2k 1Dw 2k 1IN, 2i° s 3 2k ip
(R 71)

By meromorphic continuation to all of C, one then obtains @;Wedges the (local) e ective tube zeta

function (associated with the wedges), for als " C, as given by the last two equalities in relation IR)
just above.

The associated Complex Dimensions arise as

1 i'p ; 1 2k i'p ; 3 2k i"p ; withk" N; " Z;alongwithOand 2:

Note that for k) 2 (and any = " Z), the last two families of (possible) Complex Dimensions fully

overlap. We will take this fact into account in Theorem[4.8, on pagé¢ 88, and Theorein 4.9, on page|90
below.

Property 4.3 (Tube Formula and E ective Tube Zeta Function Associated to the Contri-
bution of the Extra Outer Triangles to the Tubular Volume ).

Givenm " N su ciently large, the negative (volume function) contribution of the extra outer

triangles to the e ective tubular volume %y, , - is the continuous function given, for allt " 0; "m
by

\Xm; w , ;extra outer triangles t vm; w m, ;EXtra outer lower triangles t vm; W, €xtra outer upper triangles t
Dw 3 i
~ Dbw 3 B ’
Ny " vy Dw 3 InNp 2i

(R 72)
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with
0$Cy (O 1 (Cops™:

Recall that %, ,, « "m  Vm. =+ "m ,Where* extra outer lower triangles, or

extra outer upper triangles. Hence, in light of the rst equality in relation (R[72), we also have
nm T
that \xm; w m €xtra outer triangles m Vm; w m ;€Xtra outer triangles m -

As previously, for the sake of clarity, we will write relation (R[72) in the following form:

2i'p
t
Ym:: \y,, extra outer triangles Chriangles =z Dw 3 InNp 2i° ; (R 73)

where Cyiangles denotes a strictly positive and nite constant, depending onm, but uniformly bounded
away fromOand ™ (in m " N su ciently large); see Proposition on page|67. More speci cally,

0% Ci?]f ( Chriangles ( Cgup $™:

The associated (local) e ective tube zeta function (see De nition on page[69 above) is rst
obtained, for any complex numbers such thatRe s %Dy, as follows:

s 3

Xn: extra outer triangles S Eot ¥m:: ., iextra outer triangles T dt
1 " .
Ctriangles :z 2 3Dy MNp 210 E0 521 P gt
Ciriangles = ! — e i"\p :
v, Dw 3 InNp 2i s 1 ip
(R 74)

By meromorphic continuation to all of C, one then obtains X;, exra wiangles » the (local) e ective
tube zeta function (associated with the extra outer triangles), for alls " C, as given by the last two
equalities in relation (R[74) just above.

The associated Complex Dimensions arise as

1 i p;with " Z:

Property 4.4 (Tube Formula and E ective Tube Zeta Function Associated to the Contri-
bution of the Parallelograms to the Tubular Volume ).

Givenm " N su ciently large, the last (volume function) contribution to the e ective tubular vol-
ume ¥ "0, coming from the parallelograms, is the continuous function given, foralt * 0;"m |

by

Wi W sparallelograms t Vi W, ;lower parallelograms t Vo, w m upper parallelograms !
5 it
. ) 2 1P . (R 75)
parallelograms Ly Dw 3 |an 2
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where Cparallelograms  denotes a strictly positive and nite constant, depending onm, but uniformly
bounded away from0 and ™ (see Proposition[3.12, on pag¢ §8). More speci cally, again,
3 3 ™ -
0% Cinf ( Cparallelograms ( Csup $ :
Also, recall that, by construction,

m
n -
vm; w m, ;lower parallelograms m Vm; w m ;lower parallelograms s

and similarly, if \lower parallelograms” is replaced by \upper parallelograms”. Hence, an entirely
analogous relation holds if \parallelograms" is substituted for \lower parallelograms”.

The associated (local) e ective tube zeta function )ﬁ“u;parallelograms (see De nition on page@
above) is then rst obtained, for any complex numbers such thatRe s %Dy, as follows:

s 3

)ﬁ:parallelograms S Eot Vm; v, sparallelograms T dt
1 " s2ip
c _ —  E t dt
parallelograms . 2 3Dw InNp 2i 0
1 ws 1i'p
c _ _ —_
parallelograms o, Dw 3 InN, 2i s 1 i p

(R 76)
By meromorphic continuation to all of C, one then obtains>{‘§;para“|e|0gramS , the (local) e ective tube
zeta function (associated with the parallelograms), for als " C, as given by the last two equalities in
relation (R[76) just above.

The associated Complex Dimensions arise as

1 ip;with " Z:

The above results stated in Propertieq 4.JI{4.4, on pagels 7B{T7, can now be combined in order to
yield the following key theorems:

Theorem 4.5 (Fractal Tube Formula for The Weierstrass IFD ).

Givenm " N su ciently large, the m™ total (volume function) contribution to the e ective tubu-
lar volume W, W associated with the tubular volume (or) ¥y wy OF two-dimensional Lebesgue

measure of the" m-neighborhood of them™ prefractal approximation y, ,

D"m tM  xy "R%dM; w, ("mz; (R77)
where " " m- N IS the cohomology in nitesimal, as introduced in De nition on page , is
the continuous function given, for allt " 0;"m , by

\xm: W m t \xm: W, ;Rectangles t vm; \,\,m;wedgest

(R 78)

e[m; Wm s Wy extra outer triangles t \xm; W m ;parallelograms t

78



« t c ” % N, 1 1 wm 2 Dw k2Dw ip
m W Rectangles k_o Kk Nbl k 2 Dw :Z 1 k2 Dw InNp, 2i° m
1 3re 2 t?
am
cwedges |an 2i° m T
o _w 1x szk 1ow 2k 4 ) (k1
wedgesk o2k 1 N 2<iPw 2k L 2k 1Dy 2k NN, 20
R LS O e
wedges . 02k 1 szk 1 Dw 1 s 2k 1 Dw 2k 1 InNp, 2i°
1 2
Cuiangis  Cparaetograms = 35— g ¢ -

"z

i (R 79)
Where Crectang|es, CWedgeS 1; 2; 3, Ctriang|es, and Cpara||e|0grams denote the StrlCtIy pOSItIVG and nlte
constants respectively introduced in Propertie§ 4.[if4.4, on pagef 78{77 above. Recall that these con-
stants depend onm, but are uniformly bounded away fromO and ™ (in m " N large enough).

~

Also, recall that, by construction,

Yo win "m Vi wo,
Actually, this identity follows from the corresponding identity for each of the terms on the right{
hand side of relation (R[78).

For the sake of clarity, and in order to highlight the role played by the one{periodic functions (with

respect to the variablelny, " 1, see Property, on pag@S), one can exchange the sums oker

and m, which enables one to obtain an expression of the following form:

_ 2 Dw k 2Dw i p
vm; W m t - fk;‘; Rectangles t
“tZik" N
_ 3ip 12k i p 5 2k i’ p
= fk;‘: wedges; 1 t fk;‘: wedges;zt fI<;‘; wedges:3t
""Z;k"N
4
_ f 20 p 2 t
- k;*; triangles, parallelograms t t _2 ’
""Zik"N

(R 80)
where the r'|Otati0nfk;‘;RectangIes, fk;‘;wedges‘ﬂa 1( ‘_‘( 3, and fk;‘;triangles, parallelograms » respectively ac-
count for the nonzero coe cients associated to the sums corresponding to the contribution of the
rectangles, wedges, triangles and parallelograms, respectively given by:

1 ylk2bw L
fk;‘;RectangIes CRe(:tangles 2 b —; (R 81)
k Nbl k 2 Dw 1 k2 Dw InNp 2i
f L ! :

k;'; wedges1 Cwedgesm ; (R 82)

f CZ _TM 1 K Nb 2k 1 Dw 2k 1 1 |

k;"; wedges?2 wedgesk—ozk 1 Nb2k 1 Dw 2k 2k 1 Dy 2k InN, 2i° '
(R 83)

79



2k 1 Dy 1

3 1% Ny 1 :
fk;‘;WedgeSS Cwedges 2k 1 2k 1 Dy 1 2k 1 DW 2k 1 In Nb 2|\ ’ (R 84)
N b
1
f«:": triangles, parallelograms Crriangles ~ Chparallelograms 2 3Dy INNp 21" (R 85)

Note that those coe cients do not depend on

(independent ofm " N su ciently large):

'fk;‘;RectangIes' (
'fk;‘;wedgesl' (

-f k;"; wedges2® (

-f k;*; wedges3* (

'fk;‘;triangles, parallelograms * (

"1, and satisfy the following uniform estimates

51
CRectangles i o (R 86)
1
CWedges;_ (R 87)
2‘ )
2
Ciedges 1 (R 88)
2k 12" 7
3
Cwedges 1 i (R 89)
2k 12" 7
Ctriangles Cparallelograms (R 90)

Finally, each of the double sums in formulae R[78), on page[78, and R[80), on page[79, is

absolutely convergent (and hence, convergent).

Proof. Indeed, by construction, the identity (R[7§), on pagg 78, holds. Therefore, all of the main state-

ments in the theorem concerning them™ e ective tubular volume ¥, we 'm

Properties[4.1{4.4, on page$ 713{7]7 above.

m follow by combining

Finally, we justify the uniform estimates (R){ (R@) in the following manner:

We have that

'fk;‘;RectangIes' ( CRectangles

X NI
T
=~

N

lw)

S

1
2 ~
( CRectangles Kk S
1
C 2 1
( Rectangles kK 2° °
1 . 1
'fk;‘;wedgesl' ( CwedgesO > -
INNp = 472 2
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2 2k 1 D 2k
Clredges ng v lg A 1

'fk;‘;wedgesz' (
2k 1% N, 2% 10w 2k 2k 1Dw 2kZ2 InNp2 4°2 2

2
Cwedges A 1

( &
2k 1 o 1Dy 2k2 InNg 2 42 2

2
( Cwedges 1 .
2k 12

3
Cwedges
'fk;‘;wedge33' ( 2k 1

(O]

ngZK 1 Dy 1 1§§ 1

f N2kt Dw il 2k 1Dy 2k 12 InNp2 422

3
Cwedges A 1

( &
2k 1 o 1 Dy 2k 12 InNg2 42 2

3
( Cwedges
2 1

1 .
5

=~

~ 1
'fk;‘;triangles, parallelograms * ( Ctriangles Cparallelograms S >
2 3Dw 2 InNp % 42 2

1
( Ctriangles Cparallelograms 2\_

This concludes the proof of the theorem.

Remark 4.6. We point out that the various e ective volumes used in Properties[4.1{4.4, on page§ 73{7]7,
and in Theorem, on pag@S{namely}xm; wy, U (@swellas¥y. | Rrectangles t ) ¥m: \  :wedges t
etc.) { are not only dened forall t" O;"m , butalso forallt" 0;1. Indeed, each of them is
the sum of a locally normally (and hence also, locally uniformly) convergent series of continuous
functions on 0;1. (In fact, for any 0 $ $ 1, the general term of the corresponding series can
be uniformly bounded by the general term of a geometric series with ratio .) Naturally, we have

that Vm’ Wm O Vm’ Wm ;Rectang|es 0 L O.

Since the intrinsic scale" N belongs to 0;1 0;1 , this observation justi es, in particular,
b

the fact that the Lebesgue integral initially de ning >§1; Wi in relation (R@) below, on pag {as
well as >§,;Rectang,es in relation (R@), on pag, etc. { is well-de ned and convergent.

Moreover, for the same reasons as above in the rst paragraph of this remark (but now by replacing
continuous by holomorphic, as well as 0;1 by D ), %y, t (and also, %y. , Rectangles t , €tC.)
admits a necessarily unique holomorphic continuation to the (open, connected) pointed unit disk
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D rt" C;M7$ Ix roOx;

still given by the same corresponding fractal power series (as in Theorerh 4.5, on page| 78, Prop-
erty , on pag, etc., respectively), and where the complex powers involved are de ned by using
the principal determination of the complex logarithm (which, as is well-known, is holomorphic on the
domainC~ ™ ;0).

4.2 Complex Dimensions

We deduce at once the Complex Dimensions of the Weierstrass IFD from the fractal tube formula
and the expression for the (local) e ective tube zeta function obtained in Theorem[4.5, on pagé 78
above, and Theoren( 4.p, on page 82 below, respectively.

4.2.1 Main Results

Following (as well as adapting to IFDs) [LRZ17h], we hereafter de ne the local and global e ective
tube zeta functions of the sequence of Weierstrass IFDs associated to the cohomology in nitesimal,
as introduced in De nition on page[37.

De nition 4.2  (Local Tube Zeta Function for the Weierstrass Iterated Fractal Drums ).

In the sequel, for eachm " N, X, denotes them™ e ective tubular zeta function associated

with Vi, "I { and hence also, associated with the corresponding natural volume extension

function ¥y , ~ "m ; see De nition Ell on pag. More speci cally, it is initially de ned by the
following truncated Mellin transform, for all s " C with Re s su ciently large (in fact, forall s " C
with Re s %Dy ),

$o w. S E 07, todt (R 91)
0

We also call >§]; w, the m™ local e ective tube zeta function (or the m™" prefractal e ective tube
zeta function) of the Weierstrass IFD, for the same reason as the one provided in Proper@.l, on

page[73.

Theorem 4.6 (Local and Global Tube Zeta Function for the Weierstrass Iterated Fractal
Drums [DL23b] |).

With the notation and terminology of De nition ust above, >@W , the global e ective tube zeta
function of the Weierstrass IFD, de ned by analogy with the work in [LRZ17b], admits a (necessarily
unique) meromorphic continuation to all of C, and is given, for anys " C, by the following expression
(see [DL23D] for the proof of the existence of the limit, which is locally uniform orC):

. ;trict i
¥, s lim % S (R 92)

m ™ Mowp

where, for allm " N su ciently large, and all s " C:

Xe;strict ‘ .
m wp S )ﬁ" Wm S S 4 s 2 !
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since the contribution of the m™ prefractal approximation ,_ to Xew, the global e ective tube zeta
n 'S ws 2

function of the Weierstrass IFD, is obtained by excluding the (arti cial) terms e and s 2

coming from the extreme wedges, and where ta™ (strict) local e ective tube zeta function >§,;W is
given, foranys " C, by

ws Dw k 2 Dw i'p ws 2k 1 i'p
Xe;strict s _ f _ ;
m wpn . k;"; Rectangles s DW K 2 DW i p e ;k; wedges s 2k 1 1 p
ws 1 i p
= fro _ .
k;*; triangles, parallelograms s l—l p '

oo (R 93)
where, as already introduced in Theoren] 45, on pagg 78, the coe cients . rectangles: fk;wedges; »
for 1( j ( 3, and f;triangles, parallelograms » 'espectively, depend orm, but are uniformly bounded
(in m " N large enough) and account for the nonzero coe cients associated to the sums correspond-
ing to the contribution of the rectangles, wedges, triangles and parallelograms.

Note that, in light of De nition on page @ >ﬁ; w, IS a (tamed) Dirichlet-type integral (in
the sense of|[LRZ17b], Appendix A) and hence, admits an abscissa of (absolute) convergence.

. " “ . . ;strict .
Furthermore, still for all m " N su ciently large, the abscissa of convergence ofX,i. w.. Isequal
’ m
to

In 1
DW 2 m) 2 |nb -

As is proved in [DL23E], %y w, the m™ local tube zeta function of the Weierstrass IFD, is the

contribution of the m™ prefractal approximation y, _ to Xew, the global e ective tube zeta function
of the Weierstrass IFD.

Proof. Since, by de nition (see De nition on page[82),

3 .
)ﬁﬂ Wm S Eo tS vm; Wm t dt’ (R 94)

forall s " C with Re s suciently large (in fact, for Re s %Dy ), and according to Theorem|4.6,

on page[ 82 in Section 4[1, foralt " 0,7 ,

vm: W m t Vm; w m ;Rectangles t vm; V\,m;wedgest
(R 95)
Vm; w m, ;EXtra outer triangles t vm; w m, ;parallelograms t
we have that (still for Re s %Dy ),
)ﬁ: W, S )ﬁ\;Rectangles S )ﬁ;wedges S
(R 96)

)ﬁuextra outer triangles S )ﬁ;parallelograms S,

it follows that, forall m " N su ciently large, >§]; w,, has a meromorphic continuation to all of C
given by formula (R[93) in Theorem[4.6, on pagé¢ 82.
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Finally, the fact that, for all m su ciently large, the abscissa of convergence oﬁﬁ coincides
with Dy follows by combining formula (R[93), on page[ 8B (for alls " C) and the method of proof of
Theorem 21 on page 57 inl[LRZ17h].

Alternatively, the fact that, for all m " N su ciently large, the abscissa of convergenceD,,
of X5, ,, is given by
In

1
Dw 2 m} 2 Inp—; (R 97)

follows from relation (R@), given on pag. Indeed, by de nition,>ﬁ; Wi is a tamed Dirichlet-type
integral (DTI), in the sense of [LRZ17b], Appendix A, De nitions A.1.2 and A.1.3, on page 579.
Hence, sinceX;, w,, I1s meromorphic in all of C and, in particular, in a neighborhood of Dy, the ab-

scissa of convergence dﬁ w,, €Xists and coincides with the largest real part of the poles onT’]

that is, here, in light of relation ( R[93) and of Theorem[4.8, on pagg 88 below (a corollary of the above
Theorem, given on pagé 82, and which implies thaDy is an actual pole of>§' m) D, coincides
with Dy, as given by relation (R97) above.

The fact that the rst series,  Rectangles Rectangles t (@ppearing in relation (R99)), is locally
uniformly convergent (and hence, pointwise convergent), follows from the following uniform estimate
(valid forall s" C, with Res ) ,where " R is arbitrary),

% k> "N Z gs Dw k 2 Dw i‘pg( w Dw k2Dy i'p
| 2 bw (R 98)

1
since 0% " ( 5

More speci cally, we combine the uniform estimate of relation (R[©8), on pageg 84, together with the
factthat, for k;” " N Z andindependently ofm " N large enough), the coe cients f . rectangles
are uniformly bounded.

Also, we reason in exactly the same manner with each of the two double sums in relatlorR@)
on page , de ning the remaining e ective tube zeta functions contributing to >§1

It then su ces to apply the same reasoning as the one described in Remark 4]7, on pade |87 just
below to conclude that, for all m large enough,>§1; w,, s meromorphic on all ofC, as desired.

Next, we justify the fact that, forall s " C, X w,, S Isgiven by relation (R@) in Theorem,
on page[ 8P above.

In order to see this, we apply De nition on page , of them™ e ective tubular vol-
ume ¥y, t, foralt" O "m . Accordingly, as was alluded to above, for these values of,

and for allm " N su ciently large, “y. ,, t is given by (the sum of) the fractal power series
appearing on the right{hand side of relation (R[79), on pagg 79 (or, equivalently, in relation R[80), on
page[79), in the fractal tube formula for the Weierstrass IFD obtained in Theorem[4.5, on pagé¢ 78,
but where "1 is replaced byt " 0;"m .

Then, the same estimate as in relation R|98), on pag just above, but now still with",, replaced
1
by t, and mq large enough such that 0$ " ( > for all ) mg (and hence, also, G5 t ( E) shows that
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the general term of the rst series, namely,

1k 2 Dw
Nb 1 1 2 Dw k2 Dw i p.

_t
7 NIF2ZPw 1 k2 Dw InNp 2i

appearing in the rst term of the right{hand side of relation ( R[7§) in Theorem [4.5, on page 78
(yielding Vi, , ) implies easily that

X Nie

" 1 1k 2 Dw
: £ _ > Ny 1 1 tZDWkZDW i‘pdt
Rectangles o e k Nbl k 2 Dw 1 k2 Dy InN, 2i°
1 1 k2D "
_ 5 Ny w 1 1 EtsStZDW k2 Dw i'p,.
N 7 k Nb1k2Dw 1 k2 Dy InN, 2i° 0
(R 99)

viewed as a function oft 0;" , still fora xed m) mg { converges normally (and thus also, uni-

formly) in ton O;" .

The same reasoning can be applied to each of the remaining series; i.e.,

L ,[3 i p
wedges t = |an—2I ; (R 100)
Tz
) t i 1ko2k1DW 2k 1 2k 1i0p (R 101
d = - it
wedges Nz 2K 1N 2K 10w 2k L2k 1Dy 2k InNp 2i
2k 1 Dy 1 i
S _ 1N, 1 S . (R102)
d = it
wedges k"N;"'ZZk 1 szk 1 Dw 1 2k 1 Dw 1 InNp 2i
t2 i'p
P = ; (R 103)

triangles and parallelograms AN
., 2 3Dy INNp 2i

appearing on the right{hand side of the second equality of relation R[78) in Theorem[4.5, on pag¢ 78.
Hence, by Weierstrass' theorem (for uniformly convergent series of functions), we can interchange series
and integrals in the expression for>§1; w,, Sgivenfora xedarbitrary s " C,suchthatRes %Dy,

by the truncated Mellin transform,
% W S E I A (R 104)

In fact, with the notation of Properties 4.1{4.4] on pages[73{77, we have that (still for all m) mo,
>§,; w, S Isgiven by relation (R), on pag, rstforalls " Cwith Res ) Dy {and then, by
the principle of analytic (i.e., meromorphic) continuation, for all s " C, since, as was explained above,

each of the series in relations RP9){( R[103), on pages 84{8b above, converges and is a meromorphic
function of s on all of C.

Here is a direct way to establish the meromorphicity of>ﬁ; Wi (for all m) mg) and to identify its
(possible) poles, without using the chordal metric on the Riemann sphere (see Remafk 4.7, on p&ge 87
below, for a closely related use of this latter metric.)

Let! be a potential pole (i.e., a possible Complex Dimension, as given by Theorefm 4.8, on pdged 88
below), say,
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with kK" Nand™ " Z.

Then, by excizing an arbitrary small compact disk D, centered at! from a slightly larger open
disk D, (also centered at!), it follows, much as in the above discussion, that the corresponding
double series of holomorphoc functions in the resulting domaiD, ~ D, is normally { and hence, also
uniformly { convergent in D, ~ D, .

Hence, sinceD, can be chosen arbitrarily small, we deduce from Weierstrass' theorem for se-
ries of holomorphic functions that the sum of the double series appearing in the right-hand side of
formula (R@) in Theorem , on pag@Z, is holomorphic irD, ~ D, , which is an arbitrary small
pointed neighborhood of! { and thus, that

ws Dw k2Dw i'p

S = fk;; Rectang =
N s Dw k 2 Dw ip
ws 10 p ws 2k 1i'p ws 3 2k i'p
) Z:-k" N\Nf‘;k;wedgesl m f‘;k;wedgesZS 2k 1 i p 1:‘;k;wedgesC%S 3 2K i p}
ws 1 i p w 'S wsS 2
Z=.k” N f ik triangles, parallelograms s 1 1ip S 4s 2
(R 105)
is holomorphic away from any potential singularity ! .~ Dw Kk 2 Dy i’ p.

Now, by using the uniform convergence inD, ~ D, , we can interchange limits and deduce that the
following limits exist in C, and are given as follows:

res !y SIi{n s Iy s ; (R 106)
t ok
from which we deduce that has at mosta simple pole at! ! .. Sincef rectangles ] O, then! 1

is a simple pole of , with associated residuefy j 0, as implied by formula (R).

We conclude from the above discussion that is meromorphic in all of C, with potential poles
(necessarily simple poles) the possible Complex Dimensions listed in Theorgm #.8, on page 88 below.
Since we know that still for all su ciently large values of the positive integer m,

X we S S (R 107)

for all s in the domain (open right-half plane) Re s %Dy, we deduce from the principle of analytic
(i.e., meromorphic) continuation that >ﬁ1; w,, has a meromorphic continuation to all of C, conciding
with in C { and hence, having the same potential (as well as actual) poles as , and the same
associated residues.

n S

We note that the expression in relation (R[105) above a priori involved terms of the form ——
m S 2

and s 2 respectively associated with the poles 0 ands 2, which came from the Euclidean

extreme wedges involved in the sequence of tubular neighborhoods (see Propositfon 3.10, on page 64).
For this reason, we hereafter exclude those terms from the expression for s and set

n S n s 2 n S n s 2

Xe;strict . i
s wg S )ﬁ""’ms S 4s 2 S S 4s 2°
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This completes the proof of Theorem[4.6 (pagé §2), which will also be used in part in order to
prove Theorem, on 939@8 (about the possible Complex Dimensions #f°""

: Wm) and Remark,

on page below; see also Rema.? below for a proof of the meromorphicity ¥f, .

In closing, we note that the fact that the global e ective tube zeta function X exists, is meromor-
phic on C, and is given by the limit appearing in relation (R@), on pag, is established in [DL23b].
O

Remark 4.7. The fact that the global e ective tube zeta function Xew admits a meromorphic con-
tinuation to all of C is obtained by applying Weierstrass' theorem for (locally) uniformly convergent
sequences of holomorphic functions. First, we note that, for all su ciently large m " N, the setZ
of possible poles of the local tube zeta function@; w,, S does not depend onm, and is given by
Theorem[4.8, pagd 88 below. Note thaZ is discrete, and thus closed inC. It then makes sense to
consider any of thoses poles, that we will denote by . The local tube zeta function >§1; w,, Isthen
holomorphic on the connected open subset of given by C~ Z. We can clearly see that the sequence
of functions >§1; W m)mo converges normally (and hence, uniformly) in a connected open (and rel-
atively compact) neighborhood of any given! " Z {i.e.,fors x iy " Ccloseto! . Weierstrass'
theorem, applied once again, then ensures the holomorphicity of the IimitXeW on the domainC  Z.

It follows that the global tube zeta function ><eW is meromorphic in all of C, with possible set of poles
given by Z.

Corollary 4.7 ((of Theorem 4[6, bn page 82) local and Global Distance Zeta Function
for the Weierstrass Iterated Fractal Drums ).

By analogy with the functional equation given in[LRZ17b] (Theorem 2.2.1, page 112), along with
Theorem([4.6, on pagq 8 just above, thelobal e ective distance zeta function is given, for any
complex numbers, by the following expression:

w

€ s lim 2. S (R 108)

w m ™ v Wm

where, for allm " N su ciently large, ; , , the m™ local e ective distance zeta function of the
Weierstrass IFD, is given, for any complex numbers, by

o ow. S " Wy "m 2 s E 20, todt

0
s va; - wm 2 5 )ﬁ; o S (R 109)

where ", is the m™" cohomology in nitesimal (see De nition on page ), while %y, |, de-

notes them™ local e ective tubular volume obtained in relations R[79){(R[8J) of Theorem , on
page, and Where>ﬁ; w, S IS given in relation (RP3J) of Theorem, on pag (note that, by
construction, Y, , - "m Vi w, ). The rst equality in relation ( R[109) is only valid for

Re s %D,, Dw;

while the last one is valid for alls in C. Furthermore, still for all m " N su ciently large, the distance
zeta function ren; Wi admits a meromorphic continuation to all of C, given by the last equality of

relation (R[I09) just above, with ;, w, divenasin Theorem, on pag@Z.
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Remark 4.8. It follows from the above functional equation (R), on pag, as well from the general
theory developed in [LRZ17h], that f;; w,, and >§1; w,, have exactly the same poles, with precisely
related residues, for simple poles, which is the case here. Hence, they de ne the same Complex
Dimensions. In light of Remark[4.7, on pagé¢ 87 above, an analogous comment can be made about the

global e ective tube and distance zeta functionsX and °_ .

We recall from [LRZ17D] that the Complex Dimensions are de ned as the poles of the meromorphic
continuation of the tube (or, equivalently, the distance) zeta function. In our present setting, the set
of Complex Dimensions of the Weierstrass IFD is the set of Complex Dimensions of the sequence of
Weierstrass IFDs introduced in Remark[3.3, on pag¢ §9. Hence, those Complex Dimensions are the
poles of the e ective tube zeta functions { or, equivalently, the e ective distance zeta functions { associ-
ated to those IFDs, respectively obtained in Theorenj 4.5, on page 82 and Corollafy 4.7, pafe|87 above.

Remarkably, in light of Theorem [4.6, on page[ 8P, it turns out that the set of (possible) Complex
Dimensions, de ned as the set of (possible) poles of then™ local e ective tube zeta function >§]; Wi
(or, equivalently, of ,?}1; Wi ), does not change, for all su ciently large m " N’ ; i.e., this set of (possi-
ble) Complex Dimensions { viewed as a multiset taking into account the multiplicities of the possible

poles { stabilizes for all su ciently large m " N .

By de nition, this set is then called the set of (possible) Complex Dimensions of the Weierstrass

IFD .

We expect this \stabilization phenomenon" to be common to a large class of tubular IFDs associ-
ated with complicated fractals.

Observe that also in light of Theorem[4.6, on pagd 82, we could equivalenty de ne the set of
(possible) Complex Dimensions of the present (tubular) Weierstrass IFD as the set of (possible) poles
of the global e ective tube zeta function Xew (or, equivalently, of the global e ective distance zeta
function © ) of the Weierstrass IFD.

Theorem 4.8 (Complex Dimensions of the Weierstrass IFD ).
The possible Complex Dimensions of the Weierstrass IFD{N are all simple, and given as follows:

Dw k 2 Dy i'p ; withk" N; " Z;

1 2k i"p ; withk"™ N; " Z;along with 2 andO;

2 . . :
where p nN- 'S the oscillatory period of the Weierstrass IFD.
b
Furthermore, the one-periodic functions (with respect to the variableiny, " 1, see Property, on
page| 45), respectively associated to the valuésy, k 2 Dy , k " N, are nonconstant. (See also
Subsection| 4.2.2, on pagg 90 below for the exceptional cases.)

In addition, all of the Fourier coe cients of the latter periodic functions are nonzero, which implies
that there are in nitely many Complex Dimensions that are nonreal, including all of those with maxi-
mal real part Dy, which are the principal Complex Dimensions, in the terminology of| [LRZ17k], and
therefore give rise to geometric oscillations (or vibrations) with the largest amplitude, in the fractal tube
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formula obtained in Theorem[4.5, on pagé¢ 7|8 above and reformulated in Theorgm 4.9, on pggg 90 below.

Finally, foreach k ®" Nand ™ " Z,Dyw k 2 Dy i"p,1 i p, 2andO are all simple
Complex Dimensions of the Weierstrass IFD; i.e., they are simple poles of then™ tube (or, equiva-
lently, of the distance) zeta functions, for allm " N su ciently large.

Consequently, the Weierstrass IFD {/v is fractal, in the sense of the theory of Complex Dimen-

sions developed in[[LvF0D],[[LvFOB], [[LvF13], [LRZ17b] and [Lap19].

We refer to Subsectior] 4.2.2, on pagg 90, for a discussion of the exceptional cases, and to Subsec-
tion #.2.3} on page[92 for a possible interpretation of our results.

Proof. The proof of this theorem is included in the latter part of the proof of Theorem([4.6, on pagé¢ 82.
O]

Remark 4.9. The justi cation of this remark is also included in the latter part of proof of Theorem 4.6
given on page[ 8R. Note, however, that we are giving here more precise statements and informations
than in the aforementioned proof.

i. Let m " N be arbitrary, but su ciently large, so that both Theorem 4{6 (page and Corol-
Iary (page) are valid. Let! be a potential pole (hecessary simple) o { or, equivalently,
Wi (since Dy $ 2); ! is a possible Complex Dimension of the Welerstrass IFD, as given in

Theorem -, on page 88.

Say, for notational simplicity, that

' !y Dw k 2 Dw i p; (R 110)
for somek " N and ~ " Z. Then, with the notation and the latter part of Theorem 4.6 given on
page[82, we have that

res )ﬁl; Wm;! Kk s”m-« s g )ﬁl; W S fk;‘;RectangIes (R 111)
and
res r?u Wm;! k; S”m-‘ s g r$1; W, O 2 ' fiiRectangles 2 !y res )ﬁ; Wm;! k' s
(R112)

where the last equality follows from the functional equation connecting ,?}1; Wi and >ﬁ,; Wi (much as

in [LRZ170]), and as stated in relation R[109) in Corollary 4.7, on page 8f. Therefore, we see (much
as in the end of the proof of Theoren{ 4.5, pagg 78), that ! is a pole (necessarily a simple pole
of r?]; wy o O equivalently, of >§]; Wm) {i.e., ! is a simple Complex Dimension of the Weierstrass

IFD {if and only if fy:;Rrectangles j O, Which, according to Theoren{4.5, on pagg 78, is always the case.

Furthermore, in this case, the residue of>§1; w,, (respectively, r?]; w,,) at ! is given by rela-
tion (R[117) (resp., by relation (R[113) just above.

ii. Moreover, also in agreement with the higher-dimensional theory developed in_[LR17h] (see
also [LRZ17&] and [LRZ18], for example), the Complex Dimensions of the Weierstrass IFD can be
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. . . h . . . h
de ned indi erently via the m" local e ective tube zeta functions X, w,, Ofviathe m" local e ec-
tive distance zeta functions ﬁ; w,, o forallm ™ N suciently large.

ii . Parts i. and ii. of this remark are valid both for the potential (or possible) Complex Dimensions
and for the exact Complex Dimensions of the Weierstrass IFD.

Theorem 4.9 (Condensed Fractal Tube Formula for The Weierstrass IFD (Corollary of

Theorem 4.5, jon page 78 ).

aum m

m Of the"-neighborhoodD ",

n

Givenm " N su ciently large, the tubular e ective volume % ,
of the Weierstrass IFD, can be expressed in the following manner:

™

nm w2 DW k 2 DW
Ym: W, 'm Gkpyw NN, wmr

0 m

=

wd (R113)

W2 1 2k 1 )
Gk1 Inn, = —
m

~

0

where, for any xed (but arbitrary) k " N, Gyp,, and Gy; denote, respectively, continuous one-

periodic functions (with respect to the variablelny, " 1, see Property, on pag@S) associated to
all of the Complex Dimensions of real partsDyy, k 2 Dy and1 2k. Furthermore, all of the
Fourier coe cients of the periodic functions Gy.p,, (for any k " N) and Gg; are nonzero. In partic-
ular, these periodic functions are not constant. Moreover, the functionsGq.p,, and Gog,; are bounded
away from zero and in nity.

This amounts to an expression of the form

um —

"2 1
\Xm; W m = G Ian n; T, (R 114)
real part of a Complex Dimension
Sr 2:0x

where, for any real part of a Complex Dimension, with S r 2;0x, G denotes a continuous and
one-periodic function.

4.2.2 Exceptional Cases

One might naturally question the following exceptional cases:

i. Dw ko 2 Dw 0, for somekgy " N, which occurs when

2k0 . In 2k0 . ﬁ
1 kO’ .e., 2 In Np 1 ko' or Nb ’

Dw

According to the terminology of [LRZ17kh], Chapter 4, or [LvFO6], Chapter 12, this rst case
corresponds to the situation when the Weierstrass Curve idractal in dimension 0. We then
happen to have a discrete line of Complex Dimensions with real part O,

Lo rO i“p; " Zx ri p; " Zx;
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which is obtained by merger with the discrete line ofactual Complex Dimensions,

l
.

Dw . Ko 2. Dw . d.p. " Zg; ““““““““““
|‘%oo?oood%oooooooo"ooooooooooooooooooooc
ere ¥

LDW Ko

Note that the actual Complex Dimensions arenot double(i.e., of multiplicity two). This directly
comes from the expression obtained in relationR[93) of Theorem[4.6, on pagé §2 for the e ective
fractal tube zeta function >§1; - which becomes here, for alin su ciently large, and for any
complex numbers,

wsS i p
)ﬁ; W m S ‘Tsz;‘o;ReCtangles m
ws Dw k2 Dw i'p
"'Z;kTN;kjkofk;\; Rectangles S DW k 2 |:)W i\p
ws 2k 1 i p

fk;‘; wedges < 9L 1 - n
N s 2k 1 i'p

ws 1 i p n S nws 2

p S 4s 2

f‘;k; triangles, parallelograms s 1
Wz N

(R 115)

where, as was already seen in Theorefn 4.5, on pafe| 78 the notatiéR:; rectangles fk;;wedges'
with 1 ( ~ (3, and fy.; triangles, parallelograms » F€Spectively account for the coe cients associated
to the sums corresponding to the contribution of the rectangles, wedges, triangles and parallel-
ograms.

This could also be deduced from the fact if the poles 0 were double, we would have terms
involving In ", in the expression of>ﬁ; w,,+ Decause, for any integer " Z and any complex
number s,

sip In"}

WS i'p e .

see[[LvF06], Subsection 6.1.1, pages 180{182.

The novelty of this case is that we have Complex Dimensions above O.

Dw ki 2 Dw 1, for somek; " N, which occurs when

1 2k, . In 1 2kg . T
Tk i.e., NN Tk, or, equivalently, Ny :

Dw

Since, here, N pj 1, it follows that k;j O.

According to the terminology mentioned in i., this second case corresponds to the situation
when the Weierstrass Curve isfractal in dimension 1. We then happen to have a discrete line
of Complex Dimensions with real part 1,

L, rl i"p;> " Zx;

which is obtained by merger with the discrete line ofactual Complex Dimensions,
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l
S

we - Kt 2. Dw . dLpicl Zg); \\\\\\\\\\\\\\\\\\\\
L Vbocii?]oooo"boooooooo HOOOOOOOOOOOOOOOOOOONC
ere ¥

o

LDW K1

o

Note again that the actual Complex Dimensions arenot double As above, this directly comes
from the expression obtained in relation (}[93) of Theorem[4.6, on pag¢ §2 for the fractal tube
zeta function >§1; w., » Which becomes here, for any complex numbes,

wsS 1 |‘p

. S = f S f . Q=
)ﬁ, Wm . k;" 1;Rectangles ;O;wedges?2 s 1 i p

wS Dw k 2 Dy I\p

f k;"; Rectangles

" Zik" N;Kkj kg s Dw k2 Pw P
wS 2k 1 i'p
= fr- —
) k,,wedgeszS 2k 1 i p
Z:;k" N
ws 1 i p us 3 2k i'p
_ foo - . —
" kiiwedgesl g~ 7 P kiwedges3 T 3T o | p
Z;k" N
ws 1i'p ws ns 2

f k;™; triangles, parallelograms

s 1 i'p S 452:

"Z:;k" N

(R 116)
What is new in this case is that we are sure that every possible Complex Dimension ohy, i.e.,
every complex number 1 i” p,with © " Z,is anactual Complex Dimension of the Weierstrass

Curve, because the same is true for each point dfp, i, -

4.2.3 Possible Interpretation

Figure [19, on pagd 9B, giveshe distribution of Complex Dimensions In order to understand their
deeper meaning, one may consider an horizontalp line, of equationy " p, where™ " Z is arbitrary
(but xed). Such a line corresponds to the “™ order vibration mode, but which can also be interpreted
as coming from:

i. The vertical line x 0, or, in other words, oscillations coming frompoints: indeed, the prefractal
graph ,, is, at rst, constituted of points.

ii. The vertical line x 1, which this time correspond to oscillations coming fromlines (or, rather,
line segments): prefractal as itis, , is constituted of lines, in an Euclidean space of dimension
two.

iii . The vertical line x Dy, which, this time, corresponds to oscillations coming from the whole
prefractal y  itself.
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Figure 19: The Complex Dimensions of the Weierstrass IFD. The nonzero Complex
Dimensions are periodically distributed (with the same period p N
b

tory period of the Weierstrass IFD) along countably many vertical lines, with abscis-

sae Dy k 2 Dw and 1 2k, where k" N is arbitrary. In addition, 0 and 2 are
possible Complex Dimensions of the Weierstrass IFD.

For the sake of representation, there is a di erent color for each vertical line, and a spe-

ci c symbol is used to plot the imaginary parts of the Complex Dimensions associated

with a given vertical line. (See also Subsection 4.2.7, on|page 90 fof the exceptional
cases.)

the oscilla-

iv. The vertical inesx Dy k 2 Dy ,with kin N N rOx

For k ( m, it corresponds to oscillations coming from the prefractal graphs ,_ , , a phenomenon
which can be understood via the following consideration:

Switching fromthe m k th prefractal graph, to the m™ one, 0% k ( m, is done by applyingk
iterates of the T; maps,

le:::jk le h Tjk . (R 117)
In terms of the vertical distance between consecutive vertices, this amounts to a multiplication
of the amplitudes by the factor k N, k2 Dw , associated to a sum of cosine expressions.

It thus provides an interesting interpretation of the real parts
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Dw k 2 Dw ; forO$k( m; (R 118)

insofar as them™ prefractal graph bears { or, in a sensefeels{ the oscillations of its predecessors.
There remains the linesx Dw k 2 Dy , with k %m.

In order to interpret them, one could think in the same way, but, without associated graphs,

how? Except if they could exist, in some way. This will be the purpose of a later extension of
the prefractal sequence , ... @ priori indexed by nonnegative integers, to negative ones,
via the new concept ofantefractals. However, this point will not be discussed in the present
paper.

4.2.4 Analogy with the General Theory of Complex Dimensions

Our results in Theorem[4.5, on pagd 78 and Theorerh 4.9, on page]90 above, on the fractal tube
formula for the Weierstrass IFD are similar to the general (exact, pointwise) fractal tube formulas
(via either tube or distance zeta functions) obtained in the higher-dimensional theory of Complex
Dimensions in [LRZ17h] (Chapter 5), or in [LRZ18], and extending the fractal tube formulas for frac-
tal strings obtained in [LvFOQO] and [LvFQ06] (Chapter 8). Compare, €e.g., in the case of simple poles
and under the hypothesis of strong languidity (a strong form of polynomial growth condition) of ei-
ther >§1; wy OF ,?q; w,, ILRZ17b], Theorem 5.1.16, page 427, or Theorem 5.3.17, page 449, respectively.

There is a notable di erence, however, due to the great complexity of the Weierstrass Curve , and

of the associated IFD {/v Namely, the fractal tube formula is only given for the volume Vp,, , - "

of the m™ prefractal approximation \_, and evaluated at the m™" cohomology in nitesimal ", for

all suciently large m " N.

Indeed, according to the aforementioned results from [LRZ17b] and [LRZ18], we would have, in
particular, that the tubular volume is given as follows:

Vin: W "m = res )ﬁm; Wm;! ne ! = ; ] : o (R 119)

where, in each of these two sums! ranges through all of the Complex Dimensions of {N (i.e., the

poles of eitherX;,. , or, equivalently, . , ).

Recall from equation (RE3){ 1 in Remark[4.3, on pagq 7R above that

res ., ! 2 1 res X, 1o (R 120)

In order to obtain the fractal tube formula in Theorem on page[78 (and hence also, in Theo-
rem([4.9, on pagd 90), however, we did not need to appeal to the aforementioned results of the general
theory, by rst calculating >§1; wp OF ,?1; w,, (using their basic scaling and symmetry properties de-
scribed in [LRZ17b], along with the geometric properties of \, described in Section 2 above) and
then, verifying that the appropriate notion of strong languidity is satis ed. This could have been
done, but was unnecessary in our present situation.

Instead, as was explained earlier, we rst directly calculated the tubular volume Vi, , "
in Theorem [4.5, on pagg 7B, and then deduced from the resulting fractal tube formula, via Mellin
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transformation, an explicit expression for the m™ local e ective tube zeta function >ﬁ; ~{and

further, for the m™ local e ective distance zeta function ﬁ, w,,» via the functional equatlon re-
called in relation § of Remark[4.3, on pagd 72. Finally, as would have been the case if we had
adopted the rst method outlined above, we deduced (in Theoren| 4.8, on pagf 88) the values of the
(possible) Complex Dimensions of the Weierstrass IFD {/v as the poles ofX;, w,, (or, equivalently,

of m . .sinceDy $ 2).

Remark 4.10 (About the Oscillatory Period ).

, . 2 . . .
The value of the oscillatory period p —-— (obtained in Sections|3 and| 4) can be understood

InN
as follows: it is easy to check that the fractal string Lij consisting of the sequence of positive
1 e . . 2ik
lenghsL jn e N — has for set of (principal) Complex Dimensionsv——; k " Z].
. . S 1
(Indeed, the associated geometric zeta function is given by, .~ s ——z,foralls" C.)

1

Accordingly, they are periodically distributed along a single vertical line, with oscillatory pe-

riod p, which is the natural oscillatory period of the Weierstrass IFD. Exactly the same

nm 1 1

m m"N Nb 1 Nm .

ciated with the elementary horizontal lengths (see parti. of De nition 2.4, on page[15) or, equwalently

with the cohomological in nitesimal (see De nition on page ) It has the same Complex Di-

mensions and oscillatory period asL,, just above. (Indeed, its geometric zeta function is given
1

1 1
by Lc S Nb 151 s Nb 1S Lintr

In Np

comment can be made about the ordinary fractalLgy Lc asso-

s,foralls" C)

4.3 Minkowski Dimension, Minkowski Nondegeneracy, and Average Minkowski
Content

We next obtain new and re ned results concerning the geometry { and, in particular, the Minkowski
nondegeneracy, non Minkowski measurability, as well as the average Minkowski content of the Weier-
strass IFD. For this purpose, and for the benet of the reader who may not be familiar with these
notions, we rst state several de nitions, which are now suitably adapted to our current setting and
to the notions of e ective tubular volumes.

In the spirit of the remainder of this paper, the de nition of (upper, lower) Mmkowskl contents and
dimensions, for example, will be given in terms of the cohomology in nitesimal ", =, viewed as a
sequence of positive scales tending to zero, a8 ™. So will the notions of Mlnkowski nondegeneracy

and Minkowski measurability, as well as of e ective average Minkowski content.

De nition 4.3  (Lower and Upper r-Dimensional Minkowski Contents { Lower and Upper
Minkowski Dimensions, and Minkowski Dimension of an IFD ).

Let F' be an arbitrary iterated fractal drum of R?: see De nition @ on pag. More precisely,
we hereafter consider the sequence of ordered pair§ ;"?;m me N where, for eachm " N, F, is

the m™ prefractal approximation to a fractal set F, and Where"E‘;m is the associatedm” cohomology
in nitesimal.
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Then, givenr ) 0,m " N, and the "g.,,{neighborhood (or tubular neighborhood) of F,,

uMm

De. "Fn tM " R%:d M;Fp ( "Fomz; (R 121)

of tubular volume Vg "F.m , We de ne, much as in [LRZ17h], the lower r-dimensional Minkowski
content (resp., the upper r-dimensional Minkowski content) of the IFD as

Tl nm

Ve, “F: Vin .

iFm 'm r | . m;Fn F:m
resp., M © F limsu

um 2 p m TMp n2r

F:m

F' o liminf (R 122)
Recall that lim, "F.m O; see De nition , on pag, along with De nition [3.1, on pag,

for the special case of the Weierstrass IFD, for which we also have (in the present notation),

anm nm .
Vm;Fm F:m vm;Fm F:m

forall m " N.

Note that, by de nition, we have that

| T |

(M " F' (™, (R 123)

We then de ne the lower Minkowski dimension (resp., the upper Minkowski dimension) of the IFD
by

o(M." F

D F inftr) O;M." F' $ ™z (R 124)

r |

resp,D F' inftr) o;M ' F' $™z : (R 125)

As usual, by de nition, the Minkowski dimension Dg1 D F' of the IFD exists if

DF DF (R 126)
in which case, of course, we have that

D DF' DF DF' (R 127)
De nition 4.4  (Minkowski Nondegeneracy and Minkowski Measurability of an IFD ).

Let F' be an arbitrary IFD. Assume that its Minkowski dimension Dy exists, in the sense of
De nition 4.3 on page [95 just above.

Then, with the same notation as in De nition the IFD F' is said to be Minkowski nondegen-
erate if the lower and upper Minkowski contents,

um um

V- : Vin: :
D | L m; F F;m :D | . m;F F;m
M. F' F liminf —"——— and M "F' F limsup ————
m ™ nm 2 Dpi m ™ .m 2 Dpi
F;m F;m

are respectively positive and nite. Recall that the inequalities in (R[123) always hold.

Finally, the IFD F' is said to be Minkowski measurableif it is Minkowski nondegenerate and
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M.Pe D oM PR RN (R 128)
i.e., if the following limit exists in 0; ™ (and necessarily equals this common value, denoted
by M P F! oy
. Vm;Fm IlrI?;m .
lim ————

m ™ nm 2 DFI
F;m

D |

MO F (R 129)

Then, M Der E!' s called the Minkowski content of the IFD.

Remark 4.11 As was mentioned in De nition #.4] on page[96 above, the IFD is said to beMinkowski
nondegenerateif
osM.PF El gm P El g™ (R 130)
Equivalently, the IFD is Minkowski nondegenerate if there existsd) 0 such that,

sm*E (R 131)

which implies that the Minkowski dimension Dg1 of the IFD exists and is equal tod.

osM.% F'

De nition 4.5  (Average Lower and Upper Minkowski Contents of an IFD ).

We_hereafter use the same notation as in De nition[4.3, on pag¢ 95, and in De nition[ 4.4, on
page just above, where=' denotes an arbitrary iterated fractal drum of R

Then, by analogy with what can be found in [LRZ17h], De nition 2.4.1, on page 178, we de ne,
forall m " N su ciently large, the m™ e ective average lower-dimensional Minkowski content(resp.,
the m" e ective average upper-dimensional Minkowski conten} of F, as

- 1 Fm
M .Pre o iminf = E t®™ W todt (R 132)
“Dme . 1 "Fim Dm 3 .
resp., ¥ Fm lim sup nT E1 t Ynp, tdt (R 133)
r ™ 1

where %y, is the natural volume extension of F' (or m™ e ective tubular volume of Fm; see No-
tation ??, on page??, along with De nition 4.1,Jon page 9), and whereD, denotes the abscissa of
convergence of them™ local e ective tube zeta function >§1;Fm :

In the case when both of these values coincide, their common value, denoted 3 Dmie Fm ,is
called them™ local e ective average Minkowski contentof F,, which is then said to exist. Accordingly,

nm

. . 1 Fm
MO o lim o ET 0T T, ot (R134)
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We can now state several new geometric consequences of our above results, especially, Thegrein 4.5,

on page[ 78 and Theoren 4]9, on pade PO.

Theorem 4.10 (Lower, Upper and Average D -dimensional Minkowski Contents of the
Weierstrass IFD ).

For any m " N, let us denote byD,, the abscissa of convergence of then™ local e ective
tube zeta function >ﬁ,;w. Then, the Minkowski dimension of the Weierstrass IFD {/v exists and

. z 1 : . .
equalsD,, Dy, foranysucientlylarge m " N ,whereDy 2 Iny, — " 1;2 isthe Minkowski

dimension of the Weierstrass Curve; see Theorerh 4|6, on pafe|82 above. Moreover, the lower and up-
per Dy -dimensional Minkowski contents of the Weierstrass IFD y, respectively

D | D | “:D | “:D |
M.—m wW M. W w and M m w M w W

take strictly positive and nite values; more speci cally, they are such that

C ‘.
RQ(I:\tlal:gIes $M.O" {/V $M O {N ( Crectangles $ ™ ; (R 135)

where Crectangles denotes the strictly positive and nite constant introduced in Property[4.1, on pagé 788

0%

Recall that Crectangles May depend onm " N , but is uniformly bounded away from 0 and in nity
(with bounds independent ofm " N large enough). Hence, the same is true of

D | D | “:D | “:D |
M.-m W M. W W andM " W M oW W s

whereD,, Dy, for all suciently large m " N

In addition, the values of M « P {N and M Pw {/v are respectively equal to the minimum
and maximum value of the one-periodic functionGp,,  Gop,, introduced in Theorem([4.9, on pagé¢ 9P,
associated toD, in the expression of the fractal tube formula given in the same theorem (recall that
the periodicity is with respect to the variablelny, " 1, see Property, on pag@S).

Finally, for all su ciently large m " N, the m™ local e ective average Minkowski content exists
and is given by the mean value of the one-periodic functio®p,, Gp,,, as well as by the residues

of X, . ats Dy Dy:

_ 1
m °"® . E Gp, x dx res . ., :Dn (R 136)
0 m

Dnse

Hence, M is nontrivial; in fact,

O$M“Dm {N $ M Dmse " $M“;Dm {N $ ™
More speci cally, still for all m large enough and thus, withDy, Dy, the m™ local e ective
average Minkowski contenti¥ Dmie may depend onm " N , but is uniformly bounded away
from 0 and ™ (with bounds independent ofm " N large enough).

Proof. In light of Theorem .5 on page[78 (and of De nition [4.3, on pagq 9p), one has
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“:D | : — wk 2 D i
M m W Ilm SUp \ - fk;\; Rectangles W P
m ™ "t Z:k" N
uD — wli'p w12k i'p w3 2k i p
W - tfk;‘; wedges ;1 fk;‘; wedges ;2 fk;‘; wedges ;3 z
""Zk"N
2
wDw w i p Dw Dw
- fk;\; triangles, parallelograms TI
Tt Zik"N
: — w it p
lim sup = fm; 0;Rectangles
mo™ oL
Ny, 1 1 i rxx
limsup C = —" " P limsup C N,
m Wp Rectangles Nb L In Nb 2i « p Rectangles b
(R 137)
In the same way,
Dw | Lo XX,
M« w I)'(m inf Crectangles Np - (R 138)

Thanks to Property on page[ 45, and since @ rxx $ 1, whererxx denotes the fractional part
of x " R, we have that

am iTp
rxx Np 1 _ m

Np :ZIan 2i° !

nm

with x NN, "mo s (R 139)

Np

This yields Ni $ N, " ( 1, and thus, in light of Theorem , on pag, and withD,, Dy
b

given as in the theorem, we have that, for allm " N large enough,

C | "
Rectangles EM . Dm {N $ M Dm w  ( Crectangles : (R 140)

Np

The constant Crectangles e€INg strictly positive and nite (see Property on page ), this ac-

counts for a strictly positive (resp., nite) value of the lower (resp., upper) Minkowski content M -« Dm {N
(resp., M Pm ).

Also, still for all m " N su ciently large, the one-periodic function (with respect to the vari-
n 1 [l
able Iny, " ~, see Property, on pagBS),

N 1 wm it p

b

Gp, Gopy X ( Np CRectangles = nNe 2i° N: 27 Nbrxx; (R 141)
"z

associated to the valueDyy D, is nonconstant, because it has nonzeran™ Fourier coe cients,
with mj O, as can be seen from the fractal tube formula, and as stated in Theorein 4.9, on pape] 90.
(Note that the function Gp,, Gp, may depend onm su ciently large.)

The last part of the theorem, regarding them™ local e ective average Minkowski contentM Dm:e W,
of the Weierstrass IFD (as introduced in De nition on page@), follows at once from the method
of proof of [LRZ17b], Theorem 2.3.25, on page 157. Note that the fact that Dme w,, Is uniformly
bounded away from 0 and in nity (in m " N large enough) follows from relation R[11]) on pag.
Indeed, recall from Property on pag that the coe cients f . rectangles @re uniformly bounded
away from 0 and in nity (with bounds independent of m " N large enough).

O
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Corollary 4.11  ((of Theorem 4[10) Minkowski Dimension { Minkowski Nondegeneracy ).

1
The Weierstrass IFD is Minkowski nondegenerate. Furthermore, the numbeDy 2 Iny, —isa

simple Complex Dimension of the IFD, and it coincides with the Minkowski Dimension of yy, which
must also exist. Moreover, the Weierstrass IFD is not Minkowski measurable.

Proof. In light of Theorem §.10, on page] 98, the nondegeneracy directly follows from the de nition.
The statement concerningD,, Dy (forall m " N su ciently large) then follows from De nition 4 /4, |
on page[ 96, in particular.

Furthermore, the Weierstrass IFD is not Minkowski measurable; i.e., here,

D | “:D |
"ow SM T W

M .
This last statement also follows from Theorem[4.1ID, on pagé 98, because the one{periodic func-
tion Gp,, Gp, is nonconstant, and so, by the method of proof of the results inl [LRZ17hk], Theo-
rem 2.3.25, on page 157,

Do - “Dun :
M W min Gp,, $ maxGp,, M Pmie (R 142)

th

Moreover, since, for allm " N suciently large, the m™ local e ective distance zeta func-
tion ﬁ,; w,, associated to the Weierstrass IFD can clearly be meromorphically extended to a connected
neighborhood ofs Dy in the Complex Plane, Dy is a simple pole of w,, - As was pointed out
at the end of Theoremm, given on pag@& in agreement with the general theory in [LR7b] (see
Theorem 2.3.25, page 157).

O

Remark 4.12 Let us call the global Iower (resp upper) e ective average Minkowski content of the
Weierstrass IFD {/v and denote byI‘VI {/v (resp., M * Dwie w ) the following lower (resp.,

upper) limit of the corresponding m" local e ective average Minkowski contents, withD,, Dy, for

alm" N suciently large:
-2 W limin @00y (R 143)
«Dwie | . Dmie
resp., {1 w  limsupM W,
m ™

Then, it follows from Theorem [4.10, on pagd 98, that the above quantities are well de ned and
bouded away from 0 and™. Furthermore, they coincide; so that the global e ective average Minkowski
content of the Weierstrass IFD {/v denoted by M Dw e {/v ), exists.

In light of relation ( R[135), and sinceD, Dy, forall m " N~ su ciently large, we obtain that

“D
v {N ( CRectangles $™: (R 144)

CRecta\ngles

Dw
Ng $M

0% (@ PwE (M

In addition, since D, Dy, and, by relation (R[138),
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res m w.Dw

Dw ;e . .
M Wn  Tes ., iDw 7 Dy : (R 145)
forall m " N su ciently large, as well as (see Theorem[4.6, on pagé 82, and its proof),
res X ;Dw im_ res X w.iDw i (R 146)
which follows from the local uniform convergence (asn ™) on C of >ﬁ; w,, (resp., r?]; w,) {0 XeW

(resp., to ©,).

By combining relation (R[I45) and relation (R[I48), we see thatd °"*® |, exists and satis es

e .
res W,DW_

2 Dy
Finally, in light of relation ( R[144), we deduce from relation R[147) that

mPwe L n!imTMM“;Dw;e w, res X Dy (R 147)

1. . D I Dwie | “D | ;
0% N_b ||nqq|DMf CRectangles( M. =% W ( B © W ( M v W ( I|mSUpCRecta\ngles$ ™!
m ™
(R 148)
In conclusion, the global e ective average Minkowski content M Dw e {/v of the Weierstrass

IFD {N exists, is positive and nite, satis es the estimates in relation (R), and is expressed via
relation (R) in terms of the residues ats Dy of the global e ective tube and distance zeta

functions of .

Accordingly, in particular, the relation between the m™ local e ective average Minkowski content
and the residues ats Dy of the m™ local e ective tube and distance zeta functions, forallm " N
su ciently large (see relation ( R[138), on page[ 9B) remains precisely the same between their global
counterparts.

4.4 The Noninteger Case

An interesting question is the generalization of our previous results tathe noninteger case i.e., to
the case when the Weierstrass functiolV is de ned, for any real number x, by

Wx = "cos2b"x ; (R 149)
n 0
where the real numberb does not belong to the set of natural integers.

We plan to provide the details in a later work, but for now limit ourselves to a few comments.

From the geometric point of view, one cannot handle things in the same way. For instance, one
cannot resort to a nite IFS, and the function, apart from its parity, has no periodicity property.

Yet, the associated graph being the attractor of the in nite set of maps, Ty rT;x - z, such that,
for any integeri and Xx;y in R?,

(R 150)
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it is natural to consider the associatedin nite IFS (IIFS), Ty . As a consequence, the resulting pre-
fractal graphs are in nite ones.

The local Helder and reverse{Helder continuity properties of the Weierstrass function then enable
us to resort to estimates that are equivalent to the ones obtained in Corollanyf 2.1, on page 24, and
Corollary P.13, on page[ 2§, and, consequently, to the resulting ones about the elementary heights

obtained in Corollary P.16, on pagd 2.

As for the e ective tubular neighborhood, due to the polygonal approximations induced by the
prefractals, it is still obtained by means of rectangles and wedges.

In the integer case, extra terms coming from overlapping rectangles vanished, thanks to the sym-

metry with respect to the vertical line x 5, @S described in Proposition, on pagE!l&?. In the
non-integer case, one simply replaces this symmetry with the one with respect to the vertical axis 0.

In this light, it is expected that a similar method, suitably adapted, would lead to a fractal tube
formula of the same type as the one obtained in Theorerh 4]5, on pade |78, where the powers of the
small parameter ", would be, respectively, and as previously,

w2 Dw k2Dw i'p . W3i'p . wl2ki'p . W52ki'p . w2ip . w2 . 4. (R 151)
which would yield the same results concerning the possible Complex Dimensions, along with the upper
and lower, as well as the average, Minkowski contents of the Weierstrass Curve.

As in the integer case, the terms invoIving"2 Pw k2 Dw TP come from the contribution of the
rectangles. The one{periodic functions (with respect to the variable In," ! this time), respectively
associated to the valuesDyy k 2 Dy , k" N, are thus nonconstant, with all of their Fourier
coe cients being nonzero. Hence, as in Theorenj 418, on pade B8, for eagh” N and ™ " Z,

Dw k 2 Dy i” p, are all simple Complex Dimensions of the Weierstrass Curve; i.e., they are
simple poles of the tube (or, equivalently, of the distance) zeta function.

We also mention that we could deal with the case b $ 1, exactly in the same manner, and with
the same conclusions. Actually, it is noteworthy that, in the present paper, all of our results remain
valid when N p$ 1, whereb Ny is an integer greater than or equal to two. Observe that in the latter
case, the Weierstrass Curve  is of class C', but is still fractal, because it has nonreal Complex
Dimensions (in fact, in nitely many of them).

5 Concluding Comments

In the light of our results, the box dimension Dy, stands as a simple pole of the tube and distance
zeta functions associated to the Weierstrass IFD. It is also the abscissa of holomorphic continuation
of those functions, which therefore cannot be extended holomorphically to the left oDy,. Accord-
ing to [LRZ17h], part c. of Theorem 2.1.11, page 57, and the last statement of Theorem 2.2.11,
page 121, this additional result follows from the fact that, for all m " N su ciently large, D Dw

exists, M « OV {/v %0 and Dy $ 2. It can also be deduced from TheorenHS, on pa 8, or else

from Theorem[4.§, on pagd 88.

A natural question which arises is wether the Complex Dimensions of the considered fractal { in
our case, the Weierstrass Curve { are the same as those of the prefractal approximations. In[DL2Bb],
by means of the exact sequence of the local e ective fractal zeta functions associated with the sequence
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of polygonal neighborhoods which converge to the Curve, we prove that the limit (or global) fractal
zeta function { the one associated with the limit fractal object { has the same poles as the fractal
zeta function at each step of the prefractal approximation, and, hence, that the Complex Dimensions
of the fractal are the same as the Complex Dimensions of each prefractal approximation. As is shown
in [DL23b], the determination of the explicit Complex Dimensions of the IFD is a compulsory step in
order to obtain the Complex Dimensions of the limit fractal Curve.

Now, as was alluded to in the Introduction, the determination of the possible Complex Dimensions
of a fractal object, being deeply connected with its intrinsic vibrational properties, is thus directly as-
sociated to its cohomological properties: what are the topological invariants of the Weierstrass Curve?
This is the question we try to answer in the second part of our study, [[DL24d], where we determine
the fractal cohomology of the Weierstrass Curve.

Behind the fractal series expansion of the Weierstrass function, another expansion, indexed by
the Complex Dimensions obtained in our fractal tube formulas (see Theorenm) 4|5, on pade |78 and
Theprem , on pag above), naturally arises. Intuitively, one understands that the terms of the
expansion come from the cohomology groups associated to the prefractal sequence of nite graphs
that converges towards the Curve. This is all the more interesting, as those groups possess the same
symmetries as the Curve, which means that a speci ¢ di erentiation could be achieved on this, how-
ever, everywhere singular object; see [DL24a] and [DL24d].

As was mentioned in Subsection 44, on pade 1D1, we also intend, in a future work, to extend our
results to the general case, i.e., when the Weierstrass functiow is de ned, for any real number x, by

Wx = "cos2b"x
n O
where the real numberb does not belong to the set of natural integers. This goes along with a gen-
eralization of the results of the present paper to a large class of Weierstrass-like functions (see the
paper [Dav19]), including the Takagi function, the Knopp functions and the Koch parametrized Curve;
see[[DL23a].

The reader may wonder where there is an intrinsic way of obtaining the global fractal zeta functions
introduced and studied in Theorem[4.6 and Corollary[4.7 (on page$ 82 anf 87, respectively), that
would be more in keeping with the general theory of Complex Dimensions (as developed in [LA 7a{
[LRZ17¢] and [LRZ18]) and its natural extensions (e.g., in [LW23]). This question is addressed by the
authors in [DL23b], by using the polyhedral measure introduced in[[DL24ct].
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