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Abstract

We establish fractal tube formulae for the sequence of prefractal graphs which converge to the
Weierstrass Curve, called Weierstrass Iterated Fractal Drums (in short, Weierstrass IFDs), and
which give, for a suitable (and geometrically meaningful) sequence of values of the parameter ε
tending to zero, explicit expressions for the volume of the associated ε-neighborhoods. For this
purpose, we prove new geometric properties of the Curve and of the associated function, in relation
with its local Hölder and reverse Hölder continuity, with explicit estimates that had not been ob-
tained before. We also show that the Codimension 2 −DW is the optimal Hölder exponent for the
Weierstrass function W, from which it follows that, as is well known, W is nowhere differentiable.
Then, the formula, that yields the expression of the ε-neighborhood, consists of a fractal power
series in ε, with underlying exponents the Complex Codimensions of the sequence of prefractal
graphs. This enables us to obtain the associated (local and global, effective) tube and distance
fractal zeta functions, whose poles yield the corresponding set of Complex Dimensions. We prove
that the Complex Dimensions – apart from 0 and −2 – are periodically distributed along countably
many vertical lines, with the same oscillatory period. By considering the lower and upper (effective)

Minkowski contents of the m
th

prefractal approximation to the Weierstrass Curve, which we prove
to be strictly positive, we then show that the Weierstrass IFD is Minkowski nondegenerate, as well
as not Minkowski measurable, but admits a nontrivial average Minkowski content – and that, as
expected, the Minkowski dimension (or box dimension) DW is the Complex Dimension with maxi-
mal real part, and zero imaginary part. An interesting (and likely general) new phenomenon arising
in our investigation is that, for all sufficiently large positive integers m, the Complex Dimensions

of the m
th

prefractal approximation to the Weierstrass Curve are the same and coincide with the
Complex Dimensions of the Weierstrass IFD.

MSC Classification: 11M41, 28A12, 28A75, 28A80.

∗
The research of M. L. L. was supported by the Burton Jones Endowed Chair in Pure Mathematics, as well as by

grants from the U. S. National Science Foundation.

1



Keywords: Weierstrass Curve, prefractal approximations, best Hölder exponent, iterated fractal
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1 Introduction

Among the so-called “pathological objects” that appeared in the XIX
th

century, the Weierstrass
Curve (W-Curve) stands as one of the most fascinating and intriguing ones. At first, it was simply
designed and thought of in order to be continuous everywhere, while being nowhere differentiable.

Given λ ∈ ]0, 1[, and b such that λ b > 1 +
3π

2
, the associated function is defined as the sum of the

uniformly convergent trigonometric series

x ∈ R↦

∞

∑
n=0

λ
n

cos (π bn x) ⋅

The original proof, by K. Weierstrass [Wei75], in the case where b is an odd positive integer, can
also be found in [Tit39] (pages 351-353). It has been completed by the one, now classical, given
by G. H. Hardy [Har16], in the more general case, where b is any real number such that λ b > 1.

As is discussed in [Dav22], the introduction of this function challenged all the existing theories that
went back to André-Marie Ampère, and has led to the emergence of many new functions possessing
the same type of properties.

History then left it aside for a while, before new discovered properties brought it back once again
to the forefront. It happened, in particular, that, in addition to its nowhere differentiability, the func-
tion – and the associated Curve – have self-similarity properties. After the works of A. S. Besicovitch
and H. D. Ursell [BU37], Benôıt Mandelbrot [Man77], [Man83], particularly highlighted the fractal
properties of the Weierstrass Curve. He also conjectured that the Hausdorff dimension of the graph
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is given by DW = 2 +
lnλ

ln b
= 2 − lnb

1

λ
, where Nb = b ∈ N

⋆
= N \ {0}.

Interesting discussions and results in relation to this question may be found in the book of K. Fal-
coner [Fal86]. As for the box dimension, a first series of results have been obtained by J.-L. Kaplan,
J. Mallet-Paret and J. A. Yorke [KMPY84], where the authors show that it is equal to the Lyapunov
dimension of the equivalent attracting torus. Then, the problem was tackled by F. Przytycki and
M. Urbański [PU89], as well as by T.-Y. Hu and K.-S. Lau [HL93].

As for the Hausdorff dimension, the first key result was obtained by F. Ledrappier [Led92], where
the Curve is considered as “the repeller for some expanding self-mapping on [0, 1] ×R”, in the case
where b is an integer, an assumption that is of importance, in so far as a Markov partition for the map-
ping x↦ b x mod 1 is involved. The resulting dynamics thus obeys the Markov property, a fact that
has naturally led the author of [Led92] to using such notions as topological – metric entropies, explored
in his earlier joint work with L. S. Young [LY85]. An interesting and useful connection was therefore
established between Lyapunov exponents and dimensions, in this context. Another result was then
obtained by B. Hunt [Hun98] in 1998 in the case where arbitrary phases are included in each cosinu-
soidal term of the summation. Later, in 2014, K. Barańsky, B. Bárány and J. Romanowska [BBR14]
showed that, for any value of the real number b, there is a threshold value λb belonging to the in-

terval ]1

b
, 1[ such that the Hausdorff dimension is equal to DW , for every b in ]λb, 1[. The results

obtained by W. Shen in [She18] went further than the main result of [BBR14] and, in fact, showed
that the Hausdorff dimension of the Weierstrass Curve is equal to DW , for any (allowed) values of the
parameters. Furthermore, in [Kel17], G. Keller proposed a very original and much simpler proof of
the main results of [BBR14].

In [Dav18], the first author proved – in the case when b = Nb is an integer, and in contrast to the
then existing work – that the Minkowski dimension (or box–counting dimension) of the Weierstrass
Curve could be obtained in a simple way, without requiring any theoretical background in dynamical
systems theory. The proof relies on the use of prefractal approximations; that is, here, a suitable se-
quence of finite graphs which converges towards the Weierstrass Curve. They are obtained by means
of a suitable nonlinear iterated function system (IFS) [Dav19], where, as in the case of the horse-
shoe attractor introduced by Stephen Smale, the nonlinear maps involved are not contractions, but
possess what can be viewed as an equivalent property, since, at each step of the iterative process,
they reduce the values of the two-dimensional Lebesgue measures of a given sequence of rectangles
covering the Curve. As expected, the Weierstrass Curve is invariant with respect to the family of those
maps, which provides us in this context with a result equivalent to the one that can be found in [BD85].

Interestingly, the intrinsic properties of the intriguing maps which constitute the nonlinear IFS
can be directly linked to the computation of the box dimension of the Weierstrass Curve, and to a
new proof of the nowhere differentiability of the Weierstrass function, as shown in [Dav22].

Yet, thus far, no connection has been established with the theory of Complex Dimensions. There-
fore, the following questions arise naturally in this setting: Can one prove that the Minkowski (or
box) dimension of the Weierstrass Curve is, also, a Complex Dimension? Can we also determine all of
the (possible) Complex Dimensions of this Curve, as well as obtain an associated fractal tube formula,
in the form of a fractal power series involving the underlying Complex Dimensions? (See [LRŽ17b],
Problem 6.2.24, page 560.)

The foundations of the theory of Complex Dimensions were laid by M. L. Lapidus and his col-
laborators in [Lap91], [Lap92], [Lap93], [LP93], [LM95], [LvF00], [LP06], [Lap08], [LPW11], [ELMR15],
[LvF06], [LRŽ17a], [LRŽ18], [Lap19], [HL21] and [Lap24], in particular. The theory provides a very
natural and intuitive way to characterize fractal strings or drums, in relation with their intrinsic vi-
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brational properties. Geometrically, in the latter case, this means studying the oscillations of a small
neighborhood of the boundary, i.e., of a tubular neighborhood, where points are located within an
epsilon distance from any edge. As is explained in [Lap19], a fractal may be viewed “as a musical
instrument tuned to play certain notes with frequencies (respectively, amplitudes) essentially equal
to the real parts (respectively, the imaginary parts) of the underlying complex dimensions”. One can
also imagine a “geometric wave propagating through the fractal” [Lap19].

The one-dimensional theory of Complex Dimensions (i.e., that of fractal strings) was developed,
in particular, in the books by the second author and M. van Frankenhuisjen [LvF00], [LvF06], where
general explicit formulas and fractal tube formulas were obtained for fractal strings (see [LvF06],
Chapters 5 and 8). Later, in the book [LRŽ17b] – as well as in a series of accompagnying papers,
including [LRŽ17a], [LRŽ17c] and [LRŽ18] – the higher-dimensional theory of Complex Dimensions
was developed by the second author, G. Radunovic and D. Žubrinić, in the general case of bounded
subsets of Euclidean space R

N
and of relative fractal drums of R

N
, with N ⩾ 1 being an arbitrary

integer. General fractal tube formulas were also obtained in this context and applicable to a large
variety of examples; see [LRŽ17b], Chapter 5, and [LRŽ18]. In short, Complex Dimensions are defined
as the poles of the meromorphic continuation of suitable geometric or fractal zeta functions, associated
with the fractal under study. A geometric object is then said to be fractal if it admits at least one
nonreal Complex Dimension, thereby giving rise to geometric oscillations via the corresponding fractal
tube formula. For example, in agreement with one’s intuition, the Devil’s Staircase (i.e., the graph of
the Cantor–Lebesgue function) is shown to be fractal, in this sense, whereas it is not fractal according
to Benôıt B. Mandelbrot’s definition in [Man83], because its topological and Hausdorff dimensions
coincide.

Under a mild assumption, the (upper) Minkowski dimension of the geometric object under study
is equal to the abscissa of convergence of the geometric, distance or tube, fractal zeta functions, and is
the only Complex Dimension located on the real axis and with maximal real part, therefore giving rise,
via the corresponding fractal tube formula, to geometric, spectral, or dynamical oscillations with the
largest amplitudes. We note that fractal tube formulas express the volume of (small) ε-neighborhoods
of the fractal as a fractal power series, with exponents the underlying Complex Codimensions.

Building on the work on multifractal zeta functions and Complex Dimensions of multifractals
strings developed in [LR09], [LLVR09], [ELMR15], along with the work on Complex Dimensions and
fractal tube formulas in [LvF00], [LvF06]. L. O. R. Olsen [Ols13a], [Ols13b], also obtained a suitable
multifractal analog of fractal tube formulas in this context.

A clear summary of the theory of Complex Dimensions for fractal strings can be found in [Ols01],
while a long survey of the theory of Complex Dimensions, both for fractal strings and in higher di-
mensions, is given in [Lap19].

A question which naturally arises in this context is that of differential operators on such struc-
tures. In the case of fractal strings, as an echo to noncommutative geometry, where spectral triples
are involved, a geometric zeta function provides the set of complex modes, while the dimensions stand
as its nonreal poles. The occurrence of the zeta function can be understood very intuitively, in so far
as it simply represents the trace of the differential operator at a complex order s. Thus, the poles are
nothing but the maximal orders of differentiation. Hence, dimensions.

The notion of a fractal drum extends that of a fractal string to higher-dimensional Euclidean
spaces, and involves an open subset with a fractal boundary. In the Euclidean plane, this boundary is
a curve. The word “drum” calls for vibrations: intuitively, one understands that they occur in a small
neighborhood of the boundary, a tubular neighborhood, the Lebesgue measure of which is associated
to a tube zeta function which, similarly, enables one to obtain the Complex Dimensions, which stand
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as characteristic numbers that account for specific geometric properties of the fractal boundary, here,
the underlying curve.

For the Koch Snowflake Curve, a fractal tube formula was obtained by M. L. Lapidus and E. P. J. Pear-
se in [LP06]. As was pointed out in [LRŽ17b] (see Problem 6.2.24, page 560), the case of the Weier-
strass Curve remained a difficult open problem, which we propose to solve in this paper. It is directly
associated to our previous work [Dav18], in so far as precise estimates are required for the elementary
heights of the sequence of natural prefractal approximations tending towards the Curve. As is often
the case in such a situation, we significantly improve these estimates, which also enable us to obtain
the exact values of the local extrema, and to determine the optimal Hölder exponent of W. Those
extrema – which form a dense subset of the Weierstrass Curve – directly depend on the choice of an
initial set of points, which happen to be here the fixed points of the nonlinear iterated function system
involved in the construction of the Curve; see [Dav19] for further details. Moreover, we introduce the
concept of self-shape similarity, a more general one than the standard notion of self-similarity.

The first novelty of our approach is that we define the Complex Dimensions of the Weierstrass
Curve as the set of the Complex Dimensions of the sequence of m

th
prefractal graphs which converge

to the Curve – Weierstrass Iterated Fractal Drum (in short, Weierstrass IFD), or, equivalently in our

context, of the sequence of m
th

prefractal approximations which converge to the Curve. More specifi-
cally, we show that the set of (possible) Complex Dimensions is independent of the positive integer m
sufficiently large. For this IFD, our tubular neighborhoods are located on both sides of the involved
prefractals, which seems natural, because vibrations may occur on either side of the underlying frac-
tal drum. However, when it comes to computing the associated fractal tube zeta function, classical
methods, as in [LP06] and [LPW11] (see also [LvF00], §10.3, and [LvF06], §12.4), cannot be directly
applied, since our fractal tube formulas can only be obtained for a sequence of characteristic lengths
– the cohomology infinitesimals. More precisely, we only dispose of discrete values (but geometrically
natural) for the fractal tube formulas, instead of an explicit expression of the tube formula on an
interval of the form [0, ε0], where ε0 > 0 stands for a small parameter. This difficulty can be overcome
isofar as the knowledge of the expression for the volume at this discrete value is simply the trace of the
continuous volume function corresponding to an evolving tubular neighborhood. We can thus obtain
fractal tube formulas. Then, we deduce from them the explicit form of the local and global fractal
(tube and distance) zeta functions, along with the Complex Dimensions of the IFD, which are the
same at any step of the process, for all prefractal approximations sufficiently close to the Weierstrass
Curve. Note that the later results obtained in [DL23b] corroborate and further justify our approach.
Indeed, not only the Complex Dimensions of the IFD are the same as the Complex Dimensions of
the fractal involved, as is proved in [DL23b], but, also, the determination of the Complex Dimensions
of the IFD is a compulsory step in order to know the Complex Dimensions of the limiting object –
in our case, the Weierstrass Curve. In the process, we introduce the new notions of effective tubular
neighborhood, as well as of effective local and global fractal zeta functions.

The main results obtained in this paper, where we consider the case b = Nb being an integer, can
be found in the following places:

i. In Corollary 2.13, on page 24, and Theorem 2.14, on page 26, along with Corollary 2.15, on
page 27, where we prove the sharp local Hölder continuity, and a sharp discrete version of re-
verse Hölder continuity, with optimal Hölder exponent, for the Weierstrass function W, equal

to the (Minkowski) Codimension 2 −DW = lnNb

1

λ
. It follows, in particular, that W is nowhere

differentiable – as is well known, although our method of proof is completely different from the
usual ones.

ii. In Theorem 4.5, on page 78 and Theorem 4.9, on page 90, wich yield, for specific (and geo-
metrically significant) values of the positive parameter ε, the expression of the area of the ε-
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neighborhood of each m
th

prefractal graph approximation, for all sufficiently large positive inte-
gers m – a Weierstrass Fractal Tube Formula, which (apart from two terms associated with the
Complex Dimensions 0 and −2) consists of an expansion of the form

∑
α real part of a Complex Dimension

ε
2−α

α (lnNb
(1
ε)) , (⋆)

where, for any real part α of a Complex Dimension, Gα denotes a continuous and one-periodic
function. Furthermore, for α = αmax = DW , the Minkowski dimension of the Curve – i.e., for α
being equal to the maximal real part of the Complex Dimensions of the Weierstrass IFD – the
periodic function Gαmax

is nonconstant, as well as bounded away from zero and infinity. As
is the case in the general theory of fractal tube formulas (see [LvF06], [LRŽ17b], Chapter 8
and Chapter 5, respectively), the resulting fractal power series has for exponents the Com-
plex Codimensions of the Weierstrass Curve. Observe that each nonconstant periodic function
in (⋆) gives rise to multiplicatively periodic (or log–periodic) oscillations in the scaling variable ε.

iii. In Theorem 4.8, on page 88, where we exhibit the possible Complex Dimensions of the Weierstrass
IFD, as the poles of the associated (local and global) Tube Zeta Functions, themselves obtained
in Theorem 4.6, on page 82. Equivalently, in the light of [LRŽ17a], [LRŽ17b], since DW < 2,
the Complex Dimensions are also the poles of the associated distance zeta functions. In par-
ticular, we show that the Complex Dimensions (other than −2) are all simple and periodi-

cally distributed (with the same period p =
2π

lnNb
, the natural oscillatory period of the Weier-

strass Curve) along countably many vertical lines, with abscissae DW − k (2 −DW) and 1 − 2 k,
where k in N = {0, 1, 2, . . .} is arbitrary. In addition, −2 and 0 are also Complex Dimensions,
and they are simple.

iv. In Theorem 4.10, on page 98 and Corollary 4.11, on page 100, where we prove the nondegeneracy
of the Weierstrass IFD, in the Minkowski sense (see [LRŽ17b]), coming from the fact that, for
all sufficiently large positive integers m, the upper and lower (effective) Minkowski contents of

the m
th

prefractal polygonal approximation to the Curve are respectively positive and finite. As
a result, the Minkowski dimension (or box–counting dimension) DW of the Weierstrass IFD ex-
ists; i.e., the lower and upper Minkowski dimensions of the IFD coincide. Also, since the periodic
function GDW is not constant, it follows that the Weierstrass IFD is not Minkowski measurable.
Moreover, we show that the (effective) average Minkowski content of the Weierstrass IFD exists,
is positive and finite, as well as coincides with the average value of the periodic function GDW .

v. As a corollary of Theorem 4.10 (page 98), the fact that the number DW is both the Minkowski
Dimension and a Complex Dimension of the Weierstrass IFD; see Corollary 4.11, on page 100.

vi. The fractality of the Weierstrass IFD, in the sense of [LvF06], [LRŽ17b], [Lap19]; i.e., the exis-
tence of nonreal Complex Dimensions (with real part DW) giving rise to geometric oscillations,
in the Fractal Tube Formula obtained in this paper (Theorem 4.5, on page 78 and Theorem 4.9,
on page 90), as described in ii. above. In fact, in the terminology of [LvF06] and [LRŽ17b], the
Weierstrass IFD is fractal in countably many dimensions dk, with dk → −∞, as k →∞.

The Minkowski dimension (or box dimension) of the Weierstrass Curve, DW , coincides with the
maximum value of the real parts of the Complex Dimensions of the IFD. By considering the lower
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Minkowski content, which we prove to be strictly positive, we show that DW is, as expected, a Com-
plex Dimension of the IFD. In fact, it is natural to expect that this is also true for the Complex
Dimensions themselves, which will be shown in [DL23b] to be the same for the Weierstrass IFD and
for the Weierstrass Curve.

We also briefly discuss, in Subsection 4.4, on page 101, the noninteger case, i.e., when b is any
positive real number satisfying λ b > 1. This case will be studied in detail in a future work.

Now, the determination of those dimensions, as important as it may be, is not an end in itself. In
fact, the Complex Dimensions directly echo the fractal cohomological properties of the Curve, which
is the subject of our second paper, [DL24d].

The results of this paper and of [DL24d] are announced in the survey article [DL24a], where their
main results are presented in a summarized form.

2 Geometric Framework

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame.
The usual Cartesian coordinates are denoted by (x, y). The horizontal and vertical axes will be re-
spectively referred to as (x′x) and (y′y).

Notation 1 (Set of all Natural Numbers and Intervals).

As in Bourbaki [Bou04] (Appendix E. 143), we denote by N = {0, 1, 2, . . .} the set of all natural
numbers, and set N

⋆
= N \ {0}.

Given a, b with −∞ ⩽ a ⩽ b ⩽∞, ]a, b[ = (a, b) denotes an open interval, while, for example, ]a, b] = (a, b]
denotes a half-open, half-closed interval.

Notation 2 (Wave Inequality Symbol (see [Tao06], Preface, page xiv)).

Given two positive-valued functions f and g, defined on a subset I of R, we use the following
notation, for all x ∈ I: f(x) ≲ g(x) when there exists a strictly positive constant C such that, for
all x ∈ I, f(x) ⩽ C g(x), which is equivalent to f = O (g). Note that in our forthcoming context, we
will often use O (1) to denote terms which depend on m ∈ N, but are bounded away from 0 and ∞;
more precisely, those terms will always satisfy bounds of the following form

0 < Constantinf ⩽ O (1) ⩽ Constantsup <∞ , (R 1)

where Constantinf and Constantsup denote strictly positive and finite constants.

Notation 3 (Weierstrass Parameters).

In the sequel, λ and Nb are two real numbers such that

0 < λ < 1 , Nb ∈ N
⋆

and λNb > 1 ⋅ (♣) (R 2)
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As explained in [Dav19], we deliberately made the choice to introduce the notation Nb which
replaces the initial b, in so far as, in Hardy’s paper [Har16] (in contrast to Weierstrass’s original
article [Wei75]), b is any positive real number satisfying λ b > 1 , whereas we deal here with the specific
case of a natural integer, which accounts for the natural notation Nb; see, however, Section 4.4.

Definition 2.1 (Weierstrass Function, Weierstrass Curve).

We consider the Weierstrass function W, defined, for any real number x, by

W(x) =
∞

∑
n=0

λ
n

cos (2πNn
b x) ⋅ (R 3)

We call the associated graph the Weierstrass Curve.

Due to the one–periodicity of the W–function, from now on, and without loss of generality, we
restrict our study to the interval [0, 1[= [0, 1).

Notation 4 (Logarithm).

Given y > 0, ln y denotes the natural logarithm of y, while, given a > 1, lna y =
ln y

ln a
denotes the

logarithm of y in base a; so that, in particular, ln = lne.

Notation 5. For the parameters λ and Nb satisfying condition (♣) (see Notation 3, on page 7), we
denote by

DW = 2 +
lnλ

lnNb
= 2 − lnNb

1

λ
∈ ]1, 2[ (R 4)

the box–counting dimension (or Minkowski dimension) of the Weierstrass Curve ΓW , which happens to
be equal to its Hausdorff dimension [KMPY84], [BBR14], [She18], [Kel17]. As was mentioned earlier,
our results in this paper will also provide a direct geometric proof of the fact that DW , the Minkowski
dimension (or box–counting dimension) of ΓW , exists and takes the above value.

Remark 2.1. As can be found, for instance, in [Fal86], we recall that the box–counting dimension (or
box dimension, in short), of ΓW , is given by

DW = − lim
δ→0+

lnNδ (ΓW)
ln δ

, (⋄)

where Nδ (ΓW) stands for any of the following quantities:

i. the smallest number of sets of diameter at most δ that cover ΓW on [0, 1[ ;

ii. the smallest number of closed balls of radius δ that cover ΓW on [0, 1[ ;

iii. the smallest number of cubes of side δ that cover ΓW on [0, 1[;

iv. the number of δ–mesh cubes that intersect ΓW on [0, 1[;
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v. the largest number of disjoint balls of radius δ with centers in ΓW on [0, 1[.

Furthermore, for the Weierstrass Curve ΓW , as, more generally, for any bounded subset of Eu-
clidean space – the box–counting dimension coincides with the Minkowski dimension.

We stress that our results will imply that the Minkowski (or box–counting) dimension of the

Weierstrass Curve exists; more specifically, the above limit exists and is equal to DW = 2 +
lnλ

lnNb
.

Convention (The Weierstrass Curve as a Cyclic Curve).

In the sequel, we identify the points (0,W(0)) and (1,W(1)) = (1,W(0)). This is justified by the
fact that the Weierstrass function W is 1–periodic, since Nb is an integer.

Remark 2.2. The above convention makes sense, because the points (0,W(0)) and (1,W(1)) have the
same vertical coordinate, in addition to the periodic properties of the W–function.

Property 2.1. (Symmetry with Respect to the Vertical Line x =
1

2
)

Since, for any x ∈ [0, 1],

W(1 − x) =
∞

∑
n=0

λ
n

cos (2πNn
b − 2πN

n
b x) =W(x) ,

the Weierstrass Curve is symmetric with respect to the vertical straight line x =
1

2
.

Proposition 2.2 (Nonlinear and Noncontractive Iterated Function System (IFS)).

Following our previous work [Dav18], we approximate the restriction ΓW to [0, 1[×R, of the
Weierstrass Curve, by a sequence of graphs, built via an iterative process. For this purpose, we use
the nonlinear iterated function system (IFS) of the family of C

∞
maps from R

2
to R

2
denoted by

TW = {T0, . . . , TNb−1} ,

where, for any integer i belonging to {0, . . . , Nb − 1} and any point (x, y) of R
2
,

Ti(x, y) = (x + i
Nb

, λ y + cos (2π (x + i
Nb

))) ⋅

Remark 2.3. As is explained in [Dav19], it happens that the maps Ti, with i = 0, . . . , Nb − 1, compris-
ing the IFS TW in the statement of Proposition 2.2, on page 9 just above – are not contractions, in

the classical sense. As a result, the nonlinearity of the IFS, TW = {Ti}Nb−1
i=0 , does not enable one to

resort to the probabilistic approach of M. F. Barnsley and S. Demko [BD85], or to the earlier work
of J. E. Hutchinson [Hut81], which is applicable in the case of standard fractals such as the Sierpiński
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Gasket and the Koch Curve. Interestingly, even if they are not contractions, our maps possess what
can be viewed as satisfying an equivalent property, since, at each step of the iterative process, they
reduce the two-dimensional Lebesgue measures of a given sequence of rectangles covering the Curve.
This is due to the fact that they correspond, in a sense, to the composition of a contraction of ratio rx
in the horizontal direction, and a dilatation of factor ry in the vertical direction, with rx ry < 1. Such
maps are considered, for example, in the book of Robert L. Devaney [Dev03], where they play a part
in the first step of the horseshoe map process introduced by Stephen Smale.

Property 2.3 (Attractor of the IFS).

The Weierstrass Curve is the attractor of the IFS TW : ΓW =

Nb−1

⋃
i=0

Ti(ΓW).

Proof. We refer to our works [Dav18], [Dav19].

Notation 6 (Fixed Points).

For any integer i belonging to {0, . . . , Nb − 1}, we denote by

Pi = (xi, yi) = ( i

Nb − 1
,

1

1 − λ
cos ( 2π i

Nb − 1
))

the unique fixed point of the map Ti (see [Dav19]).

Definition 2.2 (Sets of Vertices, Prefractals).

We denote by V0 the ordered set (according to increasing abscissae), of the points

{P0, . . . , PNb−1} ⋅
The set of points V0 – where, for any i of {0, . . . , Nb − 2}, the point Pi is linked to the point Pi+1

– constitutes an oriented finite graph, ordered according to increasing abscissa, which we will denote
by ΓW0

. Then, V0 is called the set of vertices of the graph ΓW0
.

For any positive integer m, i.e., for m ∈ N
⋆
, we set Vm =

Nb−1

⋃
i=0

Ti (Vm−1).

The set of points Vm, where two consecutive points are linked, is an oriented finite graph, ordered
according to increasing abscissa, which we will call the m

th
order W-prefractal. Then, Vm is called

the set of vertices of the prefractal ΓWm
; see Figures 1, 2, 3 on pages 11, 12, and 13.

Property 2.4 (Density of the Set V
⋆
= ⋃
n∈N

Vn in the Weierstrass Curve [DL24d]).

The set V
⋆
= ⋃
n∈N

Vn is dense in the Weierstrass Curve ΓW .
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Definition 2.3 (Adjacent Vertices, Edge Relation).

For any natural integer m, the prefractal graph ΓWm
is equipped with an edge relation ∼

m
, as

follows: two vertices X and Y of ΓWm
, i.e. two points belonging to Vm, are said to be adjacent (i.e.,

neighboring or junction points) if and only if the line segment [X,Y ] is an edge of ΓWm
; we then

write X ∼
m
Y . Note that this edge relation depends on m, which means that points adjacent in Vm

might not remain adjacent in Vm+1.

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

Figure 1: The prefractal graphs ΓW0
, ΓW1

, ΓW2
, ΓW3

, ΓW4
, ΓW5

, in the case where λ =
1

2
,

and Nb = 3. For example, ΓW1
is on the right side of the top row, while ΓW4

is on the
left side of the bottom row.
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1
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Figure 2: The prefractal graphs ΓW0
, ΓW1

, ΓW2
, ΓW3

, ΓW4
, ΓW5

, in the case where λ =
1

2
and Nb = 4.

12



1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

Figure 3: The prefractal graphs ΓW0
, ΓW1

, ΓW2
, ΓW3

, ΓW4
, ΓW5

, in the case where λ =
1

2
and Nb = 7.
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Property 2.5. [Dav18]
For any m ∈ N, the following statements hold :

i. Vm ⊂ Vm+1 ⋅

ii. #Vm = (Nb − 1) Nm
b + 1, where #Vm denotes the number of elements in the finite set Vm.

iii. The prefractal graph ΓWm
has exactly (Nb − 1) Nm

b edges.

iv. The consecutive vertices of the prefractal graph ΓWm
are the vertices of N

m
b simple nonregular

polygons Pm,k with Nb sides. For any strictly positive integer m, the junction point between two
consecutive polygons is the point

( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 1 ⋅

Hence, the total number of junction points is N
m
b − 1. For instance, in the case Nb = 3, the

polygons are all triangles; see Figure 4, on page 14.

In the sequel, we will denote by P0 the initial polygon, whose vertices are the fixed points of
the maps Ti, 0 ⩽ i ⩽ Nb − 1, introduced in Definition 2.2, on page 10, i.e., {P0, . . . , PNb−1}.

P0
P2

T0 (P1)

T0 (P2) = T1 (P0) T1 (P2) = T2 (P0)

T2 (P1)

P1

polygon P1,0

polygon P1,1

polygon P1,2

initial polygon P0

1
x

-1

1

y

Figure 4: The initial polygon P0, and the polygons P1,0, P1,1, P1,2, in the case where λ =
1

2
and Nb = 3.
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Definition 2.4 (Vertices of the Prefractals, Elementary Lengths, Heights and Angles).

Given a strictly positive integer m, we denote by (Mj,m)0⩽j⩽(Nb−1)Nm
b −1 the set of vertices of

the prefractal graph ΓWm
. One thus has, for any integer j in {0, . . . , (Nb − 1)Nm

b − 1},

Mj,m = ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) ⋅

We also introduce, for any integer j in {0, . . . , (Nb − 1)Nm
b − 2}, the following quantities:

i. the elementary horizontal lengths:

Lm =
1

(Nb − 1)Nm
b

;

ii. the elementary lengths:

lj,j+1,m = d (Mj,m,Mj+1,m) =
√
L2
m + h

2
j,j+1,m ,

where hj,j+1,m is defined in iii. just below.

iii. the elementary heights:

hj,j+1,m =

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»

;

iv. the minimal height:

h
inf
m = inf

0⩽j⩽(Nb−1)Nm
b −1

hj,j+1,m , (R 5)

along with the maximal height:

hm = sup
0⩽j⩽(Nb−1)Nm

b −1

hj,j+1,m , (R 6)
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v. the geometric angles:

θj−1,j,m = ̂((y′y), (Mj−1,mMj,m)) , θj,j+1,m = ̂((y′y), (Mj,mMj+1,m)) ,

where (y′y) denotes the vertical axis, which yield the following value of the geometric angle
between consecutive edges, namely, [Mj−1,mMj,m,Mj,mMj+1,m], with arctan = tan

−1
:

θj−1,j,m + θj,j+1,m = arctan
Lm

hj−1,j,m
+ arctan

Lm
hj,j+1,m

.

(Note that, of course, θj−1,j,m = arctan
Lm

hj−1,j,m
and θj,j+1,m = arctan

Lm
hj,j+1,m

.)

Property 2.6. For the geometric angle θj−1,j,m, with 0 ⩽ j ⩽ (Nb − 1)Nm
b − 1 and m ∈ N, we have

the following relation:

tan θj−1,j,m =
hj−1,j,m

Lm
⋅

One now requires, at a given step m ∈ N
⋆
, the exact coordinates of the vertices of the prefractal

graph ΓWm
, i.e. of the following set of points:

( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) , 0 ⩽ j ⩽ #Vm ⋅

Thus far, they could not be found in the existing literature on the subject.

For this purpose, it is interesting to use the scaling properties of the Weierstrass function.

Property 2.7 (Scaling Properties of the Weierstrass Function, and Consequences).

Since, for any real number x, W(x) =
∞

∑
n=0

λ
n

cos (2πNn
b x), one also has

W(Nb x) =
∞

∑
n=0

λ
n

cos (2πN
n+1
b x) = 1

λ

∞

∑
n=1

λ
n

cos (2πNn
b x) =

1

λ
(W(x) − cos (2π x)) ,

which yields, for any strictly positive integer m and any j in {0, . . . ,#Vm − −1},

W ( j

(Nb − 1)Nm
b

) = λW ( j

(Nb − 1)Nm−1
b

) + cos ( 2π j

(Nb − 1)Nm
b

) ⋅

By induction, one then obtains that

W ( j

(Nb − 1)Nm
b

) = λmW ( j

Nb − 1
) +

m−1

∑
k=0

λ
k

cos( 2πN
k
b j

(Nb − 1)Nm
b

) ⋅
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Property 2.8 (A Consequence of the Symmetry with Respect to the Vertical Line x =
1

2
).

For any strictly positive integer m and any j in {0, . . . ,#Vm − 1}, we have that

W ( j

(Nb − 1)Nm
b

) =W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

) ,

which means that the points

((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

,W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)) and ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

are symmetric with respect to the vertical line x =
1

2
.

Definition 2.5 (Left-Side and Right-Side Vertices).

Given natural integers m, k such that 0 ⩽ k ⩽ N
m
b − 1, and a polygon Pm,k, we define:

i. The set of its left-side vertices as the set of the first [Nb − 1

2
] vertices, where [y] denotes the

integer part of the real number y.

ii. The set of its right-side vertices as the set of the last [Nb − 1

2
] vertices.

When the integer Nb is odd, we define the bottom vertex as the (Nb − 1

2
)
th

one; see Figure 6, on

page 18.

M j-1,m

M j-1+p,m

M(Nb-1)Nb
m
- j+1,m

M(Nb-1)Nb
m
- j+1-p,m

x =
1

2

1
x

-1

1

y

Figure 5: Symmetric points with respect to the vertical line x =
1

2
.
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Left - side vertices Right - side vertices

Bottom vertex

x

y

Left - side vertices

Right - side vertices

Bottom vertex

1
x

-1

1

y

Figure 6: The left-side and right-side vertices.

Property 2.9. Since, for any natural integer n,

N
n
b = (1 +Nb − 1)n =

n

∑
k=0

(nk) (Nb − 1)k ≡ 1 mod Nb − 1 ,

one obtains, for any integer j in {0, . . . , Nb − 1}:

W ( j

Nb − 1
) =

∞

∑
n=0

λ
n

cos (2πN
n
b

j

(Nb − 1)) =
∞

∑
n=0

λ
n

cos ( 2π j

Nb − 1
) = 1

1 − λ
cos ( 2π j

Nb − 1
) ⋅

We observe that the point

( j

Nb − 1
,W ( j

Nb − 1
)) = ( j

Nb − 1
,

1

1 − λ
cos ( 2π j

Nb − 1
))

is also the fixed point of the map Tj introduced in Proposition 2.2 page 9.

Property 2.10.

For 0 ⩽ j ⩽
(Nb − 1)

2
(resp., for

(Nb − 1)
2

⩽ j ⩽ Nb − 1), we have that

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩽ 0 (resp., W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩾ 0) ⋅

Proof. For any integer j in {0, . . . , Nb − 1},

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) = 1

1 − λ
(cos (2π (j + 1)

Nb − 1
) − cos ( 2π j

Nb − 1
)) ⋅

i. For 0 ⩽ j ⩽
Nb − 1

2
:

0 ⩽
2π j

Nb − 1
⩽ π , 0 ⩽

2π (j + 1)
Nb − 1

⩽ π (1 +
2

Nb − 1
) ⋅
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The limit case

2π (j + 1)
Nb − 1

= π (1 +
2

Nb − 1
)

only occurs when the integer Nb is odd, for the value j =
Nb − 1

2
, and corresponds to the bottom

vertex of the initial polygon P0. In this case, one has

W (Nb − 1

2
) = − 1

1 − λ
⋅

This case can thus be left aside.

One may therefore only consider the cases when 0 ⩽
2π j

Nb − 1
⩽

2π (j + 1)
Nb − 1

⩽ π.

The cosine function being nonincreasing on [0, π], one obtains the expected result:

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩽ 0 ⋅

ii. For
(Nb − 1)

2
⩽ j ⩽ Nb − 1:

π ⩽
2π j

Nb − 1
⩽ 2π , π (1 +

2

Nb − 1
) ⩽ 2π (j + 1)

Nb − 1
⩽

2πNb

Nb − 1
⋅

As previously, the limit case

2π (j + 1)
Nb − 1

= π (1 +
2

Nb − 1
)

can be left aside. The increasing property of the cosine function on [π, 2π] then yields the
expected result:

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩾ 0 ⋅

Notation 7 (Signum Function).

The signum function of a real number x is defined by

sgn (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1, if x < 0,
0, if x = 0,
+1, if x > 0 ⋅
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Property 2.11. Given any strictly positive integer m, we have the following properties:

i. For any j in {0, . . . ,#Vm − 1}, the point

( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

is the image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i)) = (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

,W (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

))

under the map Ti, 0 ⩽ i ⩽ Nb − 1.

Consequently, for 0 ⩽ j ⩽ Nb − 1, the j
th

vertex of the polygon Pm,k, 0 ⩽ k ⩽ N
m
b − 1, i.e.,

the point

((Nb − 1) k + j
(Nb − 1)Nm

b

,W ((Nb − 1) k + j
(Nb − 1)Nm

b

))

is the image of the point

⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

,W
⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

⎞
⎟
⎠
⎞
⎟
⎠
,

which is also the j
th

vertex of the polygon Pm−1,k−i (Nb−1)Nm−1
b

. Therefore, there is an exact
correspondance between vertices of the polygons at consecutive steps m − 1, m.

ii. Given j in {0, . . . , Nb − 2} and k in {0, . . . , N
m
b − 1}, we have that

sgn (W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ⋅

Proof.

i. One simply applies Proposition 2.3, on page 10, in conjunction with Property 2.9, on page 18.
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For i in {0, . . . , Nb − 1}, we have that

Ti (
j − i (Nb − 1)Nm−1

b

(Nb − 1)Nm−1
b

,W (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

))

∣∣

(j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm
b

+
i

Nb
, λW (j − i (Nb − 1)Nm−1

b

(Nb − 1)Nm−1
b

) + cos(2π (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm
b

+
i

Nb
)))

= ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm−1
b

− i) + cos (2π
j

(Nb − 1)Nm
b

))

= ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm−1
b

− i) + cos (2π
j − i

(Nb − 1)Nm
b

+
i

Nb
))

= ( j

(Nb − 1)Nm
b

, λW ( j

(Nb − 1)Nm−1
b

) + cos (2π
j − i

(Nb − 1)Nm
b

))

= ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) ⋅

ii. We prove the result by induction on m. Accordingly, let us consider j in {0, . . . , Nb − 2}.

The result at the initial step m = 1 is satisfied, in so far as, for any integer k in {0, . . . , Nb − 1} :

W (k (Nb − 1) + j + 1

(Nb − 1)Nb
) −W (k (Nb − 1) + j

(Nb − 1)Nb
) = λ (W (k (Nb − 1) + j + 1

Nb − 1
) −W (k (Nb − 1) + j

Nb − 1
))

+ cos (2π (k (Nb − 1) + j + 1)
Nb − 1

) − cos (2π (k (Nb − 1) + j)
Nb − 1

)

= λ (W (k + j + 1

(Nb − 1)) −W (k + j

(Nb − 1)))

+ cos (2π (j + 1)
(Nb − 1) ) − cos ( 2π j

Nb − 1
)

= λ (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
))

+W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)

= (1 + λ) (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ⋅

Let us now assume that, for any integer k in {0, . . . , N
m−1
b − 1},

sgn (W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W ( k (Nb − 1)j
(Nb − 1)Nm

b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ⋅
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Henceforth, we want to prove that, for any integer k in {0, . . . , N
m−1
b − 1},

sgn (W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W ( k (Nb − 1)j
(Nb − 1)Nm

b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ⋅

The induction hypothesis will be used in so far as any k in {0, . . . , N
m−1
b − 1} can also be expressed

in the following form:

k = k̃ + iN
m−1
b , 0 ⩽ k̃ ⩽ N

m−1
b − 1 , 0 ⩽ i ⩽ Nb − 1 ⋅

This will be useful because of the one–periodicity of the W–function, since, for any real number x
and any integer i, we have that

W(x + i) =W(x) ⋅

Due to the symmetry with respect to the vertical line x =
1

2
(see Property 2.1, on page 9), given

a natural integer m, one can, in addition, restrict oneself to the cases when

0 ⩽ (Nb − 1) k + j < (Nb − 1) k + j + 1 ⩽ [(Nb − 1)Nm
b + 1

2
] = (Nb − 1)Nm

b

2
,

which yields

0 ⩽
(2 (Nb − 1) k + 2 j − 1) π

2 (Nb − 1)Nm
b

<
(2 (Nb − 1) k + 2 j + 1) π

(Nb − 1)Nm
b

⩽ π ⋅

Thus, we only have to consider the cases when

sin ((2 (Nb − 1) k + 2 j − 1) π
(Nb − 1)Nm

b

) ⩾ 0 and sin ((2 (Nb − 1) k + 2 j + 1) π
(Nb − 1)Nm

b

) ⩾ 0 ⋅

The remaining ones, namely, the cases when

sin ((2 (Nb − 1) k + 2 j − 1) π
(Nb − 1)Nm

b

) ⩽ 0 and sin ((2 (Nb − 1) k + 2 j + 1) π
(Nb − 1)Nm

b

) ⩽ 0 ,

are then obtained by symmetry.

Hence,

W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
∣∣
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= λ (W (k (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k (Nb − 1) + j
(Nb − 1)Nm−1

b

))

+ cos(2π (k (Nb − 1) + j + 1)
(Nb − 1)Nm−1

b

) − cos(2π (k (Nb − 1) + j)
(Nb − 1)Nm−1

b

)

= λ (W (k (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k (Nb − 1) + j
(Nb − 1)Nm−1

b

))

−2 sin( π

(Nb − 1)Nm−1
b

) sin((2 (Nb − 1) k + 2 j + 1) π
(Nb − 1)Nm−1

b

)

= λ (W ( k̃ (Nb − 1) + i (Nb − 1)Nm−1
b + j + 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + i (Nb − 1)Nm−1
b + j

(Nb − 1)Nm−1
b

))

−2 sin( π

(Nb − 1)Nm−1
b

) sin((2 (Nb − 1) k + 2 j + 1) π
(Nb − 1)Nm−1

b

)

= λ (W (i + k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W (i + k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

))

−2 sin( π

(Nb − 1)Nm−1
b

) sin((2 (Nb − 1) k + 2 j + 1) π
(Nb − 1)Nm−1

b

)

= λ (W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

))

−2 sin( π

(Nb − 1)Nm−1
b

) sin((2 (Nb − 1) k + 2 j + 1) π
(Nb − 1)Nm−1

b

) ⋅

In the case when

0 ⩽ (Nb − 1) k + j + 1 ⩽ [(Nb − 1)Nm
b + 1

2
] = (Nb − 1)Nm

b

2
,

one thus has

−2 sin( π

(Nb − 1)Nm−1
b

) sin((2 (Nb − 1) k + 2 j − 1) π
(Nb − 1)Nm−1

b

) ⩽ 0 ⋅

The configuration of the initial polygon ensures, for 0 ⩽ j ⩽
Nb − 1

2
, that

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩽ 0

and therefore, thanks to the induction hypothesis,

W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

) ⩽ 0 ⋅
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By induction, one thus obtains, for any natural integer m, any k in {0, . . . , N
m
b − 1}, and any j

in {0, . . . ,
Nb − 3

2
}, that

W ((Nb − 1) k + j + 1

(Nb − 1)Nm
b

) −W ((Nb − 1) k + j
(Nb − 1)Nm

b

) ⩽ 0 ,

as required.

Corollary 2.12 (Lower Bound for the Elementary Heights (Coming from Property 2.11,
on page 20)).

For any strictly positive integer m, and any j in {0, . . . , (Nb − 1)Nm
b }, we have that

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
⩾ λ

»»»»»»»»»
W ( j + 1

(Nb − 1)Nm−1
b

) −W ( j

(Nb − 1)Nm−1
b

)
»»»»»»»»»
,

which yields, by induction,

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
⩾ λ

m

Í ÒÑÒÏ
N
m (DW−2)
b

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
⋅

This improves our previous result in [Dav18].

Corollary 2.13 (Upper Bound for the Elementary Heights (Coming from Property 2.11,
on page 20)).

For any strictly positive integer m, and any j in {0, . . . , (Nb − 1)Nm
b }, we have that

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
⩽ λ

m (
»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1))

⩽ λ
m

Í ÒÑÒÏ
N
m (DW−2)
b

(
»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1)) ,

which also improves our previous result in [Dav18].
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Proof. For any strictly positive integer m and any j in {0, . . . , (Nb − 1)Nm
b }, we have the following

estimates:

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
⩽ λ

»»»»»»»»»
W ( j + 1

(Nb − 1)Nm−1
b

) −W ( j

(Nb − 1)Nm−1
b

)
»»»»»»»»»

+
»»»»»»»»»
cos( 2π (j + 1)

(Nb − 1)Nm−1
b

) − cos( 2π j

(Nb − 1)Nm−1
b

)
»»»»»»»»»

⩽ λ
»»»»»»»»»
W ( j + 1

(Nb − 1)Nm−1
b

) −W ( j

(Nb − 1)Nm−1
b

)
»»»»»»»»»

+
2π

(Nb − 1)Nm−1
b

,

which yields, by induction,

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»
⩽ λ

m
»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+
m−1

∑
k=0

λ
k 2πN

k
b

(Nb − 1)Nm
b

⩽ λ
m

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π λ
m
N
m
b

(Nb − 1)Nm
b (λNb − 1)

= λ
m (

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1)) ,

as desired.

Remark 2.4. Corollaries 2.12 (page 24) and 2.13 (page 24) are important, because they enable one
to obtain exact and more accurate values of the bounding constants Cinf and Csup involved in the
following inequality:

Cinf L
2−DW
m ⩽ ∣W ((j + 1)Lm) −W (j Lm)∣

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
hj,j+1,m

⩽ Csup L
2−DW
m , m ∈ N, 0 ⩽ j ⩽ (Nb − 1)Nm

b , (✠)

(R 7)
where

Cinf = (Nb − 1)2−DW min
0⩽j⩽Nb−1,W( j+1

Nb−1
)≠W( j

Nb−1
)

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

and

Csup = (Nb − 1)2−DW ( max
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1)) ⋅

One should note, in addition, that these constants depend on the initial polygon P0.
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Theorem 2.14 (Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Func-
tion (Coming from Corollary 2.12, on page 24)).

For any natural integer m, let us consider a pair of real numbers (x, x′) such that

x =
(Nb − 1) k + j
(Nb − 1)Nm

b

= ((Nb − 1) k + j) Lm , x
′
=

(Nb − 1) k + j + `
(Nb − 1)Nm

b

= ((Nb − 1) k + j + `) Lm ,

where 0 ⩽ k ⩽ N
m
b − 1, and

i. if the integer Nb is odd,

0 ⩽ j <
Nb − 1

2
and 0 < j + ` ⩽

Nb − 1

2

or

Nb − 1

2
⩽ j < Nb − 1 and

Nb − 1

2
< j + ` ⩽ Nb − 1 ;

ii. if the integer Nb is even,

0 ⩽ j <
Nb

2
and 0 < j + ` ⩽

Nb

2

or

Nb

2
+ 1 ⩽ j < Nb − 1 and

Nb

2
+ 1 < j + ` ⩽ Nb − 1 ⋅

This means that the points (x,W(x)) and (x′,W(x′)) are vertices of the polygon Pm,k (see Prop-
erty 2.5, on page 14 above), both located on the left-side of the polygon, or both located on the right-side;
see Figure 6, on page 18.

Then, one has the following (discrete, local) reverse–Hölder inequality, with sharp Hölder expo-

nent −
lnλ

lnNb
= 2 −DW ,

Cinf ∣x′ − x∣2−DW
⩽

»»»»»W(x′) −W(x)»»»»» ⋅

Proof. In the light of Property 2.10, on page 18, one can restrict oneself to the case when

0 ⩽ j <
Nb − 1

2
and 0 < j + ` ⩽

Nb − 1

2
⋅

The expected result in the remaining case can easily be proved in a similar way. Since

W (((Nb − 1) k + j + `) Lm) ⩽ . . . ⩽W (((Nb − 1) k + j + 1) Lm) ⩽W (((Nb − 1) k + j) Lm)

then, by applying the results of Remark 2.4, on page 25, we have the following ` inequalities:

Cinf L
2−DW
m ⩽ −W (((Nb − 1) k + j + 1) Lm) +W ((Nb − 1) k + j) Lm)

Cinf L
2−DW
m ⩽ −W (((Nb − 1) k + j + 2) Lm) +W (((Nb − 1) k + j + 1) Lm)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cinf L
2−DW
m ⩽ −W (((Nb − 1) k + j + `) Lm) +W (((Nb − 1) k + ` − 1) Lm) ⋅

Thus, upon summation, we obtain that

`Cinf L
2−DW
m ⩽ −W (((Nb − 1) k + j + `) Lm) +W (((Nb − 1) k + j) Lm) ⋅

Since ` ⩾ `
2−DW and ∣x′ − x∣ = ` Lm, one deduces the desired result.

Remark 2.5. Thus far, no such reverse Hölder estimates had been obtained for the Weierstrass func-
tion. The fact that they are discrete ones is natural, since the Weierstrass Curve is approximated by a
sequence of polygonal prefractal finite graphs. Recall that the countable set of vertices of all of these
graphs is dense in the whole Weierstrass Curve.

Corollary 2.15 (Optimal Hölder Exponent for the Weierstrass Function).

The local reverse Hölder property of Theorem 2.14, on page 26 – in conjunction with the Hölder
condition satisfied by the Weierstrass function (see also [Zyg02], Chapter II, Theorem 4.9, page 47) –

shows that the Codimension 2 −DW = −
lnλ

lnNb
∈ ]0, 1[ is the best (i.e., optimal) Hölder exponent for

the Weierstrass function (as was originally shown, by a completely different method, by G. H. Hardy
in [Har16]).

Note that, as a consequence, since the Hölder exponent is strictly smaller than one, the Weierstrass
function W is nowhere differentiable.

Remark 2.6. Indeed, if W were differentiable at some point x0 ∈ [0, 1], then it would have to be
locally Lipschitz at x0, and hence, its Hölder exponent at x0 would be equal to 1, which is impossible.

Corollary 2.16 (Coming from Property 2.11, on page 20).

Thanks to Remark 2.4, on page 25, one may now write, for any strictly positive integer m and any
integer j in {0, . . . , (Nb − 1)Nm

b − 1}:

i. for the elementary heights:

hj−1,j,m = L
2−DW
m O (1) ; (R 8)

ii. for the elementary quotients:

hj−1,j,m

Lm
= L

1−DW
m O (1) , (R 9)

as follows from Remark 2.4, on page 25 above, and where

0 < Cinf ⩽ O (1) ⩽ Csup ⋅
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Corollary 2.17 (Nonincreasing Sequence of Geometric Angles (Coming from Property 2.11)).

For the geometric angles θj−1,j,m, 0 ⩽ j ⩽ (Nb − 1)Nm
b − 1, m ∈ N, we have the following result:

tan θj−1,j,m =
Lm

hj−1,j,m
(Nb − 1) > tan θj−1,j,m+1 ,

which yields

θj−1,j,m > θj−1,j,m+1 and θj−1,j,m+1 ≲ L
DW−1
m ⋅

Proof.

i. One simply writes, successively:

tan θj−1,j,m =
Lm

»»»»»»»»
W ( j

(Nb − 1)Nm
b

) −W ( j − 1

(Nb − 1)Nm
b

)
»»»»»»»»

⩾
λLm

»»»»»»»»»
W ( j

(Nb − 1)Nm+1
b

) −W ( j − 1

(Nb − 1)Nm+1
b

)
»»»»»»»»»

=
λ (Nb − 1)Nb Lm+1

»»»»»»»»»
W ( j

(Nb − 1)Nm+1
b

) −W ( j − 1

(Nb − 1)Nm+1
b

)
»»»»»»»»»

= λ (Nb − 1)Nb tan θj−1,j,m+1

> (Nb − 1) tan θj−1,j,m+1

since λNb > 1. Then, i. holds.

ii. One also has

θj−1,j,m+1 < arctan
(Nb − 1)Lm
hj−1,j,m

,

where

hj−1,j,m = L
2−DW
m O (1) and Cinf ⩽ O (1) ⩽ Csup ⋅

This yields

(Nb − 1)Lm
hj−1,j,m

= L
DW−1
m O (1) and (Nb − 1)Cinf ⩽ O (1) ⩽ (Nb − 1)Csup ⋅

Consequently, θj−1,j,m+1 ≲ L
DW−1
m , as claimed.
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Corollary 2.18 (Local Extrema of the Weierstrass Function (Coming from Property 2.11,
on page 20)).

i. The set of local maxima of the Weierstrass function on the interval [0, 1] is given by

{((Nb − 1) k
Nm
b

,W ((Nb − 1) k
Nm
b

)) ∶ 0 ⩽ k ⩽ N
m
b − 1, m ∈ N} ,

and corresponds to the extreme vertices of the polygons at a given step m (vertices connecting
consecutive polygons).

ii. For odd values of Nb, the set of local minima of the Weierstrass function on the interval [0, 1]
is given by

{(
(Nb − 1) k + Nb−1

2

(Nb − 1)Nm
b

,W (
(Nb − 1) k + Nb−1

2

(Nb − 1)Nm
b

)) ∶ 0 ⩽ k ⩽ N
m
b − 1, m ∈ N} ,

and corresponds to the bottom vertices of the polygons at a given step m.

Property 2.19 (Existence of Reentrant Angles).

i. The initial polygon P0, admits reentrant interior angles, at a vertex Pj, with 0 < j ⩽ Nb − 1,
in the sense that, with the right-hand rule (according to which angles are measured in a coun-
terclockwise direction), we have that

̂((PjPj+1) , (PjPj−1)) > π ,

for

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1

(see Figure 7, on page 30), which does not occur for values of Nb < 7.

The number of reentrant angles is then equal to 2 [Nb − 3

4
].

ii. At a given step m ∈ N
⋆

, with the above convention, a polygon Pm,k admits reentrant interior
angles in the sole cases when Nb ⩾ 7, at vertices Mk+j, 1 ⩽ k ⩽ N

m
b , 0 < j ⩽ Nb − 1, as well as

in the case when

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1 ⋅

The number of reentrant angles is then equal to 2N
m
b [Nb − 3

4
].
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P j-1

P j

P j+1

interior

reentrant

angle

1
x

-1

1

y

Figure 7: An interior reentrant angle. Here, Nb = 7 and λ =
1

2
.

Proof.

i. Due to the symmetry with respect to the vertical line x =
1

2
(see Property 2.1, on page 9), one can

restrict oneself to the vertices Pj , with 0 < j <
Nb − 1

2
.

The initial polygon P0, admits reentrant interior angles at a vertex Pj , with j + 1 <
Nb − 1

2
, in the

case when

̂((y′y), (Pj−1Pj)) > ̂((y′y), (PjPj+1)) (♠) (R 10)

Since

Pj = (xj , yj) = ( j

Nb − 1
,W ( j

Nb − 1
)) = ( j

Nb − 1
,

1

1 − λ
cos ( 2π j

Nb − 1
)) ,

one has

tan ̂((y′y), (Pj−1Pj)) =
L0

»»»»»»»»
W ( j

Nb − 1
) −W ( j − 1)

Nb − 1
)
»»»»»»»»

and

tan ̂((y′y), (PjPj+1)) =
L0

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

,

where L0 =
1

Nb − 1
.

Therefore, condition (R10) – (♠) above corresponds to the case when

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
>

»»»»»»»»
W ( j

Nb − 1
) −W ( j − 1

Nb − 1
)
»»»»»»»»
,
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i.e.,

»»»»»»»»
cos (2π (j + 1)

Nb − 1
) − cos ( 2π j

Nb − 1
)
»»»»»»»»
>

»»»»»»»»
cos ( 2π j

Nb − 1
) − cos (2π (j − 1)

Nb − 1
)
»»»»»»»»
,

or, equivalently,

»»»»»»»»
2 sin

π

Nb − 1
sin (π (2 j + 1)

Nb − 1
)
»»»»»»»»
>

»»»»»»»»
2 sin

π

Nb − 1
sin (π (2 j − 1)

Nb − 1
)
»»»»»»»»
,

and thus happens if

»»»»»»»»
sin (π (2 j + 1)

Nb − 1
)
»»»»»»»»
>

»»»»»»»»
sin (π (2 j − 1)

Nb − 1
)
»»»»»»»»
⋅

Since

0 <
π (2 j − 1)
Nb − 1

<
π (2 j + 1)
Nb − 1

< π ,

we conclude that condition (R10) – (♠), on page 30, occurs if

0 < π (2 j − 1)Nb − 1 <
π (2 j + 1)
Nb − 1

⩽
π

2
,

i.e., if 0 < j ⩽
Nb − 3

4
.

For vertices Pj , with
Nb + 1

2
< j < Nb − 1, the result is obtained thanks to the aforementioned

symmetry. The initial polygon P0, admits reentrant interior angles at a vertex Pj in the case

when
3Nb − 1

4
⩽ j < Nb − 1.

ii. The result is obtained by strong induction on the integer m. We restrict ourselves to the val-

ues Nb ⩾ 7, and consider j in {0, . . . , [Nb − 3

4
]}.

We claim that the result is satisfied at the initial step m = 1. Indeed, as was already encountered
in the proof of Property 2.11, on page 20, for any integer k in {0, . . . , Nb − 1}, we have that

»»»»»»»»
W (k (Nb − 1) + j + 1

(Nb − 1)Nb
) −W ( j

(Nb − 1)Nb
)
»»»»»»»»
=

»»»»»»»»
(1 + λ) {W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)}

»»»»»»»»
and

»»»»»»»»
W (k (Nb − 1) + j

(Nb − 1)Nb
) −W ( j − 1

(Nb − 1)Nb
)
»»»»»»»»
=

»»»»»»»»
(1 + λ) {W ( j

Nb − 1
) −W ( j − 1

Nb − 1
)}

»»»»»»»»
⋅
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Thus,

tan θk (Nb−1)+j−1,k (Nb−1)+j,1
tan θk (Nb−1)+j,k (Nb−1)+j+1,1

=

»»»»»»»»
W (k (Nb − 1) + j + 1

(Nb − 1)Nb
) −W (k (Nb − 1) + j

(Nb − 1)Nb
)
»»»»»»»»»»»»»»»»

W (k (Nb − 1) + j
(Nb − 1)Nb

) −W (k (Nb − 1) + j − 1

(Nb − 1)Nb
)
»»»»»»»»

=

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j − 1

Nb − 1
)
»»»»»»»»»»»»»»»»

W ( j

Nb − 1
) −W ( j − 1

Nb − 1
)
»»»»»»»»

> 1 ,

which implies that

θk (Nb−1)+j−1,k (Nb−1)+j,1 > θk (Nb−1)+j,k (Nb−1)+j+1,1

and yields the existence of an interior reentrant angle at the vertex

(k (Nb − 1) + j
(Nb − 1)Nb

,W (k (Nb − 1) + j
(Nb − 1)Nb

)) ⋅

Let us now assume that, up to a given step m ⩾ 1, there is a reentrant interior angle at any vertex

( k (Nb − 1) + j
(Nb − 1)Nm−1

b

,W ( k (Nb − 1) + j
(Nb − 1)Nm−1

b

)) , with 0 ⩽ k ⩽ N
m−1
b − 1 ⋅

We then want to prove that there is a reentrant interior angle at any vertex

(k (Nb − 1) + j
(Nb − 1)Nm

b

,W (k (Nb − 1) + j
(Nb − 1)Nm

b

)) , with 0 ⩽ k ⩽ N
m
b − 1 ⋅

As was the case in the proof of Property 2.11 (page 20 ), in order to be able to use the induction
hypothesis, we express any integer k in {0, . . . , N

m
b − 1} in the following form:

k = k̃ + iN
m−1
b , 0 ⩽ k̃ ⩽ N

m−1
b − 1 , 0 ⩽ i ⩽ Nb − 1 ⋅ (R 11)

Thus,

W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

) = λ (W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

))

−2 sin( π

(Nb − 1)Nm−1
b

) sin
⎛
⎜
⎝
(2 (Nb − 1) k̃ + 2 j + 1) π

(Nb − 1)Nm−1
b

⎞
⎟
⎠
,

(R 12)
and

W (k (Nb − 1) + j
(Nb − 1)Nm

b

) −W ( j − 1

(Nb − 1)Nm
b

) = λ (W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

) −W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−1
b

))

−2 sin( π

(Nb − 1)Nm−1
b

) sin
⎛
⎜
⎝
(2 (Nb − 1) k̃ + 2 j − 1) π

(Nb − 1)Nm−1
b

⎞
⎟
⎠
⋅

(R 13)
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In light of Property 2.11, on page 20, given such an integer k - and hence also, k̃ and j – and since

0 ⩽ j ⩽ [Nb − 3

4
] ⩽ Nb − 1

2
,

the only configuration to be considered corresponds to the case when

θk̃ (Nb−1)+j−1,k̃ (Nb−1)+j,m−1 > θk̃ (Nb−1)+j,k̃ (Nb−1)+j+1,m−1

and

W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−1
b

)−W ( j

(Nb − 1)Nm−1
b

) > 0 , W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

)−W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) > 0 ⋅

Then,

tan θk̃ (Nb−1)+j−1,k̃ (Nb−1)+j,m−1 > tan θk̃ (Nb−1)+j,k̃ (Nb−1)+j+1,m−1 ;

i.e.,

Lm−1

»»»»»»»»»
W ( k̃ (Nb − 1) + j

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−1
b

)
»»»»»»»»»

>
Lm−1

»»»»»»»»»
W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

)
»»»»»»»»»

,

which yields

»»»»»»»»»
W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

)
»»»»»»»»»
>

»»»»»»»»»
W ( k̃ (Nb − 1) + j

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−1
b

)
»»»»»»»»»
,

or, equivalently,

W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

) −W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

) >W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

) ⋅

The strong induction hypothesis, which ensures the existence of a reentrant interior angle at the
vertex

( (Nb − 1) k̃ + j
(Nb − 1)Nm−2

b

,W ( (Nb − 1) k̃ + j
(Nb − 1)Nm−2

b

)) ,

requires, in conjunction with

W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−2

b

) −W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−2
b

) >W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−2
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−2

b

) ,
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that

sin(π (2 k̃ (Nb − 1) + 2 j + 1)
(Nb − 1)Nm−2

b

) > sin(π (2 k̃ (Nb − 1) + 2 j − 1)
(Nb − 1)Nm−2

b

) ,

which corresponds to

0 <
π (2 k̃ (Nb − 1) + 2 j + 1)

(Nb − 1)Nm−2
b

<
π (2 k̃ (Nb − 1) + 2 j − 1)

(Nb − 1)Nm−2
b

⩽
π

2

and, as a matter of fact, ensures that

0 <
π (2 k̃ (Nb − 1) + 2 j + 1)

(Nb − 1)Nm−1
b

<
π (2 k̃ (Nb − 1) + 2 j − 1)

(Nb − 1)Nm−21
b

⩽
π

2Nb
<
π

2
⋅

One then has the following inequality:

λ (W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

) −W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm−1
b

)) + 2 sin( π

(Nb − 1)Nm−1
b

) sin(π (2 k̃ (Nb − 1) + 2 j + 1)
(Nb − 1)Nm−1

b

)

> λ (W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm−1
b

) −W ( k̃ (Nb − 1) + j
(Nb − 1)Nm−1

b

)) + 2 sin( π

(Nb − 1)Nm−1
b

) sin(π (2 k̃ (Nb − 1) + 2 j − 1)
(Nb − 1)Nm−1

b

) ⋅

Hence,

tan θk̃ (Nb−1)+j−1,k̃ (Nb−1)+j,m

∣∣

Lm

»»»»»»»»»
W ( k̃ (Nb − 1) + j

(Nb − 1)Nm
b

) −W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm
b

)
»»»»»»»»»

=
Lm

»»»»»»»»»
λ (W ( k̃ (Nb − 1) + j

(Nb − 1)Nm
b

) −W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm
b

)) − 2 sin( π

(Nb − 1)Nm−1
b

) sin(π (2 k̃ (Nb − 1) + 2 j − 1)
(Nb − 1)Nm−1

b

)
»»»»»»»»»

=
Lm

λ (W ( k̃ (Nb − 1) + j − 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)) + 2 sin( π

(Nb − 1)Nm−1
b

) sin(π (2 k̃ (Nb − 1) + 2 j − 1)
(Nb − 1)Nm−1

b

)

>
Lm

λ (W ( k̃ (Nb − 1) + j
(Nb − 1)Nm

b

) −W ( k̃ (Nb − 1) + j + 1

(Nb − 1)Nm
b

)) + 2 sin( π

(Nb − 1)Nm−1
b

) sin(π (2 k̃ (Nb − 1) + 2 j + 1)
(Nb − 1)Nm−1

b

)

= tan θk̃ (Nb−1)+j,k̃ (Nb−1)+j+1,m ,

which yields the expected result. Namely,

θk̃ (Nb−1)+j−1,k̃ (Nb−1)+j,m > θk̃ (Nb−1)+j,k (Nb−1)+j+1,m ;

i.e., the presence of a reentrant angle at the j
th

vertex of the polygon Pm,k.

The result in the remaining case
3Nb − 1

4
⩽ j < Nb − 1 can be obtained in an entirely similar way.

It corresponds to the cases when

34



θk (Nb−1)+j−1,k̃ (Nb−1)+j,mc < θk (Nb−1)+j,k̃ (Nb−1)+j+1,m

and

W (k (Nb − 1) + j − 1

(Nb − 1)Nm
b

)−W (k (Nb − 1) + j
(Nb − 1)Nm

b

) < 0 , W (k (Nb − 1) + j
(Nb − 1)Nm

b

)−W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) < 0 ⋅

Therefore, the shape of the initial polygon P0 governs the shape of any polygon Pm,k, 0 ⩽ k ⩽ N
m
b ,

which, ifNb ⩾ 7, admits reentrant interior angles at verticesM(Nb−1) k+j , 0 ⩽ k ⩽ N
m
b − 1, 0 < j ⩽ Nb − 1,

in the case when

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1 ⋅

This concludes the proof of Property 2.19 given on page 29.

Definition 2.6 (Self–Shape Similarity of the Weierstrass Curve).

We will say that the Weierstrass Curve – as the two-dimensional Hausdorff and uniform limit curve
of a sequence of polygonal prefractals, which satisfy Property 2.11, on page 20 and Property 2.19, on
page 29 – has self–shape similarity, in the sense that the shape of the initial polygon P0 governs
the shape of all the polygons Pm,k, with 0 ⩽ k ⩽ N

m
b , at any step m of the prefractal approximation

process. This self–shape similarity property is apparent in Figure 1, on page 11, Figure 2, on page 12,
and Figure 3, on page 13. As for the existence of reentrant angles, it can be observed on the first two
graphs of Figure 3, on page 13, in the case when Nb = 7.

3 Iterated Fractal Drums and Tubular Neighborhoods

In the case of classical fractals, and when the associated geometry allows it, the values of the Com-
plex Dimensions are obtained by studying the oscillations of a small neighborhood of the boundary,
i.e., of a tubular neighborhood of the fractal, where points are located within an epsilon distance from
any edge; see, e.g., [LRŽ17a], [LRŽ17b], [LRŽ18]. In the case of our fractal Weierstrass Curve ΓW ,
which is, also, the limit of the sequence of (polygonal) prefractal graphs (ΓW)m∈N, it is natural – and
consistent with the result of Property 3.13, on page 68 below – to envision the tubular neighborhood
of ΓW as the limit of the (obviously convergent) sequence (D (ΓWm

, ε
m
m))m∈N

of ε
m
m-neighborhoods

of ΓWm
, where ε = (εmm)m∈N

is a (suitable) infinitesimal – the cohomology infinitesimal – as intro-
duced in Definition 3.1, on page 37 below. The cohomology infinitesimal is completely determined by
the geometric characteristics of the fractal curve ΓW (or of the associated iterated fractal drum).

We note that, in a sense, the above description amounts to using a sequence of what we call
Weierstrass Iterated Fractal Drums (in short, Weierstrass IFDs), by analogy with the Relative Fractal
Drums (RFDs), for instance, in the case of the Cantor Staircase, in [LRŽ17b], Section 5.5.4, as well as
in [LRŽ17c] and in [LRŽ18]. In our present setting, the Weierstrass IFDs – i.e., the sets D (ΓWm

, ε
m
m),

for m ∈ N sufficiently large – contain the Weierstrass Curve ΓW , and are sufficiently close to ΓW , so
that we can expect their Complex Dimensions to be the same.
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For this purpose, one thus requires fractal tube formulas for the sequence of prefractal graphs
which converge to the Weierstrass Curve; i.e., here, the area of a two-sided ε

m
m-neighborhood of each

prefractal approximation (with m ∈ N
⋆

sufficiently large), which is expected to be of the following
form, in the case of simple Complex Dimensions:

∑
ω Complex Dimension

cω (εmm)2−ω
, cω ∈ C , (⋆⋆)

where, for any Complex Dimension ω, cω is directly expressed in terms of the residue at ω of the
effective tube zeta function ζ̃

e
ω (or of the effective distance zeta function ζ

e
ω).

More specifically, consistent with the corresponding results in [LRŽ17a], [LRŽ17b] and [LRŽ18],

cω = res (ζ̃eω, ω) =
1

2 − ω
res (ζeω, ω) ⋅

We shall proceed as in [LP06], by the second author and E. P. J. Pearse, as well as in the later
paper [LPW11], by the same authors and S. Winter (see also [LvF00], §10.3, or [LvF06], §12.1). Note
that these two papers were written prior to the development of the higher-dimensional theory of Com-
plex Dimensions and fractal tube formulas, by the second author, G. Radunovic and D. Zubrinic, in the
book [LRŽ17b] and in a series of accompanying papers by the same authors, including [LRŽ17a], [LRŽ18].

The proper fractal zeta function to be used for this purpose, called the distance zeta function, was
discovered by the second author in 2009, while the equivalent, and equally convenient, tube zeta func-
tion, depending on the problem at hand, was later introduced by the aforementioned authors in the
above references. Both types of fractal zeta functions are connected via an explicit functional equation.

Consequently, once we have obtained the desired fractal tube formula for the Weierstrass IFD, we
will be able to use extensions of the general results and methods of the higher-dimensional theory of
Complex Dimensions in [LRŽ17a], [LRŽ17b] and [LRŽ18] in order to deduce the fractal zeta functions
of the Weierstrass IFD: first, the so-called effective tube zeta function and then, via the aforementioned
functional equation connecting those two zeta functions, the effective distance zeta function. We will
then conclude from the expression of either fractal zeta function (since DW < 2, they yield the same
result here) the values of the possible Complex Dimensions of the Weierstrass IFD. For many of those
Complex Dimensions, including the principal ones, in the terminology of [LRŽ17b] (i.e., those with
real parts equal to the maximal real part DW < 2), we will also be able to determine that they are
actual (and simple) Complex Dimensions of the Weierstrass IFD – that is, simple poles of the tube
zeta function, or, equivalently, of the distance zeta function.

An important comment to be made is that, contrary to classical cases of fractal strings or of
specific two-dimensional fractals (see [LRŽ17b]), we cannot, in our present context, work with exact
expressions for the tubular volumes. More precisely, we can obtain exact expressions for some of the
(geometric) contributions involved in the expressions for the tubular volumes (as is the case fo the
contribution of the rectangles; see Proposition 3.9, on page 62), but those exact expressions (with
very complicated and unexplicitable coefficients) do not enable us to explicity determine the under-
lying Complex Dimensions. However, we can obtain the counterpart (in our context) of asympotic
expansions, which, this time, enable us to obtain the possible values for the underlying Complex Di-
mensions. By using the results in our work on polyhedral neighborhoods [DL23b], we will show that
those (possible) values finally coincide with the exact values of the Complex Dimensions.

We note that the only possible exceptions to the latter statement would be the potential Complex
Dimensions with real part equal to 1 (except for 1 itself), some (or all) of which could have a vanishing
residue; further theoretical or numerical work will be needed in order to deal with this last remaining
issue.
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As is explained in [DL23b], the classical theory of Complex Dimensions (see, for instance, [LRŽ17b])
cannot be applied in the context of our fractal curve. Indeed, not only we cannot obtain the exact
expressions for the tubular neighborhood of the Weierstrass Curve, due to the extremely complicated
geometric context. Building on the previous work of the second author and E. P. J. Pearse in the (less
complicated) case of the Koch Curve [LP06], a possible method was to obtain an approximate expres-
sion for this tubular neighborood. Recall that in the theory of Complex Dimensions, the imaginary
part of the Complex Dimensions aims at characterizing the oscillations of the fractal under study.
Those oscillations are, also, connected to the evolution in scales – in real life (fractal-shaped living
forms), the occurrence of new details keeps on appearing with characteristic spatial oscillations. In
the aforementioned case of the Koch Curve (see [LP06]), the oscillations are involved by means of
Fourier series expansions of 1-periodic maps, where the 1-periodicity can be, intuitively, understood
in relation with the integers m ∈, N of the m

th
prefractal approximations. An additional difficulty,

in our context, was thus to determine the involved oscillatory period (see [LRŽ17b], [LP06]). To this
purpose, we choose to consider our prefractal approximations ΓWm

, for m ∈ N, as resulting from the

deformation of a set of horizontal fractal strings, each of length
N
m
b

Nb − 1
(with associated oscillatory

period p =
2π

lnNb
). This is the only way to obtain, explicitly, the associated possible Complex Dimen-

sions. Thus far, we do not a priori claim that those possible Complex Dimensions are the actual (i.e.,
exact) Complex Dimensions of the Weierstrass Curve. Facing the lack of mathematical results which
could be applied in our present context, we thus use a counterpart of asymptotic expansions which,
in the end, will provide the actual (i.e., exact) Complex Dimensions of the Weierstrass Curve.

3.1 The Tubular Neighborhoods, and Associated Geometric Characteristic Num-
bers

Notation 8 (Euclidean Distance).

In the sequel, we denote by d the Euclidean distance on R
2
.

Our results on fractal cohomology obtained in [DL24d] have highlighted the part played by specific
threshold values for the number ε > 0 at any step m ∈ N of the prefractal graph approximation;
namely, the m

th
cohomology infinitesimal introduced in Definition 3.1, on page 37 just below.

Definition 3.1 (m
th

Cohomology Infinitesimal [DL24d] and Intrinsic m
th

Cohomology
Infinitesimal).

From now on, given any m ∈ N, we will call m
th

cohomology infinitesimal the number ε
m
m > 0

which, modulo a multiplicative constant equal to
1

Nb − 1
, i.e., ε

m
m =

1

Nb − 1

1

Nm
b

(recall that Nb > 1),

stands as the elementary horizontal length introduced in part i. of Definition 2.4, on page 15, i.e.,

1

Nm
b

.

Observe that, clearly, εm itself – and not just ε
m
m – depends on m; hence, we should really

write ε
m
m = (εm)m, for all m ∈ N.

In addition, since Nb > 1, ε
m
m satisfies the following asymptotic behavior,

ε
m
m → 0 , as m→∞,
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which, naturally, results in the fact that the larger m, the smaller ε
m
m. It is for this reason that we

call ε
m
m – or rather, the infinitesimal sequence (εmm)∞m=0 of positive numbers tending to zero as m→∞,

with ε
m
m = (εm)m, for each m ∈ N – an infinitesimal. Note that this m

th
cohomology infinitesimal is

the one naturally associated to the scaling relation of Property 2.7, on page 16.

In the sequel, it is also useful to keep in mind that the sequence of positive numbers (εm)∞m=0 itself
satisfies

εm ∼
1

Nb
, as m→∞ ;

i.e., εm →
1

Nb
, as m→∞. In particular, εm /→ 0, as m→∞, but, instead, εm tends to a strictly

positive and finite limit.

We also introduce, given anym ∈ N, them
th

intrinsic cohomology infinitesimal, denoted by ε
m
> 0,

such that

ε
m
=

1

Nm
b

,

where

ε =
1

Nb
.

We call ε the intrinsic scale, or intrinsic subdivision scale.

Note that

ε
m
m =

ε
m

Nb − 1
.

and that the m
th

intrinsic cohomology infinitesimal ε
m

is asymptotic (when m tends to ∞) to the m
th

cohomology infinitesimal ε
m
m.

Remark 3.1 (Addressing Numerical Estimates).

From a practical point of view, an important question is the value of the ratio

Cohomology infinitesimal

Maximal height
=
ε
m
m

hm
;

see relation (R6), on page 15.

Thanks to the estimates given in relation (R9), on page 27, we have that

ε
m
m

hm
= L

1−DW
m O (1) = εm (1−DW)

m O (1) ,

with
0 < Cinf ⩽ O (1) ⩽ Csup ⋅

Given q ∈ N
⋆
, we then have

1

10q
Cinf ⩽

ε
m
m

hm
⩽

1

10q
Csup
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when

Cinf
10q

⩽ e
(1−DW) lnLm

⩽
Csup
10q

,

or, equivalently, when

−
1

lnNb
ln((Nb − 1) (

Csup
10q

)
1

1−DW ) ⩽ m ⩽ −
1

lnNb
ln((Nb − 1) (

Cinf
10q

)
1

1−DW ) ⋅

Numerical values for Nb = 3 and λ =
1

2
yield:

i. For q = 1: 2 ⩽ m ⩽ 3.

ii. For q = 2: 7 ⩽ m ⩽ 9.

iii. For q = 3: 13 ⩽ m ⩽ 15.

Hence, when m increases, the ratio
ε
m
m

hm
decreases, and tends to 0. This numerical – but very

practical and explicit argument – also applies to our forthcoming neighborhoods, of width equal to
the cohomology infinitesimal.

Definition 3.2 (Cohomological Vertex Integers [DL24c]).

Givenm ∈ N, and a vertexMj,m =M(Nb−1) k′+k” ,m ∈ Vm, of abscissa ((Nb − 1) k′ + k”) εmm, where

0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1, we introduce the cohomological vertex integer `j,m associated to

the vertex Mj,m (which is also the (k”)th vertex of the polygon Pm,k′ ; see part iv. of Property 2.5, on
page 14), as

`j,m = `k′,k”,m = (Nb − 1) k′ + k” . (R 14)

Depending on the context; that is,

i. when the cohomological vertex integer enables one to locate the vertex Mj,m.

ii. When it is used in a more general framework, i.e., in order to describe the generators of coho-
mology groups (see [DL24b]);

we will use the best suited notation between `j,m, in case i., or `k′,k”,m, in case ii.

Proposition 3.1 (Cross-Scales Paths, and Associated Sequence of Vertex Integers).

Given m ∈ N, 0 ⩽ j ⩽ #Vm − 1 and a vertex Mj,m =M(Nb−1) k′+k”,m in Vm, with

0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1, we introduce the cross-scales path Path (Pk”,Mj,m), where Pk′

is the (k′)th fixed point of the map Tk′ (see Proposition 2.2, on page 9, along with Notation ??, on

page ??), as the ordered set (Mjk,m,k)0⩽k⩽m
such that:

i. For 0 ⩽ k ⩽ m, each vertex Mjk,m,k is in Vk \ Vk ∩ Vm (which means that Mjk,m,k strictly belongs

to Vk, i.e., it is in the k
th

prefractal approximation ΓWk
, and not in ΓWk+1

).
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ii. For 1 ⩽ k ⩽ m, each vertex Mjk,m,k =M(Nb−1) k′k,m+k”,k, with 0 ⩽ k
′
k,m ⩽ N

k
b − 1, is the image of

the point Mjk−1,m,k−1 under the map Ti (see again Proposition 2.2, on page 9), where i ∈ {0, . . . , Nb − 1}
is the smallest admissible value. We thus also have that

Mjk−1,m,k−1 =
⎛
⎜
⎝
(Nb − 1) (k′k,m − i (Nb − 1)Nk−1

b ) + k”

(Nb − 1)Nk−1
b

,W
⎛
⎜
⎝
(Nb − 1) (k′k,m − i (Nb − 1)Nk−1

b ) + k”

(Nb − 1)Nk−1
b

⎞
⎟
⎠
⎞
⎟
⎠
.

This latter point is also the (k”)th vertex of the polygon k
′
k,m − i (Nb − 1)Nk−1

b (see part iv.
of Property 2.5, on page 14).

The sequence of vertex integers associated with the cross-scales path Path (Pk”,Mj,m) (or, in
short, and equivalently, also refered to as the sequence of vertex integers associated with Mj,m) is the

sequence (`jk,m,k)0⩽k⩽m
, where, for 0 ⩽ k ⩽ m, `jk,m,k is the cohomological vertex integer associated

with the vertex Mjk,m,k (see Definition 3.2, on page 39).

Proof. We simply use the results of Property 2.11, on page 20.

Theorem 3.2 (Complex Dimensions Series Expansion of the Complexified Weierstrass
function Wcomp [DL24d], and of the Weierstrass function W).

For any sufficiently large positive integer m and any j in {0, . . . ,#Vm − 1}, we have the following
exact expansion, indexed by the Complex Codimensions k (DW − 2) + i k `jk,m,k p, with 0 ⩽ k ⩽ m,

Wcomp (j εmm) = Wcomp (
j ε

m

Nb − 1
)

= ε
m (2−DW) Wcomp (

j

Nb − 1
) +

m−1

∑
k=0

ck,j,m ε
k (2−DW)

ε
i `jk,m,k p

=

m

∑
k=0

ck,j,m ε
k (2−DW)

ε
i `jk,m,k p

,

(R 15)

where, for 0 ⩽ k ⩽ m, ε
k

is the k
th

intrinsic cohomology infinitesimal, introduced in Definition 3.1, on

page 37, with p =
2π

lnNb
denoting the oscillatory period of the Weierstrass Curve and where:

i. `jk,m,k ∈ Z is the cohomological vertex integer associated with the vertex Mjk,m,k (see Defini-
tion 3.2, on page 39);

ii. cm,j,m =Wcomp (
j

Nb − 1
) and, for 0 ⩽ k ⩽ m − 1, ck,j,m ∈ C is given by

ck,j,m = exp ( 2 i π

Nb − 1
j ε

m−k) . (⋄⋄) (R 16)
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for 0 ⩽ k ⩽ m, the coefficient ck,j,m will also be referred to as the k
th

Weierstrass coefficient asso-
ciated with the vertex Mjk,m,k ∈ Vk.

For any m ∈ N, the complex numbers {c0,j,m+1, . . . , cm+1,j,m+1} satisfy the following recurrence
relations:

cm+1,j,m+1 =W ( j

Nb − 1
) = cm,j,m (R 17)

and

∀ k ∈ {1, . . . ,m} ∶ ck,j,m+1 = ck−1,j,m . (R 18)

In addition, since relation (R15) is valid for any m ∈ N
⋆

(and since, clearly, relation (R16)
implies that the coefficients ck,j,m are nonzero for 0 ⩽ k ⩽ m), we deduce that the associated Complex
Dimensions (i.e., in fact, the Complex Dimensions associated with the Weierstrass function) are

DW − k (2 −DW) + i `jk,m,k p

0 ⩽ k ⩽ m and `jk,m,k ∈ Z is the cohomological vertex integer associated with the vertex Mjk,m,k (see
Definition 3.2, on page 39). Those Complex Dimensions are all exact and simple.

This immediately ensures, for the Weierstrass function (i.e., the real part of the Complexified
Weierstrass function Wcomp), that, for any strictly positive integer m and for any j in {0, . . . ,#Vm − 1},

W (j εmm) = ε
m (2−DW) Wcomp (

j

Nb − 1
) +

m−1

∑
k=0

ε
k (2−DW) Re (ck,j,m ε

i `jk,m,k p

k )

= ε
m (2−DW) Wcomp (

j

Nb − 1
) + 1

2

m−1

∑
k=0

ε
k (2−DW) (ck,j,m εi `jk,m,k p

+ ck,j,m ε
− i `jk,m,k p)

=
1

2

m

∑
k=0

ε
k (2−DW) (ck,j,m εi `jk,m,k p

+ ck,j,m ε
− i `jk,m,k p) ,

(R 19)
where z̄ denotes the complex conjugate of z ∈ C.

More generally, for any strictly positive integer m and for any integer j,

Wcomp (j εm) =
∞

∑
k=0

ε
k (2−DW)

ck,j,m ε
k (2−DW)

ε
i `jk,m,k p

, (R 20)

where, for all k ∈ N,

ck,j,m = ε
2 i π N

k
b j ε

m

. (R 21)

We also note that, if a vertex Mj,m =Mj ′,m+m′ is in Vm ∩ Vm+m′, for m
′
∈ N, we of course have

that, for 0 ⩽ k ⩽ m

ck,j,m = ck,j ′,m+m′ , (R 22)

along with

ε
i `jk,m,k

= ε
i `jk,m+m”,k . (R 23)
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For m + 1 ⩽ k ⩽ m +m′
, we have that

ck,j,m = ck,j ′,m+m′ = 0 . (R 24)

In addition, we have that, for m
′
∈ N,

ck,j,m+m′ = λ
m
′

ck,j,m = ε
m
′ (2−DW)

ck,j,m . (R 25)

Corollary 3.3 ((of Property 3.2, given on page 40)).

For any sufficiently large positive integer m and any j in {1,⋯,#Vm − 1}, we have the following
exact expansion, indexed by the Complex Codimensions k (DW − 2) + i k `jk,m,k p, with 0 ⩽ k ⩽ m,

h
2
j−1,j,m =

m

∑
k=0

m

∑
k′=0

ε
(k+k′) (2−DW)

dk,k′,j,m ε
i `k,k′,j,m p

=

2m

∑
k′′=0

ε
k
′′ (2−DW)

dk′′,j,m ε
i `j

k′′
,m,k′′ p ,

(R 26)

where

dk,k′,j,m = (ck,j,m + ck,j,m − ck,j−1,m − ck,j−1,m ) (ck′,j,m + ck′,j,m − ck′,j−1,m − ck′,j−1,m ) (R 27)

and

`k,k′,j,m = `jk,m,k − `jk′ ,m,k′ (R 28)

and, for 0 ⩽ k
′′
⩽ 2m,

dk′′,j,m = dk,k′,j,m with 0 ⩽ k, k
′
⩽ m,

where, for 0 ⩽ k ⩽ m, ε
k

is the k
th

intrinsic cohomology infinitesimal, introduced in Definition 3.1,

on page 37, with p =
2π

lnNb
denoting the oscillatory period of the Weierstrass Curve and where the

coefficients ck,j,m ∈ C, ck′,j,m ∈ C, along with the integers `jk,m,k ∈ Z and `jk′ ,m,k′ ∈ Z have been
introduced in Property 3.2, on page 40 above.

We then obtain, for any integer a ∈ N,

h
2a
j−1,j,m =

ma

∑
k′′′=0

ε
k
′′′ (2−DW)

dk′′′,j,m ε
i `j

k′′′
,m,k′′′ p

(R 29)

where, for 0 ⩽ k
′′′
⩽ ma,

dk′′′,j,m = dk0,j,m . . . dk2m,j,m with k0 + . . . + k2m = a

and

`jk′′′ ,m,k′′′ = `jk0 ,m,k0
+ . . . + 2mdk2m,j,m with k0 + . . . + k2m = a .
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Proof. We simply use Property 3.2, on page 40. Since, for any sufficiently large positive integer m
and any j in {1,⋯,#Vm − 1},

Wcomp (j εmm) −Wcomp ((j − 1) εmm) =

m

∑
k=0

ε
k (2−DW) (ck,j,m εi `jk,m,k p

− ck,j−1,m ε
i `jk−1,m,k p) ,

(R 30)
we deduce that

2Re (Wcomp (j εmm) −Wcomp ((j − 1) εmm)) =

=

m

∑
k=0

ε
k (2−DW) (ck,j,m εi `jk,m,k p

+ ck,j,m ε
−i `jk,m,k p

− −ck,j−1,m ε
i `jk−1,m,k p

− ck,j−1,m ε
−i `jk−1,m,k p)

=

m

∑
k=0

ε
k (2−DW) (ck,j,m + ck,j,m − ck,j−1,m − ck,j−1,m ) εi `jk,m,k p

Note that since the integers `jk,m,k ∈ Z and `jk′ ,m,k′ ∈ Z are arbitrary, we obviously have that

ε
i `jk,m,k p

= ε
−i `jk,m,k p

= ε
i `j

k′
,m,k′ p

= ε
−i `j

k′
,m,k′ p .

We then obtain that

2Re (Wcomp (j εmm) −Wcomp ((j − 1) εmm)) =

=

m

∑
k=0

ε
k (2−DW) (ck,j,m εi `jk,m,k p

+ ck,j,m ε
−i `jk,m,k p

− −ck,j−1,m ε
i `jk−1,m,k p

− ck,j−1,m ε
−i `jk−1,m,k p)

=

m

∑
k=0

ε
k (2−DW) (ck,j,m + ck,j,m − ck,j−1,m − ck,j−1,m ) εi `jk,m,k p

.

This ensures that

hj−1,j,m = ∣Re (Wcomp (j εmm) −Wcomp ((j − 1) εmm))∣ =

=

»»»»»»»»»»

m

∑
k=0

ε
k (2−DW) (ck,j,m + ck,j,m − ck,j−1,m − ck,j−1,m ) εi `jk,m,k p

»»»»»»»»»»

and
h

2
j−1,j,m =

=

m

∑
k=0

m

∑
k′=0

ε
(k+k′) (2−DW ) (ck,j,m + ck,j,m − ck,j−1,m − ck,j−1,m ) (ck′,j,m + ck′,j,m − ck′,j−1,m − ck′,j−1,m ) εi (`jk,m,k−`j

k′
,m,k′ )p .

For the sake of concision, we set, for 0 ⩽ k, k
′
⩽ m,

dk,k′,j,m = (ck,j,m + ck,j,m − ck,j−1,m − ck,j−1,m ) (ck′,j,m + ck′,j,m − ck′,j−1,m − ck′,j−1,m ) (R 31)
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and

`k,k′,j,m = `jk,m,k − `jk′ ,m,k′ . (R 32)

We thus have that

h
2
j−1,j,m =

m

∑
k=0

m

∑
k′=0

ε
(k+k′) (2−DW)

dk,k′,j,m ε
i `k,k′,j,m p

=

2m

∑
k′′=0

ε
k
′′ (2−DW)

dk′′,j,m ε
i `j

k′′
,m,k′′ p ,

(R 33)

where, for 0 ⩽ k
′′
⩽ 2m,

dk′′,j,m = dk,k′,j,m with 0 ⩽ k, k
′
⩽ m.

By applying the Newton multinomial theorem, we then obtain, for any integer a ∈ N,

h
2a
j−1,j,m = (

m

∑
k=0

m

∑
k′=0

ε
(k+k′) (2−DW)

dk,k′,j,m ε
i `k,k′,j,m p)

a

= ∑
k0+...+k2m=a

( a
k0, . . . , k2m

)ε(k0+...+2mk2m) (2−DW)
dk0,j,m . . . dk2m,j,m ε

i (`k0,j,m+...+2m`k2m,j,m)p

=

ma

∑
k′′′=0

ε
k
′′′ (2−DW)

dk′′′,j,m ε
i `j

k′′′
,m,k′′′ p

(R 34)
where, for 0 ⩽ k0, . . . , k2m ⩽ a,

( a
k0, . . . , k2m

) = a !

k0 ! . . . k2m !
.

For the sake of concision, we will write h
2a
j−1,j,m in the following form

h
2a
j−1,j,m =

ma

∑
k′′′=0

ε
k
′′′ (2−DW)

dk′′′,j,m ε
i `j

k′′′
,m,k′′′ p

(R 35)

where, for 0 ⩽ k
′′′
⩽ ma,

dk′′′,j,m = dk0,j,m . . . dk2m,j,m with k0 + . . . + k2m = a

and

`jk′′′ ,m,k′′′ = `k0,j,m + . . . + 2mdk2m,j,m with k0 + . . . + k2m = a .
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Definition 3.3 (Iterated Fractal Drums (IFDs)).

Let us consider a fractal curve F ⊂ R
2
, obtained by means of a suitable IFS TF (consisting, in

particular, of a family of C
∞

maps from R
2

to R
2
). For each m ∈ N, we denote by Fm the m

th
pre-

fractal approximation to the fractal F . We restrict ourselves to the case when there exists a natural
scaling relation associated to the sequence (ΓFm

)m∈N
, involving a sequence of elementary lengths (or

cohomology infinitesimals) (εmm,F)
m∈N

, and, as in Definition 3.1, on page 37 above.

We then call Iterated Fractal Drum (in short, IFD), and denote by FI
, the sequence of ordered

pairs (Fm, εmm,F)
m∈N

, where, for each m ∈ N, Fm is the m
th

prefractal (graph) approximation asso-
ciated with the fractal F .

Definition 3.4 (Weierstrass Iterated Fractal Drum (Weierstrass IFD)).

We call Weierstrass Iterated Fractal Drum (in short, Weierstrass IFD), and denote by Γ
I
W , the

sequence of ordered pairs (ΓWm
, ε
m
m)m∈N

where, for each m ∈ N, ΓWm
is the m

th
prefractal ap-

proximation to the Weierstrass Curve ΓW , as introduced in Definition 2.2, on page 10, and where ε
m
m

is the m
th

cohomology infinitesimal, as introduced in Definition 3.1, on page 37 above. Note that
the m

th
prefractal graph approximation (viewed as an oriented curve) determines the m

th
prefractal

curve (viewed as an oriented polygonal curve), and conversely. Indeed, the line segments of which the
latter polygonal curve is comprised are nothing but the edges of the former prefractal graph.

In the sequel, (εm)m∈N
stands for the intrinsic cohomology infinitesimal, as introduced in Defini-

tion 3.1, on page 37 above.

Proposition 3.4 (Integer to Cohomology Infinitesimal Map). Given m ∈ N
⋆

, we heerafter
introduce the map

ε
m
m ↦ m(εmm) = [− lnNb

(εmm)] ,

where [.] denotes the integer part. Note that this map is only applied for the m
th

cohomology infinites-

imal ε
m
m = (εm)m =

1

Nb − 1

1

Nm
b

, introduced in Definition 3.1, on page 37.

Property 3.5 (Fourier Series Expansion of the One-Periodic Map x↦N
−{x}
b [LvF06] ).

The fractional part map {.} is one-periodic. Hence, it is also the case of the map x↦ N
−{x}
b , which

admits, with respect to the real variable x, the following Fourier Series expansion:

N
−{x}
b = ∑

`∈Z

c` e
2 i π ` x

=
Nb − 1

Nb
∑
`∈Z

e
2 i π ` x

lnNb + 2 i ` π
,

where, for each ` ∈ Z, the exponential Fourier coefficients c` have been obtained through
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c` = ∫
1

0
N
−t
b e

−2 i π ` t
dt = ∫

1

0
e
−t lnNb e

−2 i π ` t
dt = −

1

lnNb + 2 i ` π
[e−t lnNb e

−2 i π ` t]
1

t=0

=
1

lnNb + 2 i ` π
[1 −

1

Nb
] = Nb − 1

Nb

1

lnNb + 2 i ` π
.

In the specific case where x = − lnNb
(εmm), we obtain that

N
−{x}
b =

Nb − 1

Nb
∑
`∈Z

e
i p ` x lnNb

lnNb + 2 i ` π

=
Nb − 1

Nb
∑
`∈Z

e
−i p ` ln ε

m
m

lnNb + 2 i ` π

=
Nb − 1

Nb
∑
`∈Z

ε
−im ` p
m

lnNb + 2 i ` π
.

Definition 3.5 (Oscillatory Period).

Following [LvF00], [LvF06], [LRŽ17b], we introduce the oscillatory period of the Weierstrass IFD:

p =
2π

lnNb
.

Definition 3.6 (`
th

-Order Vibration Mode).

Given ` ∈ Z, we define the `
th

order vibration mode as the one associated to `p.

Definition 3.7 ((m,εm)-Upper and Lower Neighborhoods).

Given x ∈ [0, 1[, m ∈ N, and a point M ∈ R
2
, we denote by d (M,ΓWm

) the distance from M
to ΓWm

. Then, for any sufficiently large m (so that ε
m

be a sufficiently small positive number), we
introduce:

i. The (m, εmm)-upper neighborhood of the m
th

prefractal approximation ΓWm
:

D+ (ΓWm
, ε
m) = {M = (x, y) ∈ R2

, y ⩾W(x) and d (M,ΓWm
) ⩽ εmm} ;

ii. The (m, εmm)-lower neighborhood of the m
th

prefractal approximation ΓWm
:

D− (ΓWm
, ε
m) = {M = (x, y) ∈ R2

, y ⩽W(x) and d (M,ΓWm
) ⩽ εmm} ⋅
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Definition 3.8 ((m,εmm)-Neighborhood).

Given x ∈ [0, 1[, m ∈ N sufficiently large (as in Definition 3.7, on page 46 just above), along
with D− (ΓWm

, ε
m
m) and D+ (ΓWm

, ε
m
m), we define the (m, εmm)-Neighborhood as the union of the upper

and lower ones, as follows:

D (ΓWm
, ε
m
m) = D− (ΓWm

, ε
m
m) ∪D+ (ΓWm

, ε
m
m) ⋅

Definition 3.9 (Left-Side and Right-Side (m,εmm)-Neighborhoods).

Given x ∈ [0, 1[ and m ∈ N sufficiently large, we introduce:

i. the Left-Side (m, εmm)-Neighborhood of the m
th

prefractal approximation ΓWm
as

DLeft (ΓWm
, ε
m
m) = {M = (x, y) ∈ [0,

1

2
] ×R , d (M,ΓWm

) ⩽ εmm} ;

ii. the Right–Side (m, εmm)-Neighborhood of the m
th

prefractal approximation ΓWm
as

DRight (ΓWm
, ε
m
m) = {M = (x, y) ∈ [1

2
, 1] ×R , d (M,ΓWm

) ⩽ εmm} ⋅

Those neighborhoods are symmetric with respect to the vertical line x =
1

2
; see Figure 5, on

page 17, and Figure 13, on page 53. They constitute, in a sense, a partition of the whole tubular
neighborhood.

Previous works give a very unfriendly expression for the absolute value of the elementary heights, ∣hj,m∣,
for

3Nb − 1

4
⩽ j < Nb − 1, and (i1, . . . , im) ∈ {0, . . . , Nb − 1}m, as

∣hj,m∣ =
»»»»»»»»»»
λ
m (yj+1 − yj) − 2

m

∑
k=1

λ
m−k

sin ( π

Nk+1
b (Nb−1)) sin( π (2 j+1)

Nk+1
b (Nb−1) + 2π

k

∑
q=0

im−q

N
k−q
b

)
»»»»»»»»»»
⋅

Although it is sufficient to compute the Minkowski dimension of the Curve, one also requires, in
the present work, an explicit expression for the elementary lengths Lm, m ∈ N

⋆
.

The (m, εmm)-upper and lower Neighborhoods introduced in Definition 3.7, on page 46, are then
obtained by means of rectangles and wedges, as depicted in Figures 8–14 (on pages 49–54).

Proposition 3.6 ((m,εmm)-Upper Neighborhood).

According to Property 2.5, on page 14 (and Definition 2.4, on page 15), given x ∈ [0, 1[ and a
strictly positive integer m, the (m, εmm)-upper neighborhood consists of:
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i. (Nb − 1)Nm
b rectangles, each of length `j−1,j,m, for 1 ⩽ j ⩽ N

m
b − 1, and height ε

m
.

Those rectangles are also overlapping ones, at least at their bottom. If we denote by Mj,m the
common vertex between two consecutive overlapping rectangles (see Figure 10, on page 51), the
area that is thus counted twice corresponds to parallelograms, of height ε

m
m and basis

ε
m

cotan (π − θj−1,j,m − θj,j+1,m); i.e., this area is equal to (εm)2
cotan (θj−1,j,m + θj,j+1,m).

Since one deals here with an upper neighborhood, one also has to substract the areas of the extra

outer lower triangles, i.e.,
1

2
ε
m
m (bj−1,j,m + bj,j+1,m).

ii. N
m
b (1 + 2 [Nb − 3

4
]) − 1 upper wedges (to be understood in the strict sense, which means

that the extreme ones are not taken into account here). If we denote by Mj,m the vertex from
which is issued the wedge (see Figure 14, on page 54), the area of this latter wedge is given by

1

2
(π − θj−1,j,m − θj,j+1,m) (εmm)2

, for 1 ⩽ j ⩽ N
m
b − 2 ⋅

The number of wedges is determined by the shape of the initial polygon P0, as well by the
existence of reentrant angles. This directly follows from Property 2.19, on page 29. For the sake
of simplicity, we set

r
+
b = 1 + 2 [Nb − 3

4
] ⋅ (R 36)

iii. Two extreme wedges (see Figure 15, on page 55), each of area equal to
1

2
π (εmm)2

.

Proposition 3.7 ((m,εm)-Lower Neighborhood).

In the same way, given x ∈ [0, 1[ and a strictly positive integer m, the (m, εmm)-lower neighborhood
consists of:

i. (Nb − 1)Nm
b rectangles, each of length `j−1,j,m, for 1 ⩽ j ⩽ N

m
b − 1, and height ε

m
m.

Those rectangles are also overlapping ones, this time at least at their top. If we denote by Mj,m

the common vertex between two consecutive overlapping rectangles, the area that is thus counted
twice again corresponds to parallelograms, of height ε

m
m and basis ε

m
cotan (π − θj−1,j,m − θj,j+1,m);

i.e., this area is equal to (εmm)2
cotan (θj−1,j,m + θj,j+1,m).

Since one deals here with a lower neighborhood, one has this time to substract the areas of the

extra outer upper triangles, namely, amounting to
1

2
ε
m
m (bj−1,j,m + bj,j+1,m).

ii. N
m
b (Nb − 2 [Nb − 3

4
]) − 1 lower wedges. If we denote by Mj,m the vertex from which is

issued the wedge, the area of this latter wedge is obtained as previously, and is given by

1

2
(π − θj−1,j,m − θj,j+1,m) (εmm)2

, for 1 ⩽ j ⩽ N
m
b − 2 ⋅

The number of lower wedges is determined by the shape of the initial polygon P0, as well as by
the existence of reentrant angles. This directly comes from Property 2.19, on page 29. For the
sake of simplicity, we set

r
−
b = Nb − 2 [Nb − 3

4
] ⋅ (R 37)
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Remark 3.2.

i. The number of upper overlapping rectangles is equal to the number of lower extra triangles, and
also to the number of upper wedges.

ii. The number of lower overlapping rectangles is equal to the number of upper extra triangles, and
also to the number of lower wedges.

iii. In light of i. and ii. just above, those numbers can be respectively calculated as being equal to

(r+b − 1)Nm
b and (r−b − 1)Nm

b ,

where the coefficients r
−
b and r

+
b are respectively defined in formulas (R37), page 48 and (R36),

page 48.

iv. Note that the small parameter ε
m
m has to be sufficiently small (say 0 < ε

m
m < ε

m0
m0

, for some ε
m0
m0

> 0
which exists, but appears difficult to specify explicitly) in order to avoid more unfriendly overlaps
than the parallelograms; see Figure 16, on page 56.

ϵ ϵ

ϵ ϵϵ

ϵ

wedges

ϵ

ϵ

ϵ

ϵ

ϵ

wedges

ϵ

ϵ ϵ

ϵ ϵ

ϵ ϵ

Figure 8: The (1, ε11)-Upper and Lower Neighborhoods, in the case when λ =
1

2
and Nb = 3.
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ϵϵ

ϵ ϵ

θ j-1, j,m
θ j-1, j,m

M j-1,m M j+1,m

M j,m

Figure 9: The (1, ε11)-Upper Neighborhood, in the case when λ =
1

2
and Nb = 3.
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bj-1,j,m

j,j+1,m

j-1,j,m + j,j+1,m

Overlapping

rectangles at

their bottom

ϵm

Parallelogramof

height ϵm, and

basis bj-1,j,m +b


j-1,j,m

θj-1,j,m

b


j-1,j,m

Extra lower

triangles

Mj-1,m Mj+1,m

Mj,m

Figure 10: Two overlapping rectangles, in the case when λ =
1

2
and Nb = 3.
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Figure 11: The (1, ε11), (2, ε22m) and (3, εmm)-Neighborhoods, in the case when λ =
1

2
and Nb = 3.

Figure 12: The (1, ε11), (2, ε22) and (3, ε33)-Upper Neighborhoods, in the case when λ =
1

2
and Nb = 4.
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x =
1

2

Left -SideNeighborhood Right -

SideNeighborhood

Figure 13: The (3, ε33)-Left and Right-Side Neighborhoods, in the case when λ =
1

2
and Nb = 3.
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ϵm

θj,j+1,m

Mj,m

Mj+1,m

θj-1,j,m

ϵm

ϵm ϵm

Figure 14: An upper wedge.
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extremewedges

Figure 15: The extreme wedges, in the case when λ =
1

2
and Nb = 3.
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Overlapping

rectangles at

their bottom

Mj,m

ϵm

Figure 16: Two overlapping rectangles, when the parameter ε
m
m is not sufficiently small:

the overlap is a pentagon.
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Proposition 3.8 (Basis of the Parallelograms in Common to Overlapping Rectangles).

Given m ∈ N
⋆

, and j in {1, . . . , (Nb − 1)Nm
b − 1}, the basis bj−1,j,m of the parallelogram in com-

mon to overlapping rectangles associated to the vertex Mj,m is such that

bj−1,j,m = N
(3DW−2) {x}
b (εmm)2 O (1) ,

where,

0 < C
3
inf ⩽ O (1) ⩽ C3

sup <∞⋅

Proof. One has, according to Figure 10, on page 51,

tan θj−1,j,m =
ε
m
m

bj−1,j,m + b̃j−1,j,m

,

where bj−1,j,m + b̃j−1,j,m is the side-length of the parallelogram of basis ε
m
m

tan (θj−1,j,m + θj,j+1,m) = ε
m
m

b̃j−1,j,m

⋅

Hence,

bj−1,j,m + b̃j−1,j,m = ε
m
m ∣cotan θj−1,j,m∣ ,

which yields

bj−1,j,m = ε
m
m ∣cotan θj−1,j,m∣ − b̃j−1,j,m = ε

m
m {∣cotan θj−1,j,m∣ − ∣cotan (θj−1,j,m + θj,j+1,m)∣} ;

i.e.,

bj−1,j,m = ε
m
m (

hj−1,j,m

Lm
−

»»»»»»»»
cotan (arctan

Lm
hj−1,j,m

+ arctan
Lm

hj,j+1,m
)
»»»»»»»»
)

= ε
m
m

⎛
⎜⎜
⎝
hj−1,j,m

Lm
−

»»»»»»»»»»»»

Lm

hj−1,j,m

Lm

hj,j+1,m
− 1

Lm

hj−1,j,m
+ Lm

hj,j+1,m

»»»»»»»»»»»»

⎞
⎟⎟
⎠

= ε
m
m

⎛
⎜⎜
⎝
hj−1,j,m

Lm
−

1 − Lm

hj−1,j,m

Lm

hj,j+1,m

Lm

hj−1,j,m
+ Lm

hj,j+1,m

⎞
⎟⎟
⎠
⋅

(R 38)

Thanks to Proposition ??, on page ??, we have that

hj−1,j,m

Lm
= N

(DW−1) {x}
b ε

m
mO (1) , with 0 < Cinf ⩽ O (1) ⩽ Csup ⋅

In order to obtain the corresponding estimate for bj−1,j,m, we need an asymptotic expansion
for bj−1,j,m. A slight difficulty occurs, coming from the term

1
Lm

hj−1,j,m
+ Lm

hj,j+1,m

⋅

The apparent problem is the following:
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i. Either one uses, as previously, expressions of the form

1
Lm

hj−1,j,m
+ Lm

hj,j+1,m

= N
(DW−1) {x}
b O (1) ,

with nothing but a black box (which means, unknown terms) in factor of constants, that would
yield Complex Dimensions with a real part equal to two, and would therefore lead to a contra-
diction because the Weierstrass Curve has box dimension DW < 2.

ii. Either, knowing that, which is not the more satisfactorily way of reasoning, from a mathemati-
cian’s point of view, one copes with it and tries to find how to get rid of those terms.

Two configurations occur:

↝ If hj−1,j,m < hj,j+1,m, and, thus,
Lm

hj−1,j,m
>

Lm
hj,j+1,m

, in which case we have that

hj−1,j,m

Lm
−

1 − Lm

hj−1,j,m

Lm

hj,j+1,m

Lm

hj−1,j,m
+ Lm

hj,j+1,m

=
hj−1,j,m

Lm
−

1 − Lm

hj−1,j,m

Lm

hj,j+1,m

Lm

hj−1,j,m
(1 + hj−1,j,m hj,j+1,m)

=
hj−1,j,m

Lm

−
hj−1,j,m

Lm
(1 −

L
2
m

hj−1,j,m hj,j+1,m
) (1 − hj−1,j,m hj,j+1,m + smaller order terms)

=
hj−1,j,m

Lm

−
hj−1,j,m

Lm
(1 − hj−1,j,m hj,j+1,m −

L
2
m

hj−1,j,m hj,j+1,m
+ L

2
m + smaller order terms)

=
h

2
j−1,j,m hj,j+1,m

Lm
+

Lm

hj,j+1,m
− Lm hj−1,j,m

+smaller order and negligeable terms.

Since

h
2
j−1,j,m hj,j+1,m

Lm
= N

2 (2−DW) {x}
b ε

m
mN

(DW−1) {x}
b O (1) = N (3−DW) {x}

b ε
m
mO (1) ,

along with

Lm hj−1,j,m = N
(3−DW) {x}
b (εmm)2 O (1) ,

and

Lm
hj,j+1,m

= N
(1−DW) {x}
b (εmm)2 O (1) <<

h
2
j−1,j,m hj,j+1,m

Lm
,

the terms that have to be taken into account in relation (R38), on page 57 above, are then

N
(3−DW) {x}
b (εmm)2 O (1) = bj−1,j,m ⋅
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↝ If hj−1,j,m < hj,j+1,m, and, thus,
Lm

hj−1,j,m
<

Lm
hj,j+1,m

, in which case we have that

hj−1,j,m

Lm
−

1
Lm

hj−1,j,m
+ Lm

hj,j+1,m

=
hj−1,j,m

Lm
−
hj,j+1,m

Lm
+ smaller order and negligeable terms ⋅

Fortunately, due to results obtained in the proof of Property 2.19, on page 29, this situation

occurs only in the case of reentrant angles, when Nb ⩾ 7, twice, for respectively [Nb − 3

4
]

consecutive vertices of polygons Pm,k, 0 ⩽ k ⩽ N
m
b − 1. Given a polygon Pm,k, and as

already encountered, one just has to reason on the associated first set of consecutive vertices.
The annoying terms simplify two by two in a telescopic sum, from the first reentrant
vertex, to the penultimate one. There remains the term coming from the first vertex with
an interior reentrant angle, that will be denoted Mj,m, and the term coming from the

ultimate one, Mj+p−1,m: due to the symmetry with respect to the vertical line x =
1

2
(see

Property 2.1, on page 9), they are cancelled by those coming from the symmetric polygon,
see Figure 17, on page 60). To summarize, one obtains a sum of the form

hj−1,j,m

Lm
−
hj,j+1,m

Lm
+
hj,j+1,m

Lm
−
hj+1,j+2,m

Lm
+
hj+1,j+2,m

Lm
. . .

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
telescoping sum

−
hj+p,j+p+1,m

Lm
⋅

The remaining terms
hj−1,j,m

Lm
and −

hj+p,j+p+1,m

Lm
are the ones which will simplify with the

exact opposites coming from the symmetric polygon with respect to the vertical line x =
1

2
(see Figure 17, on page 60), since

hj+p,j+p+1,m

Lm
=

1

Lm

»»»»»»»»
W ( j + p + 1

(Nb − 1)Nm
b

) −W ( j + p

(Nb − 1)Nm
b

)
»»»»»»»»

=
1

Lm

»»»»»»»»
W ((Nb − 1)Nm

b − j − p − 1

(Nb − 1)Nm
b

) −W ((Nb − 1)Nm
b j − p

(Nb − 1)Nm
b

)
»»»»»»»»

=

h(Nb−1)Nm
b −j−p−1,(Nb−1)Nm

b −j−p,m

Lm
⋅

Thus, in the end, there is no problem.

In the light of the above results, one may now rewrite bj−1,j,m as follows:

bj−1,j,m = N
(3−DW) {x}
b (εmm)2 O (1) ,

(R 39)

where, thanks to inequality (R7) given in Remark 25, on page 25,

0 < C
3
inf ⩽ O (1) ⩽ C3

sup <∞⋅

This concludes the proof of Proposition 3.8, stated on page 57.
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M j,m

M j+p,m

M(Nb-1)Nb
m
- j+1,m

M(Nb-1)Nb
m
- j-p,m

h j-1, j,m

Lm

-

h j+p-1, j+p,m

Lm

+

h j+p-1, j+p,m

Lm

-

h j-1, j,m

Lm

first reentrant

angle

last reentrant

angle

1
x

-1

1

y

Figure 17: The symmetric points with respect to the vertical

line x =
1

2
, leading to terms that cancel each other out in the proof of Proposition 3.8.

In the sequel, we will use the following two power series expansions:

i. ∀ z ∈ [0, 1[ ∶
√

1 + z =
∞

∑
k=0

(
1
2

k
) zk,

where, for any integer k ∈ N, (
1
2

k
) is the generalized binomial coefficient

(
1
2

k
) =

1
2
× (1

2
− 1) × (1

2
− 2) × . . . × (1

2
− k + 1)

k !
=

(1
2
)
k

k !
⋅ (R 40)

This expansion is thus valid for

z =
L

2
m

h2
j−1,j,m

= O (L2 (DW−1)
m )≪ 1 ⋅

ii. ∀ z ∈ [0, 1[ ∶ tan
−1
z = arctan z =

∞

∑
k=0

(−1)k z2 k+1

2 k + 1
, which is also valid for

z =
L

2
m

h2
j−1,j,m

= O (L2 (DW−1)
m )≪ 1 ⋅

60



iii. ∀ (z, z′) ∈ C2
such that ∣z∣ < ∣z′∣ :

(z + z′)
1
2
=

∞

∑
k=0

(
1
2

k
) zk (z′)

1
2
−k

,

where, for any integer k ∈ N, (
1
2

k
) has been given in relation (R40) just above.

Notation 9. In the sequel, for the sake of simplicity, we will use the following notation:

i. ∑
j rectangle

. . . , to denote a sum involving all the upper and lower rectangles, which amounts to

taking into accounts indices j such that 1 ⩽ j ⩽ (Nb − 1)Nm
b .

ii. ∑
j lower wedge

. . . , to denote a sum involving all the lower wedges, which amounts to taking into

accounts indices j such that N
m
b (Nb − 2 [Nb − 3

4
]) − 1.

iii. ∑
j upper wedge

. . . , to denote ta sum involving all the upper wedges, which amounts to taking into

accounts indices j such that N
m
b (1 + 2 [Nb − 3

4
]) − 1.

And, similarly:

iv. ∑
j upper triangle

. . . , to denote a sum involving all the extra outer upper triangles.

v. ∑
j lower triangle

. . . , to denote a sum involving all the extra outer lower triangles.

vi. ∑
j lower parallelogram

. . . , to denote a sum involving all the upper overlapping rectangles.

vii. ∑
j upper parallelogram

. . . , to denote a sum involving all the lower overlapping rectangles.
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Proposition 3.9 (Contribution of the Rectangles to the Tubular Volume).

Given m ∈ N
⋆

, the (exact) contribution of the (Nb − 1)Nm
b rectangles to the tubular volume is

given by

Vm,ΓWm ,Rectangles
= 2 ∑

j rectangle

ε
m
m `j−1,j,m

= 2 ∑
j rectangle

ε
m
m

√
L2
m + h

2
j−1,j,m

= 2 ∑
j rectangle

ε
m
m hj−1,j,m

√
√√√√√⎷1 +

L2
m

h2
j−1,j,m

= 2 ∑
j rectangle

ε
m
m hj−1,j,m

√
√√√√√⎷1 +

L2
m

h2
j−1,j,m

= 2 ∑
j rectangle

ε
m
m hj−1,j,m

∞

∑
k=0

(
1
2

k
) L

2 k
m

h2 k
j−1,j,m

= 2 ∑
j rectangle

ε
m
m

∞

∑
k=0

(
1
2

k
)L2 k

m (
2m

∑
k′′=0

ε
k
′′ (2−DW)

dk′′,j,m ε
i `j

k′′
,m,k′′ p)

1
2
−k

= 2

#Vm−1

∑
j=1

∞

∑
k=0

(
1
2

k
) (εmm)1+2 k (

2m

∑
k′′=0

ε
k
′′ (2−DW)

dk′′,j,m ε
i `j

k′′
,m,k′′ p)

1
2
−k

= 2 ε
m

#Vm−1

∑
j=1

∞

∑
k=0

(
1
2

k
) (Nb − 1)−1−2 k

ε
mk (

2m

∑
k′′=0

ε
k
′′ (2−DW)

dk′′,j,m ε
i `j

k′′
,m,k′′ p)

1
2
−k

,

(R 41)
where the coefficients dk′′,j,m are given in Corollary 3.3, on page 42.

Note that the contribution of the rectangles to the tubular volume is, geometrically, the main one.
For this reason, we have used the cap letter R, contrary to the other – and forthcoming – contributions.

Given x ∈ [0, 1[ and m ∈ N
⋆

sufficiently large, the (approximate) contribution of the (Nb − 1)Nm
b

rectangles to the tubular volume is given by
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Vm,ΓWm ,Rectangles
= 2 ∑

j rectangle

ε
m
m `j−1,j,m

= 2 ∑
j rectangle

ε
m
m

√
L2
m + h

2
j−1,j,m

= 2 ∑
j rectangle

ε
m
m hj−1,j,m

√
√√√√√⎷1 +

L2
m

h2
j−1,j,m

= 2 ∑
j rectangle

ε
m
m hj−1,j,m

√
√√√√√⎷1 +

L2
m

h2
j−1,j,m

= 2 ∑
j rectangle

ε
m
m hj−1,j,m

∞

∑
k=0

(
1
2

k
) L

2 k
m

h2 k
j−1,j,m

= 2 ∑
j rectangle

ε
m
m hj−1,j,m

∞

∑
k=0

(
1
2

k
)Nk (2−DW) {x}

b (εmm)k (2−DW) O (1)

= 2 ∑
j rectangle

ε
m
m (εmm)2−DW O (1)

∞

∑
k=0

(
1
2

k
)Nk (2−DW) {x}

b (εmm)k (2−DW) O (1)

= 2N
m
b (εmm)2−DW O (1)

∞

∑
k=0

(
1
2

k
)Nk (2−DW) {x}

b (εmm)1+k (2−DW) O (1)

= 2 (Nb − 1)Nm
b ε

m
m (εmm)2−DW

∞

∑
k=0

(
1
2

k
)Nk (2−DW) {x}

b (εmm)k (2−DW) O (1)

= 2N
−{x}
b (εmm)2−DW

∞

∑
k=0

(
1
2

k
)Nk (2−DW) {x}

b (εmm)k (2−DW) O (1)

= 2
∞

∑
k=0

(
1
2

k
)N (k (2−DW)−1) {x}

b (εmm)2−DW+k (2−DW) O (1) ,

= 2
∞

∑
k=0

(
1
2

k
)
N

(k (2−DW)−1)
b − 1

N
(k (2−DW)−1)
b

∑
`∈Z

ε
−im ` p
m

lnN
(k (2−DW)−1)
b + 2 i ` π

(εmm)2−DW+k (2−DW) O (1) ,

(R 42)
where, for notational simplicity, we have used the estimates obtained in relation (R9), given on page 27,

for the elementary quotients
Lm

hj−1,j,m
, in the form

Lm
hj−1,j,m

= L
DW−1
m O (1) ,

where O (1) may depend on m, but is uniformly bounded away from 0 and ∞; more specifically,

0 < O (1) <∞ .

This ensures here that, for all k ∈ N,

2(
1
2

k
) (εmm)2−DW+k (2−DW) O (1) > 0 ⋅ (R 43)
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Proposition 3.10 (Contribution of the Extreme, Upper and Lower Wedges to the Tubular
Volume).

i. Given m ∈ N
⋆

sufficiently large, the (exact) contribution of the extreme wedges to the tubular
volume is given by

Vm,ΓWm ,extreme wedges = π (εmm)2
⋅

ii. Given m ∈ N
⋆

sufficiently large, the (exact) contribution of the r
+
b N

m
b − 1 upper wedges to

the tubular volume is given by

Vm,ΓWm ,upper wedges =
1

2
∑

j upper wedge

(π − θj−1,m − θj,j+1,m) (εmm)2

=
1

2
∑

j upper wedge

(εmm)2 (π − arctan
Lm

hj−1,j,m
− arctan

Lm

hj,j+1,m
)

=
(εmm)2

2
∑

j upper wedge

(εmm)2 (π −
∞

∑
k=0

(−1)k
2 k + 1

L
2k+1
m

h2k+1
j−1,j,m

−
∞

∑
k=0

(−1)k
2 k + 1

L
2k+1
m

h2k+1
j,j+1,m

)

=
(εmm)2

2
∑

j upper wedge

(εmm)2 (π −
∞

∑
k=0

(−1)k
2 k + 1

L
2k+1
m (

2m

∑
k′′=0

ε
k
′′ (2−DW )

dk′′,j,m ε
i `j

k′′
,m,k′′ p)

− 1
2
−k

−
∞

∑
k=0

(−1)k
2 k + 1

L
2k+1
m (

2m

∑
k′′=0

ε
k
′′ (2−DW )

dk′′,j+1,m ε
i `j

k′′
,m,k′′ p)

− 1
2
−k

)

(R 44)

where the coefficients dk′′,j,m are given in Corollary 3.3, on page 42.

Given m ∈ N
⋆

sufficiently large, the (approximate) contribution of the r
+
b N

m
b − 1 upper wedges

to the tubular volume is given by
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Vm,ΓWm ,upper wedges =
1

2
∑

j upper wedge

(π − θj−1,m − θj,j+1,m) (εmm)2

=
1

2
∑

j upper wedge

(εmm)2 (π − arctan
Lm

hj−1,j,m
− arctan

Lm

hj,j+1,m
)

=
(εmm)2

2
∑

j upper wedge

(εmm)2 (π −
∞

∑
k=0

(−1)k
2 k + 1

L
2k+1
m

h2k+1
j−1,j,m

−
∞

∑
k=0

(−1)k
2 k + 1

L
2k+1
m

h2k+1
j,j+1,m

)

=
(εmm)2

2
∑

j upper wedge

(π −
∞

∑
k=0

(−1)k
2 k + 1

N
(2k+1) (1−DW ) {x}
b (εmm)2k+1 O (1))

=
(εmm)2

2
(r+b Nm

b − 1) (π −
∞

∑
k=0

(−1)k
2 k + 1

N
(2k+1) (1−DW ) {x}
b (εmm)2k+1 O (1))

=
(εmm)2

2
(ε

m
m

4
r
+
b N

−{x}
b −

(εmm)2

2
) (π −

∞

∑
k=0

(−1)k
2 k + 1

N
(2k+1) (1−DW ) {x}
b (εmm)2k+1 O (1))

=
π

2
((εmm)3

4
r
+
b N

−{x}
b −

(εmm)4

2
) − (εmm)3

4
r
+
b

∞

∑
k=0

(−1)k
2 k + 1

N
−((2k+1)DW−2k) {x}
b (εmm)2k+1 O (1)

+
(εmm)4

4

∞

∑
k=0

(−1)k
2 k + 1

N
−((2k+1)DW−2k+1) {x}
b (εmm)2k+1 O (1) ,

(R 45)

i.e., by using the Fourier series expansion given in Property 3.5, on page 45,

Vm,ΓWm ,upper wedges =
π

2

(εmm)3

4
r
+
b

Nb − 1

Nb
∑
`∈Z

ε
−im`p
m

lnNb + 2 i ` π
−
π

2

(εmm)4

2

−
(εmm)3

4
r
+
b

∞

∑
k=0

(−1)k
2 k + 1

N
−((2k+1)DW−2k)
b − 1

N
−((2k+1)DW−2k)
b

∑
`∈Z

ε
−im`p
m

lnN
−((2k+1)DW−2k)
b + 2 i ` π

(εmm)2k+1 O (1)

+
(εmm)4

4

∞

∑
k=0

(−1)k
2 k + 1

N
−((2k+1)DW−2k+1)
b − 1

N
−((2k+1)DW−2k+1)
b

∑
`∈Z

ε
−im`p
m

lnN
−((2k+1)DW−2k+1)
b + 2 i ` π

(εmm)2k+1 O (1) ,

(R 46)

where, for notational simplicity, and as done previously in Proposition 3.9, on page 62, we
have used the estimates obtained in relation (R9), given on page 27, for the elementary quo-

tients
Lm

hj−1,j,m
, in the form

Lm
hj−1,j,m

= L
DW−1
m O (1) ,

where, as in Proposition 3.9, on page 62 above, O (1) may depend on m, but is uniformly bounded
away from 0 and ∞; more specifically,

0 < O (1) <∞⋅

This ensures here that, for all k ∈ N,

(−1)k
2 k + 1

(εmm)2 k+1 O (1) ≠ 0 , (R 47)
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iii. In the same way, given m ∈ N
⋆

sufficiently large, the (exact) contribution of the r
−
b N

m
b − 1

lower wedges to the tubular volume is given by

Vm,ΓWm ,upper wedges = Clower wedges ε
m

#Vm−1

∑
j=1

∑
k∈N, `∈Z

c
′′
k,j,`,m ε

(2−DW+k (2−DW)+i `p
,

(R 48)

where Clower wedges denotes a strictly positive and finite constant, depending on m ∈ N
⋆

, but
uniformly bounded away from 0 and ∞ (i.e., here and in the sequel, independently of m ∈ N

⋆

large enough).

The (approximate) contribution of the r
−
b N

m
b − 1 lower wedges to the tubular volume is given

by

Vm,ΓWm ,lower wedges =
π

2
(
(εmm)3

4
r
−
b N

−{x}
b −

(εmm)4

2
)

−
(εmm)3

4
r
−
b

∞

∑
k=0

(−1)k
2 k + 1

N
−((2 k+1)DW−2 k) {x}
b (εmm)2 k+1 O (1)

+
(εmm)4

4

∞

∑
k=0

(−1)k
2 k + 1

N
−((2 k+1)DW−2 k+1) {x}
b (εmm)2 k+1 O (1) ,

(R 49)

i.e., by using the Fourier series expansion given in Property 3.5, on page 45,

Vm,ΓWm ,lower wedges =
π

2

(εmm)3

4
r
−
b
Nb − 1

Nb
∑
`∈Z

ε
−im ` p
m

lnNb + 2 i ` π
−
π

2

(εmm)4

2

−
(εmm)3

4
r
−
b

∞

∑
k=0

(−1)k
2 k + 1

N
−((2 k+1)DW−2 k)
b − 1

N
−((2 k+1)DW−2 k)
b

∑
`∈Z

ε
−im ` p
m

lnN
−((2 k+1)DW−2 k)
b + 2 i ` π

(εmm)2 k+1 O (1)

+
(εmm)4

4

∞

∑
k=0

(−1)k
2 k + 1

N
−((2 k+1)DW−2 k+1)
b − 1

N
−((2 k+1)DW−2 k+1)
b

∑
`∈Z

ε
−im ` p
m

lnN
−((2 k+1)DW−2 k+1)
b + 2 i ` π

(εmm)2 k+1 O (1) ,

(R 50)

As previously, we obtain that, for all k ∈ N,

(−1)k
2 k + 1

(εmm)2 k+1 O (1) ≠ 0 ⋅ (R 51)
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Proposition 3.11 (Negative Contribution of the Extra Outer Triangles to the Tubular
Volume).

i. Given m ∈ N
⋆

sufficiently large, the negative contribution of the (Nb − r
+
b − 1)Nm

b extra outer
lower triangles to the tubular volume is given by

Vm,ΓWm ,extra outer lower triangles = −
ε
m
m

2
∑

j triangle

{bj−1,j,m + bj,j+1,m}

= −
ε
m
m

2
∑

j lower triangle

N
(3−DW ) {x}
b (εmm)2 O (1)

= −
ε
m
m

2
(Nb − r

+
b − 1)Nm

b N
(3−DW ) {x}
b (εmm)2 O (1)

= −
ε
m
m

2
(Nb − r

+
b − 1)Nm

b

N
(3−DW )
b − 1

N
(3−DW )
b

∑
`∈Z

ε
−im`p
m

lnN
(3−DW )
b + 2 i ` π

(εmm)2 O (1)

(R 52)

where the coefficient r
+
b is defined in formula (R36) page 48, and where, as in Proposition 3.9,

on page 62 above, O (1) may depend on m, but is uniformly bounded away from 0 and ∞; more
specifically,

0 < O (1) <∞ .

This ensures here that,

(−1)k
2 k + 1

O (1) ≠ 0 . (R 53)

ii. In the same way, given m ∈ N
⋆

sufficiently large, the negative contribution of the (Nb − r
−
b − 1)Nm

b

extra outer upper triangles to the tubular volume is given by

Vm,ΓWm ,extra outer upper triangles = −
(εmm)2

2
(Nb − r

−
b − 1)N (3−DW) {x}

b O (1) ,

= −
(εmm)2

2
(Nb − r

−
b − 1)

N
(3−DW)
b − 1

N
(3−DW)
b

∑
`∈Z

ε
−im ` p
m

lnN
(3−DW)
b + 2 i ` π

O (1) ,

(R 54)

again where, as in Proposition 3.9, on page 62 above, O (1) may depend on m, but is uniformly
bounded away from 0 and ∞, and where the coefficient r

−
b is defined in formula (R37), on

page 48.
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Proposition 3.12 (Negative Contribution of the Overlapping Rectangles to the Tubular
Volume).

Given m ∈ N
⋆

sufficiently large, the negative contribution of the upper and lower overlapping
rectangles to the tubular volume is given by

Vm,ΓWm ,upper and lower parallelograms = −ε
m
m ∑

j upper and lower parallelogram

bj−1,j,m

= − (εmm)2
N

(3−DW) {x}
b O (1)

= − (εmm)2 N
(3−DW)
b − 1

N
(3−DW)
b

∑
`∈Z

ε
−im ` p
m

lnN
(3−DW)
b + 2 i ` π

O (1)

,

(R 55)
where, as in Proposition 3.9, on page 62 above, O (1) may depend on m, but is uniformly bounded
away from 0 and ∞; more specifically,

0 < O (1) <∞ .

Property 3.13 (Staggered Sequence of (m,εmm)-Neighborhoods).

Given m ∈ N, there exists an integer km ∈ N such that, for each integer k ⩾ km, the (m + k, εm+km+k)-

neighborhood of the m
th

prefractal approximation ΓWm
(where ε

m+k
m+k is the (m + k)th cohomolgy in-

finitesimal, as introduced in Definition 3.1, on page 37),

D (ΓWm+k
, ε
m+k
m+k ) = {M = (x, y) ∈ R2

, d (M,ΓWm+k
) ⩽ εm+km+k} , (R 56)

is contained in the (m, εmm)-neighborhood of the m
th

prefractal approximation ΓWm
,

D (ΓWm
, ε
m
m) = {M = (x, y) ∈ R2

, d (M,ΓWm
) ⩽ εmm} ; (R 57)

namely,

D (ΓWm+k
, ε
m+k
m+k) ⊂ D (ΓWm

, ε
m
m) . (R 58)

Proof. This proof is based on the fact that the sequence of sets of vertices (Vm)m∈N is increasing (see
part i. of Property 2.5, on page 14), and that V

⋆
= ⋃
n∈N

Vn is dense in the Weierstrass Curve ΓW , along

with the fact that the prefractal graph sequence (ΓWm
)m∈N

converges to the Weierstrass Curve ΓW

(for example, in the sense of the Hausdorff metric on R
2
).

Given m ∈ N, there exists an integer k0,m ∈ N such that, for each integer k ⩾ k0,m, we have that

d (ΓWm
,ΓWm+k

) = inf
0 ⩽ j ⩽ #Vm − 1

0 ⩽ j
′
⩽ #Vm+k − 1

{d (Mj,m,Mj ′,m+k) , Mj,m ∈ Vm , Mj ′,m+k ∈ Vm+k \ Vm} ⩽ εmm .

We then deduce that for all k ⩾ k0,m,
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ΓWm+k
⊂ D (ΓWm

, ε
m
m) .

At the same time, since, for any (m, k) ∈ N2
,

ε
m+k
m+k ⩽ ε

m
m ,

along with the fact that, for any m ∈ N,

lim
k→∞

ε
m+k
m+k = 0 ,

we can find another integer k1,m ∈ N such that, for each integer k ⩾ k1,m, we have that

D (ΓWm+k
, ε
m+k
m+k) ⊂ D (ΓWm

, ε
m
m) .

The desired result is obtained by letting km = max {k0,m, k1,m}.

Remark 3.3 (Connection Between Fractality and the Cohomology Infinitesimal).

As is mentioned in [DL24d], the cohomology infinitesimal (or, equivalently, the elementary length)
– which obviously depends on the magnification scale (i.e., the chosen prefractal approximation) –
can be seen as a transition scale between the fractal domain and the classical (or Euclidean) one.
In fact, we could say that the system is fractal below this scale, and classical above (for the level of
magnification considered). In the limit when the integer m associated with the prefractal approxima-
tion tends to infinity, the system is fractal below the cohomological infinitesimal (which is really an
infinitesimal, in this case), i.e., at small scales, and is classical beyond, i.e., on a large scale. Note that
this is in perfect agreement with what is evoked by the French physicist Laurent Nottale in [Not98]
about scale–relativity.

The Complex Dimensions of a fractal set characterize their intrinsic vibrational properties. Thus
far, the values of the Complex Dimensions were obtained by studying the oscillations of a small neigh-
borhood of the boundary, i.e., of a tubular neighborhood, where points are located within an epsilon
distance from any edge. In the case of our fractal Weierstrass Curve ΓW , which is, also, the limit of
the sequence of (polygonal) prefractal approximations (ΓWm

)m∈N
, it is natural – and consistent with

the result of Property 3.13, on page 68 above – to envision the infinitesimal tubular neighborhood
of ΓW associated with the cohomology infinitesimal (εmm)m∈N

, as the limit of the (obviously conver-
gent) sequence (D (ΓWm

, ε
m
m))m∈N

of ε
m
m-neighborhoods of ΓWm

, where, for each integer m ∈ N, ε
m
m

is the m
th

cohomology infinitesimal introduced in Definition 3.1, on page 37 above.

4 Complex Dimensions and Average Minkowski Content

Definition 4.1 (Natural Volume Extension – Effective Distance and Tube Zeta Functions
Associated to an Arbitrary IFD of R

2
).

Let FI
be an iterated fractal drum of R

2
; i.e., given a cohomology infinitesimal εF = (εmm,F)

m∈N
,

as introduced in Definition 3.3, on page 45, FI
is a sequence of ordered pairs (F

m
, ε
m
m,F)

m∈N
, where,
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for each m ∈ N, Fm is the m
th

prefractal approximation to a fractal curve F .

We are assuming here that (εmm,F)
m∈N

is a decreasing sequence of positive numbers tending to 0

as m→∞, such that, for all fixed m ∈ N, lim
km→∞

(εmm,F − ε
m+km
m+km,F) = 0. Also, for all m ∈ N, we

define εm,F > 0 by ε
m
m,F = (εm,F)m. This is the case, in particular, for the Weierstrass IFD, ac-

cording to Definition 3.1, on page 37. Indeed, with the notation of the latter definition, we have

that ε
m+1
m+1,F = ε

m+1
m+1,F =

ε
m
m,F
Nb

, for all m ∈ N. Hence, for any km ∈ N, ε
m+km
m+km,F = ε

m+km
m+km,F =

ε
m
m,F

N
km
b

.

Back to the general case of FI
, we hereafter consider the ε

m
m,F -neighborhood (or ε

m
m,F -tubular

neighborhood) of Fm,

D (Fm, εmm,F) = {M ∈ R
2
, d (M,Fm) ⩽ εmm,F} , (R 59)

of tubular volume (i.e., area) denoted Vm,Fm
.

In our present context, when it comes to obtaining the associated fractal tube zeta function, we
cannot, a priori, as in the case of an arbitrary bounded subset of R

2
(see [LRŽ17b], Definition 2.2.8,

page 118), directly use an integral formula of the form (for all s ∈ C with Re(s) sufficiently large,
and for all m ∈ N

⋆
large enough),

ζ̃m,Fm
(s) = ∫

η

0
t
s−3 Vm,Fm

(t) dt = ∫
η

0
t
s−2 Vm,Fm

(t) dt
t
, (R 60)

where η > 0 is chosen sufficiently small, since the tube formulas that we will obtain in Subsection 4.1
below can only be expressed in an explicit way at a value ε

m
m,F of the cohomology infinitesimal.

In order to bypass this difficulty, we introduce, for all sufficiently large m ∈ N
⋆
, the continuous

function Ṽm,Fm
defined for all t ∈ [0, εmm,F] and obtained by substituting t for ε

m
m,F on the right-

hand side of the expression for Vm,Fm
. This simply amounts to considering an evolving (continuous)

tubular neighborhood, for 0 ⩽ t ⩽ ε
m
m,F . Indeed, as was evoked in the introduction, the knowledge

of the expression for the volume at this discrete value is simply the trace, at the value t = ε
m
m,F , of

the continuous volume function corresponding to an evolving (continuous) tubular neighborhood; see
Figure 18, on page 71. So, in a sense, we recover, in an adapted, extended but equivalent manner, the
initial theory developed in [LRŽ17b].

As for the resulting m
th

effective local tube zeta function ζ̃
e
m,F – a generalization to IFDs of the

usual definition referred to just above – we define it, for all s in C with sufficiently large real part
(in fact, for Re(s) > Dm,Fm

, where Dm,Fm
is the abscissa of convergence of ζ̃m,Fm

), by the following
truncated Mellin transform,

ζ̃
e
m,Fm

(s) = ∫
εF

0
t
s−3 Ṽm,Fm

(t) dt = ∫
εF

0
t
s−2 Ṽm,Fm

(t) dt
t
, (R 61)

where εF = lim
m→∞

εm,F . We further assume that εF > 0. (Note that in the case of the Weierstrass IFD,

we have εF =
1

Nb
and so, εF > 0.)

The choice of the value εF for the upper bound of the integral in relation (R61) (instead of an
arbitrary positive number η > 0 as in the classical theory; see [LRŽ17b], Definition 2.2.8, on page 118)
plays an essential role in our present context. Indeed, it corresponds to an intrinsic scale, in connex-
ion with the number of divisions (when applying the IFS TF ; see Definition 3.3, on page 45). More
precisely, the oscillations of the IFD can be characterized by means of (complex powers) of εF , with
exponents the underlying Complex Dimensions.
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As for the m
th

effective local distance zeta function ζ
e
m,F , it can be deduced by the following

functional equation (in the present case, when Fm ⊂ R
2
), for the same value of εF > 0,

ζ
e
m,Fm

(s) = εs−2
F Ṽm,Fm

(εF) + (2 − s) ζ̃em,Fm
(s) , (♦) (R 62)

where ε
s−2
F = (εF)s−2

.

The associated functional equation of relation (R62) just above is the exact analog of the functional
equation connecting the usual tube and zeta functions of a bounded set (or, more generally, of a rela-
tive fractal drum) in the standard higher-dimensional of Complex Dimensions developed in [LRŽ17b],
as well as in [LRŽ17a], [LRŽ17c] and [LRŽ18].

This notation and terminology apply, in particular, to the different volume functions involved in
the discussion of the Weierstrass IFD in Subsection 4.1 below.

ϵ
m,F

m

t

Figure 18: The evolving tubular neighborhood, for 0 ⩽ t ⩽ ε
m
m,F .

Remark 4.1. We stress the fact that ζ̃
e
m,Fm

does not coincide with the usual tube zeta function ζ̃Fm

associated with the m
th

polygonal prefractal approximation Fm ⊂ R
2

to the fractal curve F , given,
as in [LRŽ17b], for all s ∈ C with Re(s) sufficiently large, by

ζ̃Fm
(s) = ∫

εF

0
t
s−3 Vm,Fm

(t) dt = ∫
εF

0
t
s−2 Vm,Fm

(t) dt
t
.

Similarly, ζ
e
m,Fm

does not coincide with the usual distance zeta function ζFm
associated with

the m
th

polygonal prefractal approximation Fm ⊂ R
2

to the fractal curve F , given, as in [LRŽ17b],
for all s ∈ C with Re(s) sufficiently large and for all m ∈ N

⋆
large enough (with d (M,Fm) denoting

the Euclidean distance from M ∈ R
2

to Fm), by

ζFm
(s) = ∫

M ∈D(ΓFm ,ε
m
m,F)

(d (M,Fm))s−2
dt ,

where D (ΓFm
, ε
m
m,F) is the ε

m
m,F -neighborhood (or ε

m
m,F -tubular neighborhood) of Fm, given by

D (ΓFm
, ε
m
m,F) = {M ∈ R

2
, d (M,Fm) ⩽ εmm,F} .

This entire comment applies, in particular, to the Weierstrass IFD, which is the central object of
this paper.
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Remark 4.2 (Consistency of our Approach in the Case of the Weierstrass IFD – Connec-
tion with Reality).

As shown in Remark 3.1, on page 38, the m
th

prefractal approximations to the Weierstrass Curve
become closer and closer to one another and to the Weierstrass fractal Curve, as m increases. Hence,
it makes sense to consider a continuous version of the tubular volume, where the discrete and the
continuous, in a sense, eventually merge, for all m ∈ N

⋆
sufficiently large.

We can also note that, in real life, fractality is not always the result of a discrete process. On the
contrary, fractal shapes develop continuously, as is the case, for instance, in biology.

Remark 4.3. It follows from the above relation (R62), on page 71, along with the results (and their
proofs) in [LRŽ17b], Corollary 2.2.20, on page 127, that, in a given domain of C, the effective fractal
zeta functions ζ

e
m,Fm

and ζ̃
e
m,Fm

have the same poles (denoted by ω) with residues connected by the
relation

res (ζ̃em,Fm
, ω) = 1

2 − ω
res (ζem,Fm

, ω) , (♦♦) (R 63)

in case ω ≠ 2 is a simple pole; and, similarly for the principal parts of ζ
e
m,Fm

and ζ̃
e
m,Fm

at ω, in
case ω ≠ 2 is a multiple pole. It follows, in particular, that, in the present new sense, the Complex
Dimensions of Fm can be indifferently defined as the (visible) poles of the effective distance zeta
function ζ

e
m,Fm

or of the effective tube zeta function ζ̃
e
m,Fm

.

We will show in Subsection 4.1 below that, in the case of the Weierstrass IFD, and for all integers m
sufficiently large, ζ̃

e
m,Fm

(and hence also, ζ
e
m,Fm

, in light of relation (R63), on page 72 above), has a
meromorphic continuation to all of C and has Minkowski dimension strictly smaller than 2; so that its
Complex Dimensions are simple and have real part strictly smaller than 2. Hence, for any Complex
Dimension ω of the Weierstrass IFD, we have that ω is simple and ω ≠ 2. (See, especially, Theorem 4.6,
on page 82, and Theorem 4.8, on page 88, along with Corollary 4.7, on page 87.)

4.1 Prefractal Tube Formulas and Prefractal Effective Zeta Functions

In order to obtain the main results of this section – namely, Theorem 4.5, on page 78, Theorem 4.6,
on page 82, and 4.9, on page 90, along with Corollary 4.7, on page 87, and Theorem 4.8, on page 88
below, we consider the contribution to the (pre)fractal tube formulas brought by the various types of
geometric elements in the ε

m
m–neighborhood of ΓWm

, here, the rectangles and the wedges (in Prop-
erty 4.1, on page 73, and Property 4.2, on page 75 respectively), thereby supplementing the study of
the positive or negative contributions of the rectangles, triangles and extreme wedges carried out earlier
in Section 3, and synthetized in Propositions 3.9–3.12, on pages 62–68 above. We stress the fact that,
due to the above computations, the value of the m

th
cohomology infinitesimal ε

m
m has to be sufficiently

small. This means, in particular, that m ∈ N
⋆

has to be sufficiently large, throughout this subsection.

We invite the interested reader to eventually consult Remark 4.6, on page 81, for further informa-
tion about the effective volumes and the effective local zeta functions used in the present subsection
and in Subsection 4.2.

In the sequel, in the case when F is the Weierstrass IFD, we will write, for example, Ṽm,ΓWm
, Vm,ΓWm

,

ζ̃
e
m,ΓW , ζ

e
m,ΓW , instead of Ṽm,Fm

, Vm,Fm
, ζ̃

e
m,Fm

, ζ
e
m,Fm

, respectively. And similarly for the corre-
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sponding expressions associated with the contributions of the rectangles, wedges, outer triangles and
parallelograms, for instance, as in Section 3 above.

Property 4.1 (Tube Formula and Effective Tube Zeta Function Associated to the Contri-
bution of the Rectangles to the Tubular Volume).

Given m ∈ N
⋆

sufficiently large, the contribution (volume) function Ṽm,ΓWm ,Rectangles
of the

2 (Nb − 1)Nm
b rectangles to the effective tubular volume Ṽm,ΓWm

is the continuous function given,

for all t ∈ [0, εmm], by

Ṽm,ΓWm ,Rectangles
(t) = 2

∞

∑
k=0

(
1
2

k
)
N

1−k (2−DW)
b − 1

N
1−k (2−DW)
b

∑
`∈Z

t
2−DW+k (2−DW)−i `p

(1 − k (2 −DW)) lnNb + 2 i ` π
O (1) .

(R 64)
Recall that, by construction,

Ṽm,ΓWm ,Rectangles
(εmm) = Vm,ΓWm ,Rectangles

⋅

For the sake of clarity, and in order to avoid confusion between various occurrences of O (1), we
will write relation (R64) in the form

Ṽm,ΓWm ,Rectangles
(t) = CRectangles

∞

∑
k=0

(
1
2

k
)
N

1−k (2−DW)
b − 1

N
1−k (2−DW)
b

∑
`∈Z

t
2−DW+k (2−DW)−i `p

(1 − k (2 −DW)) lnNb + 2 i ` π
,

(R 65)
where CRectangles denotes a strictly positive and finite constant, depending on m ∈ N

⋆
, but uniformly

bounded away from 0 and ∞ (i.e., here and in the sequel, independently of m ∈ N
⋆

large enough);
see Proposition 3.9, on page 62.

The associated m
th

(local) effective tube zeta function (see Definition 4.1, on page 69 above) is
first obtained, for any complex number s such that Re(s) > DW , as follows:

ζ̃
e
m,Rectangles(s) = ∫

ε

0

t
s−3 Ṽm,ΓWm ,Rectangles(t) dt

= CRectangles

∞

∑
k=0

(
1

2

k
)N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

∑
`∈Z

1

(1 − k (2 −DW)) lnNb + 2 i ` π
∫

ε

0

t
s−3

t
2−DW+k (2−DW )−i `p

dt

= CRectangles

∞

∑
k=0

(
1

2

k
) N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

∑
`∈Z

1

(1 − k (2 −DW)) lnNb + 2 i ` π

ε
s−DW+k (2−DW )−i `p

s −DW + k (2 −DW) − i `p ⋅

(R 66)

Note that the upper bound ε =
1

Nb
in the integral defining ζ̃

e
m,Rectangles is the intrinsic scale intro-

duced in Definition 3.1, on page 37. It also corresponds to the limit, when m→∞, of εm.

We call this zeta function ζ̃
e
m,Rectangles the m

th
local effective tube zeta function (associated with

the rectangles), because it is the zeta function associated not only with the m
th

prefractal approxima-
tion to the Weierstrass Curve ΓW , but, also, with the infinitesimal ε

m
m which conveys the scaling
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relation associated to the limit fractal object; i.e., ΓW . The same comment holds for the forth-
coming local zeta functions introduced in Properties 4.2–4.4, on pages 75—77.

By meromorphic continuation to all of C, one then obtains the (local) effective tube zeta func-
tion ζ̃

e
m,Rectangles for all s ∈ C, as given by the last two equalities in relation (R66) just above.

Furthermore, the abscissa of absolute convergence of the Dirichlet–type integral (DTI) involved in
the definition of ζ̃

e
m,Rectangles, in the sense of [LRŽ17b] (Appendix A), is equal to DW .

The associated Complex Dimensions arise as

DW − k (2 −DW) + i `p , with k ∈ N , ` ∈ Z .

Remark 4.4. In the proof of Theorem 4.6, on page 82, we will show that the series appearing on the
right–hand side of the expression of Ṽm,ΓWm ,Rectangles (εmm) in formulas (R64)–(R65) in Property 4.1,
on page 73 (for all m ⩾ 1 large enough) is absolutely convergent – and hence also, convergent. (See
also Remark 4.6, on page 81, for further information.) We will also explain how to derive the ex-
pression for the tube zeta function ζ̃m,Rectangles (again, for all m ⩾ 1 large enough), via an application

of the (truncated) Mellin transform to the function t↦ Ṽm,Rectangles(t), defined for all t ∈ [0, εmm],
followed by meromorphic continuation to all of C. We refer to that same proof for the other state-
ments concerning ζ̃

e
m,Rectangles and the associated (possible) poles (i.e., the Complex Dimensions of the

Weierstrass IFD).

An entirely similar comment could be made (still for allm ⩾ 1 sufficiently large) about Ṽm,ΓWm ,wedges

and ζ̃
e
m,wedges in Property 4.2, on page 75, Ṽm,ΓWm ,extra outer triangles (εmm) and ζ̃

e
m,extra outer triangles in

Property 4.3, on page 76, Ṽm,ΓWm ,parallelograms (εmm) and ζ̃
e
m,parallelograms in Property 4.4, on page 77, as

well as about

Ṽm,ΓWm
= Ṽm,ΓWm ,Rectangles + Ṽm,ΓWm ,wedges

+Ṽm,ΓWm ,extra outer triangles + Ṽm,ΓWm ,parallelograms ,

(R 67)

and

ζ̃
e
m,Wm

(s) = ζ̃em,Rectangles(s) + ζ̃em,wedges(s) + ζ̃em,extra outer triangles(s) + ζ̃em,parallelograms(s) , (R 68)

in Theorem 4.5, on page 78, and Theorem 4.6, on page 82.

Remark 4.5. Recall from [LRŽ17b] that the abscissa of convergence σm of ζ̃
e,strict
m,Rectangles is the unique

(possibly extended) real number σm such that the DTI defining ζ̃
e
m,Rectangles (in the first equality in

relation (R66) above, on page 73), converges for Re(s) > σm and diverges for Re(s) < σm. Here, in
the light of the identity (R66), we have that σm = DW , for all m ∈ N

⋆
large enough. An analogous

comment applies to all the other DTIs encountered in this subsection, and in Subsection 4.2, including,
especially, ζ̃

e
m,wedges, ζ̃

e
m,extra outer triangles, ζ̃

e
m,parallelograms.
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Property 4.2 (Tube Formula and Effective Tube Zeta Function Associated to the Contri-
bution of the Wedges to the Tubular Volume).

Given m ∈ N
⋆

sufficiently large, the contribution (volume) function of the wedges to the effective
tubular volume function Ṽm,ΓWm

is the continuous function given, for all t ∈ [0, εmm], by

Ṽm,ΓWm ,wedges
(t) = Ṽm,ΓWm ,upper wedges(t) + Ṽm,ΓWm ,lower wedges(t) + Ṽm,ΓWm ,extreme wedges(t)

=
rb π

8

Nb − 1

Nb
∑
`∈Z

t
3−i `p

lnNb + 2 i ` π
−
π t

4

2
+ π t

2

−
1

4
rb

∞

∑
k=0

(−1)k
2 k + 1

N
((2 k+1)DW−2 k)
b − 1

N
((2 k+1)DW−2 k)
b

∑
`∈Z

t
2 k+1−i `p

((2 k + 1)DW − 2 k) lnNb + 2 i ` π
O (1)

+
1

2

∞

∑
k=0

(−1)k
2 k + 1

N
(2 k+1) (DW−1)
b − 1

N
(2 k+1) (DW−1)
b

∑
`∈Z

t
5+2 k−i `p

((2 k + 1)DW − 2 k + 1) lnNb + 2 i ` π
⋅

(R 69)

Recall that
Ṽm,ΓWm ,⋆,wedges

(εmm) = Vm,ΓWm ,⋆,wedges
,

where ⋆ = upper, lower, or extreme. Hence, in light of the first equality in relation (R69), an anal-
ogous identity holds if ⋆, wedges is replaced by “wedges” .

As before, for the sake of clarity, we will rewrite relation (R69) in the form

Ṽm,ΓWm ,wedges
(t) = C

1
wedges ∑

`∈Z

t
3−i `p

lnNb + 2 i ` π
−
π t

4

2
+ π t

2

−C2
wedges

∞

∑
k=0

(−1)k
2 k + 1

N
((2 k+1)DW−2 k)
b − 1

N
((2 k+1)DW−2 k)
b

∑
`∈Z

t
2 k+1−i `p

((2 k + 1)DW − 2 k) lnNb + 2 i ` π

+C3
wedges

∞

∑
k=0

(−1)k
2 k + 1

N
(2 k+1) (DW−1)
b − 1

N
(2 k+1) (DW−1)
b

∑
`∈Z

t
5+2 k−i `p

((2 k + 1)DW − 2 k + 1) lnNb + 2 i ` π
,

(R 70)
where C

1
wedges, C

2
wedges, and C

3
wedges denote strictly positive and finite constants depending on m, but

uniformly bounded away from 0 and ∞ (see Proposition 3.10, on page 64).

The associated (local) effective tube zeta function (see Definition 4.1, on page 69 above) is first
obtained, for any complex number s such that Re(s) > DW , as follows:
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ζ̃
e
m,wedges(s) = ∫

ε

0

t
s−3 Ṽm,,ΓWm ,wedges(t) dt

= C
1
wedges ∑

`∈Z

(Nb − 1)−i `p
lnNb + 2 i ` π

∫
ε

0

t
s−i `p

dt + π ∫
ε

0

t
s−1

dt −
π

2
∫

ε

0

t
s+1

dt

−C2
wedges

∞

∑
k=0

(−1)k
2 k + 1

N
((2k+1)DW−2k)
b − 1

N
((2k+1)DW−2k)
b

∑
`∈Z

1

((2 k + 1)DW − 2 k) lnNb + 2 i ` π
∫

ε

0

t
s+2k+1−i `p

dt

+C3
wedges

∞

∑
k=0

(−1)k
2 k + 1

(−1)k
2 k + 1

N
(2k+1) (DW−2k+1)
b − 1

N
(2k+1)DW−2k+1)
b

1

((2 k + 1)DW − 2 k + 1) lnNb + 2 i ` π
∫

ε

0

t
s−2+2k−i `p

dt

= C
1
wedges ∑

`∈Z

1

lnNb + 2 i ` π

ε
s+1−i `p

s + 1 − i `p
+
π ε

s

s −
π ε

s+2

2 (s + 2)

−C2
wedges

∞

∑
k=0

(−1)k
2 k + 1

N
((2k+1)DW−2k)
b − 1

N
((2k+1)DW−2k)
b

∑
`∈Z

1

((2 k + 1)DW − 2 k) lnNb + 2 i ` π

ε
s+2k−1−i `p

s + 2 k − 1 − i `p

+C3
wedges

∞

∑
k=0

(−1)k
2 k + 1

N
(2k+1) (DW−2k+1)
b − 1

N
(2k+1)DW−2k+1)
b

∑
`∈Z

1

((2 k + 1)DW − 2 k + 1) lnNb + 2 i ` π

ε
s+3+2k−i `p

s + 3 + 2 k − i `p
.

(R 71)

By meromorphic continuation to all of C, one then obtains ζ̃
e
m,wedges, the (local) effective tube zeta

function (associated with the wedges), for all s ∈ C, as given by the last two equalities in relation (R71)
just above.

The associated Complex Dimensions arise as

−1 + i `p , 1 − 2 k + i `p , −3 − 2 k + i `p , with k ∈ N , ` ∈ Z , along with 0 and − 2 .

Note that for k ⩾ 2 (and any ` ∈ Z), the last two families of (possible) Complex Dimensions fully
overlap. We will take this fact into account in Theorem 4.8, on page 88, and Theorem 4.9, on page 90
below.

Property 4.3 (Tube Formula and Effective Tube Zeta Function Associated to the Contri-
bution of the Extra Outer Triangles to the Tubular Volume).

Given m ∈ N
⋆

sufficiently large, the negative (volume function) contribution of the extra outer
triangles to the effective tubular volume Ṽm,ΓWm

is the continuous function given, for all t ∈ [0, εmm],
by

Ṽm,ΓWm ,extra outer triangles(t) = Ṽm,ΓWm ,extra outer lower triangles(t) + Ṽm,ΓWm ,extra outer upper triangles(t)

= −
N
DW−3
b − 1

N
DW−3
b

∑
`∈Z

t
2−i `p

(DW − 3) lnNb + 2 i ` π
O (1) ,

(R 72)
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with
0 < C

3
inf ⩽ O (1) ⩽ C3

sup <∞ .

Recall that Ṽm,ΓWm ,⋆
(εmm) = Vm,ΓWm ,⋆

(εmm), where ⋆ = extra outer lower triangles, or
extra outer upper triangles. Hence, in light of the first equality in relation (R72), we also have
that Ṽm,ΓWm ,extra outer triangles (εmm) = Vm,ΓWm ,extra outer triangles (εmm).

As previously, for the sake of clarity, we will write relation (R72) in the following form:

Ṽm,,ΓWm ,extra outer triangles(t) = −Ctriangles ∑
`∈Z

t
2−i `p

(DW − 3) lnNb + 2 i ` π
,

(R 73)

where Ctriangles denotes a strictly positive and finite constant, depending on m, but uniformly bounded
away from 0 and ∞ (in m ∈ N

⋆
sufficiently large); see Proposition 3.11, on page 67. More specifically,

0 < C
3
inf ⩽ Ctriangles ⩽ C

3
sup <∞ .

The associated (local) effective tube zeta function (see Definition 4.1, on page 69 above) is first
obtained, for any complex number s such that Re(s) > DW , as follows:

ζ̃
e
m,extra outer triangles(s) = ∫

ε

0
t
s−3 Ṽm,,ΓWm ,extra outer triangles(t) dt

= −Ctriangles ∑
`∈Z

1

(2 − 3DW) lnNb + 2 i ` π
∫
ε

0
t
s−2−i `p

dt

= −Ctriangles ∑
`∈Z

1

(DW − 3) lnNb + 2 i ` π

ε
s−1−i `p

s − 1 − i `p
.

(R 74)
By meromorphic continuation to all of C, one then obtains ζ̃

e
m,extra triangles, the (local) effective

tube zeta function (associated with the extra outer triangles), for all s ∈ C, as given by the last two
equalities in relation (R74) just above.

The associated Complex Dimensions arise as

1 + i `p , with ` ∈ Z .

Property 4.4 (Tube Formula and Effective Tube Zeta Function Associated to the Contri-
bution of the Parallelograms to the Tubular Volume).

Given m ∈ N
⋆

sufficiently large, the last (volume function) contribution to the effective tubular vol-
ume Ṽm,ΓWm

(εmm), coming from the parallelograms, is the continuous function given, for all t ∈ [0, εmm],
by

Ṽm,ΓWm ,parallelograms(t) = Ṽm,ΓWm ,lower parallelograms(t) + Ṽm,ΓWm ,upper parallelograms(t)

= −Cparallelograms ∑
`∈Z

t
2−i `p

(DW − 3) lnNb + 2 i ` π
,

(R 75)
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where Cparallelograms denotes a strictly positive and finite constant, depending on m, but uniformly
bounded away from 0 and ∞ (see Proposition 3.12, on page 68). More specifically, again,

0 < C
3
inf ⩽ Cparallelograms ⩽ C

3
sup <∞ .

Also, recall that, by construction,

Ṽm,ΓWm ,lower parallelograms (εmm) = Vm,ΓWm ,lower parallelograms ,

and similarly, if “lower parallelograms” is replaced by “upper parallelograms”. Hence, an entirely
analogous relation holds if “parallelograms” is substituted for “lower parallelograms”.

The associated (local) effective tube zeta function ζ̃
e
m,parallelograms (see Definition 4.1, on page 69

above) is then first obtained, for any complex number s such that Re(s) > DW , as follows:

ζ̃
e
m,parallelograms(s) = ∫

ε

0
t
s−3 Ṽm,ΓWm ,parallelograms(t) dt

= −Cparallelograms ∑
`∈Z

1

(2 − 3DW) lnNb + 2 i ` π
∫
ε

0
t
s−2−i `p

dt

= −Cparallelograms ∑
`∈Z

1

(DW − 3) lnNb + 2 i ` π

ε
s−1−i `p

s − 1 − i `p
.

(R 76)
By meromorphic continuation to all of C, one then obtains ζ̃

e
m,parallelograms, the (local) effective tube

zeta function (associated with the parallelograms), for all s ∈ C, as given by the last two equalities in
relation (R76) just above.

The associated Complex Dimensions arise as

1 + i `p , with ` ∈ Z .

The above results stated in Properties 4.1–4.4, on pages 73–77, can now be combined in order to
yield the following key theorems:

Theorem 4.5 (Fractal Tube Formula for The Weierstrass IFD).

Given m ∈ N sufficiently large, the m
th

total (volume function) contribution to the effective tubu-
lar volume Ṽm,ΓWm

, associated with the tubular volume (or) Ṽm,ΓWm
or two-dimensional Lebesgue

measure of the ε
m
m-neighborhood of the m

th
prefractal approximation ΓWm

,

D (εmm) = {M = (x, y) ∈ R2
, d (M,ΓWm

) ⩽ εmm} , (R 77)

where ε = (εmm)m∈N is the cohomology infinitesimal, as introduced in Definition 3.1, on page 37, is
the continuous function given, for all t ∈ [0, εmm], by

Ṽm,ΓWm
(t) = Ṽm,ΓWm ,Rectangles(t) + Ṽm,ΓWm ,wedges(t)

+Ṽm,ΓWm ,ΓWm ,extra outer triangles(t) + Ṽm,ΓWm ,parallelograms(t) ,
(R 78)

i.e.,
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Ṽm,ΓWm
(t) = CRectangles

∞

∑
k=0

(
1

2

k
) N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

∑
`∈Z

1

(1 − k (2 −DW)) lnNb + 2 i ` π
(εmm)2−DW+k (2−DW )−i `p

+C1
wedges ∑

`∈Z

t
3−i `p

lnNb + 2 i ` π
+ π (εmm)2

−
π t

4

2

−C2
wedges

∞

∑
k=0

(−1)k
2 k + 1

N
((2k+1)DW−2k)
b − 1

N
((2k+1)DW−2k)
b

∑
`∈Z

(t2k+1−i `p

((2 k + 1)DW − 2 k) lnNb + 2 i ` π

+C3
wedges

∞

∑
k=0

(−1)k
2 k + 1

N
(2k+1) (DW−1)
b − 1

N
(2k+1) (DW−1)
b

∑
`∈Z

t
5+2k−i `p

((2 k + 1)DW − 2 k + 1) lnNb + 2 i ` π

− (Ctriangles + Cparallelograms) ∑
`∈Z

1

(2 − 3DW) lnNb + 2 i ` π
t
2−i `p

,

(R 79)

where Crectangles, C
`
wedges, ` = 1, 2, 3, Ctriangles, and Cparallelograms denote the strictly positive and finite

constants respectively introduced in Properties 4.1–4.4, on pages 73–77 above. Recall that these con-
stants depend on m, but are uniformly bounded away from 0 and ∞ (in m ∈ N

⋆
large enough).

Also, recall that, by construction,

Ṽm,ΓWm
(εmm) = Vm,ΓWm

.

Actually, this identity follows from the corresponding identity for each of the terms on the right–
hand side of relation (R78).

For the sake of clarity, and in order to highlight the role played by the one–periodic functions (with

respect to the variable lnNb
(εmm)−1

, see Property 3.5, on page 45), one can exchange the sums over k
and m, which enables one to obtain an expression of the following form:

Ṽm,ΓWm
(t) = ∑

`∈Z, k∈N

fk,`,Rectangles t
2−DW+k (2−DW )−i `p

+ ∑
`∈Z, k∈N

(fk,`,wedges,1 t
3−i `p

+ fk,`,wedges,2 t
1+2k−i `p

+ fk,`,wedges,3 t
5+2k−i `p)

+ ∑
`∈Z, k∈N

fk,`,triangles, parallelograms t
2−i `p

+ π t
2
−
π t

4

2
,

(R 80)

where the notation fk,`,Rectangles, fk,`,wedges,`′, 1 ⩽ `
′
⩽ 3, and fk,`,triangles, parallelograms, respectively ac-

count for the nonzero coefficients associated to the sums corresponding to the contribution of the
rectangles, wedges, triangles and parallelograms, respectively given by:

fk,`,Rectangles = CRectangles (
1
2

k
)
N

1−k (2−DW)
b − 1

N
1−k (2−DW)
b

1

(1 − k (2 −DW)) lnNb + 2 i ` π
; (R 81)

fk,`,wedges,1 = C
1
wedges

1

lnNb + 2 i ` π
; (R 82)

fk,`,wedges,2 = −C2
wedges

∞

∑
k=0

(−1)k
2 k + 1

N
((2 k+1)DW−2 k)
b − 1

N
((2 k+1)DW−2 k)
b

1

((2 k + 1)DW − 2 k) lnNb + 2 i ` π
;

(R 83)
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fk,`,wedges,3 = C
3
wedges

(−1)k
2 k+1

N
(2 k+1) (DW−1)
b − 1

N
(2 k+1) (DW−1)
b

1

((2 k + 1)DW − 2 k + 1) lnNb + 2 i ` π
; (R 84)

fk,`,triangles, parallelograms = − (Ctriangles + Cparallelograms)
1

(2 − 3DW) lnNb + 2 i ` π
. (R 85)

Note that those coefficients do not depend on ε
m
m, and satisfy the following uniform estimates

(independent of m ∈ N
⋆

sufficiently large):

∣fk,`,Rectangles∣ ⩽ CRectangles (
1
2

k
) 1

2 ` π
; (R 86)

∣fk,`,wedges,1∣ ⩽
C

1
wedges

2 ` π
; (R 87)

∣fk,`,wedges,2∣ ⩽
C

2
wedges

2 k + 1

1

2 ` π
; (R 88)

∣fk,`,wedges,3∣ ⩽
C

3
wedges

2 k + 1

1

2 ` π
; (R 89)

∣fk,`,triangles, parallelograms∣ ⩽ (Ctriangles + Cparallelograms) ⋅ (R 90)

Finally, each of the double sums in formulae (R78), on page 78, and (R80), on page 79, is
absolutely convergent (and hence, convergent).

Proof. Indeed, by construction, the identity (R78), on page 78, holds. Therefore, all of the main state-

ments in the theorem concerning the m
th

effective tubular volume Ṽm,ΓWm
(εmm) follow by combining

Properties 4.1–4.4, on pages 73–77 above.

Finally, we justify the uniform estimates (R86)– (R90) in the following manner:

We have that

∣fk,`,Rectangles∣ ⩽ CRectangles (
1
2

k
)
»»»»»»N

1−k (2−DW)
b − 1

»»»»»»
N

1−k (2−DW)
b

1√
(1 − k (2 −DW))2 (lnNb)2 + 4 `2 π2

⩽ CRectangles (
1
2

k
) 1√

(1 − k (2 −DW))2 (lnNb)2 + 4 `2 π2

⩽ CRectangles (
1
2

k
) 1

2 ` π
;

∣fk,`,wedges,1∣ ⩽ C
1
wedges

1√
(lnNb)2 + 4 `2 π2

⩽
C

1
wedges

2 ` π
;
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∣fk,`,wedges,2∣ ⩽
C

2
wedges

2 k + 1

»»»»»»»»»»»

N
((2 k+1)DW−2 k)
b − 1

N
((2 k+1)DW−2 k)
b

»»»»»»»»»»»

1√
((2 k + 1)DW − 2 k)2 (lnNb)2 + 4 `2 π2

⩽
C

2
wedges

2 k + 1

1√
((2 k + 1)DW − 2 k)2 (lnNb)2 + 4 `2 π2

⩽
C

2
wedges

2 k + 1

1

2 ` π
;

∣fk,`,wedges,3∣ ⩽
C

3
wedges

2 k + 1

»»»»»»»»»»»

N
(2 k+1) (DW−1)
b − 1

N
(2 k+1) (DW−1)
b

»»»»»»»»»»»

1√
((2 k + 1)DW − 2 k + 1)2 (lnNb)2 + 4 `2 π2

⩽
C

3
wedges

2 k + 1

1√
((2 k + 1)DW − 2 k + 1)2 (lnNb)2 + 4 `2 π2

⩽
C

3
wedges

2 k + 1

1

2 ` π
;

∣fk,`,triangles, parallelograms∣ ⩽ (Ctriangles + Cparallelograms)
1√

(2 − 3DW)2 (lnNb)2 + 4 `2 π2

⩽ (Ctriangles + Cparallelograms)
1

2 ` π
⋅

This concludes the proof of the theorem.

Remark 4.6. We point out that the various effective volumes used in Properties 4.1–4.4, on pages 73–77,
and in Theorem 4.5, on page 78 – namely, Ṽm,ΓWm

(t) (as well as Ṽm,ΓWm ,Rectangles(t), Ṽm,ΓWm ,wedges(t),
etc.) – are not only defined for all t ∈ [0, εmm], but also for all t ∈ [0, 1[. Indeed, each of them is
the sum of a locally normally (and hence also, locally uniformly) convergent series of continuous
functions on [0, 1[. (In fact, for any 0 < ρ < 1, the general term of the corresponding series can
be uniformly bounded by the general term of a geometric series with ratio ρ.) Naturally, we have
that Ṽm,ΓWm

(0) = Ṽm,ΓWm ,Rectangles(0) = . . . = 0.

Since the intrinsic scale ε =
1

Nb
belongs to ]0, 1[ = (0, 1), this observation justifies, in particular,

the fact that the Lebesgue integral initially defining ζ̃
e
m,ΓWm

in relation (R91) below, on page 82 – as

well as ζ̃
e
m,Rectangles in relation (R66), on page 73, etc. – is well-defined and convergent.

Moreover, for the same reasons as above in the first paragraph of this remark (but now by replacing
continuous by holomorphic, as well as [0, 1[ by D

⋆
), Ṽm,ΓWm

(t) (and also, Ṽm,ΓWm ,Rectangles(t), etc.)
admits a necessarily unique holomorphic continuation to the (open, connected) pointed unit disk
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D
⋆
= {t ∈ C , ∣t∣ < 1} \ {0} ,

still given by the same corresponding fractal power series (as in Theorem 4.5, on page 78, Prop-
erty 4.1, on page 73, etc., respectively), and where the complex powers involved are defined by using
the principal determination of the complex logarithm (which, as is well-known, is holomorphic on the
domain C \ ]−∞, 0]).

4.2 Complex Dimensions

We deduce at once the Complex Dimensions of the Weierstrass IFD from the fractal tube formula
and the expression for the (local) effective tube zeta function obtained in Theorem 4.5, on page 78
above, and Theorem 4.6, on page 82 below, respectively.

4.2.1 Main Results

Following (as well as adapting to IFDs) [LRŽ17b], we hereafter define the local and global effective
tube zeta functions of the sequence of Weierstrass IFDs associated to the cohomology infinitesimal,
as introduced in Definition 3.1, on page 37.

Definition 4.2 (Local Tube Zeta Function for the Weierstrass Iterated Fractal Drums).

In the sequel, for each m ∈ N, ζ̃
e
m,ΓWm

denotes the m
th

effective tubular zeta function associated

with Vm,ΓWm
(εmm) – and hence also, associated with the corresponding natural volume extension

function Ṽm,ΓWm
(εmm); see Definition 4.1, on page 69. More specifically, it is initially defined by the

following truncated Mellin transform, for all s ∈ C with Re(s) sufficiently large (in fact, for all s ∈ C
with Re(s) > DW),

ζ̃
e
m,ΓWm

(s) = ∫
ε

0
t
s−3 Ṽm,ΓWm

(t) dt . (R 91)

We also call ζ̃
e
m,ΓWm

the m
th

local effective tube zeta function (or the m
th

prefractal effective tube
zeta function) of the Weierstrass IFD, for the same reason as the one provided in Property 4.1, on
page 73.

Theorem 4.6 (Local and Global Tube Zeta Function for the Weierstrass Iterated Fractal
Drums [DL23b]).

With the notation and terminology of Definition 4.2 just above, ζ̃
e
ΓW , the global effective tube zeta

function of the Weierstrass IFD, defined by analogy with the work in [LRŽ17b], admits a (necessarily
unique) meromorphic continuation to all of C, and is given, for any s ∈ C, by the following expression
(see [DL23b] for the proof of the existence of the limit, which is locally uniform on C):

ζ̃
e
ΓW (s) = lim

m→∞
ζ̃
e,trict
m,ΓWm

(s) , (R 92)

where, for all m ∈ N
⋆

sufficiently large, and all s ∈ C:

ζ̃
e,strict
m,ΓWm

(s) = ζ̃em,ΓWm
(s) − π ε

s

s +
π ε

s+2

4 (s + 2) ,
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since the contribution of the m
th

prefractal approximation ΓWm
to ζ̃

e
ΓW , the global effective tube zeta

function of the Weierstrass IFD, is obtained by excluding the (artificial) terms
π ε

s

s and −
π ε

s+2

4 (s + 2)
coming from the extreme wedges, and where the m

th
(strict) local effective tube zeta function ζ̃

e
m,W is

given, for any s ∈ C, by

ζ̃
e,strict
m,ΓWm

(s) = ∑
`∈Z, k∈N

fk,`,Rectangles

ε
s−DW+k (2−DW )−i `p

s −DW + k (2 −DW) − i `p + ∑
`∈Z, k∈N

f`,k,wedges

ε
s+2k−1−i `p

s + 2 k − 1 − i `p

+ ∑
`∈Z, k∈N

fk,`,triangles, parallelograms

ε
s−1−i `p

s − 1 − i `p
,

(R 93)

where, as already introduced in Theorem 4.5, on page 78, the coefficients fk,`,Rectangles, f`,k,wedges,j,
for 1 ⩽ j ⩽ 3, and f`,k,triangles, parallelograms, respectively, depend on m, but are uniformly bounded
(in m ∈ N

⋆
large enough) and account for the nonzero coefficients associated to the sums correspond-

ing to the contribution of the rectangles, wedges, triangles and parallelograms.

Note that, in light of Definition 4.1, on page 69, ζ̃
e
m,ΓWm

is a (tamed) Dirichlet-type integral (in

the sense of [LRŽ17b], Appendix A) and hence, admits an abscissa of (absolute) convergence.

Furthermore, still for all m ∈ N
⋆

sufficiently large, the abscissa of convergence of ζ̃
e,strict
m,ΓWm

is equal
to

DW = 2 +
lnλ

ln b
= 2 − lnb

1

λ
.

As is proved in [DL23b], ζ̃
e
m,ΓWm

, the m
th

local tube zeta function of the Weierstrass IFD, is the

contribution of the m
th

prefractal approximation ΓWm
to ζ̃

e
ΓW , the global effective tube zeta function

of the Weierstrass IFD.

Proof. Since, by definition (see Definition 4.2, on page 82),

ζ̃
e
m,ΓWm

(s) = ∫
ε

0
t
s−3 Ṽm,ΓWm

(t) dt , (R 94)

for all s ∈ C with Re(s) sufficiently large (in fact, for Re(s) > DW), and according to Theorem 4.6,
on page 82 in Section 4.1, for all t ∈ [0, εmm],

Ṽm,ΓWm
(t) = Ṽm,ΓWm ,Rectangles(t) + Ṽm,ΓWm ,wedges(t)

+Ṽm,ΓWm ,extra outer triangles(t) + Ṽm,ΓWm ,parallelograms(t) ,
(R 95)

we have that (still for Re(s) > DW),

ζ̃
e
m,ΓWm

(s) = ζ̃
e
m,Rectangles(s) + ζ̃em,wedges(s)

+ζ̃em,extra outer triangles(s) + ζ̃em,parallelograms(s) ,
(R 96)

it follows that, for all m ∈ N
⋆

sufficiently large, ζ̃
e
m,ΓWm

has a meromorphic continuation to all of C
given by formula (R93) in Theorem 4.6, on page 82.
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Finally, the fact that, for all m sufficiently large, the abscissa of convergence of ζ̃
e
m,ΓWm

coincides
with DW follows by combining formula (R93), on page 83 (for all s ∈ C) and the method of proof of
Theorem 2.1 on page 57 in [LRŽ17b].

Alternatively, the fact that, for all m ∈ N sufficiently large, the abscissa of convergence Dm

of ζ̃
e
m,ΓWm

is given by

DW = 2 +
lnλ

ln b
= 2 − lnb

1

λ
, (R 97)

follows from relation (R93), given on page 83. Indeed, by definition, ζ̃
e
m,ΓWm

is a tamed Dirichlet-type

integral (DTI), in the sense of [LRŽ17b], Appendix A, Definitions A.1.2 and A.1.3, on page 579.
Hence, since ζ̃

e
m,ΓWm

is meromorphic in all of C and, in particular, in a neighborhood of DW , the ab-

scissa of convergence of ζ̃
e
m,ΓWm

exists and coincides with the largest real part of the poles of ζ̃
e
m,ΓWm

;
that is, here, in light of relation (R93) and of Theorem 4.8, on page 88 below (a corollary of the above
Theorem 4.6, given on page 82, and which implies that DW is an actual pole of ζ̃

e
m,ΓWm

), Dm coincides
with DW , as given by relation (R97) above.

The fact that the first series, ΣRectangles = ΣRectangles(t) (appearing in relation (R99)), is locally
uniformly convergent (and hence, pointwise convergent), follows from the following uniform estimate
(valid for all s ∈ C, with Re(s) ⩾ α, where α ∈ R is arbitrary),

∀ (k, `) ∈ N ×Z ∶
»»»»»ε
s−DW+k (2−DW)−i `p»»»»» ⩽ ε

α−DW+k (2−DW)−i `p

≲ ((1

2
)

2−DW

)
k

,
(R 98)

since 0 < ε ⩽
1

2
.

More specifically, we combine the uniform estimate of relation (R98), on page 84, together with the
fact that, for (k, `) ∈ N ×Z and independently of m ∈ N

⋆
large enough), the coefficients fk,`,Rectangles

are uniformly bounded.

Also, we reason in exactly the same manner with each of the two double sums in relation (R93),
on page 83, defining the remaining effective tube zeta functions contributing to ζ̃

e
m,ΓWm

.

It then suffices to apply the same reasoning as the one described in Remark 4.7, on page 87 just
below to conclude that, for all m large enough, ζ̃

e
m,ΓWm

is meromorphic on all of C, as desired.

Next, we justify the fact that, for all s ∈ C, ζ̃
e
m,ΓWm

(s) is given by relation (R93) in Theorem 4.6,
on page 82 above.

In order to see this, we apply Definition 4.1, on page 69, of the m
th

effective tubular vol-
ume Ṽm,ΓWm

(t), for all t ∈ [0, εmm]. Accordingly, as was alluded to above, for these values of t,

and for all m ∈ N
⋆

sufficiently large, Ṽm,ΓWm
(t) is given by (the sum of) the fractal power series

appearing on the right–hand side of relation (R79), on page 79 (or, equivalently, in relation (R80), on
page 79), in the fractal tube formula for the Weierstrass IFD obtained in Theorem 4.5, on page 78,
but where ε

m
m is replaced by t ∈ [0, εmm].

Then, the same estimate as in relation (R98), on page 84 just above, but now still with ε
m
m replaced

by t, and m0 large enough such that 0 < ε
q
q ⩽

1

2
, for all q ⩾ m0 (and hence, also, 0 < t ⩽

1

2
) shows that
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the general term of the first series, namely,

∑
k∈N, `∈Z

(
1

2

k
) N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

1

(1 − k (2 −DW)) lnNb + 2 i ` π
t
2−DW+k (2−DW )−i `p

,

appearing in the first term of the right–hand side of relation (R78) in Theorem 4.5, on page 78
(yielding Vm,ΓWm

) implies easily that

ΣRectangles(t) = ∫
ε

0

t
s−3 ∑

k∈N, `∈Z

(
1

2

k
) N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

1

(1 − k (2 −DW)) lnNb + 2 i ` π
t
2−DW+k (2−DW )−i `p

dt

= ∑
k∈N, `∈Z

(
1

2

k
) N

1−k (2−DW )
b − 1

N
1−k (2−DW )
b

1

(1 − k (2 −DW)) lnNb + 2 i ` π
∫

ε

0

t
s−3

t
2−DW+k (2−DW )−i `p

,

(R 99)

viewed as a function of t ∈ [0, ε], still for a fixed m ⩾ m0 – converges normally (and thus also, uni-
formly) in t on [0, ε].

The same reasoning can be applied to each of the remaining series; i.e.,

Σ
1
wedges(t) = ∑

`∈Z

t
3−i `p

lnNb + 2 i ` π
, (R 100)

Σ
2
wedges(t) = ∑

k∈N, `∈Z

(−1)k
2 k + 1

N
((2 k+1)DW−2 k)
b − 1

N
((2 k+1)DW−2 k)
b

∑
`∈Z

t
2 k+1−i `p

((2 k + 1)DW − 2 k) lnNb + 2 i ` π
, (R 101)

Σ
3
wedges(t) = ∑

k∈N, `∈Z

(−1)k
2 k + 1

N
(2 k+1) (DW−1)
b − 1

N
(2 k+1) (DW−1)
b

t
5+2 k−i `p

(2 k + 1) (DW − 1) lnNb + 2 i ` π
, (R 102)

Σtriangles and parallelograms(t) = ∑
`∈Z

t
2−i `p

(2 − 3DW) lnNb + 2 i ` π
, (R 103)

appearing on the right–hand side of the second equality of relation (R78) in Theorem 4.5, on page 78.
Hence, by Weierstrass’ theorem (for uniformly convergent series of functions), we can interchange series
and integrals in the expression for ζ̃

e
m,ΓWm

(s), given for a fixed arbitrary s ∈ C, such that Re(s) > DW ,
by the truncated Mellin transform,

ζ̃
e
m,ΓWm

(s) = ∫
ε

0
t
s−3 Ṽm,ΓWm

(t) dt ⋅ (R 104)

In fact, with the notation of Properties 4.1–4.4, on pages 73–77, we have that (still for all m ⩾ m0,
ζ̃
e
m,ΓWm

(s) is given by relation (R80), on page 79, first for all s ∈ C with Re(s) ⩾ DW – and then, by
the principle of analytic (i.e., meromorphic) continuation, for all s ∈ C, since, as was explained above,
each of the series in relations (R99)–(R103), on pages 85–85 above, converges and is a meromorphic
function of s on all of C.

Here is a direct way to establish the meromorphicity of ζ̃
e
m,ΓWm

(for all m ⩾ m0) and to identify its
(possible) poles, without using the chordal metric on the Riemann sphere (see Remark 4.7, on page 87
below, for a closely related use of this latter metric.)

Let ω be a potential pole (i.e., a possible Complex Dimension, as given by Theorem 4.8, on page 88
below), say,

ω = ωk,` = DW − k (2 −DW) + i `p ,
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with k ∈ N and ` ∈ Z.

Then, by excizing an arbitrary small compact disk Dω centered at ω from a slightly larger open
disk D+

ω (also centered at ω), it follows, much as in the above discussion, that the corresponding
double series of holomorphoc functions in the resulting domain D+

ω \Dω is normally – and hence, also
uniformly – convergent in D+

ω \Dω.

Hence, since Dω can be chosen arbitrarily small, we deduce from Weierstrass’ theorem for se-
ries of holomorphic functions that the sum of the double series appearing in the right-hand side of
formula (R93) in Theorem 4.6, on page 82, is holomorphic in D+

ω \Dω, which is an arbitrary small
pointed neighborhood of ω – and thus, that

Σ(s)= ∑
`∈Z, k∈N

fk,`,Rectangles
ε
s−DW+k (2−DW)−i `p

s −DW + k (2 −DW) − i `p

+ ∑
`∈Z, k∈N

{f`,k,wedges,1
ε
s+1−i `p

s + 1 − i `p
+f`,k,wedges,2

ε
s+2 k−1−i `p

s + 2 k − 1 − i `p
+f`,k,wedges,3

ε
s+3+2 k−i `p

s + 3 + 2 k − i `p
}

+ ∑
`∈Z, k∈N

fk,`,triangles, parallelograms
ε
s−1−i `p

s − 1 − i `p
+
π ε

s

s −
π ε

s+2

4 (s + 2)
(R 105)

is holomorphic away from any potential singularity ωk,` = DW − k (2 −DW) + i `p.

Now, by using the uniform convergence in D+
ω \Dω, we can interchange limits and deduce that the

following limits exist in C, and are given as follows:

res (Σ, ωk,`) = lim
s→ωk,`

(s − ωk,`) Σ(s) , (R 106)

from which we deduce that Σ has at most a simple pole at ω = ωk,`. Since fk,`,Rectangles ≠ 0, then ω = ωk,`
is a simple pole of Σ, with associated residue fk,` ≠ 0, as implied by formula (R106).

We conclude from the above discussion that Σ is meromorphic in all of C, with potential poles
(necessarily simple poles) the possible Complex Dimensions listed in Theorem 4.8, on page 88 below.
Since we know that still for all sufficiently large values of the positive integer m,

ζ̃
e
m,ΓWm

(s) = Σ(s) , (R 107)

for all s in the domain (open right-half plane) Re(s) > DW , we deduce from the principle of analytic
(i.e., meromorphic) continuation that ζ̃

e
m,ΓWm

has a meromorphic continuation to all of C, cöınciding
with Σ in C – and hence, having the same potential (as well as actual) poles as Σ, and the same
associated residues.

We note that the expression in relation (R105) above a priori involved terms of the form
π ε

s

s

and −
π ε

s+2

4 (s + 2) , respectively associated with the poles s = 0 and s = 2, which came from the Euclidean

extreme wedges involved in the sequence of tubular neighborhoods (see Proposition 3.10, on page 64).
For this reason, we hereafter exclude those terms from the expression for Σ(s) and set

ζ̃
e,strict
m,ΓWm

(s) = ζ̃em,ΓWm
(s) − π ε

s

s +
π ε

s+2

4 (s + 2) = Σ(s) − π ε
s

s +
π ε

s+2

4 (s + 2) .
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This completes the proof of Theorem 4.6 (page 82), which will also be used in part in order to

prove Theorem 4.8, on page 88 (about the possible Complex Dimensions of ζ̃
e,strict
m,ΓWm

) and Remark 4.7,

on page 87 below; see also Remark 4.7 below for a proof of the meromorphicity of ζ̃ΓW .

In closing, we note that the fact that the global effective tube zeta function ζ̃ΓW exists, is meromor-
phic on C, and is given by the limit appearing in relation (R92), on page 82, is established in [DL23b].

Remark 4.7. The fact that the global effective tube zeta function ζ̃
e
ΓW admits a meromorphic con-

tinuation to all of C is obtained by applying Weierstrass’ theorem for (locally) uniformly convergent
sequences of holomorphic functions. First, we note that, for all sufficiently large m ∈ N, the set Z
of possible poles of the local tube zeta function ζ̃

e
m,ΓWm

(s) does not depend on m, and is given by
Theorem 4.8, page 88 below. Note that Z is discrete, and thus closed in C. It then makes sense to
consider any of thoses poles, that we will denote by ω. The local tube zeta function ζ̃

e
m,ΓWm

is then
holomorphic on the connected open subset of C given by C \ Z. We can clearly see that the sequence
of functions (ζ̃em,ΓWm

)
m⩾m0

converges normally (and hence, uniformly) in a connected open (and rel-

atively compact) neighborhood of any given ω ∈ Z – i.e., for s = x + i y ∈ C close to ω. Weierstrass’
theorem, applied once again, then ensures the holomorphicity of the limit ζ̃

e
ΓW on the domain C \ Z.

It follows that the global tube zeta function ζ̃
e
ΓW is meromorphic in all of C, with possible set of poles

given by Z.

Corollary 4.7 ((of Theorem 4.6, on page 82) Local and Global Distance Zeta Function
for the Weierstrass Iterated Fractal Drums).

By analogy with the functional equation given in [LRŽ17b] (Theorem 2.2.1, page 112), along with
Theorem 4.6, on page 82 just above, the global effective distance zeta function ζ

e
ΓW is given, for any

complex number s, by the following expression:

ζ
e
ΓW (s) = lim

m→∞
ζ
e
m,ΓWm

(s) , (R 108)

where, for all m ∈ N sufficiently large, ζ
e
m,ΓWm

, the m
th

local effective distance zeta function of the
Weierstrass IFD, is given, for any complex number s, by

ζ
e
m,ΓWm

(s) = ε
s−2 Ṽm,ΓWm

(εmm) + (2 − s) ∫
ε

0
t
s−3 Ṽm,ΓWm

(t) dt
= ε

s−2 Ṽm,ΓWm
(εmm) + (2 − s) ζ̃em,ΓWm

(s) , (R 109)

where ε
m
m is the m

th
cohomology infinitesimal (see Definition 3.1, on page 37), while Ṽm,ΓWm

de-

notes the m
th

local effective tubular volume obtained in relations (R79)–(R80) of Theorem 4.5, on
page 78, and where ζ̃

e
m,ΓWm

(s) is given in relation (R93) of Theorem 4.6, on page 82 (note that, by

construction, Ṽm,ΓWm
(εmm) = Vm,ΓWm

). The first equality in relation (R109) is only valid for

Re (s) > Dm = DW ,

while the last one is valid for all s in C. Furthermore, still for all m ∈ N sufficiently large, the distance
zeta function ζ

e
m,ΓWm

admits a meromorphic continuation to all of C, given by the last equality of

relation (R109) just above, with ζ̃
e
m,ΓWm

given as in Theorem 4.6, on page 82.
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Remark 4.8. It follows from the above functional equation (R109), on page 87, as well from the general
theory developed in [LRŽ17b], that ζ

e
m,ΓWm

and ζ̃
e
m,ΓWm

have exactly the same poles, with precisely
related residues, for simple poles, which is the case here. Hence, they define the same Complex
Dimensions. In light of Remark 4.7, on page 87 above, an analogous comment can be made about the
global effective tube and distance zeta functions ζ̃

e
ΓW and ζ

e
ΓW .

We recall from [LRŽ17b] that the Complex Dimensions are defined as the poles of the meromorphic
continuation of the tube (or, equivalently, the distance) zeta function. In our present setting, the set
of Complex Dimensions of the Weierstrass IFD is the set of Complex Dimensions of the sequence of
Weierstrass IFDs introduced in Remark 3.3, on page 69. Hence, those Complex Dimensions are the
poles of the effective tube zeta functions – or, equivalently, the effective distance zeta functions – associ-
ated to those IFDs, respectively obtained in Theorem 4.6, on page 82 and Corollary 4.7, page 87 above.

Remarkably, in light of Theorem 4.6, on page 82, it turns out that the set of (possible) Complex

Dimensions, defined as the set of (possible) poles of the m
th

local effective tube zeta function ζ̃
e
m,ΓWm

(or, equivalently, of ζ
e
m,ΓWm

), does not change, for all sufficiently large m ∈ N
⋆
; i.e., this set of (possi-

ble) Complex Dimensions – viewed as a multiset taking into account the multiplicities of the possible
poles – stabilizes for all sufficiently large m ∈ N

⋆
.

By definition, this set is then called the set of (possible) Complex Dimensions of the Weierstrass

IFD Γ
I
W .

We expect this “stabilization phenomenon” to be common to a large class of tubular IFDs associ-
ated with complicated fractals.

Observe that also in light of Theorem 4.6, on page 82, we could equivalenty define the set of
(possible) Complex Dimensions of the present (tubular) Weierstrass IFD as the set of (possible) poles
of the global effective tube zeta function ζ̃

e
ΓW (or, equivalently, of the global effective distance zeta

function ζ
e
ΓW ) of the Weierstrass IFD.

Theorem 4.8 (Complex Dimensions of the Weierstrass IFD).

The possible Complex Dimensions of the Weierstrass IFD Γ
I
W are all simple, and given as follows:

DW − k (2 −DW) + i `p , with k ∈ N , ` ∈ Z ,

1 − 2 k + i `p , with k ∈ N , ` ∈ Z, along with − 2 and 0 ,

where p =
2π

lnNb
is the oscillatory period of the Weierstrass IFD.

Furthermore, the one-periodic functions (with respect to the variable lnNb
ε
−1

, see Property 3.5, on
page 45), respectively associated to the values DW − k (2 −DW), k ∈ N, are nonconstant. (See also
Subsection 4.2.2, on page 90 below for the exceptional cases.)

In addition, all of the Fourier coefficients of the latter periodic functions are nonzero, which implies
that there are infinitely many Complex Dimensions that are nonreal, including all of those with maxi-
mal real part DW , which are the principal Complex Dimensions, in the terminology of [LRŽ17b], and
therefore give rise to geometric oscillations (or vibrations) with the largest amplitude, in the fractal tube
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formula obtained in Theorem 4.5, on page 78 above and reformulated in Theorem 4.9, on page 90 below.

Finally, for each k ∈ N and ` ∈ Z, DW − k (2 −DW) + i `p, 1 + i `p, −2 and 0 are all simple

Complex Dimensions of the Weierstrass IFD; i.e., they are simple poles of the m
th

tube (or, equiva-
lently, of the distance) zeta functions, for all m ∈ N

⋆
sufficiently large.

Consequently, the Weierstrass IFD Γ
I
W is fractal, in the sense of the theory of Complex Dimen-

sions developed in [LvF00], [LvF06], [LvF13], [LRŽ17b] and [Lap19].

We refer to Subsection 4.2.2, on page 90, for a discussion of the exceptional cases, and to Subsec-
tion 4.2.3, on page 92 for a possible interpretation of our results.

Proof. The proof of this theorem is included in the latter part of the proof of Theorem 4.6, on page 82.

Remark 4.9. The justification of this remark is also included in the latter part of proof of Theorem 4.6,
given on page 82. Note, however, that we are giving here more precise statements and informations
than in the aforementioned proof.

i. Let m ∈ N be arbitrary, but sufficiently large, so that both Theorem 4.6 (page 82) and Corol-
lary 4.7 (page 87) are valid. Let ω be a potential pole (necessary simple) of ζ̃

e
m,ΓWm

– or, equivalently,

of ζ
e
m,ΓWm

(since DW < 2); ω is a possible Complex Dimension of the Weierstrass IFD, as given in
Theorem 4.8, on page 88.

Say, for notational simplicity, that

ω = ωk,` = DW − k (2 −DW) + i `p , (R 110)

for some k ∈ N and ` ∈ Z. Then, with the notation and the latter part of Theorem 4.6, given on
page 82, we have that

res (ζ̃em,ΓWm
, ωk,`) = lim

s→ωk,`

(s − ωk,`) ζ̃em,ΓWm
(s) = fk,`,Rectangles (R 111)

and

res (ζem,ΓWm
, ωk,`) = lim

s→ωk,`

(s − ωk,`) ζem,ΓWm
(s) = (2 − ωk,`) fk,`,Rectangles = (2 − ωk,`) res (ζ̃em,ΓWm

, ωk,`) ,
(R 112)

where the last equality follows from the functional equation connecting ζ
e
m,ΓWm

and ζ̃
e
m,ΓWm

(much as

in [LRŽ17b]), and as stated in relation (R109) in Corollary 4.7, on page 87. Therefore, we see (much
as in the end of the proof of Theorem 4.5, page 78), that ω = ωk,` is a pole (necessarily a simple pole

of ζ
e
m,ΓWm

, or, equivalently, of ζ̃
e
m,ΓWm

) – i.e., ω is a simple Complex Dimension of the Weierstrass
IFD – if and only if fk,`,Rectangles ≠ 0, which, according to Theorem 4.5, on page 78, is always the case.

Furthermore, in this case, the residue of ζ̃
e
m,ΓWm

(respectively, ζ
e
m,ΓWm

) at ω is given by rela-
tion (R111) (resp., by relation (R112) just above.

ii. Moreover, also in agreement with the higher-dimensional theory developed in [LRŽ17b] (see
also [LRŽ17a] and [LRŽ18], for example), the Complex Dimensions of the Weierstrass IFD can be
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defined indifferently via the m
th

local effective tube zeta functions ζ̃
e
m,ΓWm

or via the m
th

local effec-

tive distance zeta functions ζ
e
m,ΓWm

, for all m ∈ N
⋆

sufficiently large.

iii. Parts i. and ii. of this remark are valid both for the potential (or possible) Complex Dimensions
and for the exact Complex Dimensions of the Weierstrass IFD.

Theorem 4.9 (Condensed Fractal Tube Formula for The Weierstrass IFD (Corollary of
Theorem 4.5, on page 78).

Given m ∈ N sufficiently large, the tubular effective volume Ṽm,ΓWm
(εmm) of the ε

m
m-neighborhood D (εmm)

of the Weierstrass IFD, can be expressed in the following manner:

Ṽm,ΓWm
(εmm) =

∞

∑
k=0

ε
2−(DW−k (2−DW))

Gk,DW (lnNb
( 1

εmm
))

+
∞

∑
k=0

ε
2−(1−2 k)

Gk,1 (lnNb
( 1

εmm
)) + π ε2

−
π ε

4

2
,

(R 113)

where, for any fixed (but arbitrary) k ∈ N, Gk,DW and Gk,1 denote, respectively, continuous one-

periodic functions (with respect to the variable lnNb
ε
−1

, see Property 3.5, on page 45) associated to
all of the Complex Dimensions of real parts DW − k (2 −DW) and 1 − 2 k. Furthermore, all of the
Fourier coefficients of the periodic functions Gk,DW (for any k ∈ N) and G0,1 are nonzero. In partic-
ular, these periodic functions are not constant. Moreover, the functions G0,DW and G0,1 are bounded
away from zero and infinity.

This amounts to an expression of the form

Ṽm,ΓWm
(εmm) = ∑

α real part of a Complex Dimension
α ∉ {−2, 0}

ε
2−α

Gα (lnNb
( 1
εm

)) + π ε2
−
π ε

4

2
, (R 114)

where, for any real part α of a Complex Dimension, with α ∉ {−2, 0}, Gα denotes a continuous and
one-periodic function.

4.2.2 Exceptional Cases

One might naturally question the following exceptional cases:

i. DW − k0 (2 −DW) = 0, for some k0 ∈ N, which occurs when

DW =
2 k0

1 + k0
, i.e., 2 +

lnλ

lnNb
=

2 k0

1 + k0
, or λ = N

− 2
1+k0

b .

According to the terminology of [LRŽ17b], Chapter 4, or [LvF06], Chapter 12, this first case
corresponds to the situation when the Weierstrass Curve is fractal in dimension 0. We then
happen to have a discrete line of Complex Dimensions with real part 0,

L0 = {0 + i `p , ` ∈ Z} = {i `p , ` ∈ Z} ,
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which is obtained by merger with the discrete line of actual Complex Dimensions,

LDW ,k0
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
DW − k0 (2 −DW)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

0 here

+i `p , ` ∈ Z

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Note that the actual Complex Dimensions are not double (i.e., of multiplicity two). This directly
comes from the expression obtained in relation (R93) of Theorem 4.6, on page 82 for the effective
fractal tube zeta function ζ̃

e
m,ΓWm

, which becomes here, for all m sufficiently large, and for any
complex number s,

ζ̃
e
m,ΓWm

(s) = ∑
`∈Z

fk,`0,Rectangles

ε
s−i `p

s − i `p

= ∑
`∈Z, k∈N, k≠k0

fk,`,Rectangles

ε
s−DW+k (2−DW )−i `p

s −DW + k (2 −DW) − i `p

+ ∑
`∈Z, k∈N

fk,`,wedges

ε
s+2k−1−i `p

s + 2 k − 1 − i `p

+ ∑
`∈Z, k∈N

f`,k,triangles, parallelograms

ε
s−1−i `p

s − 1 − i `p
+
π ε

s

s −
π ε

s+2

4 (s + 2) ,

(R 115)

where, as was already seen in Theorem 4.5, on page 78 the notation fk,`,Rectangles, fk,`,wedges,`,
with 1 ⩽ ` ⩽ 3, and fk,`,triangles, parallelograms, respectively account for the coefficients associated
to the sums corresponding to the contribution of the rectangles, wedges, triangles and parallel-
ograms.

This could also be deduced from the fact if the pole s = 0 were double, we would have terms
involving ln ε

m
m in the expression of ζ̃

e
m,ΓWm

, because, for any integer ` ∈ Z and any complex
number s,

ε
s−i `p

= e
(s−i `p) ln ε

m
m ;

see [LvF06], Subsection 6.1.1, pages 180–182.

The novelty of this case is that we have Complex Dimensions above 0.

ii. DW − k1 (2 −DW) = 1, for some k1 ∈ N, which occurs when

DW =
1 + 2 k1

1 + k1
; i.e., 2 +

lnλ

lnNb
=

1 + 2 k1

1 + k1
or, equivalently, λ = N

− 1
1+k1

b .

Since, here, λNb ≠ 1, it follows that k1 ≠ 0.

According to the terminology mentioned in i., this second case corresponds to the situation
when the Weierstrass Curve is fractal in dimension 1. We then happen to have a discrete line
of Complex Dimensions with real part 1,

L1 = {1 + i `p , ` ∈ Z} ,

which is obtained by merger with the discrete line of actual Complex Dimensions,
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LDW ,k1
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
DW − k1 (2 −DW)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

1 here

+i `p , ` ∈ Z

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Note again that the actual Complex Dimensions are not double. As above, this directly comes
from the expression obtained in relation (R93) of Theorem 4.6, on page 82 for the fractal tube
zeta function ζ̃

e
m,ΓWm

, which becomes here, for any complex number s,

ζ̃
e
m,ΓWm

(s) = ∑
`∈Z

(fk,`1,Rectangles + f`,0,wedges,2)
ε
s−1−i `p

s − 1 − i `p

= ∑
`∈Z, k∈N, k≠k1

fk,`,Rectangles
ε
s−DW+k (2−DW)−i `p

s −DW + k (2 −DW) − i `p

+ ∑
`∈Z, k∈N⋆

fk,`,wedges,2
ε
s+2 k−1−i `p

s + 2 k − 1 − i `p

+ ∑
`∈Z, k∈N

(fk,`,wedges,1
ε
s+1−i `p

s + 1 − i `p
+ f`,k,wedges,3

ε
s+3+2 k−i `p

s + 3 + 2 k − i `p
)

+ ∑
`∈Z, k∈N

fk,`,triangles, parallelograms
ε
s−1−i `p

s − 1 − i `p
+
π ε

s

s −
π ε

s+2

4 (s + 2) .

(R 116)

What is new in this case is that we are sure that every possible Complex Dimension on L1, i.e.,
every complex number 1 + i `p, with ` ∈ Z, is an actual Complex Dimension of the Weierstrass
Curve, because the same is true for each point of LDW ,k1

.

4.2.3 Possible Interpretation

Figure 19, on page 93, gives the distribution of Complex Dimensions. In order to understand their
deeper meaning, one may consider an horizontal `p line, of equation y = `p, where ` ∈ Z is arbitrary
(but fixed). Such a line corresponds to the `

th
order vibration mode, but which can also be interpreted

as coming from:

i. The vertical line x = 0, or, in other words, oscillations coming from points: indeed, the prefractal
graph ΓWm

is, at first, constituted of points.

ii. The vertical line x = 1, which this time correspond to oscillations coming from lines (or, rather,
line segments): prefractal as it is, ΓWm

is constituted of lines, in an Euclidean space of dimension
two.

iii. The vertical line x = DW , which, this time, corresponds to oscillations coming from the whole
prefractal ΓWm

itself.
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Figure 19: The Complex Dimensions of the Weierstrass IFD. The nonzero Complex

Dimensions are periodically distributed (with the same period p =
2π

lnNb
, the oscilla-

tory period of the Weierstrass IFD) along countably many vertical lines, with abscis-
sae DW − k (2 −DW) and 1 − 2k, where k ∈ N is arbitrary. In addition, 0 and −2 are
possible Complex Dimensions of the Weierstrass IFD.
For the sake of representation, there is a different color for each vertical line, and a spe-
cific symbol is used to plot the imaginary parts of the Complex Dimensions associated
with a given vertical line. (See also Subsection 4.2.2, on page 90 for the exceptional
cases.)

iv. The vertical lines x = DW − k (2 −DW), with k in N
⋆
= N \ {0}.

For k ⩽ m, it corresponds to oscillations coming from the prefractal graphs ΓWm−k
, a phenomenon

which can be understood via the following consideration:

Switching from the (m − k)th prefractal graph, to the m
th

one, 0 < k ⩽ m, is done by applying k
iterates of the Tj maps,

Tj1...jk = Tj1 ◦ . . . ◦ Tjk . (R 117)

In terms of the vertical distance between consecutive vertices, this amounts to a multiplication

of the amplitudes by the factor λ
k
= N

−k (2−DW)
b , associated to a sum of cosine expressions.

It thus provides an interesting interpretation of the real parts
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DW − k (2 −DW) , for 0 < k ⩽ m, (R 118)

insofar as them
th

prefractal graph bears – or, in a sense, feels – the oscillations of its predecessors.

There remains the lines x = DW − k (2 −DW), with k > m.

In order to interpret them, one could think in the same way, but, without associated graphs,
how? Except if they could exist, in some way. This will be the purpose of a later extension of
the prefractal sequence (ΓWm

)m∈N, a priori indexed by nonnegative integers, to negative ones,
via the new concept of antefractals. However, this point will not be discussed in the present
paper.

4.2.4 Analogy with the General Theory of Complex Dimensions

Our results in Theorem 4.5, on page 78 and Theorem 4.9, on page 90 above, on the fractal tube
formula for the Weierstrass IFD are similar to the general (exact, pointwise) fractal tube formulas
(via either tube or distance zeta functions) obtained in the higher-dimensional theory of Complex
Dimensions in [LRŽ17b] (Chapter 5), or in [LRŽ18], and extending the fractal tube formulas for frac-
tal strings obtained in [LvF00] and [LvF06] (Chapter 8). Compare, e.g., in the case of simple poles
and under the hypothesis of strong languidity (a strong form of polynomial growth condition) of ei-
ther ζ̃

e
m,ΓWm

or ζ
e
m,ΓWm

[LRŽ17b], Theorem 5.1.16, page 427, or Theorem 5.3.17, page 449, respectively.

There is a notable difference, however, due to the great complexity of the Weierstrass Curve ΓW and
of the associated IFD Γ

I
W . Namely, the fractal tube formula is only given for the volume Vm,ΓWm

(εmm)
of the m

th
prefractal approximation ΓWm

, and evaluated at the m
th

cohomology infinitesimal ε
m
m, for

all sufficiently large m ∈ N.

Indeed, according to the aforementioned results from [LRŽ17b] and [LRŽ18], we would have, in
particular, that the tubular volume is given as follows:

Vm,ΓWm
(εmm) =∑

ω

res (ζ̃em,ΓWm
, ω) ε2−ω

=∑
ω

res (ζem,ΓWm
, ω)

2 − ω
ε

2−ω
, (R 119)

where, in each of these two sums, ω ranges through all of the Complex Dimensions of Γ
I
W (i.e., the

poles of either ζ̃
e
m,ΓWm

or, equivalently, ζ
e
m,ΓWm

).

Recall from equation (R63)–(♦♦) in Remark 4.3, on page 72 above that

res (ζem,ΓWm
, ω) = (2 − ω) res (ζ̃em,ΓWm

, ω) . (R 120)

In order to obtain the fractal tube formula in Theorem 4.5, on page 78 (and hence also, in Theo-
rem 4.9, on page 90), however, we did not need to appeal to the aforementioned results of the general
theory, by first calculating ζ̃

e
m,ΓWm

or ζ
e
m,ΓWm

(using their basic scaling and symmetry properties de-

scribed in [LRŽ17b], along with the geometric properties of ΓW described in Section 2 above) and
then, verifying that the appropriate notion of strong languidity is satisfied. This could have been
done, but was unnecessary in our present situation.

Instead, as was explained earlier, we first directly calculated the tubular volume Vm,ΓWm
(εmm)

in Theorem 4.5, on page 78, and then deduced from the resulting fractal tube formula, via Mellin
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transformation, an explicit expression for the m
th

local effective tube zeta function ζ̃
e
m,ΓWm

– and

further, for the m
th

local effective distance zeta function ζ
e
m,ΓWm

, via the functional equation re-
called in relation (♦) of Remark 4.3, on page 72. Finally, as would have been the case if we had
adopted the first method outlined above, we deduced (in Theorem 4.8, on page 88) the values of the

(possible) Complex Dimensions of the Weierstrass IFD Γ
I
W , as the poles of ζ̃

e
m,ΓWm

(or, equivalently,

of ζ
e
m,ΓWm

, since DW < 2).

Remark 4.10 (About the Oscillatory Period).

The value of the oscillatory period p =
2π

lnNb
(obtained in Sections 3 and 4) can be understood

as follows: it is easy to check that the fractal string Lintr consisting of the sequence of positive

lenghs Lintr = (εm)m∈N
= ( 1

Nm
b

)
m∈N

has for set of (principal) Complex Dimensions {2 i k π

lnNb
, k ∈ Z}.

(Indeed, the associated geometric zeta function is given by ζLintr
(s) = 1

1 − εs
, for all s ∈ C.)

Accordingly, they are periodically distributed along a single vertical line, with oscillatory pe-

riod
2π

lnNb
= p, which is the natural oscillatory period of the Weierstrass IFD. Exactly the same

comment can be made about the ordinary fractal LEH = LCI = (εmm)m∈N
= ( 1

Nb − 1

1

Nm
b

)
m∈N

asso-

ciated with the elementary horizontal lengths (see part i. of Definition 2.4, on page 15) or, equivalently,
with the cohomological infinitesimal (see Definition 3.1, on page 37). It has the same Complex Di-
mensions and oscillatory period as Lintr just above. (Indeed, its geometric zeta function is given

by ζLCI(s) =
1

(Nb − 1)s
1

1 − εs
=

1

(Nb − 1)s ζLintr
(s), for all s ∈ C.)

4.3 Minkowski Dimension, Minkowski Nondegeneracy, and Average Minkowski
Content

We next obtain new and refined results concerning the geometry – and, in particular, the Minkowski
nondegeneracy, non Minkowski measurability, as well as the average Minkowski content of the Weier-
strass IFD. For this purpose, and for the benefit of the reader who may not be familiar with these
notions, we first state several definitions, which are now suitably adapted to our current setting and
to the notions of effective tubular volumes.

In the spirit of the remainder of this paper, the definition of (upper, lower) Minkowski contents and
dimensions, for example, will be given in terms of the cohomology infinitesimal (εmm)∞m=0, viewed as a
sequence of positive scales tending to zero, as m→∞. So will the notions of Minkowski nondegeneracy
and Minkowski measurability, as well as of effective average Minkowski content.

Definition 4.3 (Lower and Upper r-Dimensional Minkowski Contents – Lower and Upper
Minkowski Dimensions, and Minkowski Dimension of an IFD).

Let FI
be an arbitrary iterated fractal drum of R

2
; see Definition 3.3, on page 45. More precisely,

we hereafter consider the sequence of ordered pairs (F
m
, ε
m
F ,m)

m∈N
, where, for each m ∈ N, Fm is

the m
th

prefractal approximation to a fractal set F , and where ε
m
F ,m is the associated m

th
cohomology

infinitesimal.
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Then, given r ⩾ 0, m ∈ N, and the ε
m
F ,m–neighborhood (or tubular neighborhood) of Fm,

DFm
(εmF ,m) = {M ∈ R

2
, d (M,Fm) ⩽ εmF ,m} , (R 121)

of tubular volume Vm,Fm
(εmF ,m), we define, much as in [LRŽ17b], the lower r-dimensional Minkowski

content (resp., the upper r-dimensional Minkowski content) of the IFD as

M⋆
r (FI) = lim inf

m→∞

Vm,Fm
(εmF ,m)

(εmF ,m)2−r (resp., M⋆,r (FI) = lim sup
m→∞

Vm,Fm
(εmF ,m)

ε2−r ) . (R 122)

Recall that lim
m→∞

ε
m
F ,m = 0; see Definition 3.3, on page 45, along with Definition 3.1, on page 37,

for the special case of the Weierstrass IFD, for which we also have (in the present notation),

Vm,Fm
(εmF ,m) = Ṽm,Fm

(εmF ,m) ,
for all m ∈ N.

Note that, by definition, we have that

0 ⩽M⋆
r (FI) ⩽M⋆,r (FI) ⩽∞ . (R 123)

We then define the lower Minkowski dimension (resp., the upper Minkowski dimension) of the IFD
by

D (FI) = inf {r ⩾ 0 , M⋆
r (FI) <∞} (R 124)

(resp., D (FI) = inf {r ⩾ 0 , M⋆r (FI) <∞}) . (R 125)

As usual, by definition, the Minkowski dimension DFI = D (FI) of the IFD exists if

D (FI) = D (FI) , (R 126)

in which case, of course, we have that

DFI = D (FI) = D (FI) = D (FI) . (R 127)

Definition 4.4 (Minkowski Nondegeneracy and Minkowski Measurability of an IFD).

Let FI
be an arbitrary IFD. Assume that its Minkowski dimension DFI exists, in the sense of

Definition 4.3, on page 95 just above.

Then, with the same notation as in Definition 4.3, the IFD FI
is said to be Minkowski nondegen-

erate if the lower and upper Minkowski contents,

M⋆
DFI (FI) = lim inf

m→∞

Vm,Fm
(εmF ,m)

(εmF ,m)2−DFI
and M⋆,DFI (FI) = lim sup

m→∞

Vm,Fm
(εmF ,m)

(εmF ,m)2−DFI
,

are respectively positive and finite. Recall that the inequalities in (R123) always hold.

Finally, the IFD FI
is said to be Minkowski measurable if it is Minkowski nondegenerate and
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M⋆
DFI (FI) =M⋆,DFI (FI) ; (R 128)

i.e., if the following limit exists in ]0,+∞[ (and necessarily equals this common value, denoted

by MDFI (FI)):

MDFI (FI) = lim
m→∞

Vm,Fm
(εmF ,m)

(εmF ,m)2−DFI
. (R 129)

Then, MDFI (FI) is called the Minkowski content of the IFD.

Remark 4.11. As was mentioned in Definition 4.4, on page 96 above, the IFD is said to be Minkowski
nondegenerate if

0 <M⋆
DFI (FI) <M⋆,DFI (FI) <∞ . (R 130)

Equivalently, the IFD is Minkowski nondegenerate if there exists d ⩾ 0 such that,

0 <M⋆
d (FI) <M⋆d (FI) , (R 131)

which implies that the Minkowski dimension DFI of the IFD exists and is equal to d.

Definition 4.5 (Average Lower and Upper Minkowski Contents of an IFD).

We hereafter use the same notation as in Definition 4.3, on page 95, and in Definition 4.4, on
page 96 just above, where FI

denotes an arbitrary iterated fractal drum of R
2
.

Then, by analogy with what can be found in [LRŽ17b], Definition 2.4.1, on page 178, we define,

for all m ∈ N sufficiently large, the m
th

effective average lower-dimensional Minkowski content (resp.,

the m
th

effective average upper-dimensional Minkowski content) of Fm as

M̃ Dm,e
⋆ (Fm) = lim inf

r→+∞

1

ln r
∫
ε
m
F,m

1
r

t
Dm−3 Ṽm,Fm

(t) dt (R 132)

(resp., M̃ ⋆,Dm,e (Fm) = lim sup
r→+∞

1

ln r
∫
ε
m
F,m

1
r

t
Dm−3 Ṽm,Fm

(t) dt) , (R 133)

where Ṽm,Fm
is the natural volume extension of FI

(or m
th

effective tubular volume of Fm; see No-
tation ??, on page ??, along with Definition 4.1, on page 69), and where Dm denotes the abscissa of

convergence of the m
th

local effective tube zeta function ζ̃
e
m,Fm

.

In the case when both of these values coincide, their common value, denoted by M̃ Dm,e (Fm), is

called the m
th

local effective average Minkowski content of Fm, which is then said to exist. Accordingly,

M̃ Dm,e (Fm) = lim
r→+∞

1

ln r
∫
ε
m
F,m

1
r

t
Dm−3 Ṽm,Fm

(t)(t) dt . (R 134)
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We can now state several new geometric consequences of our above results, especially, Theorem 4.5,
on page 78 and Theorem 4.9, on page 90.

Theorem 4.10 (Lower, Upper and Average DW-dimensional Minkowski Contents of the
Weierstrass IFD).

For any m ∈ N, let us denote by Dm the abscissa of convergence of the m
th

local effective
tube zeta function ζ̃

e
m,W . Then, the Minkowski dimension of the Weierstrass IFD Γ

I
W exists and

equals Dm = DW , for any sufficiently large m ∈ N
⋆

, where DW = 2 − lnNb

1

λ
∈ ]1, 2[ is the Minkowski

dimension of the Weierstrass Curve; see Theorem 4.6, on page 82 above. Moreover, the lower and up-
per DW-dimensional Minkowski contents of the Weierstrass IFD Γ

I
W , respectively

M⋆
Dm (Γ

I
W) =M⋆

DW (Γ
I
W) and M⋆,Dm (Γ

I
W) =M⋆,DW (Γ

I
W) ,

take strictly positive and finite values; more specifically, they are such that

0 <
CRectangles

Nb
<M⋆

Dm (Γ
I
W) <M⋆,Dm (Γ

I
W) ⩽ CRectangles <∞ , (R 135)

where CRectangles denotes the strictly positive and finite constant introduced in Property 4.1, on page 73.

Recall that CRectangles may depend on m ∈ N
⋆

, but is uniformly bounded away from 0 and infinity
(with bounds independent of m ∈ N

⋆
large enough). Hence, the same is true of

M⋆
Dm (Γ

I
W) =M⋆

DW (Γ
I
W) and M⋆,Dm (Γ

I
W) =M⋆,DW (Γ

I
W) ,

where Dm = DW , for all sufficiently large m ∈ N
⋆

.

In addition, the values of M⋆
DW (Γ

I
W) and M⋆,DW (Γ

I
W) are respectively equal to the minimum

and maximum value of the one-periodic function GDW = G0,DW introduced in Theorem 4.9, on page 90,
associated to Dm in the expression of the fractal tube formula given in the same theorem (recall that
the periodicity is with respect to the variable lnNb

ε
−1

, see Property 3.5, on page 45).

Finally, for all sufficiently large m ∈ N
⋆

, the m
th

local effective average Minkowski content exists
and is given by the mean value of the one-periodic function GDm

= GDW , as well as by the residues

of ζ̃
e
m,ΓWm

at s = Dm = DW :

M̃ Dm,e (ΓWm
) = ∫

1

0
GDW (x) dx = res (ζ̃em,ΓWm

, Dm) =
res (ζem,ΓWm

, Dm)
2 −Dm

. (R 136)

Hence, M̃Dm,e (ΓWm
) is nontrivial; in fact,

0 <M⋆
Dm (Γ

I
W) < M̃ Dm,e (ΓWm

) <M⋆,Dm (Γ
I
W) <∞ .

More specifically, still for all m large enough and thus, with Dm = DW , the m
th

local effective
average Minkowski content M̃ Dm,e (ΓWm

) may depend on m ∈ N
⋆

, but is uniformly bounded away
from 0 and ∞ (with bounds independent of m ∈ N

⋆
large enough).

Proof. In light of Theorem 4.5, on page 78 (and of Definition 4.3, on page 95), one has
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M⋆,Dm (ΓI
W) = lim sup

m→∞
{ ∑
`∈Z, k∈N

fk,`,Rectangles ε
k (2−DW )−i `p

+ εDW ∑
`∈Z, k∈N

{fk,`,wedges,1 ε
1−i `p

+ fk,`,wedges,2 ε
−1+2k−i `p

+fk,`,wedges,3 ε
3+2k−i `p}

+ ε
DW ∑

`∈Z, k∈N

fk,`,triangles, parallelograms ε
−i `p

+ ε
DW π − ε

DW π ε
2

2
}

= lim sup
m→∞

∑
`∈Z

fm,0,Rectangles ε
−i `p

= lim sup
m→∞

CRectangles

Nb − 1

Nb
∑
`∈Z

1

lnNb + 2 i ` π
ε
−i `p

= lim sup
x→+∞

CRectanglesN
−{x}
b .

(R 137)

In the same way,

M⋆
DW (Γ

I
W) = lim inf

x→+∞
CRectanglesN

−{x}
b . (R 138)

Thanks to Property 3.5, on page 45, and since 0 ⩽ {x} < 1, where {x} denotes the fractional part
of x ∈ R, we have that

N
−{x}
b =

Nb − 1

Nb
∑
`∈Z

(εmm)−i `p

lnNb + 2 i ` π
, with x = − lnNb

(εmm) , (R 139)

This yields
1

Nb
< N

−{x}
b ⩽ 1, and thus, in light of Theorem 4.6, on page 82, and with Dm = DW

given as in the theorem, we have that, for all m ∈ N
⋆

large enough,

CRectangles

Nb
<M⋆

Dm (Γ
I
W) <M⋆,Dm (Γ

I
W) ⩽ CRectangles . (R 140)

The constant CRectangles being strictly positive and finite (see Property 4.1, on page 73), this ac-

counts for a strictly positive (resp., finite) value of the lower (resp., upper) Minkowski content M⋆
Dm (Γ

I
W)

(resp., M⋆,Dm (Γ
I
W)).

Also, still for all m ∈ N sufficiently large, the one-periodic function (with respect to the vari-
able lnNb

ε
−1

, see Property 3.5, on page 45),

GDW = G0,DW ∶ x↦
Nb − 1

Nb
CRectangles ∑

`∈Z

(εmm)−i `p

lnNb + 2 i ` π
= N

−{x}
b , (R 141)

associated to the value DW = Dm is nonconstant, because it has nonzero m
th

Fourier coefficients,
with m ≠ 0, as can be seen from the fractal tube formula, and as stated in Theorem 4.9, on page 90.
(Note that the function GDW = GDm

may depend on m sufficiently large.)

The last part of the theorem, regarding them
th

local effective average Minkowski content M̃Dm,e (ΓWm
)

of the Weierstrass IFD (as introduced in Definition 4.5, on page 97), follows at once from the method

of proof of [LRŽ17b], Theorem 2.3.25, on page 157. Note that the fact that M̃Dm,e (ΓWm
) is uniformly

bounded away from 0 and infinity (in m ∈ N
⋆

large enough) follows from relation (R111) on page 89.
Indeed, recall from Property 4.1 on page 73 that the coefficients fk,`,Rectangles are uniformly bounded
away from 0 and infinity (with bounds independent of m ∈ N

⋆
large enough).
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Corollary 4.11 ((of Theorem 4.10) Minkowski Dimension – Minkowski Nondegeneracy).

The Weierstrass IFD is Minkowski nondegenerate. Furthermore, the number DW = 2 − lnNb

1

λ
is a

simple Complex Dimension of the IFD, and it coincides with the Minkowski Dimension of ΓW , which
must also exist. Moreover, the Weierstrass IFD is not Minkowski measurable.

Proof. In light of Theorem 4.10, on page 98, the nondegeneracy directly follows from the definition.
The statement concerning Dm = DW (for all m ∈ N sufficiently large) then follows from Definition 4.4,
on page 96, in particular.

Furthermore, the Weierstrass IFD is not Minkowski measurable; i.e., here,

M⋆
Dm (Γ

I
W) <M⋆,Dm (Γ

I
W) .

This last statement also follows from Theorem 4.10, on page 98, because the one–periodic func-
tion GDW = GDm

is nonconstant, and so, by the method of proof of the results in [LRŽ17b], Theo-
rem 2.3.25, on page 157,

M̃⋆
Dm,e (ΓWm

) = min
[0,1]

GDW < max
[0,1]

GDW = M̃⋆,Dm,e (ΓWm
) . (R 142)

Moreover, since, for all m ∈ N sufficiently large, the m
th

local effective distance zeta func-
tion ζ

e
m,ΓWm

associated to the Weierstrass IFD can clearly be meromorphically extended to a connected

neighborhood of s = DW in the Complex Plane, DW is a simple pole of ζ
e
m,ΓWm

. As was pointed out

at the end of Theorem 4.10, given on page 98, in agreement with the general theory in [LRŽ17b] (see
Theorem 2.3.25, page 157).

Remark 4.12. Let us call the global lower (resp., upper) effective average Minkowski content of the

Weierstrass IFD Γ
I
W , and denote by M̃⋆

DW ,e (Γ
I
W) (resp., M̃⋆

DW ,e (Γ
I
W)) the following lower (resp.,

upper) limit of the corresponding m
th

local effective average Minkowski contents, with Dm = DW , for
all m ∈ N

⋆
sufficiently large:

M̃⋆
DW ,e (Γ

I
W) = lim inf

m→∞
M̃⋆

Dm,e (ΓWm
) (R 143)

(resp., M̃⋆DW ,e (Γ
I
W) = lim sup

m→∞
M̃⋆

Dm,e (ΓWm
))

Then, it follows from Theorem 4.10, on page 98, that the above quantities are well defined and
bouded away from 0 and ∞. Furthermore, they coincide; so that the global effective average Minkowski
content of the Weierstrass IFD Γ

I
W , denoted by M̃DW ,e (Γ

I
W)), exists.

In light of relation (R135), and since Dm = DW , for all m ∈ N
⋆

sufficiently large, we obtain that

0 <
CRectangles

Nb
<M⋆

DW (Γ
I
W) ⩽ M̃⋆,DW ,e (ΓWm

) ⩽M⋆DW (Γ
I
W) ⩽ CRectangles <∞ . (R 144)

In addition, since Dm = DW , and, by relation (R136),
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M̃DW ,e (ΓWm
) = res (ζ̃em,ΓWm

, DW) =
res (ζem,ΓWm

, DW)
2 −DW

, (R 145)

for all m ∈ N
⋆

sufficiently large, as well as (see Theorem 4.6, on page 82, and its proof),

res (ζ̃eΓW , DW) = lim
m→∞

res (ζ̃em,ΓWm
, DW) , (R 146)

which follows from the local uniform convergence (as m→∞) on C of ζ̃
e
m,ΓWm

(resp., ζ
e
m,ΓWm

) to ζ̃
e
ΓW

(resp., to ζ
e
ΓW ).

By combining relation (R145) and relation (R146), we see that M̃DW ,e (Γ
I
W) exists and satisfies

M̃DW ,e (Γ
I
W) = lim

m→∞
M⋆,DW ,e (ΓWm

) = res (ζ̃eΓW , DW) =
res (ζeΓW , DW)

2 −DW
. (R 147)

Finally, in light of relation (R144), we deduce from relation (R147) that

0 <
1

Nb
lim inf
m→∞

CRectangles ⩽M⋆
DW (Γ

I
W) ⩽ M̃DW ,e (Γ

I
W) ⩽M⋆DW (Γ

I
W) ⩽ lim sup

m→∞
CRectangles <∞ .

(R 148)

In conclusion, the global effective average Minkowski content M̃DW ,e (Γ
I
W) of the Weierstrass

IFD Γ
I
W , exists, is positive and finite, satisfies the estimates in relation (R148), and is expressed via

relation (R147 ) in terms of the residues at s = DW of the global effective tube and distance zeta

functions of Γ
I
W .

Accordingly, in particular, the relation between the m
th

local effective average Minkowski content
and the residues at s = DW of the m

th
local effective tube and distance zeta functions, for all m ∈ N

⋆

sufficiently large (see relation (R136), on page 98) remains precisely the same between their global
counterparts.

4.4 The Noninteger Case

An interesting question is the generalization of our previous results to the noninteger case; i.e., to
the case when the Weierstrass function W is defined, for any real number x, by

W(x) =
∞

∑
n=0

λ
n

cos (2π bn x) , (R 149)

where the real number b does not belong to the set of natural integers.

We plan to provide the details in a later work, but for now limit ourselves to a few comments.

From the geometric point of view, one cannot handle things in the same way. For instance, one
cannot resort to a finite IFS, and the function, apart from its parity, has no periodicity property.

Yet, the associated graph being the attractor of the infinite set of maps, TW = {Ti}i∈Z, such that,

for any integer i and (x, y) in R
2
,

Ti(x, y) = (x + i
b

, λ y + cos (2π (x + i
b

))) , (R 150)
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it is natural to consider the associated infinite IFS (IIFS), TW . As a consequence, the resulting pre-
fractal graphs are infinite ones.

The local Hölder and reverse–Hölder continuity properties of the Weierstrass function then enable
us to resort to estimates that are equivalent to the ones obtained in Corollary 2.12, on page 24, and
Corollary 2.13, on page 24, and, consequently, to the resulting ones about the elementary heights
obtained in Corollary 2.16, on page 27.

As for the effective tubular neighborhood, due to the polygonal approximations induced by the
prefractals, it is still obtained by means of rectangles and wedges.

In the integer case, extra terms coming from overlapping rectangles vanished, thanks to the sym-

metry with respect to the vertical line x =
1

2
, as described in Proposition 3.8, on page 57. In the

non-integer case, one simply replaces this symmetry with the one with respect to the vertical axis x = 0.

In this light, it is expected that a similar method, suitably adapted, would lead to a fractal tube
formula of the same type as the one obtained in Theorem 4.5, on page 78, where the powers of the
small parameter ε

m
m would be, respectively, and as previously,

ε
2−DW+k (2−DW)−i `p

, ε
3−i `p

, ε
1+2 k−i `p

, ε
5+2 k−i `p

, ε
2−i `p

, ε
2

, ε
4
, (R 151)

which would yield the same results concerning the possible Complex Dimensions, along with the upper
and lower, as well as the average, Minkowski contents of the Weierstrass Curve.

As in the integer case, the terms involving ε
2−DW+k (2−DW)−i `p

come from the contribution of the
rectangles. The one–periodic functions (with respect to the variable lnb ε

−1
this time), respectively

associated to the values DW − k (2 −DW), k ∈ N, are thus nonconstant, with all of their Fourier
coefficients being nonzero. Hence, as in Theorem 4.8, on page 88, for each k ∈ N and ` ∈ Z,
DW − k (2 −DW) + i `p, are all simple Complex Dimensions of the Weierstrass Curve; i.e., they are
simple poles of the tube (or, equivalently, of the distance) zeta function.

We also mention that we could deal with the case λ b < 1, exactly in the same manner, and with
the same conclusions. Actually, it is noteworthy that, in the present paper, all of our results remain
valid when λNb < 1, where b = Nb is an integer greater than or equal to two. Observe that in the latter
case, the Weierstrass Curve ΓW is of class C

1
, but is still fractal, because it has nonreal Complex

Dimensions (in fact, infinitely many of them).

5 Concluding Comments

In the light of our results, the box dimension DW stands as a simple pole of the tube and distance
zeta functions associated to the Weierstrass IFD. It is also the abscissa of holomorphic continuation
of those functions, which therefore cannot be extended holomorphically to the left of DW . Accord-
ing to [LRŽ17b], part c. of Theorem 2.1.11, page 57, and the last statement of Theorem 2.2.11,
page 121, this additional result follows from the fact that, for all m ∈ N sufficiently large, Dm = DW
exists, M⋆

DW (Γ
I
W) > 0 and DW < 2. It can also be deduced from Theorem 4.5, on page 78, or else

from Theorem 4.8, on page 88.

A natural question which arises is wether the Complex Dimensions of the considered fractal – in
our case, the Weierstrass Curve – are the same as those of the prefractal approximations. In [DL23b],
by means of the exact sequence of the local effective fractal zeta functions associated with the sequence
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of polygonal neighborhoods which converge to the Curve, we prove that the limit (or global) fractal
zeta function – the one associated with the limit fractal object – has the same poles as the fractal
zeta function at each step of the prefractal approximation, and, hence, that the Complex Dimensions
of the fractal are the same as the Complex Dimensions of each prefractal approximation. As is shown
in [DL23b], the determination of the explicit Complex Dimensions of the IFD is a compulsory step in
order to obtain the Complex Dimensions of the limit fractal Curve.

Now, as was alluded to in the Introduction, the determination of the possible Complex Dimensions
of a fractal object, being deeply connected with its intrinsic vibrational properties, is thus directly as-
sociated to its cohomological properties: what are the topological invariants of the Weierstrass Curve?
This is the question we try to answer in the second part of our study, [DL24d], where we determine
the fractal cohomology of the Weierstrass Curve.

Behind the fractal series expansion of the Weierstrass function, another expansion, indexed by
the Complex Dimensions obtained in our fractal tube formulas (see Theorem 4.5, on page 78 and
Theprem 4.9, on page 90 above), naturally arises. Intuitively, one understands that the terms of the
expansion come from the cohomology groups associated to the prefractal sequence of finite graphs
that converges towards the Curve. This is all the more interesting, as those groups possess the same
symmetries as the Curve, which means that a specific differentiation could be achieved on this, how-
ever, everywhere singular object; see [DL24a] and [DL24d].

As was mentioned in Subsection 4.4, on page 101, we also intend, in a future work, to extend our
results to the general case, i.e., when the Weierstrass function W is defined, for any real number x, by

W(x) =
∞

∑
n=0

λ
n

cos (2π bn x)

where the real number b does not belong to the set of natural integers. This goes along with a gen-
eralization of the results of the present paper to a large class of Weierstrass-like functions (see the
paper [Dav19]), including the Takagi function, the Knopp functions and the Koch parametrized Curve;
see [DL23a].

The reader may wonder where there is an intrinsic way of obtaining the global fractal zeta functions
introduced and studied in Theorem 4.6 and Corollary 4.7 (on pages 82 and 87, respectively), that
would be more in keeping with the general theory of Complex Dimensions (as developed in [LRŽ17a]–
[LRŽ17c] and [LRŽ18]) and its natural extensions (e.g., in [LW23]). This question is addressed by the
authors in [DL23b], by using the polyhedral measure introduced in [DL24c].
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and N. Cohen, editors, Benôıt Mandelbrot: A Life in Many Dimensions. The Mandelbrot
Memorial, pages 267–322. World Scientific Publishers, Singapore and London, 2015. URL:
https://arxiv.org/abs/1007.1467.

[Fal86] Kenneth Falconer. The Geometry of Fractal Sets. Cambridge University Press, Cambridge,
1986.

[Har16] Godfrey Harold Hardy. Weierstrass’s Non-Differentiable Function. Trans-
actions of the American Mathematical Society, 17(3):301–325, 1916. URL:
https://www.ams.org/journals/tran/1916-017-03/S0002-9947-1916-1501044-1/

S0002-9947-1916-1501044-1.pdf.

[HL93] Tian-You Hu and Ka-Sing Lau. Fractal dimensions and singularities of the Weierstrass
type functions. Transactions of the American Mathematical Society, 335(2):649–665, 1993.

[HL21] Hafedh Herichi and Michel L. Lapidus. Quantized Number Theory, Fractal Strings and
the Riemann Hypothesis: From Spectral Operators to Phase Transitions and Universality.
World Scientific Publishing, Singapore and London, 2021.

[Hun98] Brian Hunt. The Hausdorff dimension of graphs of Weierstrass functions. Proceedings of
the American Mathematical Society, 12(1):791–800, 1998.

[Hut81] John E. Hutchinson. Fractals and self similarity. Indiana University Mathematics Journal,
30:713–747, 1981.

[Kel17] Gerhard Keller. A simpler proof for the dimension of the graph of the classical Weierstrass
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[LRŽ17a] Michel L. Lapidus, Goran Radunović, and Darko Žubrinić. Distance and tube zeta func-
tions of fractals and arbitrary compact sets. Advances in Mathematics, 307:1215–1267,
2017.
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