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Abstract

Aerosol generation during coughing and sneezing has gained major relevance due to
the current COVID pandemic. The atomization involved in this process takes place
in the complex context of the respiratory system and develops very rapidly. In order
to get further insights on the early spray generation, we introduce a simplified model
of physiological coughing or sneezing, in the form of a thin liquid layer subject to a
rapid (30 m/s) air stream. The setup is simulated using the Volume-Of-Fluid method
with octree mesh adaptation, the latter allowing grid sizes small enough to capture the
Kolmogorov length scale. The results confirm the trend to an intermediate distribution
between a Log-Normal and a Pareto distribution P(d) ∝ d−3.3 for the distribution of
droplet sizes in agreement with a previous re-analysis of experimental results by one
of the authors. The mechanism of atomization does not differ qualitatively from the
multiphase mixing layer experiments and simulations. No mechanism for a bimodal
distribution, also sometimes observed, is evidenced in these simulations.

1. Introduction

Coughing and sneezing are two processes by which a large number of droplets of
muco-salivary fluid are exhaled and subsequently travel large distances in the envi-
ronment [1, 2]. These phenomena have acquired an acute interest in the context of
the so-called aerosol transmission route of the Covid-19 pandemic [3], but have been
studied for near a century in the context of respiratory diseases in general [4]. Early
investigations by Duguid [5] and Loudon & Roberts [6] of the number and size of
droplets emitted in coughing and sneezing events have yielded rich data, incorporat-
ing very large numbers of droplets. More recently, Xie et. al. [7] proposed corrected
droplet size distribution by estimating the in-flight evaporation process. In this con-
text, a comprehensive analysis of the characteristics of these droplets, both in size and
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velocity, would be of immense interest, as it is a prerequisite for modeling the droplet
cloud propagating further downstream from the mouth [8, 9].

Rapid photographic imaging [10] has revealed features similar to those observed
in other atomization processes, including thin liquid sheets, ligaments and droplets.
In this context, the statistical distribution of droplet sizes is of particular interest. Al-
though the log-normal distribution has been frequently mentioned in connection with
exhalations [11, 12] as for other atomizing flows [13] many other distributions N(d) of
the diameter d have been put forward such as compound gamma distributions [14] and
many others. A re-analysis of the data of Duguid and Loudon & Roberts for sneezes
has however revealed [3] a N(d) ∼ d−2 scaling over an impressive three orders of mag-
nitude. This scaling allows determining the proportion of millimeter-sized droplets that
travel short distances and the proportion of much smaller droplets that can be incorpo-
rated in a turbulent puff or particle-laden jet and travel long distances as discussed in
ref. [1, 3]. The fraction of the exhaled muco-salivary fluid in each class of droplet sizes
may also be determined in this way and the probability of having viral loads in each
class can be inferred under adequate hypotheses, such as a homogeneous distribution
of the virus in volume or surface.

In order to better understand the fluid mechanics of exhalations, King, Brock &
Lundell [15] have designed a physical model of violent exhalation that may be nick-
named a “cough machine”. Air is flowing at high speed (from 10 to 30 m/s) in a
rectangular-section duct, with a flow rate analog of the observed human cough. A thin
layer of muco-salivary fluid is deposited at the bottom of the duct. While King, Brock
& Lundell use the cough machine to observe non-atomizing waves on the thin layer, it
can also be used to simulate droplet formation at higher speeds and/or lower velocities.
The device would then achieve atomization through a process similar to that of shear
flow atomization of planar sheets [16, 14, 17, 13, 18, 19]. (See also the recent review
of numerical approaches in [20].) However there are important differences since the
liquid layer is initially at rest and the airflow is impulsive. These differences could
lead to different distributions of droplet sizes and velocities, which are the focus of the
current investigation.

2. Numerical method and setup

We model both the muco-salivary fluid and the surrounding gas as incompressible
Newtonian fluids. This hypothesis is valid considering that non-newtonian effects on
the liquid are only relevant for very small scales. In a context of uniform temperature
and high relative humidity, such as a human trachea or a long channel experiment, heat
transfer and evaporation will be negligible. Moreover, during the short duration of the
atomization process, heat and mass transfer will not have time to develop significantly.
Thus the flow is described by the Navier-Stokes equations:

∇ · ~u = 0 (1)

∂ρ~u
∂t

+ ∇ · (ρ~u~u) = −∇p + ∇ · (2µD) + σκ~nsδs (2)
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where ~u(~x, t) is the velocity field and p(~x, t) is the pressure field. Tensor D is equal
to 1

2

[
∇~u +

(
∇~u

)T
]
. ρ and µ are the flow density and viscosity respectively. The last

term on the right-hand side on the Navier-Stokes Equation 2 represents the surface
tension force, where the coefficient σ is considered constant. The force only acts at
the free surface, hence the Dirac function δs, and also depends on the interface shape,
particularly on its curvature κ and normal ~ns.

We solve this set of equations by a simple finite volume discretization in the one-
fluid numerical approach for two-phase flow, using a Volume-Of-Fluid (VOF) [21].
The VOF function at a grid cell is f =

∫
cdV , where c indicates the presence of the

liquid (c(~x, t) = 1) or gas (c(~x, t) = 0) phase. The fluid properties at the cell are defined
by arithmetic averages:

ρ = fρl + (1 − f )ρg µ = fµl + (1 − f )µg (3)

The discrete equations for this model can then be expressed as in [22]:

f n+ 1
2 − f n− 1

2

∆t
+ ∇ · (~un fn) = cc∇ · ~un (4)

ρ~u∗ − ρ~un

∆t
+ ∇ ·

(
ρn+ 1

2 ~un~un
)

= ∇ · [µn+ 1
2 (Dn + D∗)] + (σκδs~ns)n+ 1

2 (5)

∇ ·

 ∆t

ρn+ 1
2

∇pn+ 1
2

 = ∇ · ~u∗ (6)

~un+1 = ~u∗ −
∆t

ρn+ 1
2

∇pn+ 1
2 (7)

where cc is the contraction function used in the split volume fraction advection scheme
from [23] that give consistency to the mass balance. The advective fluxes on Equa-
tion (5) are integrated explicitly based on a momentum-conserving Bell-Collela-Glaz
scheme[24] and the viscous term is computed in a semi-implicit manner. The surface
tension force term is based on a discrete-balanced formulation reducing spurious cur-
rents [25]. We compute the interface curvature using second-order height functions
defined by PLIC plane position based on the analytical formulation from [26]. Equa-
tions (6) and (7) are the projection steps that will ensure mass conservation for the
velocity field at the step (n + 1).

3. Simulation setup

The physical domain subject to the simulation is a cube of dimensions L3 , as shown
in Figure 1. The flow is channeled through a tube of length `x and rectangular cross
section with height `y and width `z. The bottom plate of the tube (z = L/2 − `z/2) is
covered with a liquid phase of thickness h, density ρl and viscosity µl, depicted in the
subfigure (c). The gas phase, modeling the exhaled air, has density ρa, and viscosity
µa. It enters the flow from the left wall at x = 0 with uniform and constant velocity U
through an inflow boundary condition in the tube inner section, |y − L/2| < `y/2 and
h− `z/2 < z− L/2 < `z/2. This condition ensures the inflow of air blows just above the
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Figure 1: Simulation domain (a), rectangular channel detail (b) and liquid film (c) dimensions.

L `x `y `z h ρl µl ρa µa U σ

0.15 0.05 0.01 0.02 0.001 1000 0.005 1.2 2 × 10−5 30 0.03

Table 1: Dimensional values of the fluid and geometrical parameters (SI units)

initial position of the liquid layer. The surface tension of the liquid is noted σ. Gravity
is neglected as it is small compared to inertial effects g`z/U2 � 1.

The main dimensionless parameters are the Reynolds number of the air based on
the channel height Re a = ρaU`y/µa = 18, 000, the Weber number of the air based on
the channel height We a = ρaU2`y/σ = 360, and the Reynolds number of the liquid
based on the height of the liquid Re l = ρlUh/µl = 30, 000. The values of these
parameters are quite high which makes it surprising that the simulations, performed
with a Navier–Stokes code, are still classified as Direct Numerical Simulations (DNS).

Indeed the assessment of the DNS character of the simulation may be inferred from
the value of the dissipation ε in the similar setup of refs. [13, 19]. There the kinetic
energy dissipation per unit volume ε [27] was measured and it was observed that the
maximum value of ε/(ρaU3/`z) was about 0.01 which yields an estimate of ε. The
Kolmogorov length scale is then η = (ρaν

3
a/ε)

1/4 With the value of ε estimated above,
we have η1 ' 24.2 microns while the size of the smallest grid cell with the thirteen
levels of refinement in the simulation reported here is ∆ = 2−13 L ' 18.3 microns.
According to the DNS resolution criterion given by Pope [27], the smallest turbulent
scales will be well resolved if ∆/η ≤ 2.1 while we have ∆/η1 ' 0.75 Even if one
uses the more conservative estimate η2 = `yRe −3/4

a as in [20] one gets ∆/η2 ' 2.8.
The perhaps surprising result that the simulations may be qualified as DNS can be
explained by the fact that while the less extreme simulations of [13, 19] were limited to
`z/∆ = 256 grid points in the gas jet thickness, our simulations using octree refinement
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Figure 2: Isometric view of the air-liquid interface at t=9 ms. The interface is colored by the Ux velocity
component.The droplets by the exit of the tube are close to the stream velocity, as shown in the detail to the
right. The left detail employs a different color scale to depict the formation and acceleration of sheets and
ligaments in the main wave.

go up to the equivalent of `z/∆ = 1092.
Regarding Adaptive Mesh Refinement (AMR), we use a wavelet-based criterion

[28] to limit local f and ~u estimated numerical error. The finest simulation reported
employs a maximum refinement level of thirteen (L13), resulting on a grid size of 18.3
µm. A cartesian grid with this accuracy would have ≈ 5.5 × 1011 grid cells while the
corresponding octree-grid simulation only scale up to ≈ 3.2×109 cells for the developed
spray stage. Simulating 9 ms of physical time take 82 880, 210 446, and 599 040 CPU-
hours when using 11, 12 and 13 levels respectively. We run all the simulations at Irene
machine (TGCC).

4. Results

Simulations are initialized with zero velocity in the air and liquid although the in-
compressibility condition results in a non-zero velocity field everywhere in the gas
immediately after time zero. The simulation is continued for a total time T=9 ms.
The liquid surface is quickly significantly perturbed with waves present over the entire
length `x of the tube, with a much larger wave near the inlet and some secondary waves
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near the outlet (Figure 2). The wave stretches into a thin liquid layer that fills with air
under the combined effect of pressure and vorticity. Eventually, two mechanisms lead
to the formation of droplets: the formation of fingers or ligaments at the end of the
sheets and the puncturing of the sheets. The latter causes the formation of holes in the
sheets and the subsequent expansion of those holes, leading to the formation of liga-
ments that eventually pinch and break into droplets. This process has been described in
other experimental [10] and numerical [13] investigations. In the current “closed chan-
nel” configuration similar mechanisms of droplet formation are observed. It is seen
on Figure 2 that the small dark red droplets near the channel exit have moved quickly
since the drag law scaling for a sphere Fd ∼ ρad2U2/4 (where d is the droplet radius)
implies that the small droplets accelerate much faster than the large ones.

Figure 3: In the middle cross-section of the channel, the liquid phase and the solid are shown in black and the
gas phase in white. Three different snapshots at regularly spaced time intervals are shown. The oblique line
connects the positions, thus giving a graphical display of the wave velocity UD, agreeing with the Dimotakis
velocity discussed in the text.

A clear phenomenon that couples with droplet formation is growth of a large sheet
or wave near the inlet and its progression downstream. The velocity of such waves is
typically the Dimotakis velocity [29] and it is expressed as UD = U

√
ρa/(
√
ρa +

√
ρl).

A similar kind of solitary wave progressing at the Dimotakis velocity has been observed
in the simpler setting of an infinite vortex sheet between air and liquid [30]. The liquid
surface is excited by a local perturbation of the flat vortex sheet, and in this case the
inhomogeneity of the flow at the entrance plays the role of the localised perturbation,
while less localised waves are seen further downstream. In our case the Dimotakis
velocity is UD ∼ 1.004 m/s which may be compared to a rough measurement from the
simulations (Fig. 3) of UD,num ' 1.25 m/s.

The identification of droplets or connected fluid components, and the computation
of their volumes Vd allows to define an equivalent droplet diameter d = (6Vd/π)1/3.
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Figure 4 shows the droplet size distribution for the three simulations performed. We
compare only the numerical results, for resolved spherical drops, with the experimental
data from Xie et. al. [7]; in this article, the Probability Density Function of droplet
size is assembled with data from several cough samples, considering a correction for
evaporation to better represent the size distribution at the mouth.

102 2 × 102 3 × 102 4 × 102

d [ m]

100

101

102

103

N

Xie et. al. 2009
L11
L12
L13
Pareto,  =-3.32

Figure 4: Droplet counts in each bin, proportional to the Probability Distribution Function of droplet diame-
ters from Xie et. al. [7] and for the simulations at t = 9 ms and for three grid resolutions L13: ∆x = 18µm,
L12: ∆x = 36µm and L11: ∆x = 72µm.

Because of the presence of some non-spherical droplets in the simulation, we fil-
tered the counts, incorporating only near-spherical droplets using a sphericity index.
We find that this filtering removes only large droplets, with d > 2mm;there are less
than ten of such ligaments. The normalized frequency is shown in Figure 4 together
with the statistical error bars, the error being defined as one standard deviation of the bi-
nomial. It is seen that the distribution is close to the power law N(d) ∼ d−3.32 for small
sizes and then inches down. On Fig. 4 we do not show droplet counts for d < 100 mi-
crons and d > 400 microns, since the small sizes are plagued by grid resolution errors
and the larger sizes by statistical errors. Regarding the comparison with experiments,
the simulations predict a smaller amount of large (d > 200 µm) drops. Nevertheless,
both distributions show an acceptable agreement with the Pareto fit proposed.

5. Discussion

An often considered number frequency (NF) model is the log-normal, which reads
N(d) = (B/d) exp

[
−(ln d − µ̂)2/(2σ̂2)

]
where B is a normalization constant, µ̂ is the ex-
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pected value of ln d, also called the geometric mean, and σ is the standard deviation of
ln d, also called the geometric standard deviation (GSD, see [11]). If we plot y = dP(d)
versus x = ln d the Log-Normal frequency distribution appears as a parabola. This is
done in Fig. 5. That figure shows a fit with a GSD σ̂ = 0.98. The dimensionless GSD is

102 2 × 102 3 × 102 4 × 102 6 × 102

d [ m]

104

105

N
(d

) x
 d

log-normal,  = 3.73,  =0.97
L11
L12
L13

Figure 5: Droplet counts in “log-normal coordinates” in which the log-normal NF appears as a parabola,
with labels L11-13 as in Fig. 4.

of the same order of magnitude as the GSD (σ̂ ∼ 1) in similar experiments and simula-
tions [31, 13, 32], but in the authors’ opinion, this may not capture universal underlying
physics but the similar range of scales that is within numerical or experimental reach in
the literature cited. Comparing the NF at various resolution in [31, 13] it is seen that as
the grid size is reduced the NF shifts to the left, with its geometric mean decreasing and
its GSD increasing. This also seen partially in Fig. 4 where the L11 resolution peaks
“before” the two others. It is thus possible that as resolution is increased the curved NF
seen on Figs 4 and 5 would progressively asymptote to a power law, that is a Pareto,
instead of a converged Log-Normal. Such a Pareto NF necessarily has a lower bound,
if only the molecular size. This lower bound is not attainable numerically or perhaps
even experimentally. A tempting hypothesis is to associate it to the thickness of the
sheets as they break or perforate, which involves mechanisms that are not modelled in
this study.

6. Conclusion

We have numerically analyzed a simple physical analog of the physiological mech-
anism of coughing, based on a previously studied experiment, that is strongly rem-
iniscent of planar sheet atomization processes and presents a reasonable agreement
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with experimental data [7]. A Pareto d−2 distribution was not found but is not ex-
cluded at very small diameters. Perspectives include higher resolutions simulations
and laboratory experiments in the regime of this numerical experiment, and using the
characteristics of the numerically estimated droplet sizes and velocity to predict the
further evolution of the droplet cloud using Lagrangian particle methods such as those
of Chong et al. [8].
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Popinet for stimulating and fruitful discussions, and for sharing useful material, visu-
alisations and codes.

References

[1] L. Bourouiba, E. Dehandschoewercker, J. W. Bush, Violent expiratory events: on
coughing and sneezing, J. Fluid Mech. 745 (2014) 537–563.

[2] L. Bourouiba, Turbulent gas clouds and respiratory pathogen emissions: potential
implications for reducing transmission of covid-19, JAMA 323 (18) (2020) 1837–
1838.

[3] S. Balachandar, S. Zaleski, A. Soldati, G. Ahmadi, L. Bourouiba, Host-to-host
airborne transmission as a multiphase flow problem for science-based social dis-
tance guidelines, International Journal of Multiphase Flow 132 (2020) 103439.

[4] L. Bourouiba, The fluid dynamics of disease transmission, Annual Review of
Fluid Mechanics 53 (2020).

[5] J. P. Duguid, The size and the duration of air-carriage of respiratory droplets and
droplet-nuclei, Epidemiology & Infection 44 (6) (1946) 471–479.

[6] R. Loudon, R. Roberts, Relation between the airborne diameters of respiratory
droplets and the diameter of the stains left after recovery, Nature 213 (5071)
(1967) 95–96.

[7] X. Xie, Y. Li, H. Sun, L. Liu, Exhaled droplets due to talking and coughing,
Journal of the Royal Society Interface 6 (suppl 6) (2009) S703–S714.

[8] K. L. Chong, C. S. Ng, N. Hori, R. Yang, R. Verzicco, D. Lohse, Extended life-
time of respiratory droplets in a turbulent vapour puff and its implications on
airborne disease transmission, arXiv preprint arXiv:2008.01841 (2020).

[9] T. Dbouk, D. Drikakis, On coughing and airborne droplet transmission to humans,
Physics of Fluids 32 (5) (2020) 053310.

9



[10] B. Scharfman, A. Techet, J. Bush, L. Bourouiba, Visualization of sneeze ejecta:
steps of fluid fragmentation leading to respiratory droplets, Experiments in Fluids
57 (2) (2016) 24.

[11] M. Nicas, W. W. Nazaroff, A. Hubbard, Toward Understanding the Risk of Sec-
ondary Airborne Infection: Emission of Respirable Pathogens, Journal of Occu-
pational and Environmental Hygiene 2 (3) (2017) 143–154.

[12] W. F. Wells, et al., Airborne Contagion and Air Hygiene. An Ecological Study
of Droplet Infections., Cambridge: Harvard University Press (for The Common-
wealth Fund), Mass., USA., 1955.

[13] Y. Ling, D. Fuster, S. Zaleski, G. Tryggvason, Spray formation in a quasiplanar
gas–liquid mixing layer at moderate density ratios: A numerical closeup, Phys.
Rev. Fluids 2 (1) (2017) 014005.

[14] E. Villermaux, B. Bossa, Drop fragmentation on impact, J. Fluid Mech. 668
(2011) 412–435.

[15] M. King, G. Brock, C. Lundell, Clearance of mucus by simulated cough, physi-
ology.org 58 (6) (1985) 1776–1782.

[16] M. Gorokhovski, M. Herrmann, Modeling primary atomization, Annu. Rev. Fluid
Mech. 40 (2008) 343–366.

[17] G. Agbaglah, R. Chiodi, O. Desjardins, Numerical simulation of the initial desta-
bilization of an air-blasted liquid layer, J. Fluid Mech. 812 (2017) 1024–1038.

[18] A. Zandian, W. A. Sirignano, F. Hussain, Length-scale cascade and spread rate of
atomizing planar liquid jets, International Journal of Multiphase Flow 113 (2019)
117–141.

[19] Y. Ling, D. Fuster, G. Tryggvason, S. Zaleski, A two-phase mixing layer between
parallel gas and liquid streams: multiphase turbulence statistics and influence of
interfacial instability, J. Fluid Mech. 859 (2019) 268–307.

[20] C. R. Constante-Amores, L. Kahouadji, A. Batchvarov, S. Shin, J. Chergui, D. Ju-
ric, O. K. Matar, Direct numerical simulations of transient turbulent jets: vortex-
interface interactions, arXiv preprint arXiv:2012.01887 (2020).

[21] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations of Gas-
Liquid Multiphase Flows, Cambridge University Press, 2011.

[22] S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial
flows, J. Comput. Phys. 228 (16) (2009) 5838–5866.

[23] G. D. Weymouth, D. K.-P. Yue, Conservative volume-of-fluid method for free-
surface simulations on cartesian-grids, Journal of Computational Physics 229 (8)
(2010) 2853–2865.

10



[24] C. I. Pairetti, S. M. Damián, N. M. Nigro, S. Popinet, S. Zaleski, Mesh resolu-
tion effects on primary atomization simulations, Atomization and Sprays 30 (12)
(2020).

[25] S. Popinet, Numerical models of surface tension, Annual Review of Fluid Me-
chanics 50 (2018) 49–75.

[26] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and inter-
facial flow, Annual review of fluid mechanics 31 (1) (1999) 567–603.

[27] S. B. Pope, Turbulent flows (2001).

[28] J. A. van Hooft, S. Popinet, C. C. van Heerwaarden, S. J. van der Linden, S. R.
de Roode, B. J. van de Wiel, Towards adaptive grids for atmospheric boundary-
layer simulations, Boundary-Layer Meteorology (2018) 1–23.

[29] P. Dimotakis, Entrainment and growth of a fully developed, two-dimensional
shear layer, AIAA J 24 (1986) 1791–1796.

[30] J. Hoepffner, R. Blumenthal, S. Zaleski, Self-similar wave produced by local
perturbation of the Kelvin-Helmholtz shear-layer instability, Phys. Rev. Lett 106
(2011) 104502.

[31] M. Herrmann, On Simulating Primary Atomization Using the Refined Level Set
Grid Method, AAS 21 (4) (2011) 283–301.
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