
HAL Id: hal-03656081
https://hal.sorbonne-universite.fr/hal-03656081v1

Submitted on 1 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolution of cooperation in networked heterogeneous
fluctuating environments

Viktor Stojkoski, Marko Karbevski, Zoran Utkovski, Lasko Basnarkov, Ljupco
Kocarev

To cite this version:
Viktor Stojkoski, Marko Karbevski, Zoran Utkovski, Lasko Basnarkov, Ljupco Kocarev. Evolution of
cooperation in networked heterogeneous fluctuating environments. Physica A: Statistical Mechanics
and its Applications, 2021, 572, pp.125904. �10.1016/J.PHYSA.2021.125904�. �hal-03656081�

https://hal.sorbonne-universite.fr/hal-03656081v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

91
2.

09
20

5v
4 

 [
q-

bi
o.

PE
] 

 9
 M

ar
 2

02
1

Evolution of cooperation in networked heterogeneous fluctuating

environments

Viktor Stojkoski1,2 , Marko Karbevski2,3,4,5 , Zoran Utkovski6 , Lasko Basnarkov7 , Ljupco
Kocarev2,7

1 SS. Cyril and Methodius University, Faculty of Economics,, blvd. Goce Delcev 9V, 1000 Skopje, North

Macedonia

2 Macedonian Academy of Sciences and Arts, P.O. Box 428, 1000 Skopje, North Macedonia

3Sorsix International, Dame Gruev 18, Skopje 1000, Republic of Macedonia

4Institute of Mathematics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius

University, Arhimedova 3, 1000 Skopje, Republic of Macedonia
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Abstract

Fluctuating environments are situations where the spatio-temporal stochasticity plays a
significant role in the evolutionary dynamics. The study of the evolution of cooperation in
these environments typically assumes a homogeneous, well mixed population, whose con-
stituents are endowed with identical capabilities. In this paper, we generalize these results
by developing a systematic study for the cooperation dynamics in fluctuating environments
under the consideration of structured, heterogeneous populations with individual entities
subjected to general behavioral rules. Considering complex network topologies, and a be-
havioral rule based on generalized reciprocity, we perform a detailed analysis of the effect of
the underlying interaction structure on the evolutionary stability of cooperation. We find
that, in the presence of environmental fluctuations, the cooperation dynamics can lead to the
creation of multiple network components, each with distinct evolutionary properties. This
is paralleled to the freezing state in the Random Energy Model. We utilize this result to ex-
amine the applicability of our generalized reciprocity behavioral rule in a variety of settings.
We thereby show that the introduced rule leads to steady state cooperative behavior that
is always greater than or equal to the one predicted by the evolutionary stability analysis
of unconditional cooperation. As a consequence, the implementation of our results may go
beyond explaining the evolution of cooperation. In particular, they can be directly applied
in domains that deal with the development of artificial systems able to adequately mimic
reality, such as reinforcement learning.
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1. Introduction

Cooperation is ubiquitous in nature and is essential to the functioning of a large number
of biological systems. This phenomenon has played a fundamental role in many of the major
transitions in biological evolution, and cooperative interactions are required for many levels
of networked organizations ranging from single cells to groups of animals and, ultimately,
humans. In evolutionary biology, theoretical models provide evidence that cooperative be-
havior can evolve and persist if a certain mechanism is at work, for example, kin selection,
group (multilevel) selection, and different forms of reciprocity [1, 2]. In addition, it has been
recognized that the network structure plays an important role in the emergence of cooper-
ation, as underlying network properties such as network heterogeneity, scale-freeness, etc.,
crucially determine the outcome of multiple dynamical phenomena.

A standard approach for examining the effect of different mechanisms on the cooperation
dynamics in complex networks is through evolutionary game theory where the individual
entities interacting in a network are given a set of strategies that they can choose from,
and a set of payoffs (changes in the individual resource endowment) that result from inter-
actions with other entities based on their chosen strategies. Traditional game theory has
predominantly focused on additive payoffs, which yields the world of two-player iterative
social dilemmas, such as the iterated prisoner’s dilemma, or multi-player (i.e. public goods)
games [3].

In contrast to interaction models with additive payoffs, the temporal evolution of the
individual resource endowments in natural and social systems is often characterized by a
multiplicative process [4]. In evolutionary biology and ecology, these systems are studied
within the general framework of fluctuating environments , which refers to spatio-temporal
stochasticity in the environmental conditions [5]. Environmental fluctuations can be in-
tegrated in models for evolutionary games in various ways, including stochastic network
structures [6, 7, 8, 9], fluctuating population size [10, 11, 12, 13, 14, 15] and random pay-
offs [16, 17, 18, 19]. In our concept, we follow the last strand of works, and model environ-
mental fluctuations as randomly varying payoff values.

In environments subjected to fluctuations in the payoff structure, the non-ergodicity of the
fluctuation-generating process may have non-trivial effects on the evolutionary dynamics [5].
In particular, when the growth in the resource endowments is governed by a multiplicative
process, the resulting fluctuations exhibit a net-negative effect on the time-averaged growth
of the resources of the individual entities, while having no effect on the ensemble growth
rate. Since, on the long run the ensemble properties are never observed, the time-averaged
growth is the only relevant quantity for evolutionary performance [20, 21]. Recently, it has
been discovered that this yields an evolutionary behavior which essentially differs from the
one observed in standard models, i.e., leads to evolutionary dynamics where cooperators can
coexist with defectors without any additional auxiliary mechanism at place [16]. For example,
on this basis, it has been hypothesized that repeated pooling and sharing of resources which
previously exhibit a fluctuating growth may constitute a fundamental mechanism for the
evolution of cooperation in a well-mixed population. The rationale is that, by reducing the
amplitude of fluctuations, pooling and sharing increases the steady state growth rate at
which the cooperating entities self-reproduce [18, 19, 17].

The research on the evolution of cooperation in fluctuating environments typically focuses
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on the following simplifying assumptions: i) the population is homogeneous, i.e. all entities
are characterized by the same individual traits, ii) the interaction takes place in a well-mixed
population, and iii) the individual entities can decide only between two behavioral strategies.
The first assumption constraints each entity to have the same physical characteristics and
to be subjected to the same fluctuation process. In reality, however, entities are heteroge-
neous : they are endowed with different capabilities and experience non-identical randomness.
These traits can represent the level of skills or income profiles in economic societies [22, 23]
or sex differences in development, physiology, morphology and/or life-history in biological
systems [24]. The second assumption implies that entities spend, on average, an equal time
interacting with each other member of the population. In practice, individual entities are
most often interacting through a social network of contacts (or within a neighborhood in a
biological network), thus favoring interactions with a certain group. It has been recognized
that such network structures crucially determine the outcome of a multitude of dynamical
phenomena, including cooperation [25]. The last assumption reduces the actions of the in-
dividual entities to a set of two possible outcomes. In other words, this assumption does not
allow for learning to take place in the population. While all these assumptions allowed for
powerful analytical findings, they can significantly reduce practical applications.

In this paper, we revisit the above assumptions and develop a systematic approach for in-
vestigating the cooperation dynamics in fluctuating environments by considering structured,
heterogeneous populations with individual entities subjected to more general behavioral
rules. We consider an interaction model on a complex network based on pooling and sharing
of resources undergoing multiplicative growth that models environmental fluctuations. We
know from [18, 19], that in a well-mixed homogeneous population, cooperation is always
favored under this model. When moving from a well-mixed population to a more general
network structure, in Ref. [26] it was shown that cooperation remains the sole evolution-
ary stable strategy (given that the population is homogeneous), but the performance of the
population is uniquely determined by the underlying interaction topology. Complementing
these works, here we investigate the joint effects of heterogeneous population and network
topology. A crucial observation from the analysis is that, when population heterogeneity
is introduced to the model, complex behavior emerges and the stability of cooperation is
dependent on both the network topology and the behavioral update rules employed by the
individual entities.

By analyzing the model from an evolutionary perspective, we derive the criteria required
for unconditional cooperation to be evolutionary stable within any interaction structure.
More importantly, by applying these criteria to simple and tractable analytical examples,
as well as to more complex numerical examples, we are able to show that the interaction
structure may yield a non-trivial effect on the behavior in multiplicative dynamics. In
particular, the interaction structure can induce creation of multiple connected components,
each consisting of unconditional cooperators. Even though the multiplicative nature of the
process makes the distribution of resources among the cooperating entities to have a an
infinite average in the time limit, the connected components instigate dynamics in which
some unconditional cooperators are much “richer” than others. This effect is related to the
freezing transition in the Random Energy model of Derrida [27], and in our model occurs
as a result of the heterogeneous individual capabilities, in combination with the network
structure [28].
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The evolutionary stability analysis assumes that each individual entity implements strate-
gies that allow only for unconditional cooperator or unconditional defector behavior. As such
it does not allow us to examine the effect of the behavioural learning update rules employed
by the individual entities. Due to the non-ergodicity, which arises as a consequence of the
fluctuating environment, standard rules cannot be easily translated to our model [20]. In-
stead, one should use a suitable modification of the rule which is studied.

Here we develop a simple behavioral update and examine its implications. The introduced
rule is related to the concept of generalized reciprocity, which itself is rooted in the principle of
“help anyone if helped by someone” [29]. In particular, under our rule the individual entities
search for their optimal strategies solely by comparing their observed growth rate with the
one that is expected under unconditional defection. From a game-theoretic perspective the
rule may be framed in the context of continuous games, where entities may be able to chose
from a continuum of strategies [2], or as a stochastic decision making process, with random
payoffs determined by the entity’s experience [3]. Direct parallels can be made to state-of-
the-art reinforcement learning techniques based on novelty search [30]. We thereby show
that our rule leads to steady state cooperative behavior that is always greater than or equal
to the one predicted by evolutionary stability analysis of unconditional cooperation. In fact,
for a certain regime of parameter values we are able to analytically solve the model and show
that then the strict inequality holds.

The rest of the paper is organized as follows. In Section 2 we introduce the system model,
together with a brief summary of the properties of pooling and sharing in a heterogeneous
environment. In Section 3 we study the model from the perspective of evolutionary game
theory, and derive the criteria for evolutionary stability of unconditional cooperation on
complex networks. Here, we also solve several analytically tractable examples that elucidate
the role of the network structure. We also examine numerically the extent to which differ-
ent complex network topologies/structures promote cooperative behavior. In Section 4 we
present a behavioral strategy based on generalized reciprocity and study the properties of
the resulting cooperation dynamics. The last section briefly summarizes our findings.

2. Model

2.1. Interaction structure

In our model we consider a population of N individual entities interacting through M

pools. The pools may represent various compositions that facilitate the sharing of resources.
For instance, in biological systems the pools may constitute structures that ease the trans-
port of nutrients [31]. Similarly, in economics the pools may be seen as equivalent to baskets
that are used to share commodities in community-supported agriculture [32]. In the model,
the interaction structure is described by a connected bipartite random graph, whose ad-
jacency matrix B, with binary edge variables Bim ∈ {0,1}, captures the participation of
individual i in pool m (Bim = 1, indicating participation of i in pool m). The bipartite graph
representation, although not essential for our concept, offers a principled way of capturing
wider information regarding the group composition and network interactions [33, 34, 35]
than standard unipartite graphs, where each node behaves as both an individual entity and
a pool through which resources are shared [33]. As a result, bipartite graphs are a convenient
tool for modeling pooling and sharing on networks. In particular, each unipartite graph can
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Figure 1: Bipartite graph representation. (a) First row: a bipartite graph consisting of tree entities

and two pools; Second row: its unipartite representation; Third row: the weighted replacement graph. (b)
Same as (a), only now there are three pools and the connections between the entities and pools are slightly

different.

be mapped into a bipartite graph by considering a replacement graph procedure, while the
opposite is not true in general, as illustrated in Fig. 1. In this representation each node
behaves as both an individual entity and a pool through which resources are shared [33].
We refer to [33, 35, 26, 36] for more details on the procedure for constructing a replacement
graph.

We provide an example for this property in Fig. 1 where we draw two bipartite graphs,
each composed of three entities. In addition, the first graph is composed of two pools
(Fig. 1a), whereas in the second graph there is an additional third pool (Fig. 1b). In the
second row of the figure we give the simple graph representation. For the first bipartite
graph there is no such representation, but the second graph can be represented in a stan-
dard representation that allows for self-loops. Both bipartite graphs can be described as a
unipartite only if we include more complex replacement graph representation that allows for
edge directions and weights (bottom row of the figure).

We consider discrete-time dynamics and track the evolution of the individual resource
endowments yi(t), for all i ∈ N . The resource growth is governed by a multiplicative process,
where in each period the resource growth of the i-th entity is modeled by a drift µi and a noise
amplitude σi. Note that we consider heterogeneous population where µi and σi differ across
the different members of the population. After the growth phase, the individual resources
are a subject to a pooling phase where each entity i distributes a fraction pi(t)/di of its
resources to each of the di = ∑mBim pools where it participates. Finally, every pool shares
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a fraction 1/um, with um = ∑iBim, of the total pooled resources to each of its members.
Formally, the evolution of the individual resources can be expressed as

yi(t +∆t) = ∑
j

Aijpj(t)yj(t) [∆t + µj∆t + σjεj(t)√∆t] − pi(t)yi(t)∆t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
resources due to pooling and sharing

+ yi(t) + (1 − pi(t)) yi(t) [µi∆t + σiεi(t)√∆t]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

individual resources

, (1)

where εj(t) is a standardized Gaussian random variable and A is a transition matrix of the

network with entries Aij = ∑M
m

Bim

um

Bjm

dj
which determine the total allocated resources from

entity j to entity i. The variable pi(t) ∈ [0,1] models the level of cooperation displayed by an
individual entity in a particular period. The case of pi(t) = 0 for all t represents the situation
when the entity always defects, i.e., the unconditional defector case. On the other hand, the
case of pi(t) = 1 for all t is the unconditional cooperator setting. In a more general setting,
the entities propensity too cooperate may vary over time based on their environment and
thus pi(t) may be interpreted as an internal state that captures the propensity of an entity
to engage in pooling and sharing of its resources.

Following [17], we write Eq. (1) in a continuous form by setting ∆t → 0

dyi = [∑
j

Aijpjyj − piyi]dt +∑
j

Aijpjyj (µjdt + σjdWj) + (1 − pi) yi (µidt + σidWi) , (2)

where (dWi)i∈N are independent Wiener increments, i.e. Wi(t) = ∫ t

0
dWi. This representation

allows us to utilize techniques such as Itô calculus for the theoretical analysis of the model.
As in [17], when working with numerical estimations, we will resort the discrete formulation,
with the note that in that case the temporal differences will be rescaled such that ∆t = 1.
This, as we will see, allows for an easy Markov representation of the discrete model.

The resulting interaction structure is directly related to games of public goods on net-
works. The main difference is that in this model the fluctuations arise inherently from the
individual traits owned by the entities, whereas in a public goods game the randomness is
a feature of each pool. In other words, in public goods games the stochasticity comes as a
result of the process of pooling, here there is randomness even without pooling [33, 37, 3].
Another similar model is the Bouchaud–Mezard model of wealth reallocation and its exten-
sions [38, 39, 28]. The essential difference is that in our description, reallocation is done after
the growth phase.

2.2. Growth rate

In a situation with additive resource dynamics, the relevant quantity for measuring the
payoff of an individual entity is the steady state time-averaged absolute change of wealth [21].
This is not the case with our model, since the fluctuations introduced by the multiplicative
process governing the resource dynamics make the system non-stationary, and hence non-
ergodic. Under these circumstances, the relevant quantity for measuring the payoff is the
steady state time-averaged growth rate of wealth, gi(yi(t), t). In evolutionary biology, this
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observable is more known as the geometric mean fitness for the accumulated payoff (i.e.
resources) of a particular phenotype [5]. Formally, it is defined as

gi(yi(t), t) = 1
t
log( yi(t)

yi(0)) , (3)

where yi(0) is the initial amount of resources. In what follows, we are going to assume
yi(0) = 1.

When the internal state for cooperation of each entity i is p∗i = 0, we have the uncondi-
tional defector situation and the solution to the model represents N independent geometric
Brownian motion (GBM) trajectories. Then, the steady state time-average growth rate can
be easily found using Itô calculus as

gDi = lim
t→∞

gDi (yi(t), t) = µi − σ2
i

2
, (4)

where the superscript D denotes the case in which no individual entity pools its resources.
On the other hand, when every entity cooperates unconditionally, i.e. pi(t) = 1 for all i

and t, the growth rate of each entity converges to the same value,

gC = lim
t→∞

gi(yi(t), t) = ⟨µv⟩N − 1

2N
⟨v2σ2⟩N , (5)

where the superscript C denotes that every entity pools its resources, ⟨⋅⟩N is the population
average and v is an index given by the right-eigenvector associated with the largest eigenvalue
of A normalized in a way such that ∑i vi = N .

For cooperation to be evolutionary favored by the population, the quantity in Eq. (5)
should be larger than the one of Eq. (4). This is always the case if the population is
homogeneous, i.e. the individual entities are subject the same drift and noise amplitude [26].
In a heterogeneous population where the individual entities exhibit different traits (i.e. they
are subject to different drifts and noise amplitudes), the evolution of cooperation is dependent
on both the network structure and the individual traits. We elaborate on this in more detail
in the sequel.

3. Evolutionary stability

3.1. Preliminaries

We begin the analysis by considering the circumstance in which every individual entity
can behave either as an unconditional cooperator (pi(t) = p∗i = 1 for all t), or as an uncondi-
tional defector (pi(t) = p∗i = 0 for all t), and examine the Evolutionary Stable State (ESS).
As discussed in Nowak [1], an ESS of unconditional cooperation is a situation in which a
large population of cooperators cannot be invaded by defectors under deterministic selection
dynamics. ESS has been widely used for determining the level of cooperative behavior in
various interaction structures [40].

7



In a simple interaction structure consisting of two entities i and j, the possible outcomes
are described by a payoff matrix

j

C D

i
C πCC πCD

D πDC πDD

(6)

where πab denotes the payoff of entity i under strategy a when entity j has chosen strategy b.
As discussed, in our case the strategies p∗i = 1 and p∗i = 0 translate to being an unconditional
cooperator (C), respectively defector (D), and the growth rates of the entities translate to
the corresponding payoffs in the payoff matrix. This implies that unconditional cooperation
is ESS if πCC > πDC . In interaction structures involving multiple entities, unconditional
cooperation is ESS if the overall benefit of cooperation for an individual entity is greater
than the benefit of defection, assuming that all other entities cooperate unconditionally. In
other words, in the model with networked pooling and sharing, full cooperation will be ESS
if and only if

gC >max
i

gDi . (7)

3.2. Growth rate

In a more general setting, unconditional cooperation may only be favored by a certain
subset Cl of the population, whereas for the other part it is optimal to behave as uncon-
ditional defectors. This intermediate case can lead to the emergence of multiple connected
components where each component has its own growth rate depending on the network pa-
rameters. Recall, a connected component is a subset of the network in which any two nodes
(entities) are connected to each other by paths, and which is connected to no additional
nodes.

To provide a better intuition on this behavior, in Fig. 2 we illustrate three situations
which lead to different growth rate outcomes by considering a simple network composed of
five entities and two pools. In particular, in Fig. 2a we assume that unconditional cooper-
ation is evolutionary stable for all entities, Therefore, in this case the growth rate of each
individual entity converges to (9). On the other hand, in, Fig. 2b we set the growth rate
of entity 3, which acts as bridge by being the only one to pool its resources in both pools,
to be large enough so as this entity behaves as an unconditional defector. This creates two
separate components C1 = {1,2} and C2 = {4,5}, which pool and share resources only between
themselves. Notice that the entities also pool part of their resources to entity 3 but they are
not shared back. This implies that the resource dynamics, and hence growth rates, between
the components are independent. If the growth rates of each component are different, this
leads to great discrepancies in the observed resources between the cooperators belonging to
separate components, with the resources of the entities in one component being negligible in
comparison to the resources of the entities in the other component. This is a distinguishing
feature of our model and occurs solely as a result of the heterogeneous individual capabilities,
in combination with the network structure. The observed effect is formally equivalent to the
freezing state in the Random Energy model of Derrida which has been extensively studied
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Figure 2: Creation of cooperative components. (a-c) Network composed of five entities and two pools.

Green nodes are the entities which prefer unconditional cooperation, whereas the red nodes depict entities

which favor defection.

in the statistical mechanics community [27]. Finally, in the last example, besides entity 3
we also set the entities in component C2 to be defectors. Then, there is only one connected
component and each unconditional cooperator will have the same steady state growth rate.
Hence, in this circumstance there is no freezing state among the entities belonging to the
unconditional cooperator set.

To analyze the steady state growth rate g∗i of the entities in component Cl we utilize a
mean-field approach together with Itô calculus, as is done in [26]. The mean-field approach
assures that each connected component of cooperators Cl will have a convergent growth rate
given by the growth rate of the average ⟨y⟩Cl constructed by the resource trajectories of the
entities belonging to this component.

To prove this claim, we define the rescaled resources of each cooperating entity i as
ŷi(t) = yi(t)

⟨y⟩Cl
. Due to the normalization, in steady state, this observable also converges to

a constant value ŷ∗i that is greater than zero and less then the number of unconditional
cooperators. Hence, the growth rate of each entity i in the set of unconditional cooperators
can be written as

lim
t→∞

gi(yi(t), t) = lim
t→∞

1

t
log( yi(t)

yi(0))
= lim

t→∞

1

t
log (⟨y(t)⟩Cl ⋅ ŷi(t))

= lim
t→∞

1

t
log (⟨y(t)⟩Cl) + limt→∞

1

t
log (ŷi(t))

= lim
t→∞

1

t
log (⟨y(t)⟩Cl)

≐ lim
t→∞

g(⟨y(t)⟩Cl, t).
Consequently, one can use Itô’s lemma to directly calculate the cooperative time-average

growth rate. Formally, the lemma states that the differential of an arbitrary one-dimensional
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function f(y, t) governed by an Itô drift-diffusion process is given by

df(y, t) = ∂f
∂t

dt +∑
i

∂f

∂yi
dyi +

1

2
∑
i

∑
j

∂2f

∂yi∂yj
dyidyj. (8)

In the case of g(⟨y⟩Cl, t), we have that f(t,y) = log(⟨y⟩Cl). Then, the first and second deriva-

tive of f with respect to yi and yj are easily calculated as ∂f
∂yi
= 1

NCl

1
⟨y⟩Cl

and ∂2f
∂yi∂yj

= − 1

N2

Cl

1

⟨y⟩2Cl
,

where NCl is the number of cooperators in steady state. Moreover, this transformation makes
the differential df(y, t) ergodic, and since we are looking at steady state averages, dyi and
dyidyj can be substituted with their expected values ⟨dyi⟩ and ⟨dyidyj⟩. To estimate these
expectations we utilize the independent Wiener increment property ⟨dW 2

i ⟩ = dt, and define

z
[Cl]
j = ∑k∈Cl Akj. Further, we omit terms of order dt2 as they are negligible. As a result, we
obtain that

⟨dyi⟩ = [∑
k∈Cl

Aik(1 + µk)yk − yi]dt,
and,

⟨dyidyj⟩ = ∑
k∈Cl

AikAjkσ
2
ky

2
kdt.

By inserting the estimates in Eq. (8) we can approximate the time-average growth rate as

g(⟨y⟩Cl, t) = 1

NCl
∑

i∈NCl

ŷi(t) [(1 + µi)z[Cl]i − 1] − 1

2

1

N2
Cl

∑
i∈Cl

(z[Cl]i ŷi(t))2σ2
i . (9)

Eq. (9) describes the growth of ⟨y⟩Cl as a function of ŷi(t). To derive its steady state behavior,
notice that we can remove the unconditional defectors from the cooperative dynamics, set
∆t = 1, and rewrite Eq. (1) as

yi(t + 1) ≈ ∑
j∈Cl

Aijyj(t) [1 + µj + σjεj(t)] . (10)

When Eq. (10) is divided by the population average resources ⟨y(t + 1)⟩Cl and is written in
matrix form, the steady state dynamics for the rescaled resources can be approximated as

ŷ∗ = lim
t→∞

ŷ(t) ≈ lim
t→∞

ACly(t)⟨ACly(t)⟩Cl , (11)

where ACl is a reduced version of the transition matrix A in which includes only the rows
and columns associated to the entities in the set Cl. By the power method, this leads to

ŷ∗i = v[Cl]i , (12)

where v
[Cl]
i is the i-th element of the right-eigenvector of ACl associated with the largest

eigenvalue λCl normalized in a way such that ∑i v
[Cl]
i = NCl .

By inserting the estimates of Eq. (12) in Eq. (9) we get that the steady state cooperative
growth rate is

gCl = (λCl − 1) + ⟨x[Cl]µ⟩Cl − 1

2

1

NCl
⟨(x[Cl])2σ2⟩Cl, (13)

where x
[Cl]
i = v

[Cl]
i z

[Cl]
i , is a network centrality index whose relation with the drifts and

amplitudes ultimately determines the cooperative growth rate.
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3.3. Determining ESS

To determine the ESS in situations when there is a possibility that unconditional defectors
and cooperators may coexist, we consider an alternate-projection method [41]. In particular,
notice that the ESS conditions may be reformulated as

g∗i = gCl , i ∈ Cl,
0 = (gCl − gDi ) (1 − p∗i ) ,

resulting in a nonlinear system of 2N equations with 2N variables (g∗i and p∗i ) in total. Hence,
a simplified, iterative approach based on the alternate projection method can be used for
finding the steady state solution. We follow [2] and summarize the method as follows:

1. Set p∗i = 0 and g∗i = gDi for all i not satisfying the condition (5). Set p∗i = 1 for the
remaining entities. To estimate their growth rate solve Eq. (13) for each component of
unconditional cooperators Cl and set for each i ∈ Cl, gi = gCl .

2. For all i satisfying g∗i < gDi in the obtained solution, set p∗i = 0 and g∗i = gDi . For each
remaining component of cooperators, solve again the corresponding growth rate.

3. Repeat steps 1. and 2. until there are no g∗i < gDi .
3.4. Simple examples

To provide an illustrative representation for the evolutionary properties of the model in
what follows we study three simple examples. The purpose of the first example is to show the
evolutionary dynamics in the simplest population structure consisting of only two entities.
The second example extends the population size to an arbitrary size of N entities. The last
example shows how the position of the entities in an ordinary network structure can impact
the individual payoff.

Example 1:. The first situation that we consider is a replication of the example studied in
Ref. [17]. Concretely, we assume an interaction structure of two entities i and j who have
the option to share their resources through one pool m, as illustrated in the right panel of
Fig. 3.

For simplicity, we are going to assume that i has a larger individual steady state growth
rate, (i.e. gDi > gDj and examine the situation from the point of view of entity i, In this case,
the payoff matrix for i reads

j

C D

i
C ⟨µ⟩N − ⟨σ2⟩N

4
0

D µi −
σ2

i

2
µi −

σ2

i

2

(14)

which, after some reordering, implies that full unconditional cooperation is ESS if

µj −
σ2
j

4
> µi −

3σ2
i

4
.

In the special case when µj = µi, the condition reduces to 3σi > σj . This result is displayed
in Fig. 3 where we plot the average steady state propensities for cooperation within the
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Figure 3: Example 1. Left panel: average fraction of unconditional cooperators ⟨p∗⟩N and steady state

growth rate gj of entity j as a function of the noise amplitude ratio σ2

i /σ2

j . The dashed line is the threshold

after which cooperation is evolutionary stable. The right panel depicts the interaction structure.

Figure 4: Example 2. Left panel: average fraction of unconditional cooperators ⟨p∗⟩C and minimum steady

state growth rate for the entities in the unconditional cooperator set C as a function of the fraction of

population belonging to that set γ. The dashed line is the threshold for cooperation to be ESS among the

entities in C, whereas the right panel describes the interactions. In this case N = 12, µ = 0.5 and σ2 = 0.3.

population and the steady state growth gj of entity j as a function of the square of the
amplitude ratio σi/σj. We observe that at the critical point at σ2

i /σ2
j = 1/3 the growth rate

of entity j is largest and afterwards it is decreasing linearly due to the increase in the noise
amplitude σi of entity i.

Example 2:. The second example extends the interaction to an arbitrary number of N en-
tities, as depicted in the right panel of Fig. 4. This is the well-mixed situation which has
been extensively utilized for determining the performance of a particular mechanism in the
evolution of cooperation. As such this allows us to link our model to previous findings.

To ease the analysis, we assume that a fraction of the population has an individual
growth rate larger than g[N ] and therefore the entities belonging to this group behave as
unconditional defectors. The other fraction, γ, has an equal drift µ and noise amplitude σ.
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As a consequence, in this example there is only one component of possible unconditional
cooperators C and for each entity i in it we have that vCi = 1 and z

[C]
i = λC = γ. Hence, the

cooperative growth rate of this component is

gC = γ − 1 + γµ − γ σ2

2N
. (15)

Clearly, under evolutionary dynamics, unconditional cooperation by the entities in the po-
tential cooperator set will be favored only if

gC > µ − σ2

2
,

which, when rearranged in terms of γ, yields

γ > 1 + µ − σ2

2

1 + µ − σ2

2N

. (16)

Fig. 4 visualizes the dependence of the minimum steady state growth rate of the potential
unconditional cooperators as a function of the fraction of potential cooperators γ. It is easily
noticed that after condition (16) is satisfied, the growth rate of the entities in the set C
increases, which means that cooperation is an ESS for them.

Eq. (16) is a direct pooling and sharing counterpart to the evolutionary rules for cooper-
ation that have been both numerically and analytically studied [1]. In particular, notice that
when there is no noise (σ = 0), then unconditional cooperation is never favored. As such, the
derived inequality is directly related to the result in [16] where the evolutionary dynamics in
fluctuating environments were studied in a broader setting. The main difference is that our
model allows us to easily infer the role of network structures in fluctuating environments as
well as to study the presence of different behavioral update rules.

Example 3:. In the last example we once more examine a structure consisting of N entities
which now do not construct a well-mixed population and instead interact through 2 pools,
m and n. A fixed number of entities N − 2 interact solely through pool m and one entity, j,
interacts only through pool n. In addition, there is one entity, i, which connects the network
by pooling its resources in both m and n. This interaction structure is described in the right
panel of Fig. 5.

We assume that a fraction 1 − γ of the individuals interacting solely through pool m
have a large enough growth rate to behave as an unconditional defectors, and thus study the
circumstances under which the remaining NC = γ(N −2)+2 entities behave as unconditional
cooperators C. In this case the interaction matrix reads

AC =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
N−1

1
N−1 . . . 1

N−1
1

2(N−1) 0

⋮ ⋮ ⋮ ⋮ ⋮
1

N−1
1

N−1 . . . 1
N−1

1
2(N−1) 0

1
N−1

1
N−1 . . . 1

N−1
1

2(N−1) +
1
4

1
2

0 0 . . . 0 1
4

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Figure 5: Example 3. Left panel: average fraction of unconditional cooperators ⟨p∗⟩C and minimum steady

state growth rate for the entities in the cooperator set C as a function of the fraction of potential unconditional

cooperators γ. The dashed black line is the threshold for cooperation to be ESS among the entities in C,
whereas the grey line in the background gives the growth rate for the corresponding well-mixed system. The

right panel describes the interactions. In this example N = 12, µ = 0.5 and σ2 = 0.3.

Moreover, the largest eigenvalue of AC is

λC ≈ ∣4γ − 3∣ + 4γ + 3
8

, (17)

with corresponding right-eigenvector entries v
[C]
k ≈ (γ(N−2)+2)w[C]k

∑l w
[C]
l

approximated for large N

and a fixed γ > 0 by

w
[C]
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣4γ−3∣+4γ−1
2

, if k = i,
1 if k = j,
∣4γ−3∣(N−2)+4γ(N−4)+(11−3N)

2(N−2) otherwise,

(18)

and z[C] index entries

z
[C]
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ(N−2)+1
2(N−1) +

1
2

if k = i,
1 if k = j,
γ(N−2)+1

N−1 , otherwise.

(19)

To illustrate the differences between this example and Example 2., we set each entity be-
longing to the potential set of unconditional cooperators an equal growth rate, µk = µ and
noise amplitude σk = σ.

Combining Eqs. (17), (18) and (19), one can derive an analytical expression for the cooper-
ative growth rate (9). However, the resulting mathematical expression is rather complicated.
Instead of writing it down, we visualize it in Fig. 5. The figure shows the cooperative growth
rate as a function of γ. In the same figure, with the light gray line we plot the cooperative
growth rate of the corresponding well-mixed system (Example 2). We observe that once
unconditional cooperation is achieved by the entities in C, the presence of a network struc-
ture effectively increases the growth rate of each individual, as compared to the well-mixed
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situation. Moreover, even if the population size increases indefinitely, i.e., if we take the limit
as N →∞ of Eqs. (17), (18) and (19), the cooperative growth rate will remain dependent on
the network structure and the fraction of unconditional cooperators γ. This can be easily
deduced from Eq. (17), as the equation is not dependent on the population size, but rather
on the fraction of potential unconditional cooperators which interact solely through pool m
and the non-trivial interaction between entities i and j. This serves as an intuitive example
that the interaction structure may have a disproportionate effect on the observed individual
behavior.

3.5. Random graphs

In a more general, random graph structure, besides the size of the unconditional defector
set, the positioning of the entities in the network also determines the ESS for each other
entity. While Eq. (9) and the alternate projection method give the solution for the level of
cooperation in any arbitrary situation, the extent to which different random graphs are able
to support cooperation in the presence of defectors can not be deduced explicitly.

To provide an insight on this phenomena, we consider four different types of random
graph models i) Random d-regular (RR) graph [42], ii) Erdos-Renyi (ER) random graph [43],
iii) Watts-Strogatz (WS) random graph [44], and iv) Barabasi-Albert (BA) random scale-
free network [45] and study their robustness in the presence of arbitrary positioned and/or
number of defectors. In an RR graph each entity is characterized with the same degree d,
whereas in an ER graph two entities share an edge with probability d/N . Both types of
random graphs yield homogeneous degree distributions and low clustering coefficients. The
WS random graph, on the other hand is an extension of the two aforementioned graphs which
is able to capture higher levels of clustering. In fact, this random graph type lies in-between
the ER and RR graph as its creation starts with an initial structure of an RR graph and then
each edge is re-wired with a fixed probability. Finally, the BA graph is constructed through a
preferential attachment mechanism for generating random graphs. As such it yields a power
law degree distribution coupled with high clustering.

To assess the robustness of the types of random graphs we conduct the following experi-
ment. We begin by generating a random graph through the typical algorithms that are used
for this procedure. Afterwards, we choose a random fraction 1−γ of the population. We set
the growth rate of the entities in it to be large enough so as they behave as unconditional
defectors. We characterize the entities in the other set, the potential unconditional cooper-
ators, with an equal drift µ and noise amplitude σ. Under these circumstances, we estimate
the steady state growth rates of each entity i belonging to the cooperative cluster Cl as

gCl = (λCl − 1) + µ⟨x[Cl]⟩Cl − σ2

2NCl
⟨(x[Cl])2⟩Cl

= (µ + 1)λCl − σ2

2NCl
⟨(x[Cl])2⟩Cl − 1, (20)

using the the procedure described in Section 3.3. We gather the average number of uncon-
ditional cooperators among the entities in the potential unconditional cooperator set, ⟨p∗⟩C.
To get the typical behavior of a particular random graph we average across random graph
instances and across defector selection samples.

15



Numerical results are summarized in Fig. 6a where we plot the average p∗i among the
entities in the cooperator set as a function of γ. We observe that for every γ the RR graph
presents itself as the most supportive for cooperation as it requires the lowest amount of
entities in the unconditional cooperator set for cooperation to exist. It is followed by the
WS graph, while under this criterion the ER and BA graphs have similar performance and
are the least robust random graphs.

The reason for this behavior becomes apparent if we look at the evolution of λC and⟨(x[Cl])2⟩Cl as a function of the fraction of entities belonging in the potential unconditional
cooperator set. Since µ > σ2, λC is decisive in the determination for the level of cooperation,
the networks with a larger eigenvalue will be better promoters of cooperation. In this aspect,
we observe in Fig. 6b that the RR graph always has the largest eigenvalue, followed by the
WS graph. As γ increases, the differences in ⟨(x[Cl])2⟩Cl become apparent, whereas λC slowly
converges to the same value for each network since in each random graph case as it becomes a
stochastic matrix. Because ⟨(x[Cl])2⟩Cl is related to the amplitude of the noise, the networks
with lower value will be better promoters of cooperation. As depicted in Fig. 6c, the RR
graph again is the graph with the largest magnitude of the observable, but its eigenvalue
is already converged to the maximum value. Thus it is less affected by the properties of⟨(x[Cl])2⟩Cl . We arrive at similar conclusions when inspecting the properties of the other
graphs. We hereby note that in a structure where the noise amplitude has a larger magnitude,⟨(x[Cl])2⟩Cl will play a bigger role in determining the steady state cooperative behavior.

To provide robustness of the network properties that we discussed in terms of the rela-
tionship between λC and ⟨(x[Cl])2⟩Cl and γ, in Fig 7 we provide the corresponding standard
deviations, SλC and S

⟨(x[Cl])2⟩Cl
of the numerical results as a function of the fraction of entities

belonging in the potential unconditional cooperator set. They have a significantly smaller
magnitude than the averages shown in Fig. 6, thus indicating that the averaged results
represent an adequate representation for the typical behavior of the graphs.

4. Generalized reciprocity

So far, we addressed evolutionary behavior in which pooling and sharing is the sole co-
operative mechanism. We showed that, as a consequence of the non-ergodicity, if certain
conditions are satisfied, unconditional cooperation can be evolutionary stable even without
the presence of any additional decision making mechanisms. In fact, the presence of addi-
tional auxiliary mechanisms should yield dynamics that at least complement the evolution of
cooperation. To provide an initial insight on the role of these mechanisms, here we examine
the cooperative behavior in the presence of a state-based generalized reciprocity update rule.

Generalized reciprocity suggests that cooperation can emerge as a consequence of previous
positive experience with not necessarily the same group of opponents, i.e. it is based on the
rule of “help anyone if helped by someone”. This is significantly different from the two main
forms of reciprocity, direct and indirect, which explain the emergence of cooperation either
as a result of repeated encounters between the same group of entities or as an attempt to
build positive reputation for future interactions [46, 47].

The main presumption which favors generalized reciprocity over other reciprocal mecha-
nisms is that individual entities following this rule can be said to exhibit a simple state-based
behavior. Due to this straightforward behavioral update rule, generalized reciprocity has
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Figure 6: The role of complex networks in heterogeneous populations. (a) Average steady state

propensity for cooperation ⟨p∗⟩C as a function of the fraction of potential unconditional cooperators γ for

RR, ER BA and WS graphs. (b) Average largest eigenvalue λC of the matrix AC as a function of γ for the

same networks. (c) Average ⟨(x[Cl])2⟩Cl as a function of γ. In the simulation µ = 0.25 and σ2 = 0.3. The

results are averaged across 100 different unconditional defector choices and 100 graph realizations with each

graph having 2000 nodes and an average degree of 4.

been observed in a wide range of animal and human societies each manifesting different level
of cognitive prowess and interacting in various environments [48, 49, 50, 51, 52].

While the extent to which generalized reciprocity is able to evolve as a sole cooperation
mechanism has been a subject to an active debate, recent studies have shown that once this
mechanism is present in a system, it induces dynamics which assist the stability of cooper-
ation [53, 54, 55, 56, 57]. Concretely, in [2, 58] it was argued that state-based generalized
reciprocity effectively prevents the individual entities from being exploited by unconditional
defectors, whereas in [3] it was suggested that this prevention is accompanied with maxi-
mization of the level of cooperation displayed by each entity. Nevertheless, the theoretical
work done so far has assumed that the entities interact in an additive environment where
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Figure 7: Standard deviation of the network properties. (a) Standard deviation SλC of the largest

eigenvalue λC of the matrix AC as a function of γ for the same networks. (c) Standard deviation S
⟨(x[Cl])2⟩C

l

of ⟨(x[Cl])2⟩Cl as a function of γ. In the simulation µ = 0.25 and σ2 = 0.3. The results are averaged across

100 different unconditional defector choices and 100 graph realizations with each graph having 2000 nodes

and an average degree of 4.

ensemble averages are a good approximation for the stochastic behavior. In this section we
extend the rule to account for possible resource dynamics driven by a multiplicative noise.

4.1. Behavioral update

To study the individual behavior under a simple generalized reciprocity rule we consider
an update based on the entity’s estimate for its growth rate

pi (t +∆t) = fi,t [gi(yi(t), t)] , (21)

where fi,t ∶ R→ [0,1] is monotonic (nondecreasing). A plausible choice would be the sigmoid
(logistic) function

fi,t(ω) = [1 + exp{(−κi(t))(ω − ωi)}]−1 , (22)

where the midpoint ωi is given by the steady state of gi(yi(t), t) without pooling, i.e., gDi .
We remark that we purposefully allow for the steepness of the sigmoid function to be an

unbounded monotonically increasing function of t, so as to account for the time-dependence
in the variance of gi(yi(t), t). For simplicity, we focus on the special case when κ(t) = tα

where α is a positive parameter that captures the learning rate of the entities. In particular,
α < 1 corresponds to convergence towards equilibrium propensities to cooperate at a rate
lower than the elapsed time t, whereas α > 1 provides the opposite dynamics. The variable
κ(t) in our model is directly related to the intensity of choice parameter used in standard
Choice theory (it is the analogue of the inverse temperature in statistical mechanics) [59].

We point out that the introduced rule provides a simple description for the cooperative
behavior in a wide range of interaction structures. The advantage of the behavioral update
lies in its simplicity since (21) implies that an entity only has to know its current amount
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of resources in order to determine the next action. This is significantly different from other
behavioral update rules where entities are required to optimize over domains depending on
both opponent behavior and possible future interactions [58].

4.2. Model properties

In the analysis performed in Section 3 we always ended up with dynamics that have a
steady state. However, the introduction of the state-based generalized reciprocity rule may
in fact disturb this property of the model and we may end up with complex dynamics whose
study is out of the scope of the paper.

To greatly ease the analysis of generalized reciprocity here we consider two situations.
In the first situation, we examine the individual cooperative behavior under the assumption
that there is a steady state growth rate g∗i for every entity i. In the second situation, we
study the properties of the model numerically and derive an analytical solution for the model
in the circumstance when α < 1 since, as it will be shown, there is always a steady state.

Cooperative behavior:. Let us assume that there is a steady state cooperative behavior p∗i
and growth rate g∗i for each entity i conforming to the rule (21). In addition, we assume
that the growth rate of each entity is set such that the system is non-degenerate. By non-
degenerate we mean that gDi ≠ gC for all i. Then, we can derive the following properties of
the model

i. Prevention of exploitation: – It can be easily shown that g∗i < gDi is an impossible
situation for any entity following the behavioral update rule. To see this, assume that
entity i follows (21) and has g∗i < gDi . Then, the behavioral update rule indicates that
the steady state propensity for cooperation of this entity is p∗i = 0. Subsequently, this
implies that

yi(t +∆t) ≥ yi(t) [1 + µi∆t + σiεi(t)√∆t] . (23)

Taking the limit as t →∞ we get that g∗i ≥ g
D
i , thus contradicting our initial assumption.

This is a favorable property of state-based generalized reciprocity which has been also
observed in additive dynamics [2]. It significantly differs from other forms of generalized
reciprocity since it has been shown that they are prone to exploitation [56].

ii. Sufficient condition for existence of unconditional cooperators: – The behavioral update
rule coupled with the monotonicity and unboundedness of κi(t) imply that if g∗i > g

D
i

then p∗i = 1. Moreover, it follows that a necessary condition for p∗i < 1 is g∗i = gDi .
Altogether, in steady state the entities may thus be attributed to two (disjoint) sets,

Dgen = {d ∈ N ∶ p∗d < 1} and Cgen = {c ∈ N ∶ p∗c = 1}, depending on the steady state propensity
for cooperation p∗i . The entities in Dgen are further characterized by g∗d = gDd , while the
entities yc in Cgen have an unknown growth rate gc ≥ gDc , which is dependent on the network
parameters. We will refer to the entities in the sets Dgen and Cgen as “generalized defec-
tors”, respectively “generalized cooperators”, with an intention to emphasize their role in
the pooling and sharing mechanism.
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Numerical experiment:. The behavior of the individual growth rates ultimately depends on
the magnitude of α. This parameter indicates the speed at which every entity reacts to
the environment: if an entity has a smaller-than-expected growth, it will converge towards
unconditional defection faster (proportionally with α), and otherwise towards unconditional
cooperators. Even if the fraction of resources that is pooled and shared is small, the amount
may be non-negligible for some of the entities which behave as unconditional defectors in
evolutionary sense and, in fact, it may significantly increase their growth rate, thus making
them “generalized cooperators”. In other words, while the rule asserts that the entities
which experience lower growth than their own eventually end up as generalized defectors,
the number of generalized defectors may in general be smaller than the number of defectors
inferred through evolutionary stability analysis.

To illustrate this effect we make use of the network given in Fig. 2. Concretely, we
initialize the drift and amplitudes of the entities so as under evolutionary analysis p∗3 = 0
and cooperation is unstable for every other entity. Then, we simulate the coupled dynamics
of Eq. (1) and Eq. (21) for 2 × 104 time steps and record the propensities for cooperation
among the entities in the potential generalized cooperator set at the last point in time.

Fig. 8a provides a boxplot for the propensities for cooperation for each entity. In general,
we observe two different regimes depending on α. The first appears when α < 1. In this case,
the propensity to cooperate pi for each entity i appears to be at a value less than 1 but larger
than 0. As α increases, the propensities to cooperate for each i ≠ 3 also increase, eventually
converging to pi = 1. In contrast, the propensity of entity 3 decreases and converges to p3 = 0.
We assert that for the lower values of α the system is not in steady state and is eventually
converging to the steady state where p∗i = 1 for all i ≠ 3, p∗3 = 0 and g∗i = gD3 . This is evidenced
in Fig. 8b where we plot the numerically observed growth rate for each entity as a function
of α. Concretely, we notice that the observed growth rate of each i ≠ 3 is larger than their
defector growth rate, thus implying that p∗i = 1. In contrast, the growth rate of 3 is smaller
than its defector growth rate. As a consequence, the propensity to cooperate of this entity
must be converging to 0. This slow convergence is illustrated in Fig. 8c where we visualize
the dynamics over time of each pi(t) for various α.

The second regime occurs when α > 1. In this situation we observe that the propensities
for cooperation for each entity i vary from one simulation to another. One explanation for
this phenomena is the fact that when α ≥ 1 the steepness of the logistic curve diverges with
a rate that is at least as fast as the divergence of the resources of each entity. This reduces
the domain of all pi(t) to {0,1} faster. Since growth rate of each entity is highly stochastic
we may observe non-equilibrium dynamics even though we numerically find that on average
the growth rate of each potential generalized cooperator is larger than expected (Fig. 8b).

Analytical solution:. The general case of α < 1 in any interaction structure can be easily
analytically solved and thus the observations explained. To see this, let i represent the
strongest entity in the network in the sense that gDi > g

C and gDi > g
D
j for all j ≠ i. We claim

that the limit of the growth of each entity is at least as large as gDi . For every finite time
t we approximate the growth rate gj(t) of each entity j ≠ i and notice that this quantity is
bounded from below by the the growth induced by the shared resources from the strongest
entity. Since the defection is slow enough, these shared resources are enough to bring the
growth of each j ≠ i to gDi . The formal proof is given in the Appendix.
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Figure 8: State-based generalized reciprocity in fluctuating environments. (a) Observed propen-

sities for cooperation pi(t) for each entity at t = 2 × 104 over 100 realizations. The circles are the results

from each realization, whereas the crosses are the estimated averages across realizations for a given α. (b)
Numerically observed growth rate averaged across realizations. (c) Dynamics over time for the average pi(t)
across realizations. The green lines are the averages for entities i ∈ {1,2,4,5} whereas the red lines are the

averages for i = 3. (a-c) The parameters are set to µi = 0.03 for all i, σ =
√
0.01 for i ≠ 3 and σ = 0.01 for

i = 3.

The previous discussion leads to the situation where each entity exhibits a growth rate
equal to the growth rate of the strongest entity gDi . In turn, from the cooperative behavior
properties i. and ii. we infer that p∗j = 1 for all i ≠ j and p∗i < 1.
5. Conclusion

We investigated the evolution of cooperation in networked heterogeneous fluctuating
environments. We found out that the fluctuations induce evolutionary behavior which may
lead to emergence of components within the population structure. The properties of each
component are characterized solely by the interaction topology and the traits possessed by
the entities belonging in it. Thus, we may observe great disparities in the owned resources
between cooperating entities belonging to different components.

Moreover, by introducing a simple behavioral update rule we showed that state-based
generalized reciprocity enhances the promotion of cooperation in fluctuating environments.
The rule induces dynamics under which each entity is prevented from exploitation, i.e., each
i observes a growth rate that is at least the same size as its own growth when behaving as
an unconditional defector. More importantly, by construction, the entities whose observed
growth rates at time t that are greater than in the unconditional defector situation, also
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display greater propensities to cooperate. For the regime in which the learning rate is slower
than the temporal dynamics, we analytically derived the exact behavior of each entity. When
the learning rate is faster than the temporal dynamics we numerically observed complex
dynamics. We argue that the observed dynamics is a consequence of the noise generating
process having a larger impact on the evolutionary result and may produce situations with
no stable state. In these situations, there is a never ending cycle in which the behavior
of each entity alternates between unconditional cooperation and unconditional defection.
While a detailed study of the dynamics is required, we believe that its implications are non-
trivial and may contribute in explaining events such as the co-evolution of life cycles and
multicellularity [60, 61, 62].

The implementation of our results goes beyond explaining the evolution of cooperation.
In particular, the introduced rule is directly related to the concept of novelty search where
individual entities decide their next actions on the basis of previous experience [30]. Novelty
search is omnipresent in reinforcement learning and has been utilized in developing machines
that efficiently mimic human behavior. In this aspect, we argue that the results discovered
here behave as a building block in constructing machines which interact in a fluctuating
environment.

6. Appendix

Here we provide the mathematical details of our claim in Section 4.2 c. Analytical
solution.

Theorem 1. Let yk(t) be a solution to Eq. (2) with α < 1 and assume that g∗k exists for all
k. In addition, assume that i represents the strongest entity in the sense that gDi > gC and
gDi > gDj for all j ≠ i. Then g∗k = gDi for all k. Moreover, p∗j = 1 for j ≠ i and p∗i < 1.
Proof. We argue by contradiction. Namely, let g∗j < gDi , and let entities i and j take part
in a common pool, i.e. Aji > 0 and Aij > 0. For any T > T0 > 0 the solution to (2) can be
written as

yj(T ) = ∫ T

T0

Ajipi(t)yi(t)dt − pj(t)yj(t)dt + (∫ T

T0

GT,T0
(t)) ,

where GT (t) is given as

GT,T0
(t) = yj(T0)

T − T0

+∑
k≠i

Ajkpk(t)yk(t)(dt + µkdt + σkdWk)+
+Ajipi(t)yi(t)(dt + µ̂idt + σidWi) + (1 − pj(t))yj(t)(µjdt + dWj).

The integral of this expression gives the total amount of resources of entity j gathered from
sources other than i, as well as resources from i with a changed drift, µ̂i ∶= µi − 1 between
times T0 and T . Therefore it is non-negative. We can use this fact to arrive at a lower bound
of gj(T ) = 1

T
log(yj(T )) for T − 1 > T0 ≫ 0,

gj(T ) ≥ 1

T
log(∫ T

T0

(Ajipi(t)yi(t) − pjyj(t))dt)
≥
1

T
log(∫ T

T0

(Ajipi(t)yi(t) − yj(t))dt) ,

22



with the second inequality following from the fact that pj ≤ 1. The fact that the logarithms
of the two integrals are well defined stems from the fact that because gj < gDi we have
Ajipi(t)yi(t) − yj(t) > 0 for all t > T0 with T0 set to be large enough. The details are
analogous to the ones in the justification of the passage to the limit that can be found below
in inequality (25).

We can further relax the inequality by applying the Gronwall-Bellman lemma [63, 64] (or,
alternatively, the assumption of the existence of a finite g∗i ) to the properties of the update
rule (21) of pi(t). Formally, the lemma implies that the norm ∣∣z(t)∣∣ of a solution to a
differential equation dz = A(z(t), t)zdt+B(z(t), t)zdW with continuous bounded coefficients∣A∣ + ∣B∣ < M is bounded from above by a function of the form t ↦ θ1 exp(θ2t). In other
words, ∣∣z(t)∣∣ ≤ θ1 exp(θ2t) for some coefficients θ1, θ2 ≥ 0 and all t > 0. Since the differential
equation defining y(t) is with bounded coefficients, we can apply the lemma to yi(t) to
deduce that gi(t) is also bounded. In our case we have

pi(t) = 1

1 + exp[−tα(gi(t) − gDi )] ≥
1

ξ + exp(ηtα) ,
with constants ξ, η ≥ 0 dependent only on the realization. This reduces the lower bound to

gj(T ) ≥ 1

T
log(∫ T

T0

( Aji

ξ + exp(ηtα)yi(t) − yj(t))dt)
≥
1

T
log(∫ T

T−1
( Aji

ξ + exp(ηtα)yi(t) − yj(t))dt) .
Next, by applying Jensen’s inequality to x↦ log(x) we further get that

gj(T ) ≥ 1

T
∫ T

T−1
log( Aji

ξ + exp(ηtα)yi(t) − yj(t))dt. (24)

By taking the limit of this expression we get that

g∗j ≥ g
∗
i ,

≥ gDi ,

with the last inequality following from the prevention of exploitation property described
previously. Altogether, this is the desired contradiction. Since the graph is connected, the
property g∗j ≥ g

D
i is propagated to each entity. Now if g∗i > g

D
i , we would have p∗i = 1, and

since all p∗j = 1 by g∗j > gDj , the growth g∗i would be equal to gC, which is impossible since
g∗i ≥ g

D
i > g

C where the first inequality is the prevention of exploitation property.

Let us finish by justifying the passage to the limit of the right hand side in the inequality
(24). First notice that for k ∈ {i, j} we have yk(t) = exp(tg∗k + ϕk(t)) for some functions
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ϕk(t) such that limt→∞
ϕk(t)

t
= 0. Since g∗i ≥ g

D
i , we have,

yi(t) = exp(tg∗i +ϕi(t))
≥ exp(tgDi + ϕi(t)),
≥ exp(tg∗j + tε + ϕi(t)),
≥+∞ exp(tg∗j + tε2 + ϕj(t)),
= exp(tε

2
)yj(t),

(25)

for all large t, and for any small ε > 0 so that gDi > g∗j + ε. Indeed, there exists tε > 0 such
that t ε

2
≥ ∣ϕj(t)∣ + ∣ϕi(t)∣ for all t > tε. In turn, for large T ,

yj(T )(ξ + exp(ηT α))
yi(T )Aji

≤
ξ + exp(ηT α)
Aji exp(T ε

2
) ÐÐÐ→T→∞

0,

implying that

1

T
log( Aji

ξ + exp(ηT α)yi(T ) − yj(T )) =

=
ÐÐÐ→
T→∞

g∗i³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1

T
log( Aji

ξ + exp(ηT α)yi(T ))+
ÐÐÐ→
T→∞

0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1

T
log(1 − yj(T )(ξ + exp(ηT α)

yi(T )Aji

) .
Finally, applying the change of variables t′ ∶= t − T + 1 we obtain the expression

1

T
∫ T

T−1
log( Aji

ξ + exp(ηtα)yi(t) − yj(t))dt
= ∫ 1

0

1

T
log( Aji

ξ + exp(η(t′ + T − 1)α)yi(t′ + T − 1) − yj(t′ + T − 1))dt′,
to which we can apply the dominated convergence theorem [65] as T →∞ thereby completing
the justification of the passage to the limit.
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[43] P. Erdos, A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad.
Sci 5 (1960) 17–60.

[44] D. J. Watts, S. H. Strogatz, Collective dynamics of ‘small-world’networks, Nature 393
(1998) 440.

[45] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (1999)
509–512.

[46] R. Axelrod, W. D. Hamilton, The evolution of cooperation, Science 211 (1981) 1390–
1396.

[47] R. Alexander, The biology of moral systems, Routledge, 2017.

[48] C. Rutte, M. Taborsky, Generalized reciprocity in rats, PLoS Biol 5 (2007) e196.

[49] K. L. Leimgruber, A. F. Ward, J. Widness, M. I. Norton, K. R. Olson, K. Gray, L. R.
Santos, Give what you get: capuchin monkeys (cebus apella) and 4-year-old children
pay forward positive and negative outcomes to conspecifics, PloS one 9 (2014) e87035.

[50] N. Gfrerer, M. Taborsky, Working dogs cooperate among one another by generalised
reciprocity, Scientific reports 7 (2017) 1–6.

27



[51] M. Y. Bartlett, D. DeSteno, Gratitude and prosocial behavior: Helping when it costs
you, Psychol. Sci. 17 (2006) 319–325.

[52] L. Stanca, Measuring indirect reciprocity: Whose back do we scratch?, J. Econ. Psychol.
30 (2009) 190–202.

[53] T. Pfeiffer, C. Rutte, T. Killingback, M. Taborsky, S. Bonhoeffer, Evolution of co-
operation by generalized reciprocity, Proceedings of the Royal Society of London B:
Biological Sciences 272 (2005) 1115–1120.

[54] D. J. Rankin, M. Taborsky, Assortment and the evolution of generalized reciprocity,
Evolution 63 (2009) 1913–1922.

[55] G. S. van Doorn, M. Taborsky, The evolution of generalized reciprocity on social inter-
action networks, Evolution 66 (2012) 651–664.

[56] M. A. Nowak, S. Roch, Upstream reciprocity and the evolution of gratitude, Proceedings
of the Royal Society B: Biological Sciences 274 (2006) 605–610.

[57] T. Ito, R. Suzuki, T. Arita, Evolution of four forms of reciprocity in the prisoner’s
dilemma game, Artificial Life and Robotics 24 (2019) 140–146.
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