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Abstract 

Repeat expansions in C9orf72 gene are the main genetic cause of frontotemporal dementia, 

amyotrophic lateral sclerosis and related phenotypes. With the advent of disease-modifying 

treatments, the presymptomatic disease phase is getting increasing interest as an ideal time 

window in which innovant therapeutic approaches could be administered. Recommendations 

issued from international study groups distinguish between a preclinical disease stage, during 

which lesions accumulate in absence of any symptoms or signs, and a prodromal stage, marked 

by the appearance the first subtle cognitive, behavioral, psychiatric and motor signs, before the 

full-blown disease. This paper summarizes the current definitions and criteria for these stages, 

in particular focusing on how fluid-based, neuroimaging and cognitive biomarkers can be useful 

to monitor disease trajectory across the presymptomatic phase, as well as to detect the earliest 

signs of clinical conversion. Continuous advances in the knowledge of C9orf72 

pathophysiology, and the integration of biomarkers in the clinical evaluation of mutation 

carriers will allow a better diagnostic definition of C9orf72 disease spectrum from the earliest 

stages, with relevant impact on the possibility of disease prevention. 
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1. Introduction 

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative 

diseases lying along a clinical continuum and sharing common pathophysiological and genetic 

mechanisms. One of the most relevant advances in the understanding of how these two diseases 

are related has been the identification, in 2011, of a hexanucleotide repeat expansion in C9orf72 

in families concerned by FTD, ALS, or the combination of the two [1,2]. 

C9orf72 expansions turned out to be the most frequent cause of genetic FTD and ALS in most 

countries, explaining up to 25% of familial FTD cases and around 40% of familial ALS cases 

[3–5]. When both disorders coexist, C9orf72 expansions can be found in up to 80% of cases 

[3,4]. Besides, they can occur also in FTD or ALS patients without overt family history of 

neurodegenerative diseases, at a frequency estimated between 6% and 20% [5,6] thus 

underscoring the importance of genetic testing even in apparently sporadic cases. Notably, no 

such overlap exists with other relatively frequent genes after C9orf72, such as progranulin gene 

(GRN) and microtubule associated protein tau gene (MAPT), identified in FTD phenotypes, or 

superoxide dysmutase 1 (SOD1), responsible of pure ALS. Less common disease-causing genes 

can be involved in both cognitive, motor, or complex phenotypes [7]. 

The age at onset in C9orf72 disease is extremely variable, ranging between the 2nd and the 9th 

decade, with a peak at 58 years [8]. There is increasing evidence about the heterogeneity of 

clinical phenotypes, encompassing cognitive, behavioral and motor syndromes. In addition to 

the behavioral variant of FTD (bvFTD), ALS and the association FTD/ALS, C9orf72 patients 

may occasionally present with psychiatric phenotypes, mainly qualifying as atypical, late-onset 

psychoses [9–11]. Less common presentations, identifiable in less than 5% of carriers, include 

primary progressive aphasia (PPA) variants [8,12], and parkinsonian syndromes (corticobasal 

syndrome, progressive supranuclear palsy, and, rarely, typical parkinsonism) [13–15]. 
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Knowledge about the implications of C9orf72 repeat expansion in disease pathophysiology has 

been continuously increasing since the discovery of the gene. The first intron of C9orf72 

contains a G4C2 sequence which in healthy individuals mostly ranges between 2 and 8 repeats, 

and in any case below 30, which has been conventionally fixed as a pathogenic threshold [2,16]. 

The majority of affected individuals carry a pathologic expansion in the range of hundreds or 

thousands of repeats [9]; interestingly, the repeat length does not significantly affect the disease 

phenotype or the age at onset [17]. In addition, expansions of intermediate length (between 20 

and 30 repeats), have been suggested to increase the risk of developing parkinsonian syndromes 

or ALS [18,19]. The biological functions of the C9ORF72 protein are not completely 

understood, but it has been determined to act as a GTPase activating protein (GAP), in 

partnership with two other subunits [20]. 

Three main pathogenic mechanisms have been hypothesized in C9orf72-associated disease, 

including loss of physiological role of C9ORF72 protein, accumulation of RNA foci in the 

nuclei and toxicity from dipeptide repeat proteins (DPR) generated from repeat-associated non-

ATG (RAN) translation [21]. Hence, RNA foci and cytoplasmic DPRs accumulations coupled 

with p62-positive inclusions represent pathological hallmarks specific to C9orf72 disease, in 

addition to diffuse neuronal and oligodendroglial TDP-43 positive inclusions [22,23].  

Insights in the disease mechanisms have paved the way to the development of disease-

modifying treatments, mainly acting to contrast the deleterious effect of the C9orf72 expansion. 

Among them, one of the most developed so far consists of antisense oligonucleotides (ASOs), 

small DNA or RNA molecules binding to a complementary RNA sequence and leading to its 

degradation, thus modulating gene expression [24]. Phase 1 and 2 trials targeting C9orf72-

associated FTD and ALS have started in recent years (www.clinicaltrials.gov NCT03626012, 

NCT04288856, NCT04931862, NCT04993755). These interventions should be eventually 

developed to block the pathological cascade and, ideally, prevent or significantly delay the 



 5 

occurrence of clinical symptoms. Therefore, the presymptomatic disease phase is getting more 

and more interest as an ideal time window in which innovant therapeutic – or rather preventive 

– approaches should be tested. At present, the definitions and the time references of the 

presymptomatic phase, as well as the tools of choice for the longitudinal monitoring of the 

disease trajectory are a matter of intensive research. This review provides an overview on the 

current knowledge about the presymptomatic phase of the C9orf72 disease, particularly 

focusing on: i) the proposed classification of presymptomatic stages, ii) the contribution of 

biomarkers to trace preclinical disease trajectory, and iii) the earliest clinically relevant changes 

associated with disease onset, and their interest in ongoing and future clinical trials tackling 

C9orf72-associated pathology. 

 

2. Current framework for defining the presymptomatic disease stages 

At present there is limited information about the sequential ordering of events occurring in FTD 

and ALS before clinical onset. In the field of neurodegenerative diseases, studies focusing on 

Alzheimer's disease (AD), particularly in its monogenic forms, have substantially contributed 

to define the concept of a presymptomatic disease stage, characterized by progressive lesion 

accumulation [25–27], up to a prodromal, oligosymptomatic stage defined as mild cognitive 

impairment (MCI) [28]. In Huntington's disease (HD), longitudinal studies on presymptomatic 

carriers allowed to depict the progressive changes occurring during the pre-manifest phase, with 

the useful contribution of repeat length and other genetic modifiers in the prediction of the age 

at onset [29–31]. 

In the case of FTD and ALS, a privileged point of view to study the presymptomatic phase is 

offered by carriers of disease-causative mutations, identified among first-degrees relatives of 

genetic patients. Over the recent years, international consortia have been built to assemble and 

study large cohorts of presymptomatic carriers in a standardized manner, to increase our 
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knowledge on presymptomatic stage. The Genetic Frontotemporal Initiative (GENFI), has been 

developed in Europe and Canada (www.genfi.org), and the ARTFL (Advancing Research and 

Treatment for Frontotemporal Lobar degeneration) and LEFFTDS (Longitudinal Evaluation of 

Familial FrontoTemporal Dementia Subjects) (www.allftd.org), as well as the presymptomatic 

familial ALS (Pre-fALS) study [32], have been initiated in US. Besides, multiple national 

initiatives have assembled country-based cohorts, such as the Australian DINAD (Dominantly 

Inherited Non-Alzheimer Dementias, www.ecdc.org.au/genetic-ftd-trials); the New Zealand 

Genetic FTD (FTDGeNZ) [33], the French PREV-DEMALS and Predict-PGRN [34,35] 

cohorts, the Belgian presymptomatic C9orf72 cohort [36], and the Multi-partner Consortium to 

expand Dementia Research in Latin America (ReDLat) [37]. All these initiatives highlight the 

important challenge and critical need to better characterize this stage of the disease.  

Overall, research results coming from the abovementioned initiatives contributed to generate a 

conceptual framework useful to define and further classify the presymptomatic phases of FTD 

and ALS, which could be thus employed in the context of C9orf72 expansions, responsible of 

both these diseases. Key recommendations have been recently defined in the works by Benussi 

et al. (2021) [38] and Benatar et al. (2021) [39], and are summarized below (Figure 1). 

The preclinical disease stage defines the period between the start of the neurodegenerative 

process and the appearance of the first signs and symptoms of disease. Theoretically, with 

C9orf72 expansions this phase should correspond to progressive accumulation of DPR proteins, 

RNA foci and, sequentially, TDP-43 pathology [40,41]. However, the limited information 

obtainable from pathological biomarkers in vivo does not allow to determine how early these 

degenerative changes occur. Therefore, it is currently unclear whether a "no disease" stage, 

characterized by the absence of any pathological lesions exists, and the boundary between this 

latter and the subsequent preclinical phase is particularly hard to identify [38]. During the 

preclinical stage, clinical symptoms are completely absent, and no ongoing denervation changes 
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should be found on EMG [39]. Different biomarkers can variably contribute to inform on 

preclinical disease trajectory, as it will be discussed further [36,42]. 

The prodromal disease stage is defined by the appearance the first subtle cognitive, behavioral 

and motor signs, and lasts up to the onset of full-blown disease. Prodromal FTD is characterized 

by gradual changes affecting social cognition, executive functions or language, as well as recent 

behavioral modifications including reduced initiative, diminished empathy, change in dietary 

habits, repetitive or ritualized actions or behaviors [38]. These changes from the individual's 

baseline status should be of such intensity as to preserve independence in daily living, albeit a 

mild impact on close relationships or highly demanding professional tasks cannot be excluded 

[38]. From a quantitative approach, the Clinical Dementia Rating (CDR) plus National 

Alzheimer's Disease Coordinating Center (NACC) Frontotemporal Lobar Degeneration 

(FTLD) rating scale (CDR+NACC FTLD) is one of the tools of choice to score the severity of 

symptoms in FTD patients [43,44]. Preclinical, asymptomatic stage is defined by a 

CDR+NACC FTLD global score equal to 0, whereas prodromal subjects should present a score 

of 0.5. Prodromal ALS is characterized by mild motor complaints (cramps, early fatigue), subtle 

signs at neurological examination (fasciculations, changes in reflexes) or isolated EMG signs 

of ongoing denervation, without overt muscular weakness. "Phenotransition" is the term 

proposed by the ALS community to indicate the passage from the preclinical to the prodromal 

stage [39]. 

Overall, to account for the heterogeneity of the cognitive/clinical manifestations of the 

prodromal stage, especially with the occurrence of C9orf72 expansions, the unifying concept 

of mild cognitive/behavioral/motor impairment (MCBMI) has been proposed [38]. 

However, several confounding factors should be ruled out before affirming that a MCBMI is 

due to underlying FTD or ALS. Cognitive impairment, especially affecting domains which are 

atypical for FTD, could result from degenerative processes unrelated to mutational status, as 
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well as from non-degenerative conditions (cerebrovascular lesions or sleep disturbances among 

many others). Subtle changes in behavior or personality are not specific for FTD, and could 

derive from unrelated psychiatric conditions or substance abuse. When evaluating motor signs 

and symptoms, common confounding conditions such as radiculopathies should be carefully 

looked for. Moreover, C9orf72 disease offers another source of uncertainty, due to the existence 

of long-standing psychiatric phenotypes, hardly distinguishable from primary psychiatric 

disorders, which could precede the onset of FTD or ALS by years or decades [45,46]. 

The term "phenoconversion" indicates the transition from the prodromal to the full-blown 

clinical stage. Clear boundaries between the two stages are barely definable, therefore some 

operational criteria for phenoconversion have been proposed, including: 1) fulfillment of 

diagnostic criteria for bvFTD, PPA, ALS or other associated syndromes; 2) CDR+NACC 

FTLD score equal or greater than 1; 3) loss of independence in daily living; 4) significant impact 

on social/professional activities despite preserved autonomy (e.g., because of language deficits 

or inappropriate social behavior) [38]. 

It should be kept in mind, however, that some inconsistencies may emerge when applying this 

general framework to individual disease carriers, because of the differences in the temporal 

course across distinct genotypes [8,47], the interindividual variability in presymptomatic 

trajectories and the role of disease modifiers whose role is only partially understood [48,49]. 

 

3. The role of biomarkers across the presymptomatic phases 

3.1. Definition and types of biomarkers 

The term "biomarker" indicates an observable and measurable feature whose levels serve as 

objective indicators of different physiological or pathological states, or are associated to the 

response to therapeutic interventions [50]. In the context of presymptomatic C9orf72 carriers, 

biomarkers are intended to monitor disease evolution form the presymptomatic to the full-
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blown stages, predict the proximity to phenoconversion and, eventually, serve as outcome 

measures in therapeutic trials [51,52]. It has to kept in mind that the analytical variability of a 

biomarker should be appropriate for its context of use. For instance, during the preclinical phase 

an optimal disease-tracking biomarker should be sensitive enough to capture the evolution of 

the underlying pathophysiological cascade, which could last several years or decades. On the 

other hand, a valuable biomarker to predict clinical onset should stay as stable as possible in 

non-progressing carriers, and display clear and sustained changes close to phenoconversion. 

Different approaches can be used to provide biomarkers, and those which contribute the most 

to monitor presymptomatic C9orf72 disease are summarized in Table 1. 

 

3.2. Biomarkers to define the preclinical disease trajectory 

As already stated, it is hard to define the beginning of lesional accumulation in most 

neurodegenerative diseases. However, C9orf72 pathophysiology offers a privileged point of 

view, as DPR proteins, and in particular poly(GP) proteins (originated from both sense and 

antisense expanded transcripts) can be detectable in the CSF of asymptomatic carriers [53,54], 

without being associated with biomarkers of ongoing degeneration. There is a modest but 

significant increase of poly(GP) over time, and overall their levels are higher in patients than 

in presymptomatic carriers [54,55]. Autoptic studies have shown that accumulation of RNA 

foci and DPR-positive inclusions precede TDP-43 nuclear delocalisation and cytoplasmic 

deposition, underscoring that these changes are more closely related to the expansion itself, 

than to downstream degenerative events [56]. 

The model of the preclinical cascade in AD suggests that brain metabolic changes may antedate 

structural modifications [26,57]. A limited number of studies have explored the role of 

fluorodeoxyglucose (FDG) PET in the preclinical phase of genetic FTD; for what concerns 

C9orf72 carriers, clusters of significant hypometabolism have been found in frontotemporal 
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cortices, basal ganglia and thalami, at a time in which volume loss is already detectable [36]. 

However, information about temporal dynamics of these alterations is currently lacking. 

Similarly, few studies have investigated the potential of fMRI to detect functionally 

compensated network dysregulations in asymptomatic carriers [58,59]. Salience network and 

thalamic-seeded network alterations are identifiable early, and are somewhat reminiscent of 

what observed in C9orf72-associated bvFTD [58,60]. The profile of connectivity changes 

extends over time, spreading towards the areas mostly affected in the symptomatic phase, which 

could herald impending neurodegeneration [59,61]. 

A number of structural MRI studies elegantly depicted the profile of brain changes identifiable 

at different points of the preclinical phase and, more recently, investigated their rate of change 

over time [35,58,62–66]. Overall, C9orf72 carriers display significant and widespread cortical 

volume loss compared to non-carriers, including frontal areas, temporo-insular cortices, 

associative parieto-temporal regions, and hippocampi approximately 20 to 25 years before their 

estimated disease onset [35,58,62,64,66]. At the subcortical level, there is a diffuse and massive 

volume loss in the thalamus, with prominent involvement of the pulvinar subnucleus [65], a 

profile which is coherent with what observed in the clinical phase [67]. Early cerebellar 

involvement has been also evidenced, in particular in lobules VIIa-Crus II and VIIb, connected 

to the dorsolateral prefrontal cortex via the thalamus [65]. Notably, the precocity of grey matter 

alterations and the degree of subcortical involvement are more important in C9orf72 carriers 

compared to MAPT or GRN carriers [62,65]. Individual baseline atrophy at the asymptomatic 

phase (CDR+NACC FTLD = 0) may be implemented in predictive models of progression 

towards the prodromal and clinical disease stages [68].  

Gray matter changes are associated with, and often preceded by, white matter tracts 

degeneration. In C9orf72 carriers, diffusion tensor imaging (DTI) analyses identified reduced 

fractional anisotropy (FA), a marker of microstructural integrity, in thalamic radiation, corpus 
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callosum, frontotemporal and corticospinal tracts (CST) [35,58,63,66,69], which are critically 

involved in the development of FTD and ALS. 

Structural changes predictably appear more pronounced and diffuse among the older carriers, 

namely over 40 years of age [35,66]. However, a greater progression compared to noncarriers 

is barely detectable [63], and only one longitudinal study found a trend towards accelerated 

cortical thinning in presymptomatic carriers, tough not reaching statistical significance [64]. 

This is in line with the modest rates of atrophy observed during the clinical phase of C9orf72 

disease [70]. 

Spinal cord imaging features have been proposed as biomarkers for the development of ALS 

treatments [71], with measurable progression throughout the disease course [72]. 

Preysmptomatic C9orf72 carriers display white matter atrophy at the cervical level, with 

progressive reduction of FA in CST occurring in individuals over 40 years old [73]. This is 

particularly relevant taking into account that no neurophysiological measures proved usefulness 

to detect motor neuron degeneration in asymptomatic C9orf72 carriers [74]. 

In summary, the preclinical phase of C9orf72 disease is marked by diffuse changes, mostly 

identifiable by means of neuroimaging approaches, which appear early and progress smoothly 

over the years. However, there is no sufficient evidence to ascertain if and how these changes 

could predict the subsequent clinical phenotype an individual carrier will manifest. 

 

3.3. Biomarkers to support proximity to clinical onset 

In neurodegenerative disorders, one of the most relevant contribution of biomarkers is the aid 

to identify those individuals who are going to develop the first symptoms and signs of the 

disease, hence predicting phenoconversion [26,42,75]. This information could enhance the 

stratification of carriers for clinical trials, and possibly provide outcome measures for treatment 

response [76]. 



 12 

Among the fluid-based biomarkers investigated for this purpose, neurofilaments turned out to 

be particularly useful [77–80]. Neurofilaments are structural proteins highly expressed in axons, 

composed of three main subunits, heavy (NfH), medium and light chain (NfL). Both NfL and 

NfH are released in extracellular fluids in proportion to neuronal loss in several neurological 

disorders, including neurodegenerative conditions [81–83]. With the development of the highly 

sensitive Simoa technique, neurofilament dosage can be easily performed in plasma or serum, 

whose levels are extremely correlated to CSF ones, thus allowing less invasive, repeatable 

dosages [84,85]. NfL levels in preclinical C9orf72 carriers are comparable to controls at a group 

level [77,84], with steady, low-amplitude increases over the years [79,80]. NfL levels and their 

annualized rates of change increase during or just before the prodromal phase [47,77,79], thus 

allowing to identify those who are at risk of short-term progression to clinical disease, in the 

subsequent 2 to 5 years [78]. NfH are particularly stable during the presymptomatic phase, 

while mostly increasing at the moment of the phenoconversion and during the symptomatic 

stage [80]. Their changes occur earlier and are more pronounced in individuals displaying a 

phenotype of ALS [47,75]. 

Other proteomic biomarkers have been investigated in the presymptomatic phase of genetic 

FTD, including those linked to synaptic function, astrogliosis, inflammation, and complement 

activation [42,52,86]. Overall, levels of neuronal pentraxin 2 (NPTX2) decrease, while glial 

fibrillary acidic protein (GFAP) and complement proteins C3b and C1q sequentially increase, 

along with NfL and NfH, at the transition between presymptomatic and symptomatic FTD 

associated with GRN mutations, whereas their trajectory is much less clear for C9orf72 

expansions [42]. Preliminary evidence on novel putative biomarkers identified in the CSF of 

C9orf72 patients such as chitotriosidase (CHIT1) has not been validated yet in the 

presymptomatic phase [87].  
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The expression profile of circulating miRNAs has been found to be altered in several 

neurodegenerative conditions [88,89]. In particular, a signature of four miRNA is dynamically 

altered throughout the presymptomatic and clinical phase of C9orf72 disease, yielding an added 

value in the prediction of phenoconversion [90]. 

The transition towards the prodromal and clinical disease stage is marked by progressive 

cognitive and behavioral modifications, and the identification of the most appropriate 

neuropsychological/behavioral measures is the subject of active research. Longitudinal 

assessments of cognitive functions in presymptomatic cohorts of FTD mutation carriers 

provided information about the cognitive trajectories occurring in the main genetic groups [62]. 

One study showed that C9orf72 carriers display worse scores in verbal fluencies since young 

age, without relevant changes over time, thus pointing towards a general neurodevelopmental 

disorder [91]. Episodic memory deficits have been also identified in the presymptomatic phase 

of C9orf72 disease, with features more closely reflecting a profile of executive impairment 

rather than a true amnestic syndrome of hippocampal type [66,92].  

Among the cognitive functions most closely related to FTD spectrum, social cognition and 

cognitive inhibition deficits mostly occur in the late presymptomatic phase and are potential 

predictive biomarkers of phenoconversion [93–95]. This underscores the usefulness of the 

Social Cognition and Emotional Assessment, shortened version, (mini-SEA) [96] and the 

Hayling test [97] to capture relevant, prodromal cognitive changes in C9orf72 carriers. 

Additional changes observed in presymptomatic carriers include deficits in the praxis scores 

[35], and impairment in semantic knowledge occurring more closely to onset [98], in line with 

a profile of semantic dysfunction observed in some C9orf72 patients [9,12].  

As for cognitive changes, the earliest, subtle behavioral alterations, far from fulfilling bvFTD 

criteria, are remarkably difficult to identify. A commonly encountered difficulty is to 

discriminate between true new-onset behavioral changes and personality traits or attitudes 
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which are typical of the individual and are present since long time. When feasible, repeated 

assessments with appropriate and sensitive tools, such as the Cambridge Behavioral Inventory 

(CBI-R) [99], could aid to provide quantitative assessments of this often elusive constellation 

of symptoms [62]. Among the behavioral dimensions investigated in presymptomatic C9orf72 

carriers, apathy scores are higher than controls and increase over time, predicting subsequent 

cognitive impairment [100]. 

Overall, core criteria to define the threshold of cognitive and/or behavioral impairments to 

comply with a diagnosis of MCBMI due to FTD have not been defined yet, apart from a global 

score of CDR+NACC FTLD equal to 0.5 [38]. This useful tool presents some limitations, 

however, as it may not reliably identify the core symptoms attributable to prodromal FTD, and 

discrete cognitive and behavioral impairments (such as those found in a depressed individual 

showing attentional deficits) are a possible source of bias. 

For carriers developing an ALS phenotype, neurophysiological biomarkers support the 

identification of early signs of motor neuron dysfunction. Isolated denervation signs at EMG, 

such as positive sharp waves in a single limb muscle or in paraspinal muscles, can indicate early 

lower motor neuron degeneration, in absence of confounding factors [39]. On the other hand, 

increased cortical excitability at TMS points towards upper motor neuron involvement [74]. 

Quantitative measures of motor unit loss, such as Motor Unit Number Index (MUNIX) at EMG, 

only investigated at the clinical stage so far [101], could represent a promising approach to 

better define prodromal ALS. 

Finally, other biomarker modalities have contributed to illustrate different pathophysiological 

changes occurring in the presymptomatic phase of C9orf72 disease, and it is possible that their 

use will be extended to investigational protocols in the upcoming years. These include a 

reduction of synaptic density in thalamic and frontotemporal regions observed with UCB-J PET 

[102], executive oculomotor abnormalities at video-oculographic examination [103], and 
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progressive changes in cerebral blood flow measured by arterial spin labeling (ASL) MRI 

sequences [104]. 

 

4. Long-standing psychopathological and personality features in C9orf72 carriers blur the 

definition of prodromal stage 

One of the difficulties in defining the prodromal stage in C9orf72 carriers is due to the frequent 

presence of a prominent psychopathological, rather than cognitive, symptomatology at disease 

onset. Patients with C9orf72-associated bvFTD often show a constellation of psychiatric 

symptoms and syndromes [4,105–107], which can be inaugural of the cognitive disorder. Even 

more noteworthy, a subset of C9orf72 carriers may present with isolated psychiatric phenotypes 

preceding dementia onset by several years or decades [46]. These are usually young adult 

individuals displaying psychotic syndromes, starting usually at a later age compared to primary 

psychiatric disorders [10,45,46]. The usually long disease history, in the absence of patent 

biomarkers of neuronal loss [45,79], favors the hypothesis of a dysfunctional brain disorder, 

eventually resulting in a degenerative syndrome. Other psychiatric disturbances display 

increased frequency among the presymptomatic C9orf72 carriers, including mania [45], 

depression, substance abuse/dependence, and post-traumatic stress disorder [108]. Collectively, 

these findings point to life-long psychiatric vulnerability in the presence of the C9orf72 

expansion. 

This susceptibility could also translate into several atypical behavioral and personality features 

present since early life, including fixed behavioral patterns, reduced empathy, tendency to 

hoarding and excessive sporting [107]. The importance of recognizing these traits in 

presymptomatic carriers is two-fold: first, it provides a baseline behavioral assessment to be 

accounted for when evaluating the occurrence of relevant behavioral changes in the prodromal 

or manifest disease stage; second, it draws attention on the impact C9orf72 expansion may have 



 16 

on brain development and maturation. This is of fundamental importance to correctly define 

the age of disease onset in patients.  

The presence of long-standing structural signatures in the brains of C9orf72 carriers, changing 

little over the years [58,91,109,110], provides additional evidence in favor of a 

neurodevelopmental hypothesis. The identification of low gyrification, index of immature 

cortical development, in the regions which are commonly atrophied during the disease also 

suggests that these abnormalities might confer vulnerability to future degeneration [109]. This 

is in line with the proposed role for C9ORF72 protein in nervous system maturation and 

synaptic modelling [111,112].  

Overall, several lines of evidence support an influence of C9orf72 repeat expansion on the brain 

which extends beyond the promotion of neurodegeneration, and the boundaries between 

developmental and degenerative manifestations appear to be quite blurred. The existence of 

international initiatives such as the Neuropsychiatric International Consortium on FTD (NIC-

FTD) will hopefully expand the knowledge on these dimensions of the disease and raise 

clinician's awareness to atypical presentations occurring with C9orf72. 

 

5. Conclusion 

Research on genetic FTD and ALS is progressing at an impressive pace. In particular, major 

advances have been made in the understanding of the pathophysiology of C9orf72 disease since 

the discovery of the gene, and the events occurring in the presymptomatic phase have been 

partially elucidated. A shared conceptual framework, and the major acquisitions on the use of 

biomarkers, are undoubtably helpful for clinicians and researchers to stratify presymptomatic 

carriers according to their presumed proximity to disease onset. Some unresolved issues still 

remain, notably for what concerns the translation of evidence collected from large cohort 

studies to the individual level for clinical purposes. The implementation of those concepts in 



 17 

current practice could hopefully contribute to overcome these obstacles. Additionally, a 

revision of the currently adopted diagnostic criteria shall be considered, aiming to capture also 

earlier and milder forms, with obvious impact on disease prevention. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table legend 

Table 1. Main biomarkers studied to monitor C9orf72 disease. ASL: arterial spin labeling; 

CHIT1: chitotriosidase; FA: fractional anisotropy; FDG: fluorodeoxyglucose; miRNA: micro-

RNA; NfH: neurofilament heavy chain; NfL: neurofilament light chain; UCB-J: synaptic 

vesicle glycoprotein 2A PET tracer; WM: white matter. 
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Type of biomarker  Measure Relevance References 

Fluid-based 

Poly(GP) proteins 
(CSF) 

High levels since the earliest 
stages [53,54] 

NfL and NfH (CSF 
and plasma) 

Increase in prodromal phase, ≤5 
years before phenoconversion [47,77–80] 

MiRNA Altered profile, mostly in 
prodromal carriers [90] 

CHIT1 (CSF) Increase in patients [87] 

Neuroimaging 

Cortical thickness, 
brain volumes, WM 
microstructure 

Altered from 20-25 years before 
onset, slowly progressive  [35,58,62–66] 

Functional 
connectivity 

Early salience and thalamic-
seeded network dysregulation [58,59] 

Cerebral blood flow 
(ASL) 

Decreased from 12.5 years 
before onset  [104] 

Gyrification index Congenitally reduced in 
C9orf72 carriers [109] 

Cervical spinal cord 
WM volume and FA  

Altered metrics mostly in 
carriers >40 years [73] 

FDG PET uptake Hypometabolism consistent 
with structural changes [36] 

UCB-J PET uptake Reduced synaptic density in 
preclinical phase [102] 

Neuropsychological 

Verbal fluencies Reduced scores since young age [91] 

Episodic memory Preclinical changes reflecting 
executive dysfunction [92] 

Social cognition Deficits in late presymptomatic 
phase [93] 

Cognitive inhibition Deficits mostly in >40 years [94] 

Semantic knowledge Deficits in late presymptomatic 
phase [98] 

Gestural praxis Impaired before 40 years [35] 

Neurophysiological Cortical excitability Increase in ALS patients [74] 
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Figure 1. Overview on the presymptomatic and symptomatic stages in C9orf72 disease. 

ALS: amyotrophic lateral sclerosis; bvFTD: behavioral variant of frontotemporal dementia; 

CDR+NACC FTLD: Clinical Dementia Rating plus National Alzheimer's Disease 

Coordinating Center Frontotemporal Lobar Degeneration (FTLD) rating scale, global score; 

MCBMI: mild cognitive/behavioral/motor impairment. 
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