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Recent works have paved the way to theoretical predictions of the conditions governing the transition from internal to external oxidation of metals and alloys: such conditions directly result from Wagner (1959)'s classical analytical model, provided that it is made to incorporate a heuristic decrease of diffusion coefficients upon the fraction of oxides, aimed at representing their "barrier effect" upon diffusion. The aim of this paper is to extend these works by removing some of the very restrictive hypotheses introduced by Wagner (1959). First, the formulation initially limited to small fractions of oxides is extended to arbitrarily large fractions. Even in their modified form, the equations are still solvable entirely analytically, albeit with a change of the predicted value of the "critical" fraction of oxides, above which internal oxidation must give way to external oxidation. The new value is in better agreement than previous ones with the scarce available experimental estimates. Second, the formulation is extended to finite -instead of infinitesimal -values of the solubility product governing local chemical equilibrium between the oxide and the chemical elements dissolved in the metallic matrix. The nonlinear equations of the diffusion/precipitation problem then become much more complex and amenable only to some hybrid analytical/numerical solution. The results, although interesting, raise a number of issues essentially tied to the basic hypothesis made of instantaneous local thermodynamic equilibrium. It is finally shown, using a simplistic, prototype kinetic model of oxide precipitation, that relaxation of this hypothesis should permit to solve at least some of these issues.

Introduction

Sixty-three years after its publication, [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s theoretical analysis of internal oxidation of metals and alloys remains a cornerstone of this branch of metallurgy. [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s analytical solution pertains to the archetypal 1D problem, schematized in Figure 1, of isothermal internal oxidation of a semi-infinite homogeneous steel sheet, occupying the domain 0 ≤ x < +∞, initially containing no oxygen (O) but a given nonzero concentration of a single oxidizable element (A), determined by the grade of the steel. Two diffusion processes occur simultaneously: (i) O diffuses inwards from the surface of the sheet (at x = 0), where its concentration C O = C surf O is prescribed -typically because of contact with some external atmosphere containing water molecules dissociating on the surface; and (ii) outward diffusion of A from the deep regions of the sheet (at x → +∞) where its concentration C A = C core A is prescribed -via the composition of the steel. The diffusion of O is accelerated, and that A is generated, by "pumping" of O and A atoms due to some chemical reaction occurring in some intermediate region, and leading to formation of some "precipitated" oxide of formula OA ν . In [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s version of the problem, local thermodynamic equilibrium between the phases is assumed to prevail at every position and instant; the law of mass action expressing this equilibrium states that C O C ν A = K where K denotes the solubility product of the oxide OA ν . In addition K is assumed to be so exceedingly small -that is, element A so highly oxidizable -that O and A cannot coexist in their dissolved form in the metallic matrix: thus either C O or C A must be zero at every point and at each instant. As a consequence, the region where the chemical reaction takes place at a given instant reduces to some infinitely thin oxidation front located somewhere in the sheet, say at x = ξ(t). (The determination of ξ(t) is of course an integral part of the solution of the problem). Thus, before the front has swept a given point x (ξ(t) < x < +∞), C O is zero there so that the reaction cannot start; and after the passage of the front at the point x (0 ≤ x < ξ(t)), C A is in turn zero there so that the reaction necessarily stops. Furthermore, it will be shown below that as a consequence of the infinite thinness of the zone where oxidation takes place at any instant, the fraction P of oxides is uniform within the oxidized zone 0 ≤ x < ξ(t). All of these features are illustrated in Figure 2, which provides a qualitative representation of the spatial distributions of C O , C A and P at a given instant. The impact of [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s model and solution may be appreciated from the numerous works they inspired. Critical discussions of the original theory and some of its improved later variants were offered by [START_REF] Rapp | Kinetics, microstructures and mechanism of internal oxidation -Its effect and prevention in high temperature alloy oxidation[END_REF] and [START_REF] Douglass | A critique of internal oxidation in alloys during the post-Wagner era[END_REF]. Many efforts were also devoted to the relaxation of Wagner's various restrictive assumptions -limitation to a single oxidant and a single oxidizable element, forming a single oxide with an extremely low solubility product, etc.: see the works of [START_REF] Kirkaldy | On the theory of internal oxidation and sulphation of alloys[END_REF][START_REF] Laflamme | Limiting cases of subscale formation[END_REF][START_REF] Ohriner | Precipitate distribution in subscales[END_REF][START_REF] Whittle | The formation of solid solution oxides during internal oxidation[END_REF][START_REF] Christ | Carburization of high-temperature materials. I. Mathematical model description of the penetration and simultaneous precipitation of a compound of the diffusing element[END_REF][START_REF] Stott | Internal oxidation[END_REF][START_REF] Fortunier | Recent advances in the numerical simulation of simultaneous diffusion and precipitation of chemical elements in steels[END_REF][START_REF] Gesmundo | Oxidation of multicomponent two-phase alloys[END_REF][START_REF] Huin | Modelling of internal oxidation of several elements[END_REF][START_REF] Gesmundo | The internal oxidation of two-phase binary alloys under low oxidant pressure[END_REF][START_REF] Gesmundo | The internal oxidation of two-phase binary alloys beneath an external scale of the less-stable oxide[END_REF][START_REF] Gesmundo | The effect of supersaturation on the internal oxidation of binary alloys[END_REF][START_REF] Gesmundo | The formation of two layers in the internal oxidation of binary alloys by two oxidants in the absence of external scales[END_REF][START_REF] Niu | An approximate analysis of the external oxidation of ternary alloys forming insoluble oxides. I: High oxidant pressures[END_REF][START_REF] Huin | Numerical simulation of internal oxidation of steels during annealing treatments[END_REF][START_REF] Leblond | Mathematical results for a model of diffusion and precipitation of chemical elements in solid matrices[END_REF][START_REF] Brunac | Numerical implementation and application of an extended model for diffusion and precipitation of chemical elements in metallic matrices[END_REF][START_REF] Leblond | Implementation and application of some nonlinear models of diffusion/reaction in solids[END_REF], among others. These various efforts greatly widened the domain of application and significance of [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s original work.

The relation between [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s analysis and the prediction of conditions governing the transition from internal oxidation -wherein oxides are formed in the interior of the sheet -to external oxidation -wherein precipitation of oxides remains confined to the surface -was noted by Wagner himself. Such conditions may indeed be obtained by combining his expression of the fraction P of oxides in the oxidized zone, with some postulated value of the "critical" fraction P crit above which the transition is expected to occur. However, in spite of the continued attention paid to [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s work, it was not until a few years ago that the remark was made by [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF] that there was no need to postulate such a value of P crit , because it could be deduced from the equations of the model itself, in a suitably extended and modified form. [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF]'s suggested overhaul of the governing equations of the oxidation problem consisted of heuristically assuming -following a much earlier suggestion of [START_REF] Kirkaldy | On the theory of internal oxidation and sulphation of alloys[END_REF] -the diffusion coefficients of elements to be decreasing functions of the local fraction of oxides, so as to account for the "barrier effect" of these oxides upon diffusion. [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF]'s mathematical presentation was reformulated by [START_REF] Zhao | Quantitative approach for determining the critical volume fraction for the transition from internal to external oxidation[END_REF] in a more physical format. An intuitive understanding of the mechanism evidenced by [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF] may be gained through the following considerations:

• One typical, and somewhat paradoxical, feature of the analytical solution of [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s original equations is that a decrease of the ratio φ ≡ D O /D A of the diffusion coefficients D O of oxygen and D A of the oxidizable element A, induces an increase of the fraction P of oxides in the oxidized zone. In qualitative terms, this is because if O diffuses more slowly, this leaves more time for A to diffuse from the interior of the plate toward its surface, so as accumulate and be oxidized there. • Now solve [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s equations, in a first step, without accounting for the influence of P upon D O and D A ; the solution yields a first estimate P (1) of the oxide fraction in the oxidized zone. • In a second step, account for the influence of P upon D O and D A using P (1) as an estimate. Since O is present only in the oxidized zone and A only in the non-oxidized zone, this induces a decrease of D O but no change of D A , and therefore a decrease of the ratio φ. Solve Wagner (1959)'s equations again; the second estimate P (2) of P obtained thus is larger than P (1) , as a result of the decrease of φ. • Account for the influence of P upon D O and D A using the estimate P (2) instead of P (1) , solve the equations again, and repeat the process ad infinitum. The increasing sequence of successive estimates P (1) , P (2) ... of P obtained in this way may either converge or diverge, depending on the parameters of the problem. Convergence means that a solution to the nonlinear equations of internal oxidation is obtained; but divergence means that such a solution does not exist, so that external oxidation (implying an infinite concentration of oxides on the surface of the plate) must take over.

In [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF]'s work the effect of diffusion barriers was modelled, following [START_REF] Kirkaldy | On the theory of internal oxidation and sulphation of alloys[END_REF]'s elementary suggestion, by reducing diffusion coefficients proportionally to the volume fraction of oxides. This simplistic hypothesis was later refined by [START_REF] Leblond | Predicting the transition from internal to external oxidation of alloys using an extended Wagner model[END_REF] using finite element simulations aimed at precisely quantifying the effect of obstacles of various shapes upon diffusion. This resulted in a decrease of the estimated critical fraction P crit of oxides, bringing it to somewhat closer agreement with Rapp (1961)'s experimental estimate for the O/In/In 2 O 3 system in an Ag matrix. 1

Leblond (2011)'s analysis, even in its refined version [START_REF] Leblond | Predicting the transition from internal to external oxidation of alloys using an extended Wagner model[END_REF], suffered from inevitable drawbacks tied to the severely restrictive hypotheses originally introduced by [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF], some of which were recalled above. It is the aim of this paper to try and remove at least two of these restrictions. The first is that Wagner (1959)'s model is basically limited to small concentrations of elements and fractions of oxides, whereas Leblond (2011)'s and [START_REF] Leblond | Predicting the transition from internal to external oxidation of alloys using an extended Wagner model[END_REF]'s estimates of the critical oxide fraction P crit derived from the model are comparable to unity; which raises an issue of internal consistency of the model. The second severe restriction of [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s analysis relates to limitation to oxides having an extremely low solubility product, implying concentration of the zone where oxidation actually occurs at a given instant within some precipitation front of measure zero. Such a hypothesis is reasonable for some systems, like O/Al/Al 2 O 3 in a Fe matrix, but not for many others, like for instance O/Mn/MnO in a Fe matrix; for the latter type of system the active oxidation zone is spread over some interval of nonzero, finite length.

The paper is organized as follows:

• Section 2 presents a general model of coupled diffusion of chemical elements and formation of "precipitate" phases within solid matrices, accounting for possible large fractions of these phases. This model is similar to that proposed by [START_REF] Brunac | Numerical implementation and application of an extended model for diffusion and precipitation of chemical elements in metallic matrices[END_REF], but for somewhat modified right-hand sides of the diffusion equations. • Section 3 extends, in the case of an infinitesimally small solubility product, [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s and [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF]; [START_REF] Leblond | Predicting the transition from internal to external oxidation of alloys using an extended Wagner model[END_REF]'s solution to the improved model of Section 2 accounting for large fractions of precipitates. The solution is still accessible by purely analytical means; it leads to a new and smaller value of the critical fraction of oxides governing the transition from internal to external oxidation. • Section 4 considers the more complex case of a nonzero, finite solubility product of the oxide. The problem is then no longer amenable to some fully analytical solution.

The method of solution proposed, inspired from that of [START_REF] Huin | Numerical simulation of internal oxidation of steels during annealing treatments[END_REF] for a simpler version of the problem, consists of a "mixed" analytical/numerical approach. The results obtained, though promising, raise some issues pertaining to phenomena occurring near the surface of the plate; these issues are intimately connected to the basic hypothesis of instantaneous local thermodynamic equilibrium between the phases, made in all works on the topic up to now. • In Section 5, it is finally shown qualitatively that the replacement of this hypothesis through some kinetic law of precipitation of oxides should solve at least some of the issues evidenced in Section 4. The prototype kinetic equation used for this purpose does not make any claim on physical realism and is used for purely pedagogical reasons; the development of coupled equations of diffusion and precipitation involving a realistic model of nucleation and growth of oxides is left for future work.

Extended model of coupled diffusion/precipitation accounting for large fractions of precipitates

This Section is essentially based on the work of [START_REF] Brunac | Numerical implementation and application of an extended model for diffusion and precipitation of chemical elements in metallic matrices[END_REF]. However the righthand sides of the diffusion equations will differ somewhat from those in the previous work, for reasons that will be explained.

General hypotheses and notations

The material considered consists of a matrix phase (in practice generally Fe) denoted M, which contains mobile, dissolved chemical elements plus a number of immobile, "precipitate" phases collectively denoted P. The representative volume elements (RVEs) considered, a prototype of which is schematized in Figure 3, are sufficiently large to each contain the M phase plus all types of P phases, but nevertheless small enough for local variations of chemical composition to be negligible within each of them.

Precipitate phases Matrix Fig. 3. Schematic RVE considered by the model.

The M phase contains N e distinct types of chemical elements denoted with a Latin index i = 1, ..., N e . The atomic mass, total mass fraction (in the M and P phases) and mass concentration (in the M phase) of element i are denoted m i , F i and C i respectively. The total mass fractions F i are defined in reference to the total mass of the RVE (M+P phases) -this is natural since the atoms of each chemical species are potentially present in all types of phases. On the other hand the mass concentrations C i are defined in reference to the mass of the sole M phase contained within the RVE -as they must in order to possess a thermodynamic significance warranting their appearance in the laws of mass action, see Subsection 2.4 below. The C i 's are assumed to be much smaller than unity (hypothesis of dilute solution), but the F i 's are not, because the fractions of the P phases may be large; see below.

Within the M phase are embedded N p distinct P phases, denoted with a Greek index α = 1, ..., N p . The molar mass, solubility product and mass fraction -defined in reference to the total mass of the RVE -of phase α are denoted M α , K α and P α , respectively.

The P α 's may be comparable to unity (possibly large fractions of precipitate phases). The stoechiometric coefficient of element i in phase α (number of atoms of this element per molecule of this phase) is denoted N αi .2 

Balance equations

When establishing the balance equations, one must beware of the different reference masses used in the definitions of the total mass fractions F i of the elements and their mass concentrations C i in the matrix. Consider a volume of material of unit mass of material containing all phases:

• The total mass of element i in this volume is F i so that the total number of moles of this element is F i /m i .

• The cumulated mass of all P phases is Np α=1 P α so that the mass of the M phase is 1 -Np α=1 P α ; within the latter phase, the mass concentration of element i is C i so that the mass of this element is 1 -Np α=1 P α C i , and the corresponding number of moles is 1 -

Np α=1 P α C i /m i .
• The mass of phase α is P α , so that there are P α /M α moles of this phase, containing N αi P α /M α moles of element i.

It follows from these elements that the balance equation of element i reads

F i m i =   1 - Np α=1 P α   C i m i + Np α=1 N αi P α M α (i = 1, ..., N e ).
(1)

Diffusion equations

The flux-vector of element i is classically assumed to be of the form -D i grad C i , where D i is some coefficient.3 Expressing the rate of the total mass fraction of element i within the RVE as minus the integral of this flux over its boundary and using the divergence theorem, one gets the diffusion equation of this element in the form

∂F i ∂t = div D i grad C i (i = 1, ..., N e ). (2) 
It remains to relate the coefficients D i to the standard diffusion coefficients D i of elements.

In order to do so, consider the special case where the fractions P α of all P phases are constant in time and space (inactive and uniform precipitation). Then by equation (1), ∂F i /∂t = 1 -Np α=1 P α ∂C i /∂t so that equation (2) takes the form

∂C i ∂t = 1 1 - Np α=1 P α div D i grad C i = div D i 1 - Np α=1 P α grad C i (i = 1, ..., N e ).
Comparison with the equation defining the standard diffusion coefficient D i , ∂C i /∂t = div (D i grad C i ), yields

D i =   1 - Np α=1 P α   D i (i = 1, ..., N e ). (3) 
It is worth noting here that in [START_REF] Brunac | Numerical implementation and application of an extended model for diffusion and precipitation of chemical elements in metallic matrices[END_REF]'s work, the reasoning just expounded was absent and as a consequence the coefficients D i were merely, and wrongly, identified to the D i 's.

The standard diffusion coefficients D i may themselves depend upon the fractions of precipitates, since the P phases may act as barriers to diffusion; this effect may be schematized through a formula for the D i 's of the type

D i = f (P)D 0 i (i = 1, ..., N e ) (4) 
where the D 0 i 's are the diffusion coefficients in the absence of P phases, and f (P) a function of the vector P ≡ (P α ) α=1,...,Np of their fractions. Several formulae have been proposed for this function. An old but appealing suggestion of [START_REF] Kirkaldy | On the theory of internal oxidation and sulphation of alloys[END_REF] consists of simply shrinking diffusion coefficients through multiplication by the volume fraction of the M phase; this leads, upon a simple calculation, to the following formula [START_REF] Brunac | Numerical implementation and application of an extended model for diffusion and precipitation of chemical elements in metallic matrices[END_REF]:

f (P) = 1 - Np α=1 P α 1 + Np α=1 (v α /v M -1) P α (5)
where v M and the v α 's denote the specific volumes (volumes per unit mass, inverses of the specific masses) of the M and various P phases, respectively. But homogenization theories show that expression (5) only represents an upper estimate of the function f (P). [START_REF] Leblond | Predicting the transition from internal to external oxidation of alloys using an extended Wagner model[END_REF] proposed the following more accurate formula, on the basis of finite element simulations of diffusion in a RVE in the presence of impenetrable obstacles having the shape of oblate spheroids with axis parallel to the direction of diffusion (schematically representing precipitates located in the sub-surface of an oxidized plate):

f (P ) = 1 -P 1 + (v P /v M -1) P 1+0.55 W . (6) 
In this formula P denotes the mass fraction of the (unique) P phase defined by the obstacles, v P its specific volume, and W the shape factor of the obstacles, that is the ratio of their major to minor axes. (Note that the term [...] represents the volume fraction of the M phase like in equation ( 5)).

Combination of equations ( 2), (3) and (4) yields the final form of the diffusion equations:

∂F i ∂t = div     1 - Np α=1 P α   f (P)D 0 i grad C i   (i = 1, ..., N e ) (7) 
with f (P) given by equation ( 5) or (6). These equations differ from those of [START_REF] Brunac | Numerical implementation and application of an extended model for diffusion and precipitation of chemical elements in metallic matrices[END_REF] through the factor 1 -Np α=1 P α in the right-hand side, which was overlooked by these authors for the reason explained above. Note that this factor does not arise from the role of barriers to diffusion played by the P phases, but simply from the different reference masses used in the definitions of the variables F i and C i appearing in the leftand right-hand sides, respectively.

Laws of mass action

Precipitation of P phases is described in a global way through the laws of mass action, which express the hypothesis of instantaneous local thermodynamic equilibrium between the M and various P phases:

                   P α = 0 and Ne i=1 C N iα i ≤ K α or P α > 0 and Ne i=1 C N αi i = K α (α = 1, 2, ..., N p ). ( 8 
)
Note that the mass fractions C i here must be defined by dividing the mass of atoms of element i in the M phase by the mass of this sole phase (not by the total mass of all phases), in order to represent the concentrations of elements within the matrix.

Boundary conditions

For each element i, there are two possible basic boundary conditions :

             C i = C imp i or grad C i . n = 0 on ∂Ω (9) 
where C imp i denotes some imposed value of C i (enforced for instance through contact with an external atmosphere containing element i), and n the unit normal vector to the boundary ∂Ω of the domain considered. For each element, boundary conditions may also be of mixed type, that is equation (9) 1 on some part of ∂Ω and (9) 2 on the complementary part.

3 Analytical solution of the internal oxidation problem for an oxide with an infinitesimally small solubility product

The mathematical treatment in this Section is analogous to that in the works of [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF] and [START_REF] Leblond | Predicting the transition from internal to external oxidation of alloys using an extended Wagner model[END_REF] (derived itself from that in the work of [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]), but with somewhat more complex governing equations, owing to the incorporation into the model of possibly large fractions of P phases.

Generalities

We consider [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s problem sketched in the Introduction, but with more general hypotheses detailed below. All quantities of interest are looked for in the form of functions of the sole variable u ≡ x/ √ t. With such a form, an important consequence of the reduction of the zone where oxidation occurs at a given instant to an infinitely thin front is that the mass fraction P of oxides in the oxidized zone 0 ≤ x < ξ(t) is a constant independent of x and t. Indeed at a given time t and some given point x within the oxidized zone at this time, 0 ≤ x < ξ(t), oxidation no longer occurs since the point has already been swept by the front; hence P no longer evolves, ∂P/∂t = 0, so that dP/du = 0, and it follows that ∂P/∂x = 0 also. This is the basic feature -illustrated in Figure 2 above -that permits to develop an analytic solution of the problem in spite of its non-linearity.

Equations of the problem

In the case considered, the general mass balance equations (1) take the following specific form:

     F O = (1 -P )C O + m O M P P for 0 ≤ x < ξ(t) F A = C A for ξ(t) < x < +∞ (10)
where F O and F A denote the total mass fractions of elements O and A, and m O and M P the molar masses of O and the oxide OA ν , respectively. Account has been taken in these equations of the fact that the value of the fraction of precipitated oxides is P in the oxidized zone 0 ≤ x < ξ(t), and 0 in the non-oxidized zone ξ(t) < x < +∞.

The general diffusion equations ( 7) take the following form for element O:

∂F O ∂t = (1-P ) ∂C O ∂t = ∂ ∂x (1 -P )f (P )D 0 O ∂C O ∂x = (1-P )f (P )D 0 O ∂ 2 C O ∂x 2 for 0 ≤ x < ξ(t)
where D 0 O denotes the diffusion coefficient of O in the absence of oxides acting as obstacles; use has been made here of the fact that P depends neither on x nor on t. This equation simplifies into

∂C O ∂t = f (P )D 0 O ∂ 2 C O ∂x 2 for 0 ≤ x < ξ(t). (11) 
On the other hand the general diffusion equations ( 7) reduce for element A to

∂C A ∂t = D 0 A ∂ 2 C A ∂x 2 for ξ(t) < x < +∞ (12)
where D 0 A denotes the diffusion coefficient of A unperturbed by oxides (absent from the region ξ(t) < x < +∞).

The diffusion equations (11, 12) are supplemented with the following initial and boundary conditions:

     C O = 0 for 0 < x < +∞, t = 0 C A = C core A for 0 < x < +∞, t = 0 ;      C O = C surf O for x = 0, 0 ≤ t < +∞ C A = C core A for x → +∞, 0 ≤ t < +∞. ( 13 
)
These equations do not permit to determine the position ξ(t) of the oxidation front. The key to doing this is to write an equality of fluxes at the position x = ξ(t). At x = ξ(t) -, there is a mass flux of O, oriented toward the right, equal to

-(1 -P )f (P )D 0 O ∂C O /∂x in absolute value, corresponding to a molar flux of -(1 -P )f (P )(D 0 O /m O )(∂C O /∂x). At x = ξ(t) + ,
there is a mass flux of A, oriented toward the left, equal to D 0 A ∂C A /∂x in absolute value, corresponding to a molar flux of (D 0 A /m A )(∂C A /∂x) where m A denotes the molar mass of A. Since both of these fluxes serve to form molecules of chemical formula OA ν , the molar flux of A must be ν times that of O; that is, the condition

D 0 A m A ∂C A ∂x ξ(t) + , t = -ν(1 -P )f (P ) D 0 O m O ∂C O ∂x ξ(t) -, t for 0 < t < +∞ (14) must hold.
It finally remains to explain how to calculate the mass fraction P of oxides in the oxidized zone 0 ≤ x < ξ(t). This is most easily done through some intuitive reasoning.4 Consider a small time-interval [t, t+δt] during which the oxidation front moves toward the right by the amount δξ = ξ(t) δt. The input mass flux of A (per unit time

) into the zone [ξ(t), ξ(t)+δξ] is D 0 A ∂C A /∂x. Integrated over the time-interval [t, t+δt],
this flux becomes D 0 A (∂C A /∂x)δt and generates an increase ∆F A of the mass fraction of A in the zone; since this increase is spread over the distance δξ, its value is

∆F A = [D 0 A (∂C A /∂x)δt]/δξ = (D 0 A / ξ)(∂C A /∂x). Now ∆F A is
entirely consumed in formation of oxides since the concentration C A of A in the M phase is zero at the oxidation front; it therefore results, by equation ( 1), in an increase ∆P = (M P /m A )(∆F A /ν) of the mass fraction of oxides in the zone [ξ(t), ξ(t)+δξ]. Since this zone is free of oxides at time t, the mass fraction of oxides it contains at time t + δt is simply

P = ∆P = M P m A ∆F A ν = 1 ν M P m A D 0 A ξ(t) ∂C A ∂x ξ(t) + , t . (15) 
The dependence of P upon t in this equation is only apparent, as will be clear from the solution developed below.

Analytical solution

In Wagner (1959)'s original treatment of the problem, which disregarded both the effect of possibly large fractions of oxides and their role as diffusion barriers, the factors f (P ) and (1 -P )f (P ) were absent from equations ( 11) and ( 14). Their presence in this work makes the solution of the problem more difficult, since these terms are unknown a priori -the determination of P being an integral part of the problem.

The key to this difficulty is to formally consider, in a first step, the quantity P as known and fixed; the solution may then be developed following the same lines as in the work of [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]. In a second step, equation (15) will provide, rather than the explicit value of P like in Wagner (1959)'s work, some (nonlinear) equation on this quantity, which will "close the loop".

Step 1. The position ξ(t) of the oxidation front is looked for in the form

ξ(t) = 2γ f (P )D 0 O t (16)
where γ is a positive constant to be determined. With this notation, the solutions of the diffusion equation ( 11) of O with conditions (13) 1,3 plus the requirement that C O (x, t) be zero at x = ξ(t) -, and of the diffusion equation ( 12) of A with conditions (13) 2,4 plus the requirement that C A (x, t) be zero at x = ξ(t) + , are elementary and read:

                     C O (x, t) C surf O = 1 - erf x 2 √ f (P )D 0 O t erf γ for 0 ≤ x ≤ ξ(t) C A (x, t) C core A = 1 - erfc x 2 √ D 0 A t erfc γ φ(P ) for ξ(t) ≤ x < +∞ where φ(P ) ≡ f (P ) D 0 O D 0 A , (17) 
with erf and erfc denoting the classical error and complementary error functions. Condition ( 14) then provides the following equation on γ, which implicitly defines this quantity:

e γ 2 erf γ φ(P ) e γ 2 φ(P ) erfc(γ φ(P )) = ν(1 -P ) m A m O C surf O C core A . (18) 
Step 2. Equation ( 15) then yields

P = M P m A C core A ν e -γ 2 φ(P ) γ πφ(P ) erfc γ φ(P ) ( 19 
)
where the right-hand side depends upon P through the quantity φ(P ) defined by equation (17) 3 .

A useful approximation

The focus of this paper is on the transition from internal to external oxidation. In general, for formation of some external scale of oxides to be possible, the fraction P of oxides in the oxidized zone must be comparable to unity, not much smaller than it. Since in practical situations the core fraction C core A of A is always small, equation ( 19) implies that the quantity e -γ 2 φ(P ) γ φ(P ) erfc γ φ(P ) must then be much larger than unity. Now using the asymptotic expansion of the function erfc near infinity, available from many sources, one easily sees that this cannot occur for values of the argument γ φ(P ) of order, or much larger than, unity; that is, this argument must be much smaller than unity. Since in practice the quantity φ(P ) defined by equation ( 17) 3 is large (oxygen diffuses much more quickly than the oxidizable element), this implies that the quantity γ itself must be even smaller.

We therefore introduce the following restrictive hypotheses:

γ ≪ 1 ; γ φ(P ) ≪ 1. ( 20 
)
In equation ( 18) on γ, one may then use the approximations e γ 2 ≃ 1, erf γ ≃ 2 √ π γ, e γ 2 φ(P ) ≃ 1, erfc(γ φ(P )) ≃ 1, leading to the following explicit expression of γ:

γ ≃ ν 2 (1 -P ) m A m O C surf O C core A πφ(P ) . (21) 
Equation ( 19) then yields upon use of the same approximations:

P ≃ M P m A C core A ν 1 γ πφ(P ) ≃ 2 πν 2 1 (1 -P )f (P ) M P m O m 2 A D 0 A D 0 O (C core A ) 2 C surf O ( 22 
)
where equation ( 17) 3 has been used.

It must finally be noted that in some practical cases, the fraction P of oxides in the oxidized zone is not sufficiently large to warrant full satisfaction of the second of hypotheses (20). As a result, formulae ( 21), ( 22) plus those derived below from them, and notably the expression (27) of the critical fraction P crit of oxides, only represent rough approximations. We shall see an example of such a situation in Subsection 4.6 below.

Transition from internal to external oxidation

Although the nonlinear equation ( 22) on P differs from those studied in the works of [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF] and [START_REF] Leblond | Predicting the transition from internal to external oxidation of alloys using an extended Wagner model[END_REF], the discussion of the existence of solutions basically follows the same lines. Define a parameter χ and a function f (P ) by the formulae

χ ≡ πν 2 2 m 2 A M P m O D 0 O D 0 A C surf O (C core A ) 2 ; f (P ) ≡ (1 -P )f (P ). (23) 
(Note that χ is independent of the unknowns of the problem and completely determined by the data). Then equation ( 22) takes the form

χP = 1 f (P ) . ( 24 
)
This equation on P is best discussed graphically, see Figure 4.

When P increases from 0 to 1, the function 1/f (P ) increases from 1 to +∞. (Note that f (0) = f (0) = 1 since there can be no reduction of diffusion coefficients in the absence of P phase). Therefore equation ( 24) may have zero, one or two solutions in P , depending on the value of χ. Gradually change the conditions of the problem, making them more and more favorable to external oxidation by gradually increasing the core value C core A of the concentration of oxidizable element. The definition (23) 1 of χ implies that it gradually decreases from infinity.

1/ f(P) crit χ P crit χ χ P > χ crit χ χ χ P < 1 P 1 0 0 P crit crit
• When C core A is very small, χ is very large; the almost vertical straight line of slope χ cuts the curve representing the function 1/f (P ) near to the origin, thus defining a solution P ≪ 1. (The other solution close to unity has no physical relevance since it cannot be reached continuously through some gradual increase of C core A ). • When C core A increases, the slope of the straight line decreases, so that its first intersection with the curve moves away from the origin. When χ reaches some critical value χ crit , the two points of intersection of the straight line and the curve become identical; P reaches its maximum possible value P crit .

• When C core A becomes sufficiently large for χ to become smaller than χ crit , no solution in P exists any more. The only possible solution must be of a different type, with an infinite concentration of oxides on the surface (external oxidation).

The critical values χ crit and P crit are determined by the requirement that equation ( 24) possess a double solution in P :

         χ crit P crit - 1 f (P crit ) = 0 d dP χ crit P - 1 f (P ) P =P crit = 0 ⇒              χ crit P crit = 1 f (P crit ) χ crit = - f ′ (P crit ) f (P crit ) 2 .
Elimination of χ crit yields the equation determining the value of P crit , from which follows that of χ crit :

             f ′ (P crit ) f (P crit ) + 1 P crit = d ln f dP (P crit ) + 1 P crit = 0 χ crit = 1 P crit f (P crit ) . ( 25 
)
The solution in P crit of equation ( 25) 1 may be calculated analytically provided the expression of the function f (P ) is simple enough. For instance, for the expression (5) derived from the simplest assumption that diffusion coefficients are reduced proportionally to the volume fraction of the M phase, equation ( 25) 1 yields, upon a straightforward calculation, the following algebraic equation of the second degree:

2 v P v M -1 (P crit ) 2 + 3P crit -1 = 0 (26)
where v P denotes the specific volume of the oxidized P phase. The solution of this equation is (excluding the other solution which is physically meaningless, being either smaller than 0 or larger than 1):

P crit = -3 + 8v P /v M + 1 4(v P /v M -1) = 2 3 + 8v P /v M + 1 . ( 27 
)
The value of χ crit then follows from equation ( 25) 2 .

It must be emphasized again that in come cases equation ( 27) only provides a modestly accurate approximation of P crit , because of lack of satisfaction of the second of hypotheses (20). But its major advantage, in spite of this slight deficiency, lies in its explicitness and simplicity.

Discussion

The first remark to be made is that somewhat paradoxically, the transition from internal to external oxidation does not occur when the fraction P of oxides in the oxidized zone reaches unity, but some smaller value. This results from the "avalanche effect" depicted in the Introduction: if oxidation near the surface becomes too important, this reduces the penetration of oxygen into the plate through reduction of its diffusion coefficient, which in turn further enhances oxidation and reduces penetration of oxygen, etc. It must be stressed, however, that this result does not mean that the external surface is only partially covered by oxides in the external oxidation regime. Of course, external oxidation implies formation of some superficial scale of oxides which completely covers the surface; but our result implies that the transition from partial to total coverage by oxides does not occur in a smooth way, but abruptly and discontinuously. When the core value C core A of the fraction of oxidizable element is large enough for the fraction P of oxides to reach its critical value P crit , even an infinitesimal increase of C core A results in a discontinuous, catastrophic increase of P which only ceases when it reaches unity.

The second remark is that quite remarkably, the value of P crit predicted by equation ( 27) only depends on the specific volumes of the M and P phases, and is independent of the other physical parameters of the problem, including the diffusion coefficients and the solubility product. For the solubility product this is not surprising, insofar as it simply disappears, if sufficiently small, from the basic equations of the problem (11-15); but for the diffusion coefficients the property is far from trivial. In contrast, the critical value of the core fraction C core A of the oxidizable element, which results from the definition (23) 1 of χ and the critical value χ crit of this quantity, equation ( 25) 2 , depends on all these parameters and notably the diffusion coefficients.

The third remark pertains to the comparison with the work of [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF]. The value of P crit obtained in that work was

1 1 + v P /v M ,
which is larger than the value predicted by equation ( 27); the discrepancy may be notable, as the example given below will show. The difference is due to the fact that the equations used by [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF] corresponded to Wagner (1959)'s original formulation intrinsically limited to small fractions of P phases, so that the factor (1 -P ) was absent from both the balance equation ( 10) 1 of oxygen and the condition ( 14) connecting fluxes at the oxidation front.

The fourth and final remark relates to comparison between the theoretical prediction of the transition and experimental observations. The metallurgical literature is replete with values of the critical value of the core fraction of oxidizable element, for various systems under diverse conditions. Unfortunately, as remarked above, the theoretical estimate of this critical value depends on the diffusion coefficients, which as a rule are known only with a considerable margin of error. Comparisons between experimental and theoretical critical values of C crit A would therefore be of modest significance, and comparisons of theoretical and experimental values of P crit are much preferable. Unfortunately, as already noted in the Introduction, such experimental values seem to be limited to [START_REF] Rapp | The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys[END_REF]'s old estimate of 0.30 for the critical volume fraction of In 2 O 3 for the O/In/In 2 O 3 system in an Ag matrix. The specific volumes of Ag and In 2 O 3 are v M = 95 × 10 -6 m 3 kg -1 and v P = 139 × 10 -6 m 3 kg -1 , respectively. For these values equation ( 27) predicts a critical mass fraction of In 2 O 3 of 0.30, corresponding to a volume fraction of 0.38, in reasonable agreement with [START_REF] Rapp | The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys[END_REF]'s value of 0.30. In contrast [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF]'s estimate of the critical mass fraction of In 2 O 3 amounts to 0.45, corresponding to a volume fraction of 0.55; this value is almost twice larger than that of [START_REF] Rapp | The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys[END_REF]. The improvement brought to the prediction of the transition by use of a diffusion/precipitation model incorporating possible large fractions of P phases, such as that of Section 2, is therefore clear.

4 Semi-analytical solution of the oxidation problem for an oxide with a nonzero solubility product

The theoretical treatment of the problem of the transition from internal to external oxidation expounded in the preceding Section, based on the model of Section 2 including the possibility of large fractions of P phases, may be regarded as satisfactory. However this treatment was limited to the case of an oxide with an infinitesimally small solubility product K. As mentioned in the Introduction, whereas this condition of smallness is reasonably satisfied for some systems like O/Al/Al 2 O 3 in a Fe matrix, it is not for some others like O/Mn/MnO in a Fe matrix. It is therefore necessary to extend the treatment to finite, nonzero values of K.

The mathematical analysis here will extend that of [START_REF] Huin | Numerical simulation of internal oxidation of steels during annealing treatments[END_REF] of a simpler version of the problem accounting for neither the reduction of diffusion coefficients due to presence of oxides nor the effect of possibly large fractions of P phases. Introducing such effects will result in considerable extra complexities. In addition, the new solution will exhibit some qualitatively new features, as will be seen.

Presentation of the new problem

Many features of the problem for a nonzero K are similar to those for a zero K. Such features include diffusion of O toward the interior of the plate, diffusion of A toward its exterior, and formation of molecules of formula OA ν . But the nonzero value of K implies that O and A can now coexist in the M phase. As a result, the zone where oxidation occurs at a given time no longer reduces to a point, but extends over some region; as a consequence the fraction P of oxides now depends on position and time. (Recall that these two properties are connected, as was shown in Subsection 3.1).

In theory, the oxidized region extends from the surface of the plate to some a priori unknown position; it does not extend to infinity since there is no oxygen there. However, assuming that it does, that is that the condition C O C ν A = K is satisfied everywhere, only introduces a minor error; indeed the value of the fictitious core fraction of O deduced from this equality, C core O ≡ K/(C core A ) ν , is in practice "close to zero" in the sense of being much smaller than the value C surf O imposed on the surface. We shall therefore make this assumption in the sequel, thereby simplifying the treatment by eliminating the need for determination of the endpoint of the oxidized zone, without significantly altering the results.

It will also be assumed that the reduction of diffusion coefficients, due to the presence of oxides acting as barriers, may be different for O and A; the importance of such an additional "degree of freedom" of the model will be clear in the sequel. This assumption is physically plausible since the extent of the reduction, for a given value of P , depends on the shape of the individual oxides, see formula (6); and the oxides formed close to the surface (where O chiefly diffuses) and deeper in the sheet (where A chiefly diffuses) are precisely bound to assume different shapes -flat ellipsoids near the surface versus spheres farther away.

Equations of the new problem

In order to lighten the appearance of equations below, we introduce the following notations:

α ≡ m O M P ; β ≡ m A M P . ( 28 
)
The general mass balance equations (1) then simply read, for elements O and A respectively:

     F O = (1 -P )C O + αP F A = (1 -P )C A + βνP. (29) 
Also, f O (P ) and f A (P ) denoting -like in equation ( 4) -the functions characterizing the respective reductions of the diffusion coefficients of O and A, we define -like in equation ( 23) 2 -the functions

     f O (P ) ≡ (1 -P )f O (P ) f A (P ) ≡ (1 -P )f A (P ). ( 30 
)
With these notations the general diffusion equations ( 7) take the following form:

           ∂F O ∂t = ∂ ∂t [(1 -P )C O + αP ] = D 0 O ∂ ∂x f O (P ) ∂C O ∂x ∂F A ∂t = ∂ ∂t [(1 -P )C A + βνP ] = D 0 A ∂ ∂x f A (P ) ∂C A ∂t . (31) 
These equations are completed by the condition

C O C ν A = K (32)
expressing the hypothesis of local thermodynamic equilibrium with oxides present everywhere in the sheet, as discussed above.

Finally the initial and boundary conditions read

     C O = C core O ≡ K (C core A ) ν for 0 < x < +∞, t = 0 C A = C core A for 0 < x < +∞, t = 0 (33)
and

     C O = C surf O for x = 0, 0 ≤ t < +∞ C A = C core A for x → +∞, 0 ≤ t < +∞.
(34)

Semi-analytical solution

Like in the case of an infinitesimally small K, we shall look for a solution depending on x and t only through the combination x/ √ t. More precisely we define a new variable u by the formula

u ≡ x 2γ D 0 O t ( 35 
)
where γ is an a priori free positive parameter, the value of which will be fixed later. This parameter resembles, though it is not identical to, that defined by equation ( 16) in the case of an infinitesimally small K. Its role is to perform an arbitrary homothetical transformation of space, permitting to always shrink or expand that "interesting" part of the x-axis where the solution varies significantly, to the same fixed part of the u-axis.

All unknowns being considered as functions of u from now on, simple (though tedious) calculations show that the diffusion equations (31) reduce to

       f O (P )C ′′ O + 2γ 2 u(1 -P )C ′ O + f O ′ (P )C ′ O + 2γ 2 u(α -C O ) P ′ = 0 f A (P )C ′′ A + 2γ 2 ψu(1 -P )C ′ A + f A ′ (P )C ′ A + 2γ 2 ψu(βν -C A ) P ′ = 0 , ψ ≡ D 0 O D 0 A , (36) 
where the symbols ′ and ′′ denote first-and second-derivatives with respect to u, respectively -except when applied to the functions f O and f A , for which they of course denote derivatives with respect to P . But the variable C A is completely tied to C O through equation (32); hence equation (36) 2 may be rewritten in terms of C O and its derivatives. The result reads:

f A (P ) C ′′ O -1 + 1 ν C ′2 O C O + 2γ 2 ψu(1 -P )C ′ O + f A ′ (P )C ′ O + 2γ 2 ψνu 1 -βν C O K 1/ν C O P ′ = 0. ( 37 
)
Equations ( 36) 1 and (37) are coupled, nonlinear ordinary differential equations (ODEs) which both involve the unknowns C O , C ′ O , C ′′ O , P and P ′ . Unfortunately they do not provide separate and explicit expressions of the highest-order derivatives, C ′′ O and P ′ . But this can easily be remedied by eliminating P ′ between these equations; the output is an explicit expression of C ′′ O in the form of a fraction:

C ′′ O = N(C O , C ′ O , P ) D(C O , C ′ O , P ) (38) 
where

5                          N(C O , C ′ O , P ) ≡ f O ′ (P )C ′ O + 2γ 2 u(α -C O ) f A (P ) 1 + 1 ν C ′2 O C O -2γ 2 ψu(1 -P )C ′ O +2γ 2 u(1 -P )C ′ O f A ′ (P )C ′ O + 2γ 2 ψνu 1 -βν C O K 1/ν C O D(C O , C ′ O , P ) ≡ f O ′ (P )f A (P ) -f O (P )f A ′ (P ) C ′ O +2γ 2 u f A (P )(α -C O ) + ψνf O (P ) βν C O K 1/ν -1 C O .
(39) Once C ′′ O is known, P ′ is easily deduced from equation (36) 1 :

P ′ = - f O (P )C ′′ O + 2γ 2 u(1 -P )C ′ O f O ′ (P )C ′ O + 2γ 2 u(α -C O ) = - f O (P ) N (C O ,C ′ O ,P ) D(C O ,C ′ O ,P ) + 2γ 2 u(1 -P )C ′ O f O ′ (P )C ′ O + 2γ 2 u(α -C O ) . ( 40 
)
Equations ( 38) and ( 40) are coupled, nonlinear ODEs on the functions C O (u) and P (u), of second order in C O and first order in P .

Asymptotic solution near the surface

We shall now see that some restrictions on the given parameters of the problem are needed in order to warrant a physically reasonable solution near the surface of the plate (u → 0 + ).

In order to be reasonable, the solution must satisfy the following properties:

• C ′ O (u = 0) should be finite (since it is tied to the input flux of oxygen which cannot physically be infinite); • P (u = 0) should be finite (since it cannot exceed unity by definition).

Let us assume these properties to be satisfied, and examine whether or not a contradiction arises with the expressions ( 38) and ( 40) of C ′′ O and P ′ .

The first task is to examine the expression (39) 2 of the denominator D(C O , C ′ O , P ) in equation ( 38), and see whether it may or may not vanish in the limit u → 0 + . In this limit

D(C O , C ′ O , P ) reduces to f O ′ (P )f A (P ) -f O (P )f A ′ (P ) C ′ O ;
this expression is zero if, and only if,

f O ′ (P )f A (P ) -f O (P )f A ′ (P ) = 0 ⇔ f O ′ (P ) f O (P ) - f A ′ (P ) f A (P ) = 0 ⇔ ln[f O (P )] -ln[f A (P )] = Cst. ⇔ f O (P ) f A (P ) = Cst.
But the last constant can only be unity then because of the conditions f O (0) = f A (0) = 1 (there is no reduction of the diffusion coefficients in the absence of oxides); which entails that necessarily f O (P ) = f A (P ). The conclusion is that in the limit u → 0 + , D(C O , C ′ O , P ) is zero if, and only if, the functions f O and f A (or equivalently the functions f O and f A ) are identical.

It is thus necessary to distinguish between two cases:

• Case 1: the functions f O and f A are identical. Then the denominator D(C O , C ′ O , P ) is zero in the limit u → 0 + , so that it is of order 1 in u (see equation ( 39) 2 ). Hence by equation (38) where

N(C O , C ′ O , P ) is finite in the limit u → 0 + , C ′′ O is asymptotically of the form Cst./u, so that C ′
O is of the form Cst. × ln u and diverges to infinity for u → 0 + . This type of solution contradicts the hypothesis made of a finite C ′ O at u = 0, and is physically unacceptable because it implies an infinite input flux of oxygen on the surface. (In addition, equation ( 40) then implies that P ′ diverges like 1 u ln u and P like ln(-ln u), which is equally contradictory with the hypotheses made and no more physically acceptable).

• Case 2: the functions f O and f A are distinct. Then the denominator D(C O , C ′ O , P ) does not vanish in the limit u → 0 + , so that C ′′ O goes to a finite constant in this limit; it follows from integration that C ′ O also goes to some finite value, as desired. Furthermore by equation ( 40), P ′ goes to a finite limit and consequently so does also P . These properties are compatible with the hypotheses made and physically reasonable.

The conclusion is that the functions f O and f A , depicting the reduction of the diffusion coefficients of O and A due to presence of oxides acting as barriers, must be assumed to be different for the solution to make sense. (This point will be further commented below). Such a hypothesis will be made in the sequel.

Numerical algorithm

The formidable complexity of the system (38, 40) of coupled nonlinear ODEs dashes any hope of solving them analytically. However they are expressed in a format perfectly fit for numerical integration using standard methods, for instance that of Runge-Kutta of order 4. With such a method, one must prescribe the values of C O , C ′ O and P at u = 0; integration then yields the values of these functions up to large values of u approximating infinity.

However one may take advantage here of the extra degree of freedom brought into the equations by introducing the free parameter γ in the definition (35) of the variable u. Indeed, instead of fixing γ and varying C ′ O (u = 0), one may fix C ′ O (u = 0) and vary γ; the value C ′ O (u = 0) = -1, more specifically, will be used in all simulations discussed below. The advantage of such a procedure and value is that they warrant that the region of the u-axis where C O (and consequently P ) vary significantly, will always be of size comparable to unity, thereby permitting to use a single mesh for all simulations.

One difficulty, however, is that among the three quantities C O (u = 0), γ and P (u = 0), only the first one, C O (u = 0) = C surf O , is known and prescribed by the data of the problem. The other two, γ and P (u = 0), are not; but two quantities are known instead at infinity: P (u = +∞) which must be zero -there are no oxides deep in the sheet -and

C A (u = +∞) = [K/C O (u = +∞)] 1/ν ,
which must be identical to the value C core A imposed by the grade of the steel.

Let us momentarily forget about the satisfaction of the condition C

A (u = +∞) = C core
A , and assume that P (u = 0) is fixed. The problem then reduces to finding the value of γ warranting satisfaction of the condition P (u = +∞) = 0. Since this just means adjusting a single, scalar parameter, it can be done by various standard methods; the most robust being a simple dichotomy, with each step consisting of a numerical integration of equations (38,40) yielding the value of P (u = +∞) for a given γ.

To finally fulfill the condition C A (u = +∞) = C core A , one could think of adjusting the value of P (u = 0) in a similar way. However, for a given, fixed value of C surf O , a simpler solution consists of performing simulations for various values of P (u = 0) (with a suitable adjustment of γ every time, as just discussed). In this way one gets, for the value of C surf O considered, a discrete set of pairs [P (u = 0), C A (u = +∞)] which easily permits to plot C core A versus P (u = 0) or P (u = 0) versus C core A , depending on one's taste. (In fact the plot of C core A versus P (u = 0) will reveal more convenient for the study of the transition from internal to external oxidation, as will be seen in the Subsection 4.6).

To summarize, the algorithm adopted consists of the following elements, ordered "top to bottom":

• for a given value of C surf O , a set of calculations of C core A as a function of P (u = 0); • for each such calculation, a dichotomy on the parameter γ aimed at fulfilling the condition P (u = +∞) = 0; • for each iteration of such a dichotomy, numerical integration from zero to "infinity" of the nonlinear ODEs (38, 40) using the given values of C surf O , γ and P (u = 0).

Numerical results and discussion

As an example, we consider the case of the system O/Mn/MnO (having thus ν = 1) in a Fe matrix, at a temperature of 800 • C. The diffusion and precipitation constants of this sytem are taken from [START_REF] Oikawa | Lattice diffusion in iron -A review[END_REF] and the [START_REF] Thermodata | Electronic data bank for thermodynamic quantities[END_REF] data bank; they are given in Table 1. In addition, the data required for the definition of the functions f O and f A ≡ f M n , depicting the reduction of diffusion coefficients by oxides acting as barriers, are listed in Table 2.

m O (g) m M n (g) M M nO (g) D 0 O (µm 2 s -1 ) D 0 M n (µm 2 s -1 ) K (ppm
v M nO ≡ v P (m 3 kg -1 ) v F e ≡ v M (m 3 kg -1 ) 0.1862 × 10 -3
0.1272 × 10 -3 Table 2 Specific volumes for the system O/Mn/MnO in a Fe matrix.

In all simulations discussed below, the function f O depicting the reduction of D O is considered to be given by the simple formula (5), whereas the function f M n pertaining to the reduction of D A ≡ D M n is taken as unity (no reduction at all). The larger reduction of D O , as compared to that of D M n , is in line with the remark made in Subsection 4.1, about the different shapes of the oxides acting as obstacles to the diffusion of oxygen and the oxidizable element.

Various values of the mass concentration C surf O of oxygen imposed on the surface are envisaged: 0.01, 0.02, 0.03, 0.1, 0.3, 0.5 and 1 ppm. It is worth mentioning here that this value, together with that of C core A ≡ C core M n , determines whether the solubility product must be considered as "small" or "large": in order to decide about the "magnitude" of K, the dimensionless number that must be compared to unity is

K C surf O C core M n
. If it is very much smaller than unity, the solution of Section 3 for an infinitesimally small K may be deemed applicable. But the effects upon this ratio of a decrease of K and an increase of C surf O are strictly identical. Thus for a fixed K, like in the simulations discussed hereafter, the larger the value of C surf O , the more the solution of Section 3 may be expected to be applicable.

This aspect is plainly illustrated in Figure 5, which shows the distributions of C O , C M n and P at time t = 100 s, for two values of C surf O and the same value of P on the surface, P (u = 0) = 0.31. (This would exactly be the value of the critical fraction of oxides corresponding to the transition from internal to external oxidation, if K were infinitesimally small; see the discussion below). For C surf O = 1 ppm, all three distributions exhibit features analogous, though not completely identical, to those for an infinitesimally small K, see Figure 2. On the other hand, for C surf O = 0.1 ppm, these distributions are markedly different: O and Mn coexist over some notable distance and P is no longer uniform within the oxidized zone.

Figure 6, which displays C core M n versus the surface fraction of oxides P (u = 0) for various values of C surf O , permits to discuss the existence of a sharp transition from internal to external oxidation and the conditions governing such a transition. The following remarks are in order.

• Consider first the three highest values of C surf O , 1, 0.5 and 0.3 ppm, for which the solution does not differ too much from that of Section 3 for an infinitesimally small K. For these values, the curve representing C core M n versus P (u = 0) exhibits a maximum. Therefore, if one gradually increases C core M n from zero, the point [P (u = 0), C core M n ] follows the left portion of the curve from the origin, until the maximum is reached; for values of C core M n larger than the maximum value, no solution to the equations of internal oxidation can be found, meaning that a switch from internal to external oxidation must necessarily occur. This is exactly the same situation as in Section 3, albeit presented in somewhat different geometric terms. (Note that the portion of the curve located to the right of the maximum, where C core M n becomes a decreasing function of P (u = 0), has no physical existence since it cannot be reached by continuously increasing C core M n ). • The surface fraction P (u = 0) of MnO corresponding to the maximum, when it exists (C surf O = 1, 0.5 and 0.3 ppm), is the same no matter the value of C surf O . This feature is in agreement with the expression (27) of P crit for an infinitesimally small K, which predicts no effect of C surf O upon this critical value. On the other hand the maximum value of C core M n is clearly an increasing function of C surf O . This is again in agreement with the results of Section 3: equation ( 25) 2 predicts a value of χ crit independent of C surf O like P crit , but the expression (23) 1 of χ then implies that the critical value of C core M n is proportional to the square root of C surf O . • The theoretical value of P crit for an infinitesimal K deduced from equation ( 27), with the data provided in Table 2, is 0.31. But numerically, the surface fraction P (u = 0) of oxides corresponding to the maximum of C core M n when it exists (C surf O = 1, 0.5 and 0.3 ppm), is somewhat larger, in the range 0.39 -0.41. This is not because the condition

K C surf O C core M n
≪ 1 is not met, but rather because equation ( 27) is based on the restrictive assumptions (20), the second of which is poorly satisfied in the cases considered. Distance from the surface (mm)

C C !"#$ % C &' C &' ()#* % C C !"#$ , C &' C &' ()#* , % % +P P (a) C surf O = 1 ppm 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Distance from the surface (mm) versus P (u = 0) has no maximum, meaning that a solution of the equations of internal oxidation can always be found, however large the value of C core M n . In other words, there is no sharp transition from internal to external oxidation; total coverage of the surface of recovered numerically. the sheet can only be achieved through some continuous, potentially unlimited increase of C core M n .

C C !"#$ % C &' C &' ()#* % C C !"#$ , C &' C &' ()#* , % % +P P (b) C surf O = 0.1 ppm
In spite of their physical and practical interest, these results raise several issues specific to the case of a nonzero K.

• The prediction of absence, in some cases, of a sharp transition from internal to external oxidation, is surprising although admittedly not altogether physically impossible. • In order to get reasonable model predictions, we had no choice but to assume different functions f O , f M n for the reduction of the diffusion coefficients of O and Mn, see Subsection 4.4. Now although such a hypothesis is reasonable in many cases (as explained above), one may imagine situations where the reduction of diffusion coefficients is the same for both elements (in the absence of significant differences in shape of oxides located at different depths). In such situations the divergence of some quantities near the surface (see Subsection 4.4) is a clear indication of the physical breakdown of the equations of the model. • A final issue pertains to boundary conditions. Because of the input flux of O, the derivative ∂C O /∂x is negative on the surface; the relation C O C M n = K then implies that the derivative ∂C M n /∂x is positive, whence a nonzero output flux of Mn. But the usual assumption in problems of this type is that the flux of the oxidizable element on the surface is nil.

The assumption of zero flux of Mn is admittedly criticizable insofar as one may imagine mechanisms leading to losses of atoms of Mn into the outer atmosphere; but then such losses should be governed by parameters pertaining to these mechanisms, not by the input flux of O. Stated differently, the problem is more with the number of boundary conditions than with their type: the hypothesis of instantaneous local thermodynamic equilibrium implies that there can only be one (the surface values of C M n and ∂C M n /∂x being determined by those of C O and ∂C O /∂x), whereas one naturally expects two independent boundary conditions to be required for two diffusing species.

It may be remarked that all three issues are related to phenomena occurring on or near the surface of the sheet, which is an indication that the equations of the model may become inadequate there. But what distinguishes the vicinity of the surface from the interior of the sheet is that all processes are quicker here than there (because of larger concentration gradients). This suggests that the root of the difficulties may be that these processes are too quick for local thermodynamic equilibrium to prevail. The next Section will be devoted to some preliminary investigation of this idea.

5 Precipitation kinetics: the solution to the issues raised?

Generalities

In this Section, we shall modify the model by replacing the hypothesis of instantaneous local thermodynamic equilibrium through some kinetic equation for the precipitation of oxides. The aim is to see whether or not this modification may be hoped to solve the difficulties evidenced in Subsection 4.6, in the case of an oxide with a nonzero solubility product.

More specifically, we shall focus on the issue of the nonzero output flux of oxidizable element on the surface. The aim will not be to develop a realistic, necessarily complex kinetic model, such a task being left for future work. It will just be to show, using an elementary, inevitably rough model, how introduction of some kinetics of precipitation does appear to solve the issue. The proof will be based on examination of the mathematical character of the new equations.

Because of the essentially qualitative character of the proof, a number of hypotheses will be made so as to avoid unnecessary complexities in the model:

• Two elements only, O and A, and a single oxide of formula OA (that is with ν = 1 with the notations of Sections 3 and 4), will be considered. • The effect of possible large fractions of the P phase will be disregarded, together with the reduction of diffusion coefficients due to presence of this phase. • Kinetics of precipitation of oxides will be governed by a classical Johnson-Mehl-Avrami equation with an exponent of unity, depicting a simple exponential relaxation toward the state of local thermodynamic equilibrium. • The equilibrium fraction of P phase appearing in this kinetic equation will be assumed to be nonzero everywhere and at all instants; this is true provided the total fractions of elements are large enough.7 

Diffusion/precipitation equations including precipitation kinetics

With the hypotheses made, the balance equations (1) reduce to

     F O = C O + m O M P P F A = C A + m A M P P (41) 
and the diffusion equations ( 7) to

         ∂F O ∂t = D 0 O ∂ 2 C O ∂x 2 ∂F A ∂t = D 0 A ∂ 2 C A ∂x 2 . ( 42 
)
However the condition (8) expressing instantaneous local thermodynamic equilibrium is replaced here by the kinetic equation

∂P ∂t = τ -1 (P eq -P ) , (43) 
where τ denotes some characteristic time (material parameter), and P eq the local equilibrium fraction of P phase defined by the local chemical composition, that is the total fractions of elements F O and F A . This quantity, together with the corresponding equilibrium concentrations of elements C eq O and C eq A , are defined by the following equations:

             F O = C eq O + m O M P P eq F A = C eq A + m A M P P eq C eq O C eq A = K. ( 44 
)
Note the sign = instead of ≤ in the last equation, in agreement with the hypothesis introduced in Subsection 5.1 of a nonzero P eq everywhere and at all instants.

Reduction to a system of coupled nonlinear diffusion equations

We shall now show that the above equations can be reduced to a system of coupled, nonlinear diffusion equations on the sole unknowns C O and C A .

Combining first equations ( 41), ( 42) and ( 43), we get

           ∂C O ∂t + m O M P ∂P ∂t = D 0 O ∂ 2 C O ∂x 2 ∂C A ∂t + m A M P ∂P ∂t = D 0 A ∂ 2 C A ∂x 2 ⇒            ∂C O ∂t = D 0 O ∂ 2 C O ∂x 2 - m O M P τ -1 (P eq -P ) ∂C A ∂t = D 0 A ∂ 2 C A ∂x 2 - m A M P τ -1 (P eq -P ) .
But combining equations (41) 1 and (44) 1 , (41) 2 and (44) 2 , one sees that

P eq -P = M P m O (C O -C eq O ) = M P m A (C A -C eq A ) ; (45) 
hence the preceding equations may be rewritten in the form

         ∂C O ∂t = D 0 O ∂ 2 C O ∂x 2 -τ -1 (C O -C eq O ) ∂C A ∂t = D 0 A ∂ 2 C A ∂x 2 -τ -1 (C A -C eq A ) .
(

) 46 
It remains to calculate the equilibrium concentrations C eq O , C eq A in terms of the actual concentrations C O , C A . By equations ( 45) and ( 44) 3 , they satisfy the following relations: m O -C A m A , and their product, -K m O m A ; it follows that these quantities are the positive and negative roots, respectively, of the algebraic equation of the second degree

     C eq O m O - C eq A m A = C O m O -C A m A C eq O C eq A = K. (47 
X 2 - C O m O - C A m A X - K m O m A = 0.
Solving this equation, one gets

           C eq O = C eq O m O = 1 2 C O m O -C A m A + C O m O -C A m A 2 + 4K m O m A C eq A = - C eq A m A = 1 2 C O m O -C A m A - C O m O -C A m A 2 + 4K m O m A ,
from which follows that

C O -C eq O m O = C A -C eq A m A ≡ θ(C O , C A ) ≡ 1 2    C O m O + C A m A - C O m O - C A m A 2 + 4K m O m A    , (48) 
which defines the quantity θ(C O , C A ). With these expressions, the diffusion equations ( 46) take their final form:

         ∂C O ∂t = D 0 O ∂ 2 C O ∂x 2 -m O τ -1 θ(C O , C A ) ∂C A ∂t = D 0 A ∂ 2 C A ∂x 2 -m A τ -1 θ(C O , C A ). ( 49 
)
The terms proportional to θ(C O , C A ) in ( 49) couple the equations in a nonlinear way, but their presence in these equations does not alter the basic mathematical character of the system which remains quasilinear (linear in the highest-order derivatives), of parabolic type. This implies, among other things, that in spite of the coupling, the two equations require two, not just one, boundary conditions at each point of the boundary; so that in a 1D problem, prescribing both conditions C O = C surf O and ∂C A /∂x = 0 (zero flux of A) at x = 0 will not raise any particular issue, in contrast to what was observed in Subsection 4.6 for the model based on the assumption of instantaneous local thermodynamic equilibrium.

A numerical example

We consider the same problem as in Subsection 4.6 of internal oxidation for the system O/Mn/MnO in a Fe matrix, but with two differences. First, we account for neither the effect of possibly large fractions of the P phase, nor the reduction of diffusion coefficients by oxides acting as obstacles. Second, the hypothesis of instantaneous local thermodynamic equilibrium is replaced by the simple kinetic equation ( 43) for the fraction of oxides. Under such conditions the equations of the problem reduce to the nonlinear diffusion equations ( 49), which are solved through some finite-difference-based spatial and temporal discretization, with an explicit scheme in time.

Equations ( 49), in their discretized form, are written at all internal nodes. At the surface node, however, there is no need to write equation ( 49) 1 for oxygen, since the concentration C O is prescribed there; but it is necessary to write equation ( 49 M n , 0.1 ppm and 4000 ppm respectively, and various values of the characteristic time τ of the precipitation of oxides: 0.1, 1, 5, 10, 20, 50 and 100 s. (These values are not chosen for their physical realism, but for the sole sake of qualitatively illustrating the influence of precipitation kineticsof the Johnson-Mehl-Avrami type -upon internal oxidation). In addition we also display "reference results" corresponding on the one hand to complete absence of precipitation of oxides (with a very large value of τ of 10 6 s), and on the other hand to instantaneous local thermodynamic equilibrium (with a very small value, τ = 10 -6 s).

Figure 7 first shows the distribution of the mass concentration of oxygen at time t = 100 s. For the value τ = 0.1 s, local thermodynamic equilibrium is almost achieved everywhere at such an instant; the influence of precipitation kinetics upon the oxygen profile is then minor. When the characteristic time τ gradually increases, precipitation is more and more delayed, which leaves more and more time for oxygen to penetrate into the sheet before it is "pumped" by the chemical reaction; which is why its profile moves upwards. its impact upon the concentration of manganese is small; one just notes a slight decrease of C M n from the core value near the surface. When τ gradually decreases, however, this impact become more and more important and the concentration of manganese decreases more and more near the surface, due to pumping by the chemical reaction. For the smallest value of τ , 0.1 s, the manganese profile differs modestly from that obtained with the hypothesis of instantaneous local thermodynamic equilibrium.

Figure 8(b) permits to investigate the issue of zero or nonzero flux of manganese at the surface. From a purely theoretical point of view, the following remarks are in order:

• In the presence of some precipitation kinetics, whatever the value of τ , even very small, the flux of manganese and therefore the derivative ∂C M n /∂x must be zero on the surface since this is imposed by the boundary conditions adopted. • However, if local thermodynamic equilibrium is strictly respected, that is in the theoretical limit τ → 0 + , neither this flux nor this derivative can be zero there, as explained in Subsection 4.6. • Compatibility of these two features demands that the region where |∂C M n /∂x| is small decrease more and more in size as τ decreases down to zero: for small values of τ , this region must become a "boundary layer" of small thickness, analogous to those encountered in fluid mechanics, when a viscous fluid of very low viscosity flows past some immobile obstacle.

However computed results exhibit somewhat more complex features, for reasons connected to the numerical scheme:

• For the largest values of τ , 100, 50, 20 and 10 s, the initial slope (between the first two discretization points) of the curve [C M n vs. x] is almost nil, as expected.

• For smaller values of τ , 5, 1 and 0.1 s, this initial slope is no longer zero as theoretically predicted. This is because with a fixed mesh as employed here, it is impossible to reproduce the expected boundary layer of vanishingly small thickness in the limit τ → 0 + . • Finally for τ = 10 -6 s (quasi-instantaneous local thermodynamic equilibrium), the initial slope, although strictly nonzero, is quite small. This is because pumping of manganese by precipitation is then efficient enough for this element to be notably depleted near the surface at time t = 100 s, which minimizes its output flux.

6 Concluding summary and perspectives Some recent works [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF][START_REF] Leblond | Predicting the transition from internal to external oxidation of alloys using an extended Wagner model[END_REF] opened the way to the ab initio prediction of the transition from internal to external oxidation, using [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s classical analysis of internal oxidation extended through incorporation of the barrier effect of oxides upon diffusion. Unfortunately these works suffered from inevitable shortcomings tied to the strong hypotheses made by [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]. The aim of the present paper was to extend the analyses of [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF]; [START_REF] Leblond | Predicting the transition from internal to external oxidation of alloys using an extended Wagner model[END_REF] by removing some of [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s most severely restrictive assumptions, so as to broaden the range of situations in which a theoretical prediction of the transition is possible.

The first major restriction of [START_REF] Wagner | Reaktionstypen bei der oxydation von Legierungen[END_REF]'s analysis lied in use of a theoretical framework limited in essence to small values of the fraction of oxides; this was in contradiction with the fact that the "critical" value of this fraction, above which internal oxidation is no longer possible, must obviously be comparable to, not much smaller than, unity. As a first step toward a solution of this issue, Section 2 presented an extended framework considering arbitrarily large values of the fraction of oxides, essentially inspired from that proposed by [START_REF] Brunac | Numerical implementation and application of an extended model for diffusion and precipitation of chemical elements in metallic matrices[END_REF] but containing somewhat different diffusion equations, for reasons which were analyzed.

Section 3 then presented an extension of [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF]; [START_REF] Leblond | Predicting the transition from internal to external oxidation of alloys using an extended Wagner model[END_REF]'s analyses of the transition from internal to external oxidation, based on the more general model just expounded. The output was a smaller value of the predicted critical fraction of oxides governing the transition, as compared to that in the work of [START_REF] Leblond | A note on a nonlinear variant of Wagner's model of internal oxidation[END_REF]. This smaller value was found to better agree with the old, but still unchallenged experimental observation of [START_REF] Rapp | The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys[END_REF] for the O/In/In 2 O 3 system in an Ag matrix.

Another severe restriction of Wagner (1959)'s work was consideration of an oxide with an extremely low solubility product, prohibiting coexistence of oxygen and the oxidizable element in their dissolved forms in the matrix. Section 4 tackled this other issue by modifying the preceding analysis through introduction of a finite, nonzero solubility product. The treatment, which extended that of [START_REF] Huin | Numerical simulation of internal oxidation of steels during annealing treatments[END_REF] of a simpler version of the problem, resulted in coupled nonlinear ordinary differential equations on two variables, too complex to be solvable analytically but well fit for a numerical solution. Numerical results evidenced existence or absence of a brutal transition from internal to external oxidation, depending on the parameters of the system.

In spite of the interest of these results, they raised several issues which appeared to be basically tied to the inadequacy of the hypothesis of instantaneous local thermodynamic equilibrium near the surface of the plate, due to quickness of the processes occurring there. The object of the final Section 5 was to propose a tentative solution to these difficulties, in the form of modified equations of diffusion/precipitation incorporating some kinetic equation for the precipitation of oxides, depicting relaxation toward the local state of thermodynamic equilibrium. Introduction of such an equation was shown to indeed settle the important issue of impossibility, when instantaneous local thermodynamic equilibrium is assumed, of prescribing a boundary condition for the oxidizable element independent of that for oxygen.

However, the analysis of Section 5 was essentially qualitative, being based on overly simplified assumptions, plus an elementary kinetic model making no claim to a detailed description of underlying mechanisms. Since this preliminary analysis has revealed that introduction of kinetics of precipitation of oxides is a keypoint in the theoretical description of internal oxidation, and especially of the transition to external oxidation, the next step will be to develop extended equations of diffusion/precipitation incorporating realistic, necessarily complex kinetic models, accounting in detail for nucleation and growth of individual oxides.

A Appendix: diffusion equation of the oxidizable element on the surface in the presence of precipitation kinetics

Let us first examine the problem of local thermodynamic equilibrium on the surface, where C O is prescribed. Equations ( 44), which were used in Subsection 5.3 to solve this problem, are applicable in the interior of the domain considered, but not on its surface. Indeed the first two equations correspond to the mass balance of O and A in the state of thermodynamic equilibrium, for given values of the total fractions F O , F A , that is for a fixed chemical composition; but the quantity known on the surface is not, for oxygen, its total fraction F O but its matrix concentration C O which is prescribed.

It is reasonable to assume that on the surface, the state of thermodynamic equilibrium which is referred to in the kinetic equation ( 43), is that for which the equilibrium concentration C eq O is precisely that prescribed on the surface, C surf O . (In contrast for the oxidizable element A, the concentration of which is not prescribed, it is natural to as usual identify the total fraction F A as the given data). Under such conditions the equations defining the problem of local thermodynamic equilibrium read, instead of (44):

             C eq O = C surf O F A = C eq A + m A M P P eq C eq O C eq A = K. (A.1)
Now combination of equations (41) 2 and (A.1) 2 yields P eq -P = M P m A (C A -C eq A )

which is identical to equation (45) of the text, but for element A only. It immediately follows that the diffusion equation ( 46) 2 for A still holds. This equation may be put into the form

∂C A ∂t = D 0 A ∂ 2 C A ∂x 2 -m A τ -1 θ(C surf O , C A ) (A.2)
which is analogous to equation (49) 2 , but the expression of the function θ(C surf O , C A ) now differs from that provided by equation ( 48) and is simpler:

θ(C surf O , C A ) ≡ 1 m A (C A -C eq A ) = 1 m A C A - K C surf O (A.3)
where equations (A.1) 1,3 have been used.

A final remark pertains to the condition of zero flux of element A on the surface, which does not clearly appear in the theoretical diffusion equation (A.2). This condition is to be accounted for when defining the discretized equivalent of the quantity D 0

A ∂ 2 C A ∂x 2 .
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 1 Fig. 1. Wagner (1959)'s archetypal internal oxidation problem.
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 2 Fig. 2. Qualitative features of Wagner (1959)'s solution (for an infinitesimal solubility product).
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 4 Fig. 4. Graphical discussion of the existence of solutions to equation (24).
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 5 Fig. 5. Mass concentrations of O and Mn and mass fraction of MnO at t = 100 s, for two values of C surf O and the same surface value of P , P (u = 0) = 0.31. the other hand, the theoretical critical values of C core M n deduced from equations (23) 1 and (25) 2 are 6.93 × 10 4 , 4.90 × 10 4 and 3.80 × 10 4 ppm for C surf O = 1, 0.5 and 0.3 ppm respectively, versus 5.99 × 10 4 , 4.46 × 10 4 and 3.60 × 10 4 ppm for the maximum values of C core M n found numerically; the agreement is thus better for this quantity. • For the smallest values of C surf O , 0.03, 0.02 and 0.01 ppm, the curve representing C core M n
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 6 Fig. 6. Core fraction of Mn versus surface fraction of MnO, for various values of C surf O .

  eq O /m O and C eq A ≡ -C eq A /m A , one sees that these equations provide the values of the sum of C eq O and C eq A , C O

  ) 2 for manganese, since the condition of zero flux employed does not provide the value of C A ≡ C M n . This requires a slight modification of this equation, because the terms in which the problem of local thermodynamic equilibrium is posed are a bit different on the surface, owing to the condition of prescribed concentration of O; see Appendix A for details. Calculations are performed for fixed values of C surf O and C core
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 87 Figure 8 similarly shows the distribution of the mass concentration of manganese at the same instant; Figure 8(a) offers a general view and Figure 8(b) a zoom near the surface.

Fig. 8 .

 8 Fig. 8. Mass concentration of Mn at t = 100 s, for various values of the characteristic precipitation time τ -C surf O = 0.1 ppm, C core M n = 4000 ppm.

  Diffusion and precipitation constants of the system O/Mn/MnO in a Fe matrix.

							2 )
	Table 1	15.999	54.938	70.937	8.02	9.09 × 10 -4	7.21

There are many experimental estimates in the metallurgical literature of the critical core fraction of oxidizable element governing the transition, but Rapp (1961)'s work seems the only one that provides an estimate of the critical fraction of oxides.

In the work of[START_REF] Leblond | Implementation and application of some nonlinear models of diffusion/reaction in solids[END_REF], more complex non-stoechiometric precipitate phases with variable chemical composition were envisaged. The analyses expounded in the present work do not require considering such complexities.

In a more general formulation, the flux-vector of a given element is considered to be proportional to the gradient of its activity, that is the product of its concentration and Henry's coefficient. Again, such complexities need not be envisaged here.

The lack of rigor of this reasoning is only apparent; it may be given a completely formal, much heavier but totally rigorous presentation.

The expression of the numerator N (C O , C ′ O , P ) here may be developed in a more explicit way, but with no gain in either formal simplicity or physical insight.

Additional calculations have been performed with very small values of K and C surf O , implying full satisfaction of both assumptions (20); the theoretical value P crit ≃ 0.31 is then completely

Note the similarity with the hypothesis introduced in Subsection 4.1 (where instantaneous local thermodynamic equilibrium was assumed) that C O C ν A = Knot ≤ K -everywhere and at all instants.
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