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Abstract

Recent works have paved the way to theoretical predictions of the conditions governing the
transition from internal to external oxidation of metals and alloys: such conditions directly
result from Wagner (1959)’s classical analytical model, provided that it is made to incorporate
a heuristic decrease of diffusion coefficients upon the fraction of oxides, aimed at representing
their “barrier effect” upon diffusion. The aim of this paper is to extend these works by removing
some of the very restrictive hypotheses introduced by Wagner (1959). First, the formulation
initially limited to small fractions of oxides is extended to arbitrarily large fractions. Even in
their modified form, the equations are still solvable entirely analytically, albeit with a change of
the predicted value of the “critical” fraction of oxides, above which internal oxidation must give
way to external oxidation. The new value is in better agreement than previous ones with the
scarce available experimental estimates. Second, the formulation is extended to finite - instead of
infinitesimal - values of the solubility product governing local chemical equilibrium between the
oxide and the chemical elements dissolved in the metallic matrix. The nonlinear equations of the
diffusion/precipitation problem then become much more complex and amenable only to some
hybrid analytical/numerical solution. The results, although interesting, raise a number of issues
essentially tied to the basic hypothesis made of instantaneous local thermodynamic equilibrium. It
is finally shown, using a simplistic, prototype kinetic model of oxide precipitation, that relaxation
of this hypothesis should permit to solve at least some of these issues.
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1 Introduction

Sixty-three years after its publication, Wagner (1959)’s theoretical analysis of internal
oxidation of metals and alloys remains a cornerstone of this branch of metallurgy. Wagner
(1959)’s analytical solution pertains to the archetypal 1D problem, schematized in Figure
1, of isothermal internal oxidation of a semi-infinite homogeneous steel sheet, occupying
the domain 0 ≤ x < +∞, initially containing no oxygen (O) but a given nonzero con-
centration of a single oxidizable element (A), determined by the grade of the steel. Two
diffusion processes occur simultaneously: (i) O diffuses inwards from the surface of the
sheet (at x = 0), where its concentration CO = Csurf

O is prescribed - typically because of
contact with some external atmosphere containing water molecules dissociating on the
surface; and (ii) outward diffusion of A from the deep regions of the sheet (at x → +∞)
where its concentration CA = Ccore

A is prescribed - via the composition of the steel. The
diffusion of O is accelerated, and that A is generated, by “pumping” of O and A atoms due
to some chemical reaction occurring in some intermediate region, and leading to formation
of some “precipitated” oxide of formula OAν .

Fig. 1. Wagner (1959)’s archetypal internal oxidation problem.

In Wagner (1959)’s version of the problem, local thermodynamic equilibrium between
the phases is assumed to prevail at every position and instant; the law of mass action
expressing this equilibrium states that COC

ν
A = K where K denotes the solubility product

of the oxide OAν . In addition K is assumed to be so exceedingly small - that is, element
A so highly oxidizable - that O and A cannot coexist in their dissolved form in the
metallic matrix: thus either CO or CA must be zero at every point and at each instant.
As a consequence, the region where the chemical reaction takes place at a given instant
reduces to some infinitely thin oxidation front located somewhere in the sheet, say at
x = ξ(t). (The determination of ξ(t) is of course an integral part of the solution of the
problem). Thus, before the front has swept a given point x (ξ(t) < x < +∞), CO is
zero there so that the reaction cannot start; and after the passage of the front at the
point x (0 ≤ x < ξ(t)), CA is in turn zero there so that the reaction necessarily stops.
Furthermore, it will be shown below that as a consequence of the infinite thinness of the
zone where oxidation takes place at any instant, the fraction P of oxides is uniform within
the oxidized zone 0 ≤ x < ξ(t). All of these features are illustrated in Figure 2, which
provides a qualitative representation of the spatial distributions of CO, CA and P at a
given instant.
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Fig. 2. Qualitative features of Wagner (1959)’s solution (for an infinitesimal solubility product).

The impact of Wagner (1959)’s model and solution may be appreciated from the numerous
works they inspired. Critical discussions of the original theory and some of its improved
later variants were offered by Rapp (1965) and Douglass (1995). Many efforts were also
devoted to the relaxation of Wagner’s various restrictive assumptions - limitation to a
single oxidant and a single oxidizable element, forming a single oxide with an extremely
low solubility product, etc.: see the works of (Kirkaldy, 1969; Laflamme and Morral, 1978;
Ohriner and Morral, 1979; Whittle et al., 1981; Christ et al., 1986; Stott and Wood, 1988;
Fortunier et al., 1995; Gesmundo and Gleeson, 1995; Huin et al., 1996; Gesmundo et al.,
1996, 1997, 1998; Gesmundo and Niu, 1999; Niu and Gesmundo, 2001; Huin et al., 2005;
Leblond, 2005; Brunac et al., 2010; Leblond et al., 2017), among others. These various
efforts greatly widened the domain of application and significance of Wagner (1959)’s
original work.

The relation between Wagner (1959)’s analysis and the prediction of conditions govern-
ing the transition from internal oxidation - wherein oxides are formed in the interior of
the sheet - to external oxidation - wherein precipitation of oxides remains confined to
the surface - was noted by Wagner himself. Such conditions may indeed be obtained by
combining his expression of the fraction P of oxides in the oxidized zone, with some pos-
tulated value of the “critical” fraction P crit above which the transition is expected to
occur. However, in spite of the continued attention paid to Wagner (1959)’s work, it was
not until a few years ago that the remark was made by Leblond (2011) that there was
no need to postulate such a value of P crit, because it could be deduced from the equations
of the model itself, in a suitably extended and modified form. Leblond (2011)’s suggested
overhaul of the governing equations of the oxidation problem consisted of heuristically as-
suming - following a much earlier suggestion of Kirkaldy (1969) - the diffusion coefficients
of elements to be decreasing functions of the local fraction of oxides, so as to account for
the “barrier effect” of these oxides upon diffusion.

Leblond (2011)’s mathematical presentation was reformulated by Zhao et al. (2015) in a
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more physical format. An intuitive understanding of the mechanism evidenced by Leblond
(2011) may be gained through the following considerations:

• One typical, and somewhat paradoxical, feature of the analytical solution of Wagner
(1959)’s original equations is that a decrease of the ratio φ ≡ DO/DA of the diffusion
coefficients DO of oxygen and DA of the oxidizable element A, induces an increase of
the fraction P of oxides in the oxidized zone. In qualitative terms, this is because if O
diffuses more slowly, this leaves more time for A to diffuse from the interior of the plate
toward its surface, so as accumulate and be oxidized there.

• Now solve Wagner (1959)’s equations, in a first step, without accounting for the influ-
ence of P upon DO and DA; the solution yields a first estimate P (1) of the oxide fraction
in the oxidized zone.

• In a second step, account for the influence of P upon DO and DA using P (1) as an
estimate. Since O is present only in the oxidized zone and A only in the non-oxidized
zone, this induces a decrease of DO but no change of DA, and therefore a decrease of the
ratio φ. Solve Wagner (1959)’s equations again; the second estimate P (2) of P obtained
thus is larger than P (1), as a result of the decrease of φ.

• Account for the influence of P upon DO and DA using the estimate P (2) instead of P (1),
solve the equations again, and repeat the process ad infinitum. The increasing sequence
of successive estimates P (1), P (2)... of P obtained in this way may either converge or
diverge, depending on the parameters of the problem. Convergence means that a solu-
tion to the nonlinear equations of internal oxidation is obtained; but divergence means
that such a solution does not exist, so that external oxidation (implying an infinite
concentration of oxides on the surface of the plate) must take over.

In Leblond (2011)’s work the effect of diffusion barriers was modelled, following Kirkaldy
(1969)’s elementary suggestion, by reducing diffusion coefficients proportionally to the
volume fraction of oxides. This simplistic hypothesis was later refined by Leblond et
al. (2013) using finite element simulations aimed at precisely quantifying the effect of
obstacles of various shapes upon diffusion. This resulted in a decrease of the estimated
critical fraction P crit of oxides, bringing it to somewhat closer agreement with Rapp
(1961)’s experimental estimate for the O/In/In2O3 system in an Ag matrix. 1

Leblond (2011)’s analysis, even in its refined version (Leblond et al., 2013), suffered from
inevitable drawbacks tied to the severely restrictive hypotheses originally introduced by
Wagner (1959), some of which were recalled above. It is the aim of this paper to try and
remove at least two of these restrictions. The first is that Wagner (1959)’s model is basi-
cally limited to small concentrations of elements and fractions of oxides, whereas Leblond
(2011)’s and Leblond et al. (2013)’s estimates of the critical oxide fraction P crit derived
from the model are comparable to unity; which raises an issue of internal consistency of
the model. The second severe restriction of Wagner (1959)’s analysis relates to limita-
tion to oxides having an extremely low solubility product, implying concentration of the
zone where oxidation actually occurs at a given instant within some precipitation front
of measure zero. Such a hypothesis is reasonable for some systems, like O/Al/Al2O3 in a

1 There are many experimental estimates in the metallurgical literature of the critical core

fraction of oxidizable element governing the transition, but Rapp (1961)’s work seems the only
one that provides an estimate of the critical fraction of oxides.
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Fe matrix, but not for many others, like for instance O/Mn/MnO in a Fe matrix; for the
latter type of system the active oxidation zone is spread over some interval of nonzero,
finite length.

The paper is organized as follows:

• Section 2 presents a general model of coupled diffusion of chemical elements and forma-
tion of “precipitate” phases within solid matrices, accounting for possible large fractions
of these phases. This model is similar to that proposed by Brunac et al. (2010), but for
somewhat modified right-hand sides of the diffusion equations.

• Section 3 extends, in the case of an infinitesimally small solubility product, Wagner
(1959)’s and Leblond (2011); Leblond et al. (2013)’s solution to the improved model of
Section 2 accounting for large fractions of precipitates. The solution is still accessible
by purely analytical means; it leads to a new and smaller value of the critical fraction
of oxides governing the transition from internal to external oxidation.

• Section 4 considers the more complex case of a nonzero, finite solubility product of
the oxide. The problem is then no longer amenable to some fully analytical solution.
The method of solution proposed, inspired from that of Huin et al. (2005) for a simpler
version of the problem, consists of a “mixed” analytical/numerical approach. The results
obtained, though promising, raise some issues pertaining to phenomena occurring near
the surface of the plate; these issues are intimately connected to the basic hypothesis of
instantaneous local thermodynamic equilibrium between the phases, made in all works
on the topic up to now.

• In Section 5, it is finally shown qualitatively that the replacement of this hypothesis
through some kinetic law of precipitation of oxides should solve at least some of the
issues evidenced in Section 4. The prototype kinetic equation used for this purpose does
not make any claim on physical realism and is used for purely pedagogical reasons; the
development of coupled equations of diffusion and precipitation involving a realistic
model of nucleation and growth of oxides is left for future work.

2 Extended model of coupled diffusion/precipitation accounting for large
fractions of precipitates

This Section is essentially based on the work of Brunac et al. (2010). However the right-
hand sides of the diffusion equations will differ somewhat from those in the previous work,
for reasons that will be explained.

2.1 General hypotheses and notations

The material considered consists of a matrix phase (in practice generally Fe) denoted M,
which contains mobile, dissolved chemical elements plus a number of immobile, “precipi-
tate” phases collectively denoted P. The representative volume elements (RVEs) consid-
ered, a prototype of which is schematized in Figure 3, are sufficiently large to each contain
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the M phase plus all types of P phases, but nevertheless small enough for local variations
of chemical composition to be negligible within each of them.

Precipitate
phases

Matrix

Fig. 3. Schematic RVE considered by the model.

The M phase contains Ne distinct types of chemical elements denoted with a Latin index
i = 1, ..., Ne. The atomic mass, total mass fraction (in the M and P phases) and mass
concentration (in the M phase) of element i are denoted mi, Fi and Ci respectively. The
total mass fractions Fi are defined in reference to the total mass of the RVE (M+P phases)
- this is natural since the atoms of each chemical species are potentially present in all types
of phases. On the other hand the mass concentrations Ci are defined in reference to the
mass of the sole M phase contained within the RVE - as they must in order to possess a
thermodynamic significance warranting their appearance in the laws of mass action, see
Subsection 2.4 below. The Ci’s are assumed to be much smaller than unity (hypothesis of
dilute solution), but the Fi’s are not, because the fractions of the P phases may be large;
see below.

Within the M phase are embedded Np distinct P phases, denoted with a Greek index
α = 1, ..., Np. The molar mass, solubility product and mass fraction - defined in reference
to the total mass of the RVE - of phase α are denoted Mα, Kα and Pα, respectively.
The Pα’s may be comparable to unity (possibly large fractions of precipitate phases). The
stoechiometric coefficient of element i in phase α (number of atoms of this element per
molecule of this phase) is denoted Nαi.

2

2.2 Balance equations

When establishing the balance equations, one must beware of the different reference
masses used in the definitions of the total mass fractions Fi of the elements and their
mass concentrations Ci in the matrix. Consider a volume of material of unit mass of
material containing all phases:

• The total mass of element i in this volume is Fi so that the total number of moles of
this element is Fi/mi.

2 In the work of Leblond et al. (2017), more complex non-stoechiometric precipitate phases with
variable chemical composition were envisaged. The analyses expounded in the present work do
not require considering such complexities.

6



• The cumulated mass of all P phases is
∑Np

α=1 Pα so that the mass of the M phase is
1−∑Np

α=1 Pα; within the latter phase, the mass concentration of element i is Ci so that

the mass of this element is
(

1−∑Np

α=1 Pα

)

Ci, and the corresponding number of moles

is
(

1−∑Np

α=1 Pα

)

Ci/mi.

• The mass of phase α is Pα, so that there are Pα/Mα moles of this phase, containing
NαiPα/Mα moles of element i.

It follows from these elements that the balance equation of element i reads

Fi

mi

=



1−
Np
∑

α=1

Pα





Ci

mi

+
Np
∑

α=1

Nαi
Pα

Mα

(i = 1, ..., Ne). (1)

2.3 Diffusion equations

The flux-vector of element i is classically assumed to be of the form −Di gradCi, where
Di is some coefficient. 3 Expressing the rate of the total mass fraction of element i within
the RVE as minus the integral of this flux over its boundary and using the divergence
theorem, one gets the diffusion equation of this element in the form

∂Fi

∂t
= div

(

Di gradCi

)

(i = 1, ..., Ne). (2)

It remains to relate the coefficients Di to the standard diffusion coefficients Di of elements.
In order to do so, consider the special case where the fractions Pα of all P phases are
constant in time and space (inactive and uniform precipitation). Then by equation (1),

∂Fi/∂t =
(

1−∑Np

α=1 Pα

)

∂Ci/∂t so that equation (2) takes the form

∂Ci

∂t
=

1

1−∑Np

α=1 Pα

div
(

Di gradCi

)

= div

(

Di

1−∑Np

α=1 Pα

gradCi

)

(i = 1, ..., Ne).

Comparison with the equation defining the standard diffusion coefficient Di, ∂Ci/∂t =
div (Di gradCi), yields

Di =



1−
Np
∑

α=1

Pα



Di (i = 1, ..., Ne). (3)

It is worth noting here that in Brunac et al. (2010)’s work, the reasoning just expounded
was absent and as a consequence the coefficients Di were merely, and wrongly, identified
to the Di’s.

The standard diffusion coefficients Di may themselves depend upon the fractions of precip-
itates, since the P phases may act as barriers to diffusion; this effect may be schematized

3 In a more general formulation, the flux-vector of a given element is considered to be pro-
portional to the gradient of its activity, that is the product of its concentration and Henry’s

coefficient. Again, such complexities need not be envisaged here.
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through a formula for the Di’s of the type

Di = f(P)D0
i (i = 1, ..., Ne) (4)

where the D0
i ’s are the diffusion coefficients in the absence of P phases, and f(P) a

function of the vector P ≡ (Pα)α=1,...,Np
of their fractions. Several formulae have been

proposed for this function. An old but appealing suggestion of Kirkaldy (1969) consists
of simply shrinking diffusion coefficients through multiplication by the volume fraction of
the M phase; this leads, upon a simple calculation, to the following formula (Brunac et
al., 2010):

f(P) =
1−∑Np

α=1 Pα

1 +
∑Np

α=1 (vα/vM − 1)Pα

(5)

where vM and the vα’s denote the specific volumes (volumes per unit mass, inverses of the
specific masses) of the M and various P phases, respectively. But homogenization theories
show that expression (5) only represents an upper estimate of the function f(P). Leblond
et al. (2013) proposed the following more accurate formula, on the basis of finite element
simulations of diffusion in a RVE in the presence of impenetrable obstacles having the
shape of oblate spheroids with axis parallel to the direction of diffusion (schematically
representing precipitates located in the sub-surface of an oxidized plate):

f(P ) =

[

1− P

1 + (vP/vM − 1)P

]1+0.55W

. (6)

In this formula P denotes the mass fraction of the (unique) P phase defined by the
obstacles, vP its specific volume, and W the shape factor of the obstacles, that is the ratio
of their major to minor axes. (Note that the term [...] represents the volume fraction of
the M phase like in equation (5)).

Combination of equations (2), (3) and (4) yields the final form of the diffusion equations:

∂Fi

∂t
= div







1−
Np
∑

α=1

Pα



 f(P)D0
i gradCi



 (i = 1, ..., Ne) (7)

with f(P) given by equation (5) or (6). These equations differ from those of Brunac et

al. (2010) through the factor
(

1−∑Np

α=1 Pα

)

in the right-hand side, which was overlooked
by these authors for the reason explained above. Note that this factor does not arise from
the role of barriers to diffusion played by the P phases, but simply from the different
reference masses used in the definitions of the variables Fi and Ci appearing in the left-
and right-hand sides, respectively.

2.4 Laws of mass action

Precipitation of P phases is described in a global way through the laws of mass action,
which express the hypothesis of instantaneous local thermodynamic equilibrium between
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the M and various P phases:







































Pα = 0 and
Ne
∏

i=1

CNiα

i ≤ Kα

or

Pα > 0 and
Ne
∏

i=1

CNαi

i = Kα

(α = 1, 2, ..., Np). (8)

Note that the mass fractions Ci here must be defined by dividing the mass of atoms of
element i in the M phase by the mass of this sole phase (not by the total mass of all
phases), in order to represent the concentrations of elements within the matrix.

2.5 Boundary conditions

For each element i, there are two possible basic boundary conditions :



























Ci = C imp
i

or

gradCi .n = 0

on ∂Ω (9)

where C imp
i denotes some imposed value of Ci (enforced for instance through contact

with an external atmosphere containing element i), and n the unit normal vector to the
boundary ∂Ω of the domain considered. For each element, boundary conditions may also
be of mixed type, that is equation (9)1 on some part of ∂Ω and (9)2 on the complementary
part.

3 Analytical solution of the internal oxidation problem for an oxide with an
infinitesimally small solubility product

The mathematical treatment in this Section is analogous to that in the works of Leblond
(2011) and Leblond et al. (2013) (derived itself from that in the work of Wagner (1959)),
but with somewhat more complex governing equations, owing to the incorporation into
the model of possibly large fractions of P phases.

3.1 Generalities

We consider Wagner (1959)’s problem sketched in the Introduction, but with more general
hypotheses detailed below. All quantities of interest are looked for in the form of functions
of the sole variable u ≡ x/

√
t. With such a form, an important consequence of the reduc-

tion of the zone where oxidation occurs at a given instant to an infinitely thin front is that
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the mass fraction P of oxides in the oxidized zone 0 ≤ x < ξ(t) is a constant independent
of x and t. Indeed at a given time t and some given point x within the oxidized zone at
this time, 0 ≤ x < ξ(t), oxidation no longer occurs since the point has already been swept
by the front; hence P no longer evolves, ∂P/∂t = 0, so that dP/du = 0, and it follows that
∂P/∂x = 0 also. This is the basic feature - illustrated in Figure 2 above - that permits to
develop an analytic solution of the problem in spite of its non-linearity.

3.2 Equations of the problem

In the case considered, the general mass balance equations (1) take the following specific
form:











FO = (1− P )CO + mO

MP
P for 0 ≤ x < ξ(t)

FA = CA for ξ(t) < x < +∞
(10)

where FO and FA denote the total mass fractions of elements O and A, and mO and
MP the molar masses of O and the oxide OAν , respectively. Account has been taken in
these equations of the fact that the value of the fraction of precipitated oxides is P in the
oxidized zone 0 ≤ x < ξ(t), and 0 in the non-oxidized zone ξ(t) < x < +∞.

The general diffusion equations (7) take the following form for element O:

∂FO

∂t
= (1−P )∂CO

∂t
=

∂

∂x

[

(1− P )f(P )D0
O

∂CO

∂x

]

= (1−P )f(P )D0
O

∂2CO

∂x2
for 0 ≤ x < ξ(t)

where D0
O denotes the diffusion coefficient of O in the absence of oxides acting as obstacles;

use has been made here of the fact that P depends neither on x nor on t. This equation
simplifies into

∂CO

∂t
= f(P )D0

O

∂2CO

∂x2
for 0 ≤ x < ξ(t). (11)

On the other hand the general diffusion equations (7) reduce for element A to

∂CA

∂t
= D0

A

∂2CA

∂x2
for ξ(t) < x < +∞ (12)

where D0
A denotes the diffusion coefficient of A unperturbed by oxides (absent from the

region ξ(t) < x < +∞).

The diffusion equations (11, 12) are supplemented with the following initial and boundary
conditions:










CO = 0 for 0 < x < +∞, t = 0

CA = Ccore
A for 0 < x < +∞, t = 0

;











CO = Csurf
O for x = 0, 0 ≤ t < +∞

CA = Ccore
A for x→ +∞, 0 ≤ t < +∞.

(13)

These equations do not permit to determine the position ξ(t) of the oxidation front. The
key to doing this is to write an equality of fluxes at the position x = ξ(t). At x = ξ(t)−,
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there is a mass flux of O, oriented toward the right, equal to −(1 − P )f(P )D0
O ∂CO/∂x

in absolute value, corresponding to a molar flux of −(1− P )f(P )(D0
O/mO)(∂CO/∂x). At

x = ξ(t)+, there is a mass flux of A, oriented toward the left, equal to D0
A ∂CA/∂x in

absolute value, corresponding to a molar flux of (D0
A/mA)(∂CA/∂x) where mA denotes

the molar mass of A. Since both of these fluxes serve to form molecules of chemical formula
OAν , the molar flux of A must be ν times that of O; that is, the condition

D0
A

mA

∂CA

∂x

[

ξ(t)+, t
]

= −ν(1 − P )f(P )
D0

O

mO

∂CO

∂x

[

ξ(t)−, t
]

for 0 < t < +∞ (14)

must hold.

It finally remains to explain how to calculate the mass fraction P of oxides in the oxidized
zone 0 ≤ x < ξ(t). This is most easily done through some intuitive reasoning. 4 Consider a
small time-interval [t, t+δt] during which the oxidation front moves toward the right by the
amount δξ = ξ̇(t) δt. The input mass flux of A (per unit time) into the zone [ξ(t), ξ(t)+δξ]
isD0

A∂CA/∂x. Integrated over the time-interval [t, t+δt], this flux becomes D0
A(∂CA/∂x)δt

and generates an increase ∆FA of the mass fraction of A in the zone; since this increase is
spread over the distance δξ, its value is ∆FA = [D0

A(∂CA/∂x)δt]/δξ = (D0
A/ξ̇)(∂CA/∂x).

Now ∆FA is entirely consumed in formation of oxides since the concentration CA of A
in the M phase is zero at the oxidation front; it therefore results, by equation (1), in an
increase ∆P = (MP/mA)(∆FA/ν) of the mass fraction of oxides in the zone [ξ(t), ξ(t)+δξ].
Since this zone is free of oxides at time t, the mass fraction of oxides it contains at time
t+ δt is simply

P = ∆P =
MP

mA

∆FA

ν
=

1

ν

MP

mA

D0
A

ξ̇(t)

∂CA

∂x

[

ξ(t)+, t
]

. (15)

The dependence of P upon t in this equation is only apparent, as will be clear from the
solution developed below.

3.3 Analytical solution

In Wagner (1959)’s original treatment of the problem, which disregarded both the effect
of possibly large fractions of oxides and their role as diffusion barriers, the factors f(P )
and (1 − P )f(P ) were absent from equations (11) and (14). Their presence in this work
makes the solution of the problem more difficult, since these terms are unknown a priori
- the determination of P being an integral part of the problem.

The key to this difficulty is to formally consider, in a first step, the quantity P as known
and fixed; the solution may then be developed following the same lines as in the work of
Wagner (1959). In a second step, equation (15) will provide, rather than the explicit value
of P like in Wagner (1959)’s work, some (nonlinear) equation on this quantity, which will
“close the loop”.

4 The lack of rigor of this reasoning is only apparent; it may be given a completely formal, much
heavier but totally rigorous presentation.
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Step 1. The position ξ(t) of the oxidation front is looked for in the form

ξ(t) = 2γ
√

f(P )D0
O t (16)

where γ is a positive constant to be determined. With this notation, the solutions of the
diffusion equation (11) of O with conditions (13)1,3 plus the requirement that CO(x, t) be
zero at x = ξ(t)−, and of the diffusion equation (12) of A with conditions (13)2,4 plus the
requirement that CA(x, t) be zero at x = ξ(t)+, are elementary and read:











































CO(x, t)

Csurf
O

= 1−
erf

[

x

2
√

f(P )D0
O
t

]

erf γ
for 0 ≤ x ≤ ξ(t)

CA(x, t)

Ccore
A

= 1−
erfc

[

x

2
√

D0
A
t

]

erfc
(

γ
√

φ(P )
) for ξ(t) ≤ x < +∞

where φ(P ) ≡ f(P )
D0

O

D0
A

,

(17)
with erf and erfc denoting the classical error and complementary error functions. Condi-
tion (14) then provides the following equation on γ, which implicitly defines this quantity:

eγ
2

erf γ
√

φ(P ) eγ2φ(P ) erfc(γ
√

φ(P ))
= ν(1− P )

mA

mO

Csurf
O

Ccore
A

. (18)

Step 2. Equation (15) then yields

P =
MP

mA

Ccore
A

ν

e−γ2φ(P )

γ
√

πφ(P ) erfc
(

γ
√

φ(P )
) (19)

where the right-hand side depends upon P through the quantity φ(P ) defined by equation
(17)3.

3.4 A useful approximation

The focus of this paper is on the transition from internal to external oxidation. In general,
for formation of some external scale of oxides to be possible, the fraction P of oxides in the
oxidized zone must be comparable to unity, not much smaller than it. Since in practical
situations the core fraction Ccore

A of A is always small, equation (19) implies that the
quantity

e−γ2φ(P )

γ
√

φ(P ) erfc
(

γ
√

φ(P )
)

must then be much larger than unity. Now using the asymptotic expansion of the function
erfc near infinity, available from many sources, one easily sees that this cannot occur for

values of the argument γ
√

φ(P ) of order, or much larger than, unity; that is, this argument

must be much smaller than unity. Since in practice the quantity φ(P ) defined by equation

12



(17)3 is large (oxygen diffuses much more quickly than the oxidizable element), this implies
that the quantity γ itself must be even smaller.

We therefore introduce the following restrictive hypotheses:

γ ≪ 1 ; γ
√

φ(P ) ≪ 1. (20)

In equation (18) on γ, one may then use the approximations eγ
2 ≃ 1, erf γ ≃ 2√

π
γ,

eγ
2φ(P ) ≃ 1, erfc(γ

√

φ(P )) ≃ 1, leading to the following explicit expression of γ:

γ ≃ ν

2
(1− P )

mA

mO

Csurf
O

Ccore
A

√

πφ(P ) . (21)

Equation (19) then yields upon use of the same approximations:

P ≃ MP

mA

Ccore
A

ν

1

γ
√

πφ(P )
≃ 2

πν2
1

(1− P )f(P )

MP mO

m2
A

D0
A

D0
O

(Ccore
A )2

Csurf
O

(22)

where equation (17)3 has been used.

It must finally be noted that in some practical cases, the fraction P of oxides in the oxidized
zone is not sufficiently large to warrant full satisfaction of the second of hypotheses (20).
As a result, formulae (21), (22) plus those derived below from them, and notably the
expression (27) of the critical fraction P crit of oxides, only represent rough approximations.
We shall see an example of such a situation in Subsection 4.6 below.

3.5 Transition from internal to external oxidation

Although the nonlinear equation (22) on P differs from those studied in the works of
Leblond (2011) and Leblond et al. (2013), the discussion of the existence of solutions
basically follows the same lines. Define a parameter χ and a function f (P ) by the formulae

χ ≡ πν2

2

m2
A

MP mO

D0
O

D0
A

Csurf
O

(Ccore
A )2

; f (P ) ≡ (1− P )f(P ). (23)

(Note that χ is independent of the unknowns of the problem and completely determined
by the data). Then equation (22) takes the form

χP =
1

f (P )
. (24)

This equation on P is best discussed graphically, see Figure 4.

When P increases from 0 to 1, the function 1/f (P ) increases from 1 to +∞. (Note that
f (0) = f(0) = 1 since there can be no reduction of diffusion coefficients in the absence of
P phase). Therefore equation (24) may have zero, one or two solutions in P , depending
on the value of χ. Gradually change the conditions of the problem, making them more

13



1/ f(P)

critχ P

critχχP      >χ

critχχχP      <

1 P

1

0
0 P critcrit

Fig. 4. Graphical discussion of the existence of solutions to equation (24).

and more favorable to external oxidation by gradually increasing the core value Ccore
A of

the concentration of oxidizable element. The definition (23)1 of χ implies that it gradually
decreases from infinity.

• When Ccore
A is very small, χ is very large; the almost vertical straight line of slope χ cuts

the curve representing the function 1/f (P ) near to the origin, thus defining a solution
P ≪ 1. (The other solution close to unity has no physical relevance since it cannot be
reached continuously through some gradual increase of Ccore

A ).
• When Ccore

A increases, the slope of the straight line decreases, so that its first intersection
with the curve moves away from the origin. When χ reaches some critical value χcrit,
the two points of intersection of the straight line and the curve become identical; P
reaches its maximum possible value P crit.

• When Ccore
A becomes sufficiently large for χ to become smaller than χcrit, no solution

in P exists any more. The only possible solution must be of a different type, with an
infinite concentration of oxides on the surface (external oxidation).

The critical values χcrit and P crit are determined by the requirement that equation (24)
possess a double solution in P :



















χcritP crit − 1

f (P crit)
= 0

d

dP

[

χcritP − 1

f (P )

]

P=P crit

= 0
⇒



























χcritP crit =
1

f (P crit)

χcrit = − f
′
(P crit)

[

f (P crit)
]2 .

Elimination of χcrit yields the equation determining the value of P crit, from which follows
that of χcrit:



























f
′
(P crit)

f (P crit)
+

1

P crit
=
d
(

ln f
)

dP
(P crit) +

1

P crit
= 0

χcrit =
1

P critf (P crit)
.

(25)
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The solution in P crit of equation (25)1 may be calculated analytically provided the expres-
sion of the function f(P ) is simple enough. For instance, for the expression (5) derived
from the simplest assumption that diffusion coefficients are reduced proportionally to the
volume fraction of the M phase, equation (25)1 yields, upon a straightforward calculation,
the following algebraic equation of the second degree:

2
(

vP
vM

− 1
)

(P crit)2 + 3P crit − 1 = 0 (26)

where vP denotes the specific volume of the oxidized P phase. The solution of this equation
is (excluding the other solution which is physically meaningless, being either smaller than
0 or larger than 1):

P crit =
−3 +

√

8vP/vM + 1

4(vP/vM − 1)
=

2

3 +
√

8vP/vM + 1
. (27)

The value of χcrit then follows from equation (25)2.

It must be emphasized again that in come cases equation (27) only provides a modestly
accurate approximation of P crit, because of lack of satisfaction of the second of hypotheses
(20). But its major advantage, in spite of this slight deficiency, lies in its explicitness and
simplicity.

3.6 Discussion

The first remark to be made is that somewhat paradoxically, the transition from internal
to external oxidation does not occur when the fraction P of oxides in the oxidized zone
reaches unity, but some smaller value. This results from the “avalanche effect” depicted
in the Introduction: if oxidation near the surface becomes too important, this reduces
the penetration of oxygen into the plate through reduction of its diffusion coefficient,
which in turn further enhances oxidation and reduces penetration of oxygen, etc. It must
be stressed, however, that this result does not mean that the external surface is only
partially covered by oxides in the external oxidation regime. Of course, external oxidation
implies formation of some superficial scale of oxides which completely covers the surface;
but our result implies that the transition from partial to total coverage by oxides does
not occur in a smooth way, but abruptly and discontinuously. When the core value Ccore

A

of the fraction of oxidizable element is large enough for the fraction P of oxides to reach
its critical value P crit, even an infinitesimal increase of Ccore

A results in a discontinuous,
catastrophic increase of P which only ceases when it reaches unity.

The second remark is that quite remarkably, the value of P crit predicted by equation
(27) only depends on the specific volumes of the M and P phases, and is independent of
the other physical parameters of the problem, including the diffusion coefficients and the
solubility product. For the solubility product this is not surprising, insofar as it simply
disappears, if sufficiently small, from the basic equations of the problem (11-15); but for
the diffusion coefficients the property is far from trivial. In contrast, the critical value of
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the core fraction Ccore
A of the oxidizable element, which results from the definition (23)1

of χ and the critical value χcrit of this quantity, equation (25)2, depends on all these
parameters and notably the diffusion coefficients.

The third remark pertains to the comparison with the work of Leblond (2011). The value
of P crit obtained in that work was

1

1 +
√

vP/vM
,

which is larger than the value predicted by equation (27); the discrepancy may be notable,
as the example given below will show. The difference is due to the fact that the equations
used by Leblond (2011) corresponded to Wagner (1959)’s original formulation intrinsically
limited to small fractions of P phases, so that the factor (1−P ) was absent from both the
balance equation (10)1 of oxygen and the condition (14) connecting fluxes at the oxidation
front.

The fourth and final remark relates to comparison between the theoretical prediction of
the transition and experimental observations. The metallurgical literature is replete with
values of the critical value of the core fraction of oxidizable element, for various systems
under diverse conditions. Unfortunately, as remarked above, the theoretical estimate of
this critical value depends on the diffusion coefficients, which as a rule are known only with
a considerable margin of error. Comparisons between experimental and theoretical critical
values of Ccrit

A would therefore be of modest significance, and comparisons of theoretical
and experimental values of P crit are much preferable. Unfortunately, as already noted
in the Introduction, such experimental values seem to be limited to Rapp (1961)’s old
estimate of 0.30 for the critical volume fraction of In2O3 for the O/In/In2O3 system in
an Ag matrix. The specific volumes of Ag and In2O3 are vM = 95 × 10−6m3 kg−1 and
vP = 139 × 10−6m3 kg−1, respectively. For these values equation (27) predicts a critical
mass fraction of In2O3 of 0.30, corresponding to a volume fraction of 0.38, in reasonable
agreement with Rapp (1961)’s value of 0.30. In contrast Leblond (2011)’s estimate of the
critical mass fraction of In2O3 amounts to 0.45, corresponding to a volume fraction of 0.55;
this value is almost twice larger than that of Rapp (1961). The improvement brought to
the prediction of the transition by use of a diffusion/precipitation model incorporating
possible large fractions of P phases, such as that of Section 2, is therefore clear.

4 Semi-analytical solution of the oxidation problem for an oxide with a
nonzero solubility product

The theoretical treatment of the problem of the transition from internal to external ox-
idation expounded in the preceding Section, based on the model of Section 2 including
the possibility of large fractions of P phases, may be regarded as satisfactory. However
this treatment was limited to the case of an oxide with an infinitesimally small solubil-
ity product K. As mentioned in the Introduction, whereas this condition of smallness is
reasonably satisfied for some systems like O/Al/Al2O3 in a Fe matrix, it is not for some
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others like O/Mn/MnO in a Fe matrix. It is therefore necessary to extend the treatment
to finite, nonzero values of K.

The mathematical analysis here will extend that of Huin et al. (2005) of a simpler version
of the problem accounting for neither the reduction of diffusion coefficients due to presence
of oxides nor the effect of possibly large fractions of P phases. Introducing such effects
will result in considerable extra complexities. In addition, the new solution will exhibit
some qualitatively new features, as will be seen.

4.1 Presentation of the new problem

Many features of the problem for a nonzero K are similar to those for a zero K. Such
features include diffusion of O toward the interior of the plate, diffusion of A toward its
exterior, and formation of molecules of formula OAν . But the nonzero value of K implies
that O and A can now coexist in the M phase. As a result, the zone where oxidation
occurs at a given time no longer reduces to a point, but extends over some region; as a
consequence the fraction P of oxides now depends on position and time. (Recall that these
two properties are connected, as was shown in Subsection 3.1).

In theory, the oxidized region extends from the surface of the plate to some a priori
unknown position; it does not extend to infinity since there is no oxygen there. However,
assuming that it does, that is that the condition COC

ν
A = K is satisfied everywhere, only

introduces a minor error; indeed the value of the fictitious core fraction of O deduced
from this equality, Ccore

O ≡ K/(Ccore
A )ν , is in practice “close to zero” in the sense of being

much smaller than the value Csurf
O imposed on the surface. We shall therefore make this

assumption in the sequel, thereby simplifying the treatment by eliminating the need for
determination of the endpoint of the oxidized zone, without significantly altering the
results.

It will also be assumed that the reduction of diffusion coefficients, due to the presence
of oxides acting as barriers, may be different for O and A; the importance of such an
additional “degree of freedom” of the model will be clear in the sequel. This assumption
is physically plausible since the extent of the reduction, for a given value of P , depends
on the shape of the individual oxides, see formula (6); and the oxides formed close to the
surface (where O chiefly diffuses) and deeper in the sheet (where A chiefly diffuses) are
precisely bound to assume different shapes - flat ellipsoids near the surface versus spheres
farther away.

4.2 Equations of the new problem

In order to lighten the appearance of equations below, we introduce the following nota-
tions:

α ≡ mO

MP

; β ≡ mA

MP

. (28)
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The general mass balance equations (1) then simply read, for elements O and A respec-
tively:











FO = (1− P )CO + αP

FA = (1− P )CA + βνP.
(29)

Also, fO(P ) and fA(P ) denoting - like in equation (4) - the functions characterizing the
respective reductions of the diffusion coefficients of O and A, we define - like in equation
(23)2 - the functions











fO(P ) ≡ (1− P )fO(P )

fA(P ) ≡ (1− P )fA(P ).
(30)

With these notations the general diffusion equations (7) take the following form:























∂FO

∂t
=

∂

∂t
[(1− P )CO + αP ] = D0

O

∂

∂x

[

fO(P )
∂CO

∂x

]

∂FA

∂t
=

∂

∂t
[(1− P )CA + βνP ] = D0

A

∂

∂x

[

fA(P )
∂CA

∂t

]

.

(31)

These equations are completed by the condition

COC
ν
A = K (32)

expressing the hypothesis of local thermodynamic equilibrium with oxides present every-
where in the sheet, as discussed above.

Finally the initial and boundary conditions read











CO = Ccore
O ≡ K

(Ccore
A

)ν
for 0 < x < +∞, t = 0

CA = Ccore
A for 0 < x < +∞, t = 0

(33)

and










CO = Csurf
O for x = 0, 0 ≤ t < +∞

CA = Ccore
A for x→ +∞, 0 ≤ t < +∞.

(34)

4.3 Semi-analytical solution

Like in the case of an infinitesimally small K, we shall look for a solution depending on x
and t only through the combination x/

√
t. More precisely we define a new variable u by

the formula
u ≡ x

2γ
√

D0
O t

(35)

where γ is an a priori free positive parameter, the value of which will be fixed later.
This parameter resembles, though it is not identical to, that defined by equation (16) in
the case of an infinitesimally small K. Its role is to perform an arbitrary homothetical
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transformation of space, permitting to always shrink or expand that “interesting” part of
the x-axis where the solution varies significantly, to the same fixed part of the u-axis.

All unknowns being considered as functions of u from now on, simple (though tedious)
calculations show that the diffusion equations (31) reduce to















fO(P )C
′′
O + 2γ2u(1− P )C ′

O +
[

fO
′
(P )C ′

O + 2γ2u(α− CO)
]

P ′ = 0

fA(P )C
′′
A + 2γ2ψu(1− P )C ′

A +
[

fA
′
(P )C ′

A + 2γ2ψu(βν − CA)
]

P ′ = 0

, ψ ≡ D0
O

D0
A

,

(36)
where the symbols ′ and ′′ denote first- and second-derivatives with respect to u, respec-
tively - except when applied to the functions fO and fA, for which they of course denote
derivatives with respect to P . But the variable CA is completely tied to CO through equa-
tion (32); hence equation (36)2 may be rewritten in terms of CO and its derivatives. The
result reads:

fA(P )

[

C ′′
O −

(

1 +
1

ν

)

C ′2
O

CO

]

+ 2γ2ψu(1− P )C ′
O

+

[

fA
′
(P )C ′

O + 2γ2ψνu

(

1− βν
(

CO

K

)1/ν
)

CO

]

P ′ = 0.

(37)

Equations (36)1 and (37) are coupled, nonlinear ordinary differential equations (ODEs)
which both involve the unknowns CO, C

′
O, C

′′
O, P and P ′. Unfortunately they do not

provide separate and explicit expressions of the highest-order derivatives, C ′′
O and P ′. But

this can easily be remedied by eliminating P ′ between these equations; the output is an
explicit expression of C ′′

O in the form of a fraction:

C ′′
O =

N(CO, C
′
O, P )

D(CO, C
′
O, P )

(38)

where 5



















































N(CO, C
′
O, P ) ≡

[

fO
′
(P )C ′

O + 2γ2u(α− CO)
]

[

fA(P )
(

1 + 1
ν

)

C′2
O

CO
− 2γ2ψu(1− P )C ′

O

]

+2γ2u(1− P )C ′
O

[

fA
′
(P )C ′

O + 2γ2ψνu
(

1− βν
(

CO

K

)1/ν
)

CO

]

D(CO, C
′
O, P ) ≡

[

fO
′
(P )fA(P )− fO(P )fA

′
(P )

]

C ′
O

+2γ2u
[

fA(P )(α− CO) + ψνfO(P )
(

βν
(

CO

K

)1/ν − 1
)

CO

]

.

(39)
Once C ′′

O is known, P ′ is easily deduced from equation (36)1:

P ′ = −fO(P )C
′′
O + 2γ2u(1− P )C ′

O

fO
′
(P )C ′

O + 2γ2u(α− CO)
= −

fO(P )
N(CO,C′

O
,P )

D(CO,C′

O
,P )

+ 2γ2u(1− P )C ′
O

fO
′
(P )C ′

O + 2γ2u(α− CO)
. (40)

5 The expression of the numerator N(CO, C
′
O, P ) here may be developed in a more explicit way,

but with no gain in either formal simplicity or physical insight.
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Equations (38) and (40) are coupled, nonlinear ODEs on the functions CO(u) and P (u),
of second order in CO and first order in P .

4.4 Asymptotic solution near the surface

We shall now see that some restrictions on the given parameters of the problem are needed
in order to warrant a physically reasonable solution near the surface of the plate (u→ 0+).

In order to be reasonable, the solution must satisfy the following properties:

• C ′
O(u = 0) should be finite (since it is tied to the input flux of oxygen which cannot

physically be infinite);
• P (u = 0) should be finite (since it cannot exceed unity by definition).

Let us assume these properties to be satisfied, and examine whether or not a contradiction
arises with the expressions (38) and (40) of C ′′

O and P ′.

The first task is to examine the expression (39)2 of the denominator D(CO, C
′
O, P ) in

equation (38), and see whether it may or may not vanish in the limit u → 0+. In this

limit D(CO, C
′
O, P ) reduces to

[

fO
′
(P )fA(P )− fO(P )fA

′
(P )

]

C ′
O; this expression is zero

if, and only if,

fO
′
(P )fA(P )− fO(P )fA

′
(P ) = 0 ⇔ fO

′
(P )

fO(P )
− fA

′
(P )

fA(P )
= 0 ⇔

ln[fO(P )]− ln[fA(P )] = Cst. ⇔ fO(P )

fA(P )
= Cst.

But the last constant can only be unity then because of the conditions fO(0) = fA(0) = 1
(there is no reduction of the diffusion coefficients in the absence of oxides); which entails
that necessarily fO(P ) = fA(P ). The conclusion is that in the limit u → 0+, D(CO, C

′
O, P )

is zero if, and only if, the functions fO and fA (or equivalently the functions fO and fA)
are identical.

It is thus necessary to distinguish between two cases:

• Case 1: the functions fO and fA are identical. Then the denominator D(CO, C
′
O, P ) is

zero in the limit u → 0+, so that it is of order 1 in u (see equation (39)2). Hence by
equation (38) where N(CO, C

′
O, P ) is finite in the limit u → 0+, C ′′

O is asymptotically
of the form Cst./u, so that C ′

O is of the form Cst. × ln u and diverges to infinity for
u → 0+. This type of solution contradicts the hypothesis made of a finite C ′

O at u = 0,
and is physically unacceptable because it implies an infinite input flux of oxygen on
the surface. (In addition, equation (40) then implies that P ′ diverges like 1

u lnu
and P

like ln(− ln u), which is equally contradictory with the hypotheses made and no more
physically acceptable).

• Case 2: the functions fO and fA are distinct. Then the denominator D(CO, C
′
O, P ) does

not vanish in the limit u → 0+, so that C ′′
O goes to a finite constant in this limit; it
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follows from integration that C ′
O also goes to some finite value, as desired. Furthermore

by equation (40), P ′ goes to a finite limit and consequently so does also P . These
properties are compatible with the hypotheses made and physically reasonable.

The conclusion is that the functions fO and fA, depicting the reduction of the diffusion
coefficients of O and A due to presence of oxides acting as barriers, must be assumed to
be different for the solution to make sense. (This point will be further commented below).
Such a hypothesis will be made in the sequel.

4.5 Numerical algorithm

The formidable complexity of the system (38, 40) of coupled nonlinear ODEs dashes any
hope of solving them analytically. However they are expressed in a format perfectly fit
for numerical integration using standard methods, for instance that of Runge-Kutta of
order 4. With such a method, one must prescribe the values of CO, C

′
O and P at u = 0;

integration then yields the values of these functions up to large values of u approximating
infinity.

However one may take advantage here of the extra degree of freedom brought into the
equations by introducing the free parameter γ in the definition (35) of the variable u.
Indeed, instead of fixing γ and varying C ′

O(u = 0), one may fix C ′
O(u = 0) and vary γ; the

value C ′
O(u = 0) = −1, more specifically, will be used in all simulations discussed below.

The advantage of such a procedure and value is that they warrant that the region of the
u-axis where CO (and consequently P ) vary significantly, will always be of size comparable
to unity, thereby permitting to use a single mesh for all simulations.

One difficulty, however, is that among the three quantities CO(u = 0), γ and P (u = 0),
only the first one, CO(u = 0) = Csurf

O , is known and prescribed by the data of the
problem. The other two, γ and P (u = 0), are not; but two quantities are known instead
at infinity: P (u = +∞) which must be zero - there are no oxides deep in the sheet - and
CA(u = +∞) = [K/CO(u = +∞)]1/ν , which must be identical to the value Ccore

A imposed
by the grade of the steel.

Let us momentarily forget about the satisfaction of the condition CA(u = +∞) = Ccore
A ,

and assume that P (u = 0) is fixed. The problem then reduces to finding the value of γ
warranting satisfaction of the condition P (u = +∞) = 0. Since this just means adjusting
a single, scalar parameter, it can be done by various standard methods; the most robust
being a simple dichotomy, with each step consisting of a numerical integration of equations
(38, 40) yielding the value of P (u = +∞) for a given γ.

To finally fulfill the condition CA(u = +∞) = Ccore
A , one could think of adjusting the

value of P (u = 0) in a similar way. However, for a given, fixed value of Csurf
O , a simpler

solution consists of performing simulations for various values of P (u = 0) (with a suitable
adjustment of γ every time, as just discussed). In this way one gets, for the value of Csurf

O

considered, a discrete set of pairs [P (u = 0), CA(u = +∞)] which easily permits to plot
Ccore

A versus P (u = 0) or P (u = 0) versus Ccore
A , depending on one’s taste. (In fact the
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plot of Ccore
A versus P (u = 0) will reveal more convenient for the study of the transition

from internal to external oxidation, as will be seen in the Subsection 4.6).

To summarize, the algorithm adopted consists of the following elements, ordered “top to
bottom”:

• for a given value of Csurf
O , a set of calculations of Ccore

A as a function of P (u = 0);
• for each such calculation, a dichotomy on the parameter γ aimed at fulfilling the con-
dition P (u = +∞) = 0;

• for each iteration of such a dichotomy, numerical integration from zero to “infinity” of
the nonlinear ODEs (38, 40) using the given values of Csurf

O , γ and P (u = 0).

4.6 Numerical results and discussion

As an example, we consider the case of the system O/Mn/MnO (having thus ν = 1) in
a Fe matrix, at a temperature of 800◦C. The diffusion and precipitation constants of this
sytem are taken from (Oikawa, 1982) and the (Thermodata, 2005) data bank; they are
given in Table 1.

mO (g) mMn (g) MMnO (g) D0
O (µm2s−1) D0

Mn (µm2s−1) K (ppm2)

15.999 54.938 70.937 8.02 9.09× 10−4 7.21

Table 1
Diffusion and precipitation constants of the system O/Mn/MnO in a Fe matrix.

In addition, the data required for the definition of the functions fO and fA ≡ fMn,
depicting the reduction of diffusion coefficients by oxides acting as barriers, are listed in
Table 2.

vMnO ≡ vP (m3 kg−1) vFe ≡ vM (m3 kg−1)

0.1862 × 10−3 0.1272 × 10−3

Table 2
Specific volumes for the system O/Mn/MnO in a Fe matrix.

In all simulations discussed below, the function fO depicting the reduction of DO is con-
sidered to be given by the simple formula (5), whereas the function fMn pertaining to
the reduction of DA ≡ DMn is taken as unity (no reduction at all). The larger reduction
of DO, as compared to that of DMn, is in line with the remark made in Subsection 4.1,
about the different shapes of the oxides acting as obstacles to the diffusion of oxygen and
the oxidizable element.

Various values of the mass concentration Csurf
O of oxygen imposed on the surface are

envisaged: 0.01, 0.02, 0.03, 0.1, 0.3, 0.5 and 1 ppm. It is worth mentioning here that this
value, together with that of Ccore

A ≡ Ccore
Mn , determines whether the solubility product

must be considered as “small” or “large”: in order to decide about the “magnitude” of
K, the dimensionless number that must be compared to unity is K

Csurf
O

Ccore
Mn

. If it is very
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much smaller than unity, the solution of Section 3 for an infinitesimally small K may be
deemed applicable. But the effects upon this ratio of a decrease of K and an increase of
Csurf

O are strictly identical. Thus for a fixed K, like in the simulations discussed hereafter,
the larger the value of Csurf

O , the more the solution of Section 3 may be expected to be
applicable.

This aspect is plainly illustrated in Figure 5, which shows the distributions of CO, CMn and
P at time t = 100 s, for two values of Csurf

O and the same value of P on the surface, P (u =
0) = 0.31. (This would exactly be the value of the critical fraction of oxides corresponding
to the transition from internal to external oxidation, ifK were infinitesimally small; see the
discussion below). For Csurf

O = 1ppm, all three distributions exhibit features analogous,
though not completely identical, to those for an infinitesimally small K, see Figure 2. On
the other hand, for Csurf

O = 0.1 ppm, these distributions are markedly different: O and Mn
coexist over some notable distance and P is no longer uniform within the oxidized zone.

Figure 6, which displays Ccore
Mn versus the surface fraction of oxides P (u = 0) for various

values of Csurf
O , permits to discuss the existence of a sharp transition from internal to

external oxidation and the conditions governing such a transition. The following remarks
are in order.

• Consider first the three highest values of Csurf
O , 1, 0.5 and 0.3 ppm, for which the solution

does not differ too much from that of Section 3 for an infinitesimally small K. For these
values, the curve representing Ccore

Mn versus P (u = 0) exhibits a maximum. Therefore,
if one gradually increases Ccore

Mn from zero, the point [P (u = 0), Ccore
Mn ] follows the left

portion of the curve from the origin, until the maximum is reached; for values of Ccore
Mn

larger than the maximum value, no solution to the equations of internal oxidation can
be found, meaning that a switch from internal to external oxidation must necessarily
occur. This is exactly the same situation as in Section 3, albeit presented in somewhat
different geometric terms. (Note that the portion of the curve located to the right of
the maximum, where Ccore

Mn becomes a decreasing function of P (u = 0), has no physical
existence since it cannot be reached by continuously increasing Ccore

Mn ).
• The surface fraction P (u = 0) of MnO corresponding to the maximum, when it exists
(Csurf

O = 1, 0.5 and 0.3 ppm), is the same no matter the value of Csurf
O . This feature

is in agreement with the expression (27) of P crit for an infinitesimally small K, which
predicts no effect of Csurf

O upon this critical value. On the other hand the maximum
value of Ccore

Mn is clearly an increasing function of Csurf
O . This is again in agreement with

the results of Section 3: equation (25)2 predicts a value of χcrit independent of Csurf
O

like P crit, but the expression (23)1 of χ then implies that the critical value of Ccore
Mn is

proportional to the square root of Csurf
O .

• The theoretical value of P crit for an infinitesimal K deduced from equation (27), with
the data provided in Table 2, is 0.31. But numerically, the surface fraction P (u = 0)
of oxides corresponding to the maximum of Ccore

Mn when it exists (Csurf
O = 1, 0.5 and

0.3 ppm), is somewhat larger, in the range 0.39−0.41. This is not because the condition
K

Csurf
O

Ccore
Mn

≪ 1 is not met, but rather because equation (27) is based on the restrictive

assumptions (20), the second of which is poorly satisfied in the cases considered. 6 On

6 Additional calculations have been performed with very small values of K and Csurf
O , implying

full satisfaction of both assumptions (20); the theoretical value P crit ≃ 0.31 is then completely
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Fig. 5. Mass concentrations of O and Mn and mass fraction of MnO at t = 100 s, for two values
of Csurf

O and the same surface value of P , P (u = 0) = 0.31.

the other hand, the theoretical critical values of Ccore
Mn deduced from equations (23)1

and (25)2 are 6.93× 104, 4.90× 104 and 3.80× 104 ppm for Csurf
O = 1, 0.5 and 0.3 ppm

respectively, versus 5.99× 104, 4.46× 104 and 3.60× 104 ppm for the maximum values
of Ccore

Mn found numerically; the agreement is thus better for this quantity.
• For the smallest values of Csurf

O , 0.03, 0.02 and 0.01 ppm, the curve representing Ccore
Mn

versus P (u = 0) has no maximum, meaning that a solution of the equations of internal
oxidation can always be found, however large the value of Ccore

Mn . In other words, there is
no sharp transition from internal to external oxidation; total coverage of the surface of

recovered numerically.
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Fig. 6. Core fraction of Mn versus surface fraction of MnO, for various values of Csurf
O .

the sheet can only be achieved through some continuous, potentially unlimited increase
of Ccore

Mn .

In spite of their physical and practical interest, these results raise several issues specific
to the case of a nonzero K.

• The prediction of absence, in some cases, of a sharp transition from internal to external
oxidation, is surprising although admittedly not altogether physically impossible.

• In order to get reasonable model predictions, we had no choice but to assume different
functions fO, fMn for the reduction of the diffusion coefficients of O and Mn, see Sub-
section 4.4. Now although such a hypothesis is reasonable in many cases (as explained
above), one may imagine situations where the reduction of diffusion coefficients is the
same for both elements (in the absence of significant differences in shape of oxides lo-
cated at different depths). In such situations the divergence of some quantities near
the surface (see Subsection 4.4) is a clear indication of the physical breakdown of the
equations of the model.

• A final issue pertains to boundary conditions. Because of the input flux of O, the
derivative ∂CO/∂x is negative on the surface; the relation COCMn = K then implies
that the derivative ∂CMn/∂x is positive, whence a nonzero output flux of Mn. But the
usual assumption in problems of this type is that the flux of the oxidizable element on
the surface is nil.
The assumption of zero flux of Mn is admittedly criticizable insofar as one may

imagine mechanisms leading to losses of atoms of Mn into the outer atmosphere; but
then such losses should be governed by parameters pertaining to these mechanisms,
not by the input flux of O. Stated differently, the problem is more with the number of
boundary conditions than with their type: the hypothesis of instantaneous local ther-
modynamic equilibrium implies that there can only be one (the surface values of CMn

and ∂CMn/∂x being determined by those of CO and ∂CO/∂x), whereas one naturally
expects two independent boundary conditions to be required for two diffusing species.
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It may be remarked that all three issues are related to phenomena occurring on or near the
surface of the sheet, which is an indication that the equations of the model may become
inadequate there. But what distinguishes the vicinity of the surface from the interior of
the sheet is that all processes are quicker here than there (because of larger concentration
gradients). This suggests that the root of the difficulties may be that these processes
are too quick for local thermodynamic equilibrium to prevail. The next Section will be
devoted to some preliminary investigation of this idea.

5 Precipitation kinetics: the solution to the issues raised?

5.1 Generalities

In this Section, we shall modify the model by replacing the hypothesis of instantaneous
local thermodynamic equilibrium through some kinetic equation for the precipitation of
oxides. The aim is to see whether or not this modification may be hoped to solve the
difficulties evidenced in Subsection 4.6, in the case of an oxide with a nonzero solubility
product.

More specifically, we shall focus on the issue of the nonzero output flux of oxidizable
element on the surface. The aim will not be to develop a realistic, necessarily complex
kinetic model, such a task being left for future work. It will just be to show, using an
elementary, inevitably rough model, how introduction of some kinetics of precipitation
does appear to solve the issue. The proof will be based on examination of the mathematical
character of the new equations.

Because of the essentially qualitative character of the proof, a number of hypotheses will
be made so as to avoid unnecessary complexities in the model:

• Two elements only, O and A, and a single oxide of formula OA (that is with ν = 1 with
the notations of Sections 3 and 4), will be considered.

• The effect of possible large fractions of the P phase will be disregarded, together with
the reduction of diffusion coefficients due to presence of this phase.

• Kinetics of precipitation of oxides will be governed by a classical Johnson-Mehl-Avrami
equation with an exponent of unity, depicting a simple exponential relaxation toward
the state of local thermodynamic equilibrium.

• The equilibrium fraction of P phase appearing in this kinetic equation will be assumed
to be nonzero everywhere and at all instants; this is true provided the total fractions
of elements are large enough. 7

7 Note the similarity with the hypothesis introduced in Subsection 4.1 (where instantaneous
local thermodynamic equilibrium was assumed) that COC

ν
A = K - not ≤ K - everywhere and

at all instants.
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5.2 Diffusion/precipitation equations including precipitation kinetics

With the hypotheses made, the balance equations (1) reduce to











FO = CO + mO

MP
P

FA = CA + mA

MP
P

(41)

and the diffusion equations (7) to



















∂FO

∂t
= D0

O

∂2CO

∂x2

∂FA

∂t
= D0

A

∂2CA

∂x2
.

(42)

However the condition (8) expressing instantaneous local thermodynamic equilibrium is
replaced here by the kinetic equation

∂P

∂t
= τ−1 (P eq − P ) , (43)

where τ denotes some characteristic time (material parameter), and P eq the local equi-
librium fraction of P phase defined by the local chemical composition, that is the total
fractions of elements FO and FA. This quantity, together with the corresponding equilib-
rium concentrations of elements Ceq

O and Ceq
A , are defined by the following equations:



























FO = Ceq
O + mO

MP
P eq

FA = Ceq
A + mA

MP
P eq

Ceq
O C

eq
A = K.

(44)

Note the sign = instead of ≤ in the last equation, in agreement with the hypothesis
introduced in Subsection 5.1 of a nonzero P eq everywhere and at all instants.

5.3 Reduction to a system of coupled nonlinear diffusion equations

We shall now show that the above equations can be reduced to a system of coupled,
nonlinear diffusion equations on the sole unknowns CO and CA.

Combining first equations (41), (42) and (43), we get























∂CO

∂t
+
mO

MP

∂P

∂t
= D0

O

∂2CO

∂x2

∂CA

∂t
+
mA

MP

∂P

∂t
= D0

A

∂2CA

∂x2

⇒























∂CO

∂t
= D0

O

∂2CO

∂x2
− mO

MP
τ−1 (P eq − P )

∂CA

∂t
= D0

A

∂2CA

∂x2
− mA

MP

τ−1 (P eq − P ) .
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But combining equations (41)1 and (44)1, (41)2 and (44)2, one sees that

P eq − P =
MP

mO
(CO − Ceq

O ) =
MP

mA
(CA − Ceq

A ) ; (45)

hence the preceding equations may be rewritten in the form



















∂CO

∂t
= D0

O

∂2CO

∂x2
− τ−1 (CO − Ceq

O )

∂CA

∂t
= D0

A

∂2CA

∂x2
− τ−1 (CA − Ceq

A ) .

(46)

It remains to calculate the equilibrium concentrations Ceq
O , Ceq

A in terms of the actual
concentrations CO, CA. By equations (45) and (44)3, they satisfy the following relations:











Ceq

O

mO
− Ceq

A

mA
= CO

mO
− CA

mA

Ceq
O C

eq
A = K.

(47)

Defining C
eq
O ≡ Ceq

O /mO and C
eq
A ≡ −Ceq

A /mA, one sees that these equations provide the
values of the sum of C

eq
O and C

eq
A , CO

mO
− CA

mA
, and their product, − K

mOmA
; it follows that

these quantities are the positive and negative roots, respectively, of the algebraic equation
of the second degree

X2 −
(

CO

mO

− CA

mA

)

X − K

mOmA

= 0.

Solving this equation, one gets























C
eq
O =

Ceq

O

mO
= 1

2

[

CO

mO
− CA

mA
+

√

(

CO

mO
− CA

mA

)2
+ 4K

mOmA

]

C
eq
A = −Ceq

A

mA
= 1

2

[

CO

mO
− CA

mA
−
√

(

CO

mO
− CA

mA

)2
+ 4K

mOmA

]

,

from which follows that

CO − Ceq
O

mO
=
CA − Ceq

A

mA
≡ θ(CO, CA) ≡

1

2







CO

mO
+
CA

mA
−

√

√

√

√

(

CO

mO
− CA

mA

)2

+
4K

mOmA





 ,

(48)
which defines the quantity θ(CO, CA). With these expressions, the diffusion equations (46)
take their final form:



















∂CO

∂t
= D0

O

∂2CO

∂x2
−mO τ

−1 θ(CO, CA)

∂CA

∂t
= D0

A

∂2CA

∂x2
−mA τ

−1 θ(CO, CA).

(49)

The terms proportional to θ(CO, CA) in (49) couple the equations in a nonlinear way, but
their presence in these equations does not alter the basic mathematical character of the
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system which remains quasilinear (linear in the highest-order derivatives), of parabolic
type. This implies, among other things, that in spite of the coupling, the two equations
require two, not just one, boundary conditions at each point of the boundary; so that in a
1D problem, prescribing both conditions CO = Csurf

O and ∂CA/∂x = 0 (zero flux of A) at
x = 0 will not raise any particular issue, in contrast to what was observed in Subsection 4.6
for the model based on the assumption of instantaneous local thermodynamic equilibrium.

5.4 A numerical example

We consider the same problem as in Subsection 4.6 of internal oxidation for the system
O/Mn/MnO in a Fe matrix, but with two differences. First, we account for neither the
effect of possibly large fractions of the P phase, nor the reduction of diffusion coefficients by
oxides acting as obstacles. Second, the hypothesis of instantaneous local thermodynamic
equilibrium is replaced by the simple kinetic equation (43) for the fraction of oxides.
Under such conditions the equations of the problem reduce to the nonlinear diffusion
equations (49), which are solved through some finite-difference-based spatial and temporal
discretization, with an explicit scheme in time.

Equations (49), in their discretized form, are written at all internal nodes. At the surface
node, however, there is no need to write equation (49)1 for oxygen, since the concentra-
tion CO is prescribed there; but it is necessary to write equation (49)2 for manganese,
since the condition of zero flux employed does not provide the value of CA ≡ CMn. This
requires a slight modification of this equation, because the terms in which the problem of
local thermodynamic equilibrium is posed are a bit different on the surface, owing to the
condition of prescribed concentration of O; see Appendix A for details.

Calculations are performed for fixed values of Csurf
O and Ccore

Mn , 0.1 ppm and 4000 ppm
respectively, and various values of the characteristic time τ of the precipitation of oxides:
0.1, 1, 5, 10, 20, 50 and 100 s. (These values are not chosen for their physical realism,
but for the sole sake of qualitatively illustrating the influence of precipitation kinetics -
of the Johnson-Mehl-Avrami type - upon internal oxidation). In addition we also display
“reference results” corresponding on the one hand to complete absence of precipitation
of oxides (with a very large value of τ of 106 s), and on the other hand to instantaneous
local thermodynamic equilibrium (with a very small value, τ = 10−6 s).

Figure 7 first shows the distribution of the mass concentration of oxygen at time t = 100 s.
For the value τ = 0.1 s, local thermodynamic equilibrium is almost achieved everywhere
at such an instant; the influence of precipitation kinetics upon the oxygen profile is then
minor. When the characteristic time τ gradually increases, precipitation is more and more
delayed, which leaves more and more time for oxygen to penetrate into the sheet before
it is “pumped” by the chemical reaction; which is why its profile moves upwards.

Figure 8 similarly shows the distribution of the mass concentration of manganese at the
same instant; Figure 8(a) offers a general view and Figure 8(b) a zoom near the surface.

One observes in Figure 8(a) that for τ = 100 and 50 s, precipitation of oxides is so slow that
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Fig. 7. Mass concentration of O at t = 100 s, for various values of the characteristic precipitation
time τ - Csurf

O = 0.1 ppm, Ccore
Mn = 4000ppm.

its impact upon the concentration of manganese is small; one just notes a slight decrease
of CMn from the core value near the surface. When τ gradually decreases, however, this
impact become more and more important and the concentration of manganese decreases
more and more near the surface, due to pumping by the chemical reaction. For the smallest
value of τ , 0.1 s, the manganese profile differs modestly from that obtained with the
hypothesis of instantaneous local thermodynamic equilibrium.

Figure 8(b) permits to investigate the issue of zero or nonzero flux of manganese at the
surface. From a purely theoretical point of view, the following remarks are in order:

• In the presence of some precipitation kinetics, whatever the value of τ , even very small,
the flux of manganese and therefore the derivative ∂CMn/∂x must be zero on the surface
since this is imposed by the boundary conditions adopted.

• However, if local thermodynamic equilibrium is strictly respected, that is in the theo-
retical limit τ → 0+, neither this flux nor this derivative can be zero there, as explained
in Subsection 4.6.

• Compatibility of these two features demands that the region where |∂CMn/∂x| is small
decrease more and more in size as τ decreases down to zero: for small values of τ ,
this region must become a “boundary layer” of small thickness, analogous to those
encountered in fluid mechanics, when a viscous fluid of very low viscosity flows past
some immobile obstacle.

However computed results exhibit somewhat more complex features, for reasons connected
to the numerical scheme:

• For the largest values of τ , 100, 50, 20 and 10 s, the initial slope (between the first two
discretization points) of the curve [CMn vs. x] is almost nil, as expected.

• For smaller values of τ , 5, 1 and 0.1 s, this initial slope is no longer zero as theoretically
predicted. This is because with a fixed mesh as employed here, it is impossible to
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Fig. 8. Mass concentration of Mn at t = 100 s, for various values of the characteristic precipitation
time τ - Csurf

O = 0.1 ppm, Ccore
Mn = 4000ppm.

reproduce the expected boundary layer of vanishingly small thickness in the limit τ →
0+.

• Finally for τ = 10−6 s (quasi-instantaneous local thermodynamic equilibrium), the ini-
tial slope, although strictly nonzero, is quite small. This is because pumping of man-
ganese by precipitation is then efficient enough for this element to be notably depleted
near the surface at time t = 100 s, which minimizes its output flux.
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6 Concluding summary and perspectives

Some recent works (Leblond, 2011; Leblond et al., 2013) opened the way to the ab initio
prediction of the transition from internal to external oxidation, using Wagner (1959)’s
classical analysis of internal oxidation extended through incorporation of the barrier effect
of oxides upon diffusion. Unfortunately these works suffered from inevitable shortcomings
tied to the strong hypotheses made by Wagner (1959). The aim of the present paper
was to extend the analyses of Leblond (2011); Leblond et al. (2013) by removing some
of Wagner (1959)’s most severely restrictive assumptions, so as to broaden the range of
situations in which a theoretical prediction of the transition is possible.

The first major restriction of Wagner (1959)’s analysis lied in use of a theoretical frame-
work limited in essence to small values of the fraction of oxides; this was in contradiction
with the fact that the “critical” value of this fraction, above which internal oxidation is
no longer possible, must obviously be comparable to, not much smaller than, unity. As
a first step toward a solution of this issue, Section 2 presented an extended framework
considering arbitrarily large values of the fraction of oxides, essentially inspired from that
proposed by Brunac et al. (2010) but containing somewhat different diffusion equations,
for reasons which were analyzed.

Section 3 then presented an extension of Leblond (2011); Leblond et al. (2013)’s analyses
of the transition from internal to external oxidation, based on the more general model
just expounded. The output was a smaller value of the predicted critical fraction of ox-
ides governing the transition, as compared to that in the work of Leblond (2011). This
smaller value was found to better agree with the old, but still unchallenged experimental
observation of Rapp (1961) for the O/In/In2O3 system in an Ag matrix.

Another severe restriction of Wagner (1959)’s work was consideration of an oxide with
an extremely low solubility product, prohibiting coexistence of oxygen and the oxidizable
element in their dissolved forms in the matrix. Section 4 tackled this other issue by mod-
ifying the preceding analysis through introduction of a finite, nonzero solubility product.
The treatment, which extended that of Huin et al. (2005) of a simpler version of the prob-
lem, resulted in coupled nonlinear ordinary differential equations on two variables, too
complex to be solvable analytically but well fit for a numerical solution. Numerical results
evidenced existence or absence of a brutal transition from internal to external oxidation,
depending on the parameters of the system.

In spite of the interest of these results, they raised several issues which appeared to be
basically tied to the inadequacy of the hypothesis of instantaneous local thermodynamic
equilibrium near the surface of the plate, due to quickness of the processes occurring there.
The object of the final Section 5 was to propose a tentative solution to these difficulties,
in the form of modified equations of diffusion/precipitation incorporating some kinetic
equation for the precipitation of oxides, depicting relaxation toward the local state of
thermodynamic equilibrium. Introduction of such an equation was shown to indeed settle
the important issue of impossibility, when instantaneous local thermodynamic equilibrium
is assumed, of prescribing a boundary condition for the oxidizable element independent
of that for oxygen.
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However, the analysis of Section 5 was essentially qualitative, being based on overly sim-
plified assumptions, plus an elementary kinetic model making no claim to a detailed
description of underlying mechanisms. Since this preliminary analysis has revealed that
introduction of kinetics of precipitation of oxides is a keypoint in the theoretical descrip-
tion of internal oxidation, and especially of the transition to external oxidation, the next
step will be to develop extended equations of diffusion/precipitation incorporating realis-
tic, necessarily complex kinetic models, accounting in detail for nucleation and growth of
individual oxides.
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A Appendix: diffusion equation of the oxidizable element on the surface in
the presence of precipitation kinetics

Let us first examine the problem of local thermodynamic equilibrium on the surface,
where CO is prescribed. Equations (44), which were used in Subsection 5.3 to solve this
problem, are applicable in the interior of the domain considered, but not on its surface.
Indeed the first two equations correspond to the mass balance of O and A in the state of
thermodynamic equilibrium, for given values of the total fractions FO, FA, that is for a
fixed chemical composition; but the quantity known on the surface is not, for oxygen, its
total fraction FO but its matrix concentration CO which is prescribed.

It is reasonable to assume that on the surface, the state of thermodynamic equilibrium
which is referred to in the kinetic equation (43), is that for which the equilibrium concen-
tration Ceq

O is precisely that prescribed on the surface, Csurf
O . (In contrast for the oxidizable

element A, the concentration of which is not prescribed, it is natural to as usual identify
the total fraction FA as the given data). Under such conditions the equations defining the
problem of local thermodynamic equilibrium read, instead of (44):



























Ceq
O = Csurf

O

FA = Ceq
A + mA

MP
P eq

Ceq
O C

eq
A = K.

(A.1)

Now combination of equations (41)2 and (A.1)2 yields

P eq − P =
MP

mA

(CA − Ceq
A )

which is identical to equation (45) of the text, but for element A only. It immediately
follows that the diffusion equation (46)2 for A still holds. This equation may be put into
the form

∂CA

∂t
= D0

A

∂2CA

∂x2
−mA τ

−1 θ(Csurf
O , CA) (A.2)

which is analogous to equation (49)2, but the expression of the function θ(Csurf
O , CA) now

differs from that provided by equation (48) and is simpler:

θ(Csurf
O , CA) ≡

1

mA

(CA − Ceq
A ) =

1

mA

(

CA − K

Csurf
O

)

(A.3)

where equations (A.1)1,3 have been used.

A final remark pertains to the condition of zero flux of element A on the surface, which
does not clearly appear in the theoretical diffusion equation (A.2). This condition is to be

accounted for when defining the discretized equivalent of the quantity D0
A
∂2CA

∂x2 .
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