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Implicit Statistical Learning (ISL) studies how exposing individuals to repeated statistical patterns can help develop skills in the absence of conscious awareness, such as learning a language or detecting familiar shapes. This paper transposes ISL in the context of menu design learnability. Our analysis of menu patterns in various applications from the 80s to today reveals a consistent linear pattern with command names on the left and keyboard shortcut cues aligned on the right. We then develop a design space of menu patterns by manipulating two factors of ISL theory, spatial proximity (distance) and relative positioning between commands and shortcut cues. We empirically compare four menu patterns of this design space on whether they can improve keyboard shortcut adoption through two controlled experiments.

Results did not capture clear effects among the menu patterns, suggesting that ISL in the context of HCI might involve more complex factors than initially anticipated, such as the time the users are exposed to the menu pattern. We reflect on the challenges in applying theories from cognitive science to HCI and hope that our systematic methodology and experiment designs will serve as a basis for encouraging more studies in the area.

INTRODUCTION

One of the main HCI challenges is to help users learn how to use an interface with as little effort as possible [START_REF] Grossman | A survey of software learnability: metrics, methodologies and guidelines[END_REF]. More effortful approaches such as manuals and tutorials are useful, but not always feasible in practice [START_REF] Cockburn | Supporting Novice to Expert Transitions in User Interfaces[END_REF]. In contrast, designers and researchers strive to offer effortless and intuitive solutions [START_REF] Findlater | Ephemeral adaptation: The use of gradual onset to improve menu selection performance[END_REF][START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF][START_REF] Tsandilas | Bubbling menus: a selective mechanism for accessing hierarchical drop-down menus[END_REF], for example, by optimizing design layouts attracting user attention to relevant items and visual cues. Yet, HCI has limited comprehensive theories and frameworks to help us investigate systematically how users learn by being exposed to a repeated pattern.

An emerging field in cognitive science that studies how individuals learn new information by interacting with the environment is the Implicit Statistical Learning (ISL) [START_REF] Christiansen | Implicit statistical learning: A tale of two literatures[END_REF][START_REF] Christopher | Statistical learning within and between modalities: Pitting abstract against stimulus-specific representations[END_REF]. ISL investigates learning (or skill development) in the absence of conscious awareness. It explains how the brain discovers and encodes patterns (also called statistical regularities) within its repeated exposure to environment stimuli. To the best of our knowledge, ISL has not yet been investigated in the HCI literature. Typical ISL applications include how children learn a language effortlessly by listening to other people speak [START_REF] Kerz | Implicit learning in the crowd: Investigating the role of awareness in the acquisition of L2 knowledge[END_REF], or detection of visual shapes among a number of distractors [START_REF] Goujon | Investigating implicit statistical learning mechanisms through contextual cueing[END_REF]. Still, understanding and capturing underline processes of skill acquisition and visual search [START_REF] Cockburn | Supporting Novice to Expert Transitions in User Interfaces[END_REF] can be of tremendous importance for effective user interface design.

Yet transposing ISL in the context of interface learnability is not straightforward given that individuals have difficulty reflecting on unconscious processes [START_REF] Arthur S Reber | Implicit learning and tacit knowledge[END_REF]. The aforementioned tasks and stimuli used in cognitive science experiments are typically low-level, carefully selected for measuring and understanding behavior. HCI experiments also aim to provide insights on how to design interactive systems or displays, while accounting for additional factors such as aesthetics, usability and functionality. In this paper, we explore a way of transposing the ISL theory in the context of HCI.

In particular, we focused on menu design learnability through the lens of ISL. At first, we operationalized the notion of statistical regularity exploring design menu conventions in approximately 200 menus in various applications from the 80s to today. Our analysis showed that menus tend to follow a consistent pattern of linear fashion which displays command names on the left and keyboard shortcut cues aligned on the right. Optimizing the ISL factors of spatial proximity and relative positioning [START_REF] Goujon | Investigating implicit statistical learning mechanisms through contextual cueing[END_REF], we developed a design space of alternative menu patterns. Both those ISL factors affect the visual arrangement of elements in GUIs which in turn is known to influence decision making processes of users [START_REF] Caraban | 23 ways to nudge: A review of technology-mediated nudging in human-computer interaction[END_REF] and reduce cognitive load [START_REF] Hegarty | Diagrams in the comprehension of scientific texts[END_REF]. We then consulted designer experts [START_REF] Robert | Usability inspection methods: Executive summary[END_REF] to review our design space and identify promising menu patterns including criteria of aesthetics and readability. We evaluated the menu designs in two controlled experiments investigating the effect of our designs on keyboard shortcut adoption, a well-established HCI problem [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF][START_REF] Malacria | Promoting Hotkey Use Through Rehearsal with ExposeHK[END_REF] on how users can become more efficient by transitioning from menus to expert methods for command selection.

Results did not capture clear effects on which menu patterns are better for keyboard shortcut adoption, at least not within the time scale of our 1-hour lab experiment. While we remain positive on the importance of studying ISL pattern exposure in HCI, we reflect on a number of barriers along the process. We suggest that ISL in the context of HCI might involve more complex factors than initially anticipated, such as the time the users are exposed to the pattern and we hope that our systematic methodology and experiment designs will serve as a basis for more studies in this area.

BACKGROUND

In this section we first discuss the main principles of implicit statistical learning that we consider as relevant to UI design.

We then review current design interventions to promote awareness and explicit learning in modern GUI.

Implicit Statistical Learning

Implicit Statistical Learning (ISL) [START_REF] Christiansen | Implicit statistical learning: A tale of two literatures[END_REF][START_REF] Christopher | Statistical learning within and between modalities: Pitting abstract against stimulus-specific representations[END_REF] integrates two contemporary approaches: implicit and statistical learning.

Implicit learning [START_REF] Arthur S Reber | Implicit learning and tacit knowledge[END_REF] usually defined as the process of individuals acquiring knowledge without having intention to do so or being necessarily aware of it. The most common example is the early child language acquisition, i.e. how a child learns a language unintentionally without having a formal education [START_REF] Kerz | Implicit learning in the crowd: Investigating the role of awareness in the acquisition of L2 knowledge[END_REF]. This process yields abstract knowledge about the environment that individuals interact with [START_REF] Arthur S Reber | Implicit learning and tacit knowledge[END_REF]. Statistical learning refers to the unconscious process in which repeated patterns, or statistical regularities (e.g., probabilistic regularities of the environment that predict future events), are extracted from sensory inputs [START_REF] Nicholas B Turk-Browne | The automaticity of visual statistical learning[END_REF]. These two approaches are often published in separate literatures and sometimes interpret their data in a different way [START_REF] Christiansen | Implicit statistical learning: A tale of two literatures[END_REF]. However, they describe the same phenomenon and provide similar results (for an overview see [START_REF] Perruchet | Implicit learning and statistical learning: One phenomenon, two approaches[END_REF]). Consequently, several authors use the joint term implicit statistical learning to cover both approaches [START_REF] Christiansen | Implicit statistical learning: A tale of two literatures[END_REF][START_REF] Christopher | Statistical learning within and between modalities: Pitting abstract against stimulus-specific representations[END_REF].

2.1.1 Why Does ISL Occur? One of the explanatory theories that have been offered for ISL is the formation of chunks [START_REF] Gobet | Chunking mechanisms in human learning[END_REF][START_REF] Perruchet | Implicit learning and statistical learning: One phenomenon, two approaches[END_REF]. Chunking characterizes the associative processing by which people bind together co-occurring elements or information from their interaction with the environment. Attention plays a critical role in the formation of cognitive units: perceptual primitives would only be grouped together to form a chunk when they are simultaneously held in a spatial-attention window, which is constrained by working-memory limitations [START_REF] Perruchet | PARSER: A model for word segmentation[END_REF].

One thing that remains unclear is the role of awareness in ISL. There has been some debates on whether learning without awareness can occur at all [START_REF] Nick | Implicit and explicit learning: Their dynamic interface and complexity[END_REF][START_REF] Kerz | Implicit learning in the crowd: Investigating the role of awareness in the acquisition of L2 knowledge[END_REF] or what type of awareness can facilitate ISL. A recent study [START_REF] Kerz | Implicit learning in the crowd: Investigating the role of awareness in the acquisition of L2 knowledge[END_REF] for example focused on two types of awareness: (a) at the level of noticing and (b) at the level of understanding. An example of the former is when an individual learns a new language to notice that some words can take the suffix '-s' e.g. dogs and cats while an example for the latter is understanding that suffix '-s' signals plurality. However, prior work has shown that users tend to notice faster objects or entities that they are already familiar with, which could affect the ISL processes [START_REF] Ryan | The conscious, the unconscious, and familiarity[END_REF].

2.1.2 ISL on Skill Acquisition. Implicit statistical learning yields interesting results regarding the skill acquisition. First, ISL appears within multi-tasking, meaning that people have the ability to implicitly learn one task while executing another task [START_REF] Jenny R Saffran | Incidental language learning: Listening (and learning) out of the corner of your ear[END_REF][START_REF] Nicholas B Turk-Browne | The automaticity of visual statistical learning[END_REF].This is especially interesting for our context, because we expect users to implicitly learn semantically or visually close elements while interacting with the interface. Second, ISL can help learners to reach faster automatization of performance without going through the initial cognitive demanding learning stage [START_REF] Kal | Does implicit motor learning lead to greater automatization of motor skills compared to explicit motor learning? A systematic review[END_REF].

ISL on Visual Search.

A form of implicit statistical learning is the contextual cueing [START_REF] Marvin | Contextual cueing: Implicit learning and memory of visual context guides spatial attention[END_REF]. Contextual cueing explains how contextual regularities present in the display can be implicitly detected and learnt during the visual search, optimising basic visual processing [START_REF] Goujon | Investigating implicit statistical learning mechanisms through contextual cueing[END_REF]. ISL appears sensitive to several factors [START_REF] Gebhart | Statistical learning of adjacent and nonadjacent dependencies among nonlinguistic sounds[END_REF][START_REF] Goujon | Investigating implicit statistical learning mechanisms through contextual cueing[END_REF]:

• Spatial proximity is one of the key factors of contextual cueing. Although ISL on non-spatially close elements is possible, it occurs under far more restrictive conditions than those required for learning the relations between spatially close events [START_REF] Goujon | Investigating implicit statistical learning mechanisms through contextual cueing[END_REF][START_REF] Perruchet | Implicit learning and statistical learning: One phenomenon, two approaches[END_REF]. This phenomenon relates to the Gestalt's law of proximity, in which to perceive an assortment of objects, an individual forms as a group the ones that are close to each other. This law is often used in advertising logos to emphasize which aspects of events are associated.

• Relative Spatial positioning: recent studies [START_REF] Endo | Use of spatial context is restricted by relative position in implicit learning[END_REF][START_REF] Zang | Invariant spatial context is learned but not retrieved in gaze-contingent tunnel-view search[END_REF] highlight that relative positioning and spatial proximity play an important role on how individuals detect and learn contextual regularities.

• Temporal proximity: a delay of just 3s between two statistically contingent elements was sufficient to deteriorate intertrial learning in a contextual cueing task [START_REF] Thomas | On the limits of statistical learning: Intertrial contextual cueing is confined to temporally close contingencies[END_REF].

• Accumulation of instances in memory: only limited contingencies can be learnt in a restricted period, suggesting that only few associations trigger learning [START_REF] Andrea | Awareness in contextual cuing with extended and concurrent explicit tests[END_REF].

The aforementioned factors suggest potential ways to encourage the ISL of the UI while the user interacts with it. While performing a visual search in a User Interface, users are repeatedly exposed to several graphical elements (e.g. icon, label, text, etc.). It seems plausible that their spatial proximity, exposure timings, as well as the number of those elements can aid, or impede, the implicit learning of contextual information. Here we study the spatial proximity of the graphical elements, as it appears to be a key factor of ISL.

Skills, Attention & Awareness in HCI

Implicit learning is related to several, but different, phenomena such as sequence learning [START_REF] Marshall M Haith | The formation of expectations in early infancy[END_REF], visual search [START_REF] Goujon | The emergence of explicit knowledge from implicit learning[END_REF][START_REF] Goujon | Investigating implicit statistical learning mechanisms through contextual cueing[END_REF][START_REF] Thomas | On the limits of statistical learning: Intertrial contextual cueing is confined to temporally close contingencies[END_REF], attentional guidance [START_REF] Baker | Role of attention and perceptual grouping in visual statistical learning[END_REF][START_REF] Juan M Toro | Speech segmentation by statistical learning depends on attention[END_REF], cue-category association [START_REF] Jenny | Domain-general learning capacities[END_REF], causal learning [START_REF] Gopnik | Reconstructing constructivism: Causal models, Bayesian learning mechanisms, and the theory theory[END_REF] and motor learning [START_REF] Kal | Does implicit motor learning lead to greater automatization of motor skills compared to explicit motor learning? A systematic review[END_REF][START_REF] Maxwell | The implicit benefit of learning without errors[END_REF]. These phenomena have been extensively studied in HCI. For instance solutions such as ephemeral adaptation [START_REF] Findlater | Ephemeral adaptation: The use of gradual onset to improve menu selection performance[END_REF] or changing the background color of an element [START_REF] Tsandilas | Bubbling menus: a selective mechanism for accessing hierarchical drop-down menus[END_REF] attract the attention of the users towards this element to improve visual search in menus. Marking menus [START_REF] Paul | The design and evaluation of marking menus[END_REF] favor skill acquisition by letting users repeatedly perform the same gesture. Half configurations are systematically repeated across many blocks of trials. The others are presented only once during the task. A benefit on search times is typically observed in the repeated contexts compared to the novel contexts. This indicates that participants encode implicitly some elements of the context. Related to our use case, Grossman et al. [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF] compare several of these strategies to favor keyboard shortcut adoption.

Interestingly, authors mentioned that these strategies favor "implicit learning" in opposition with "explicit learning". However, based on the ISL literature, these strategies primarily focus on explicit learning, not implicit learning, as they motivate users to intentionally learn keyboard shortcut. In contrast, we investigate whether repeatedly interacting with a graphical widget can help users to learn information in the surroundings without having the intention to learn them.

Recently, Bailly, et al. proposed a theoretical model of shortcut adoption [START_REF] Bailly | Computational Model of the Transition from Novice to Expert Interaction Techniques[END_REF]. The model combines several cognitive mechanisms including implicit and explicit learning. Both model fitting and model simulation suggest that implicit learning plays a role in shortcut adoption.

REVISITING MENU DESIGN

Our literature review on Implicit Statistical Learning (ISL) suggested that certain statistical regularities, or repeated patterns, can aid, or, conversely, impede implicit learning. This section attempts to identify and potentially improve such patterns in menu layouts. To extract menu design conventions, we analysed approximately 200 menus in various operating systems (Win, Mac, Linux) and tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a linear, rectangular fashion divided into rows and columns. Each row is a menu item. The number of rows equals the number of available commands (plus the separators in semantic organizations). A typical linear menu organizes the elements in 3 columns (Figure 1):

Extracting Traditional Linear Menu

-1ST COLUMN contains command icons, the pictorial representations of functionalities (e.g., ,

). Such icons depend on the application and the operating system, e.g., most Mac menus (and few Linux) do not display icons by default.

The icon is sometimes replaced by a symbol ✓ or a widget , . Most menus display icons only for the frequent commands. Since all icons have the same size, their alignment is always fixed.

-2ND COLUMN contains command names, the textual labels representing the name of functionalities (e.g., Save , Copy ).

Ellipses can be added [5? ](e.g. Save As... ), if the command requires parameters (i.e. open a dialog box). Few menus (e.g., history menu in Safari) use an icon (e.g., website logo) in the command name. The alignment of the command names is always on the left.

-3RD COLUMN contains keyboard shortcut cues and submenu symbols ( ). The cues represent the sequence of keys to activate a functionality. Depending on the operating system the cue can be textual (e.g. Ctrl+S ) or, as in Mac systems, a combination of symbol and text ( S ). The symbol , which does not have a cue, indicates hierarchical menu items (i.e. the item opens a sub-menu). The alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win 3.1 had shortcuts cues with left-alignment, Win had a 4rth column with , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent design pattern across operating systems and applications.

The commands appear on the left, while the shortcut cues on the right. Similarly, the commands follow left alignment, while the shortcut cues follow right alignment. This standard introduces implications for the width of the columns. While the icons' width (1st column) is fixed, the command names (2nd column) depend on the longest. Similarly, the shortcuts' width (3rd column) depend on the shortcuts with the largest number of modifiers (max=3). Consequently, while the (relative) spatial positioning between the shortcut cue and the command is always the same (i.e. shortcut cue on the right), their spatial proximity varies a lot from one item to another and from one menu to another (see Figure 1). ISL theory suggests that such distance might impair the implicit learning of the keyboard shortcuts. Current literature further highlights that users often ignore keyboard shortcuts and they favor menus to select commands [START_REF] Bailly | MenUA: a design space of menu techniques[END_REF][START_REF] Cockburn | Supporting Novice to Expert Transitions in User Interfaces[END_REF][START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]. Existing solutions aim to increase users' awareness [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF][START_REF] Krisler | Training Towards Mastery : Overcoming the Active User Paradox[END_REF][START_REF] Malacria | Promoting Hotkey Use Through Rehearsal with ExposeHK[END_REF][START_REF] Scarr | Dips and Ceilings: Understanding and Supporting Transitions to Expertise in User Interfaces[END_REF], attract attention [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF], inform about the relative performance [START_REF] Malacria | Promoting Hotkey Use Through Rehearsal with ExposeHK[END_REF] and/or change the incentives [START_REF] Scarr | Dips and Ceilings: Understanding and Supporting Transitions to Expertise in User Interfaces[END_REF] for using the shortcuts. These approaches mainly focus on when and how to display information related to keyboard shortcuts, but they haven't investigated how the spatial relationship between the command name and the keyboard shortcut may affect the keyboard shortcut adoption.

Strategies to Improve the Menu Pattern

We identify several approaches favoring spatial proximity between commands and keyboard shortcut cues:

• Decrease variability of command length (2ND COLUMN): As the width of the 2nd column depends on the longest command name, a designer could maintain similar command lengths. However, changing the wording of commands is a challenging task for designers [START_REF] Bailly | Visual Menu Techniques[END_REF][START_REF] Bailly | MenuOptimizer: interactive optimization of menu systems[END_REF]. Users are familiar with specific names, e.g., Save , Open while alternative command names do not always exist. • Decrease variability of shortcut cue length (3RD COLUMN): Similarly to the command names, the shortcut cues can also maintain the same width by reducing modifiers or replacing modifiers with symbols (e.g., Apple menus). Designers tend to anyways follow this solution, favoring simple shortcuts or using symbols. However, given the variability of the command names, this solution saves only a couple of pixels (as well as solutions that reduce padding or margins).

• Change column alignment (2ND & 3RD COLUMN): This approach changes the position of the elements within columns.

While the 2ND column is left aligned and the 3RD is right aligned several alternatives are possible while maintaining the column order.

• Change position (2ND & 3RD COLUMN): This approach focuses on the relative position between the command name and the shortcut cue, typically, changing the order of the columns.

We focus on the two last strategies which do not modify the semantic of the command name or the shortcut cue. 

Design Space: Position & Alignment

The design space of the linear menu is enormous involving numerous variables (e.g., font, saliency, icon design etc.) [START_REF] Bailly | MenuOptimizer: interactive optimization of menu systems[END_REF][START_REF] Giannisakis | IconHK: Using Toolbar button Icons to Communicate Keyboard Shortcuts[END_REF]. We focus on the position and the alignment between the keyboard shortcut cues and the name of the commands.

To describe this design space, we use the iconified notation displayed in Figure 2. The grids on the left of each menu offer a quick overview of the set of possibilities and facilitate prototyping and brainstorming among designers.

The command name is represented by the icon cmd and the keyboard shortcut cue by the icon ks . Each element is displayed in a box icon representing the whole space allocated for the elements, typically, the column width. The relative position (e.g., top, bottom, left, right) of the box represents the dimension position, while their relative position within the box represents their alignment (e.g., left , right, center). Figure 2 illustrates 8 menu instances of this design space by manipulating the position and the alignment of the two elements. A key feature of the design space is that the two elements can share the same box as shown in Figure 2.e.f. In that case, the designer is choosing to allocate one column for both elements. Consequently, this pair of elements will be following a unique alignment.

All combinations of positions and alignments between keyboard shortcut cues and command names derived 42 different menu patterns1 More precisely, we considered 4 relative positions of the keyboard shortcut cue in relation to the command name: left, right, below or above (e.g., Fig2.c.d.h.g respectively). We also considered 3 alignments for each of these two elements: left, right, or center (e.g., for cues Fig2.b.c.d respectively). We also considered all (6) the menus where the elements are appended to each other. Given the configuration of these menus, we considered only 2 relative positions left or at the right (e.g., Fig2.f.e) and three alignments left (e.g., Fig2.e), right, or center (e.g., Fig2.f).

Menu Pattern Selection

From the 42 menus, we discarded the 27 which were strongly sensitive to the length of the commands (e.g., in patterns .b and .d small command names are far from the shortcut cues). This systematic analysis resulted in 14 menu candidates that increase the spatial proximity between the shortcut cue and the command name2 .

Yet, considering solely spatial proximity might affect other criteria of menu pattern design such as: menu readability, if commands and shortcut cues are easy to read; menu aesthetics,if they are aesthetically pleasing; and frequency in UI, if it is familiar in element organization in digital or physical documents (e.g. , applications, web pages, books, documents, journals). To account for those criteria, we consulted 4 design experts (28-48 years, 2 female, 1 male, 1 non-binary) of years of experience 3, 6-10 years and 1 > 10 years. On a 7-likert scale, the designers volunteered to evaluate the 14 menu patterns as well as the traditional linear menu pattern based on readability, aesthetics and frequency as well as the shortcut noticeability itself (i.e. if they think that the user will notice the keyboard shortcut of each command in this menu) Examples of the stimuli are the gray menus Figure 2. Interestingly, the LEFT (Figure 2.c) was recognized as one of the most promising candidate, especially regarding shortcut noticeability.

We then performed a trade-off analysis to select the most promising menu patterns. On the one side, we considered the ratings of the designers for each menu. The relative importance of the criteria was: noticeability of the shortcut > > readability > > aesthetics > frequency. On the other side, we wanted to ensure that the selected menu patterns were different enough in terms of spatial relationships. Three promising menu patterns were retained which we will empirically evaluate next:

• the LEFT (Figure 2.c) where the keyboard shortcut cues are positioned before the command names.

• the RIGHT (Figure 2.e) where the keyboard shortcut cues are appended right after the command names.

• the BELOW (Figure 2.h) where the keyboard shortcut cues are located below the command names.

EXPERIMENT 1

Through the exploration of the design space we manage to identify three promising menu layouts however we don't know whether they will affect the keyboard shortcut adoption. Therefore, we compare the three aforementioned menu patterns to the traditional linear menu (BASELINE) on keyboard shortcut adoption. We also manipulate the LENGTH of the commands as it can influence spatial proximity (but not spatial positioning). Experimental material is available here: https://osf.io/sgqrf/?view_only=85faa79f72bc40119e380ab0030a53fe

Experimental design

Participants & Apparatus: We hired 27 university students (20-30 years) 3 . The payment was 10 e/hour and an extra bonus of 20, 15 and 10 e for the three fastest participants. We used a 23" screen, a keyboard and a mouse. The duration was 1 hour.

Menu, Targets & Frequency: This experiment follows the rational of the first Grossman's et al. study [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]: on the top of the screen, a menu system contained 4 dropdown menus of 12 items each. Each menu had a different layout [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]:

LEFT, BELOW, RIGHT and the traditional menu layout (BASELINE) 4 . To compare both technique and individual item performance, we used an uniform frequency distribution (all items have the same frequency) [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]. The mapping of command names to keyboard shortcut cues followed the "Bad" quality rule of Grossman's et al. [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF], i.e. the hotkey is not part of the command name. The design differed from the original only on command lengths, names and target lengths:

-Command name lengths. To create menus containing "realistic" variety of command name lengths and manipulate this factor, we used a database of about 30 frequent Mac OS applications (1048 menus in total) [START_REF] Bailly | MenuInspector: Outil pour l'analyse des menus et cas d'étude[END_REF] and we computed the mean command name length (mean= 10 characters) and the variance [START_REF] Tony F Chan | Algorithms for computing the sample variance: Analysis and recommendations[END_REF] (24, with a 95% bootstrap confidence interval of [START_REF] Dillon | Measuring the True Cost of Command Selection: Techniques and Results[END_REF][START_REF] Endo | Use of spatial context is restricted by relative position in implicit learning[END_REF]). From this database, we randomly pick one 12-item menu with command name length distribution:

4-5-6-7-12-13-13-13-14-15-17-18. The mapping command name length-location was randomized for each menu.

-Command names. To fit the command lengths above (3 -10 chars), we used only a subset of Grossman's categories [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]:

"animals", "vegetables", "fruits" and "office", synthesising command names with common expressions of 2-3 words (e.g., "red fish") to precisely fit their length (i.e. number of chars).

-Targets. To use the command name length as a factor, each of the 4 menus contained 3 targets: the SMALL word (4 characters), the MEDIUM word (13 characters), and the LONG word (18 characters). This resulted in 12 target items in total (instead of 14 in [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]).

Stimulus & Task: On top of the screen, a menubar contained 4 buttons for each menu. The stimulus, displayed at the bottom, was an image depicting the target command (e.g. a "red fish"). The task was to select the target item as fast and accurately as possible using either the dropdown menu or the corresponding keyboard shortcut [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]. For wrong selections, a pop-up window appeared at the center of the screen. As a penalty, participants had to close this window and redo the task ([33] used 3 sec delay penalty instead). The next trial starts when participants executed the command correctly.

Procedure: Participants first performed a pre-test to ensure that they know what is a keyboard shortcut and how to execute it. We then explained participants the task encouraging them to be as fast and accurate as possible, emphasising also that they are free to use any method they want. We further mentioned that some previous studies indicate that using keyboard shortcuts can be faster. We also indicated that it is acceptable to make some mistakes in the beginning, to motivate risk-averse persons to use keyboard shortcuts. After 5 block of trials (each block consisted of 12 trials) a short dialog box appeared allowing the participants to take a 20" break. We then asked participants to fill out a post-questionnaire with gender, age and how often they used keyboard shortcuts. In the end of the study, participants performed a recall test where we showed them the visual stimuli they encountered during the session and asked them to indicate the corresponding keyboard shortcut.

Error bars 95% CIs 

Data analysis:

We measured shortcut use as the mean rate of correct keyboard shortcuts, i.e the proportion of trials where participants successfully used the shortcuts without help. This dependent variable is often used to compare different designs promoting shortcut usage [START_REF] Appert | Using Strokes As Command Shortcuts: Cognitive Benefits and Toolkit Support[END_REF][START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF][START_REF] Malacria | Promoting Hotkey Use Through Rehearsal with ExposeHK[END_REF][START_REF] Malacria | Skillometers: Reflective Widgets That Motivate and Help Users to Improve Performance[END_REF] as it captures not only the fact that users use keyboard shortcuts but also correct mapping. Following recent criticism on p-values [START_REF] Dragicevic | Running an hci experiment in multiple parallel universes[END_REF], we report and interpret our inferential statistics using bootstrapped confidence intervals (CI) [START_REF] Carpenter | Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians[END_REF]. Keyboard shortcut use per command length: BASELINE and RIGHT are sensitive to length of the command, because its length affects the distance between command and shortcut. Thus, we analysed the keyboard shortcut adoption for each command length. Figure 6 shows no conclusive effect for the menu-command length pairs [START_REF] Cumming | Inference by eye: confidence intervals and how to read pictures of data[END_REF]. Yet, we notice a small trend favoring the SMALL and LONG for the BASELINE and RIGHT. Similarly, in Figure 7, shows results of learning speed for each command length which remained inconclusive for both correct keyboard shortcuts rate and selection time.

Results

Errors bars in

Recall test: For the keyboard shortcut recall test, Figure 8 shows no conclusive differences among the 4 menus.

EXPERIMENT 2

Experiment 1 was inconclusive on the difference among the 4 menus. We considered several explanations including that (I) the effect is smaller than expected, or that (II) both the instructions and the task were too explicit on prompting participants to learn shortcuts, masking potential implicit learning behavior, or that (III) the within-subjects design introduced unintended skill transfer, one menu pattern motivating participants to adopt the shortcuts with the other. We run a second experiment to mitigate those possibilities.

To further increase statistical power (I), we compared only two conditions, BASELINE with the LEFT, the best rated by designers in terms of noticeability of the shortcut (Figure 3) and followed between-subjects design (III). To improve ecological validity within the implicit learning context (II), Experiment 2 builds on Banovic et al. design [START_REF] Nikola Banovic | Triggering triggers and burying barriers to customizing software[END_REF] with instructions which did not explicitly invite participants to learn keyboard shortcuts. While this scenario was more realistic, the risk was that a large proportion of participants might not use keyboard shortcuts (lack of awareness, motivation, etc.).

We mitigated this risk with the use of safeguards in periodic times during the experiment, using usage tips. Experiment 2 is identical to Experiment 1 including participant payment, apparatus keyboard shortcuts, identical menu hierarchy structure and target items. We next detail only the elements that differ between the two experiments.

Experimental design

Participants: We recruited 72 different university students (20-30 years) from various fields (e.g. engineering, law, medicine). The duration was 1 hour.

Stimulus & Task: Due to the between-subjects design (III), all sub-menus now had the same layout (all BASELINE or all LEFT). To increase similarity with real applications (II), we added a context menu as a common method to select commands. The new interface (Figure 9) displayed a 5x12 grid in the center of the screen. Each cell had four states: masked, where no image is shown; visible, the image indicates the target command, i.e. the command that the user has to execute on this cell; selected, the image is outlined in blue when clicking on it (with the left or right mouse button).

Then they can use their preferred method to select the command (menubar, context menu, or shortcuts); activated, the image is blurred, checked and outlined in green to indicate a successfully selected command. The targets appeared in a cell inside the grid interface (Figure 9). Participants had to select a cell before executing the command and then select the next cell, until all cells were activated. The rational behind this design choice was to use a high level task ("complete the grid"), rather than series of low-level tasks (execute individual commands). Forcing participants to interact with multiple objects-of-interest (cells) located at different places on the screen can potentially foster more realistic mouse behavior (II).

Moreover, it may help participants to perceive the "real cost" [START_REF] Dillon | Measuring the True Cost of Command Selection: Techniques and Results[END_REF] of mouse-based commands. Indeed, the "real cost" of menu-based methods [START_REF] Dillon | Measuring the True Cost of Command Selection: Techniques and Results[END_REF] includes not only the time to reach the menu widget (e.g. menubar) and the time to navigate in the menu system, but also the time to return back to the objects-of-interest [START_REF] Dillon | Measuring the True Cost of Command Selection: Techniques and Results[END_REF] (refer to [START_REF] Bailly | Visual Menu Techniques[END_REF] for extended discussion).

Frequency: Unlike Experiment 1 (uniform distribution), to reflect real application usage (II), we used a zipfian distribution for the frequency of appearance of each target [START_REF] Witten | On frequency-based menu-splitting algorithms[END_REF]. We used the standard zipfian distribution equation [START_REF] Liu | Effects of Frequency Distribution on Linear Menu Performance[END_REF][START_REF] Kingsley | Human behavior and the principle of least effort: An introduction to human ecology[END_REF] (exponent==1) and applied it to the set of the 12 target commands of Experiment 1 following the procedure described in [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]. The resulted frequencies were rounded off and consisted of: 12, 12, 6, 6, 4, 4, 3, 3, 2, 2, 2, 2. For each session, each item was randomly assigned a frequency.

Procedure: In the pre-test, participants executed again a few simple shortcuts, but this time the keyboard was not connected to the screen. Participants were then told to complete the grid by executing the corresponding commands on each image, but they were not informed about the available methods. So, participants did not receive incentives favoring # of Participants (P) who started the transition Original 42 P Extra 30P keyboard shortcuts. Between blocks a dialog encouraged participants to take a 20 second break. To avoid having too many participants that do not transition we introduced tips. From pilots and Experiment 1 data analysis, we saw that participants are very likely to "never" transition, if they do not transition during the first three blocks. For this reason, after the third block, we added tips during the inter block breaks (such as the ones we can find in modern applications, e.g. Pycharm [START_REF]Pycharm: Python IDE for Professional Developers[END_REF])

to encourage the use of keyboard shortcuts. We added 3 tips appearing at different timestamps. The 1st tip (inter-block 5) informed participants that there are three methods to execute commands (menubar, context menu and keyboard shortcuts).

The 2nd tip (inter-block 6) informed them that studies have shown that keyboard shortcuts are faster than menus. The 3rd tip (inter-block 7) explicitly informed them that they should use keyboard shortcuts to optimize their performance. Once a tip was shown, it remained visible during all the following inter-blocks. Such tips ensured having enough data to analyse, while allowed us to capture an initially more spontaneous behaviour. At the end of the session, we asked participants to fill a post-questionnaire and preform a recall test similar to Experiment 1.

Design:

The experiment had a mixed-subjects design, with participants randomly assigned to one menu (BASELINE or LEFT). The within design factor was the frequency of the commands. The position of targets in the grid was randomly assigned in each block. Each participant performed 10 blocks of 58 selections. Overall, the design was 2 menus × 36 participants × 10 blocks × 58 trials = 41760 selections.

Planned analysis: Our original planned analysis was to recruit 42 participants who met the criteria threshold to user correct keyboard shortcuts for at least 25% of the trials. We based this decision on [START_REF] Lafreniere | Investigating the post-training persistence of expert interaction techniques[END_REF] who used a similar protocol to ensure that they had enough participants used shortcuts. However, we finally decided to fully report the same analysis of Experiment 1. We also realised that 42 participants is a rather arbitrary number which might not be enough to capture the effect5 . Therefore we added 30 participants based on the formula of Prashant et al. [START_REF] Kadam | Sample size calculation[END_REF]. This formula calculates the sample size for a follow-up experiment based on the results of the initial experiment. We considered those two deviations acceptable, given that the new analysis includes the planned analysis. Error bars 95% CIs that the majority of the participants started using correct keyboard shortcuts before the 1st tip ( 82%), indicating the lack of influence of the tips on the awareness of the keyboard shortcuts for most participants.

Results

Errors bars in

Keyboard shortcut use menu: Figure 11 reports the results of our analysis regarding the differences between the two layouts.Our analysis indicates that the mean rate difference is inconclusive between the 2 layouts. Figure 12 reports the results of the learning speed analysis. We observe a trend favoring the BASELINE over the LEFT especially regarding the mean rate adoption per block.

Keyboard shortcut use per menu item length: Similar to Experiment 1 we investigated the effect of the command length for each layout on the keyboard shortcut adoption. Figure 15 shows no conclusive difference among the menu-command % Correct answers in recall test Error bars 95% CIs length pairs. Figure 13 reports the results of the learning speed analysis. Once again, it remains unclear if the learning speed was affected by the three conditions.

Keyboard shortcut use per user profile: To better understand our results we decided to perform an extra analysis based on the users' profiles. In particular we are interested to see if their familiarity with keyboard shortcuts played a role in their behavior. In the post-questionnaire of each session in both studies we asked the participants to indicate their familiarity with keyboard shortcuts. Most Experiment 1 participants (21 out of 26) were UNFAMILIAR with keyboard shortcuts. In contrast, in Experiment 2, the ratio between the FAMILIAR-UNFAMILIAR users was better (44 FAMILIAR, 28 UNFAMILIAR). We thus decided to investigate where their profiles may have affected our results. Figure 14 reports the results of the keyboard shortcut adoption per layout(BASELINE, LEFT) and user profile(FAMILIAR, UNFAMILIAR).

Results indicate that FAMILIAR users used more keyboard shortcuts than the UNFAMILIAR but we couldn't detect any differences among layouts and user profiles

Recall We analyzed the results of the post-questionnaire recall test as we did in Experiment 1. We analyzed the results for all participants as well as for each familiarity group. Figure 16 shows the mean rate of correct answers for each menu layout. Our analysis couldn't detect any possible differences among the 2 layouts.

DISCUSSION & FUTURE DIRECTIONS

Although our results did not confirm our original hypothesis, we argue that those findings are informative because, considering our review of ISL theory, negative results are surprising opening a number of directions for future work:

Familiarity & User Profile. While the familiarity analysis (Figure 14 and 16) did not produce conclusive results, we observed an interesting trend. The FAMILIAR group performed better with BASELINE than LEFT while participants in the UNFAMILIAR group performed better with LEFT than BASELINE. It is worth investigation whether interactions between familiarity and spatial relationships influence implicit learning. It is likely that the FAMILIAR group exploits prior experience with the menu pattern and how its elements are positioned, while the UNFAMILIAR group lacks this advantage.

Other ISL Factors. In related work of ISL, we identified design factors in addition to the ones investigated in this paper.

For instance, exposure time may increase the adoption of the keyboard shortcut. In drop-down menus, the commands are only visible when the menu is open which may hinder the repeated exposure of the pattern. Other command selection widgets like command palettes or toolbars could be more appropriate as they are always visible. Another interesting factor is accumulation of instances in memory, for which we know that only limited contingencies can be learnt in a restricted period, suggesting that only a few associations trigger learning [START_REF] Andrea | Awareness in contextual cuing with extended and concurrent explicit tests[END_REF]. Consequently, a task that includes much fewer associations, regularities, or contingencies within a block triggers larger learning effects [START_REF] Bennett | An abbreviated implicit spatial context learning task that yields greater learning[END_REF]. In our context, this suggests that limiting the total number of commands can facilitate the implicit learning of the remaining ones. Methods. It remains unclear how to effectively transpose findings and methodologies from cognitive science to the HCI context. Alternative experimental protocols can be investigated. For instance, 1-hour experiments may not be enough to capture such phenomenona. For example, some experimental protocols in cognitive science use multiple sessions as exposure time [START_REF] Perruchet | Implicit learning and statistical learning: One phenomenon, two approaches[END_REF][START_REF] Scarr | Dips and Ceilings: Understanding and Supporting Transitions to Expertise in User Interfaces[END_REF][START_REF] Shelton | Incidental learning in a paired-associate task[END_REF]. Future investigations could increase exposure time while an eye-tracker can detect when and how long participants are gazing the menu commands.

Traditional ISL studies "force" participants to learn a single pattern [START_REF] Thomas | On the limits of statistical learning: Intertrial contextual cueing is confined to temporally close contingencies[END_REF]. In contrast, our study let the participant decide which modality they wish to use to complete their task. This decision is based on prior work [START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF], but it could have affected the ISL processes. Further investigation could examine the role of choice between different modalities in ISL study design.

Questioning UI design conventions. In a concluding remark, this paper questioned menu design conventions used in existing systems to some extend. We extracted the design space of spatial relationships in the menu patterns and as future work, we suggest extending this design space considering additional criteria. For instance, through the lens of ISL theory, we can revisit icon and symbol (e.g. ) placements as well as radically different menu patterns (e.g. circular layout [START_REF] Ahlstroem | Improving menu interaction: a comparison of standard, force enhanced and jumping menus[END_REF]).

It is also worth investigating the influence of spatial relationships on other aspects of usability (readability, aesthetics, preferences etc). To that, our study with professional designers (Figure 3) suggests potential benefits of alternative menu layouts (e.g BELOW) on usability (e.g. aesthetics). A common barrier for practitioners in questioning conventions to confuse users hindering, at least temporally, their performance. On that, our findings showed that it is possible that less conventional menu designs do not impact negatively user performance even within limited exposure. We thus encourage HCI research to be open in revisiting such conventions and investigate how design novelty can benefit users.
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 21 Experimental studies of ISL in Cognitive Science. ISL has been studied under several contexts and for each context the experimental protocols differ. The most relevant context for our use case is ISL in visual search which follow a standard experimental task [57]. During this task, participants search for a T-target within a configuration of L-distractors.

Fig. 1 .

 1 Fig. 1. An example of the traditional linear menu of the inkscape application. The shortcut cue is placed far from the command name and on its right.

Fig. 2 .

 2 Fig. 2. Design space for placing the keyboard shortcut cue ( ks ) in relation to its command name ( cmd ) regarding two dimensions: position and alignment. Shortcut positions: left (c,f), right (a,b,d,e) bottom (h), up (g) or diagonal (not shown in the figure). Shortcut alignments: left (b,h), right (a,c), and centered (f,g). The circled letters highlight the designs that we finally compared in Experiment 1.

Fig. 3 .

 3 Fig. 3. Expert designer average scores for each menu pattern.

Figure 3

 3 Figure 3 reports the designers' responses. Each column corresponds to a menu pattern and the blue boxes the average rating for each criterion. Stronger blue indicates higher rating. Each menu can be identified uniquely by its position: cue on the (R)ight, (L)eft,(B)elow, (A)bove of the command and alignment: (R)ight, (L)eft, (C)enter, shown in the 2 last rows.
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 456 Fig. 4. Mean% of shortcuts per menu.

  Figures 4,[START_REF] Bailly | MenUA: a design space of menu techniques[END_REF],8 and confidence bands in Figures 5,7 represent 95% confidence intervals (CI) indicating a range of plausible values for the population mean.
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 7 Fig. 7. Mean% of shortcuts & time per command length
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 89 Fig. 8. Mean% of recalls per menu.
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 10 Fig. 10. Transitioning to shortcuts after each tip
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 111213 Fig. 12. Mean% of shortcuts & time per menu

Fig. 14 .

 14 Fig. 14. A:Mean% of shortcuts per menu and familiarity B: Their mean difference.

Fig. 15 .

 15 Fig. 15. Mean% of shortcuts per command length

Fig. 16 .

 16 Fig.[START_REF] Tony F Chan | Algorithms for computing the sample variance: Analysis and recommendations[END_REF]. Mean% of recalls per menu for all (A), familiar (B) and unfamiliar (C) participants.

Figure

shows only a subset of the menus. All menus are available in the supplementary material. See the osf link in Experiment 1.[START_REF]Pycharm: Python IDE for Professional Developers[END_REF] see osf.io link in Experiment 1 to access the full list of menu designs

The planned size was 28, but one participant's data was lost due to a technical crush.

Two main options exist for within design: either show the 4 conditions within the same menu system (ours and Grossman's[START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF]) or sequentially, one after the other. The drawback of the first option is that one layout motivating the users to use the shortcuts, might also motivates all conditions, resulting in observing smaller differences between conditions. However, the sequential option can also motivate the users to use shortcuts when switching from one condition to another, while more trials and mappings can overload participants' working memory[START_REF] Grossman | Strategies for Accelerating On-line Learning of Hotkeys[END_REF].

In the osf.io link, we provide results for the original planned analysis as well for the 30 added participants separately in which the effects were consistent with the current reported analysis.