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Implicit Statistical Learning (ISL) studies how exposing individuals to repeated statistical patterns can help develop skills in the absence

of conscious awareness, such as learning a language or detecting familiar shapes. This paper transposes ISL in the context of menu design

learnability. Our analysis of menu patterns in various applications from the 80s to today reveals a consistent linear pattern with command

names on the left and keyboard shortcut cues aligned on the right. We then develop a design space of menu patterns by manipulating two

factors of ISL theory, spatial proximity (distance) and relative positioning between commands and shortcut cues. We empirically compare

four menu patterns of this design space on whether they can improve keyboard shortcut adoption through two controlled experiments.

Results did not capture clear effects among the menu patterns, suggesting that ISL in the context of HCI might involve more complex

factors than initially anticipated, such as the time the users are exposed to the menu pattern. We reflect on the challenges in applying

theories from cognitive science to HCI and hope that our systematic methodology and experiment designs will serve as a basis for

encouraging more studies in the area.

CCS Concepts: • Human-centered computing; • Human-Computer Interaction (HCI); • HCI design and evaluation methods;

Additional Key Words and Phrases: Implicit Statistical Learning, spatial relationships, GUI, menu

1 INTRODUCTION

One of the main HCI challenges is to help users learn how to use an interface with as little effort as possible [34]. More

effortful approaches such as manuals and tutorials are useful, but not always feasible in practice [19]. In contrast, designers

and researchers strive to offer effortless and intuitive solutions [26, 33, 59], for example, by optimizing design layouts

attracting user attention to relevant items and visual cues. Yet, HCI has limited comprehensive theories and frameworks to

help us investigate systematically how users learn by being exposed to a repeated pattern.

An emerging field in cognitive science that studies how individuals learn new information by interacting with the

environment is the Implicit Statistical Learning (ISL)[17, 20]. ISL investigates learning (or skill development) in

the absence of conscious awareness. It explains how the brain discovers and encodes patterns (also called statistical

regularities) within its repeated exposure to environment stimuli. To the best of our knowledge, ISL has not yet been

investigated in the HCI literature. Typical ISL applications include how children learn a language effortlessly by listening

to other people speak [39], or detection of visual shapes among a number of distractors [32]. Still, understanding and

capturing underline processes of skill acquisition and visual search [19] can be of tremendous importance for effective

user interface design.

Yet transposing ISL in the context of interface learnability is not straightforward given that individuals have difficulty

reflecting on unconscious processes [50]. The aforementioned tasks and stimuli used in cognitive science experiments are

typically low-level, carefully selected for measuring and understanding behavior. HCI experiments also aim to provide

insights on how to design interactive systems or displays, while accounting for additional factors such as aesthetics,

usability and functionality. In this paper, we explore a way of transposing the ISL theory in the context of HCI.
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In particular, we focused on menu design learnability through the lens of ISL. At first, we operationalized the notion of

statistical regularity exploring design menu conventions in approximately 200 menus in various applications from the 80s

to today. Our analysis showed that menus tend to follow a consistent pattern of linear fashion which displays command

names on the left and keyboard shortcut cues aligned on the right. Optimizing the ISL factors of spatial proximity and

relative positioning [32], we developed a design space of alternative menu patterns. Both those ISL factors affect the visual

arrangement of elements in GUIs which in turn is known to influence decision making processes of users [14] and reduce

cognitive load [36]. We then consulted designer experts [44] to review our design space and identify promising menu

patterns including criteria of aesthetics and readability. We evaluated the menu designs in two controlled experiments

investigating the effect of our designs on keyboard shortcut adoption, a well-established HCI problem [33, 45] on how

users can become more efficient by transitioning from menus to expert methods for command selection.

Results did not capture clear effects on which menu patterns are better for keyboard shortcut adoption, at least not

within the time scale of our 1-hour lab experiment. While we remain positive on the importance of studying ISL pattern

exposure in HCI, we reflect on a number of barriers along the process. We suggest that ISL in the context of HCI might

involve more complex factors than initially anticipated, such as the time the users are exposed to the pattern and we hope

that our systematic methodology and experiment designs will serve as a basis for more studies in this area.

2 BACKGROUND

In this section we first discuss the main principles of implicit statistical learning that we consider as relevant to UI design.

We then review current design interventions to promote awareness and explicit learning in modern GUI.

2.1 Implicit Statistical Learning

Implicit Statistical Learning (ISL) [17, 20] integrates two contemporary approaches: implicit and statistical learning.

Implicit learning [50] usually defined as the process of individuals acquiring knowledge without having intention to

do so or being necessarily aware of it. The most common example is the early child language acquisition, i.e. how a

child learns a language unintentionally without having a formal education [39]. This process yields abstract knowledge

about the environment that individuals interact with [50]. Statistical learning refers to the unconscious process in which

repeated patterns, or statistical regularities (e.g., probabilistic regularities of the environment that predict future events),

are extracted from sensory inputs [60]. These two approaches are often published in separate literatures and sometimes

interpret their data in a different way [17]. However, they describe the same phenomenon and provide similar results

(for an overview see [48]). Consequently, several authors use the joint term implicit statistical learning to cover both

approaches [17, 20].

2.1.1 Why Does ISL Occur? One of the explanatory theories that have been offered for ISL is the formation of chunks

[29, 48]. Chunking characterizes the associative processing by which people bind together co-occurring elements or

information from their interaction with the environment. Attention plays a critical role in the formation of cognitive

units: perceptual primitives would only be grouped together to form a chunk when they are simultaneously held in a

spatial-attention window, which is constrained by working-memory limitations [49].

One thing that remains unclear is the role of awareness in ISL. There has been some debates on whether learning

without awareness can occur at all [24, 39] or what type of awareness can facilitate ISL. A recent study [39] for example

focused on two types of awareness: (a) at the level of noticing and (b) at the level of understanding. An example of the

former is when an individual learns a new language to notice that some words can take the suffix ’-s’ e.g. dogs and cats
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while an example for the latter is understanding that suffix ’-s’ signals plurality. However, prior work has shown that users

tend to notice faster objects or entities that they are already familiar with, which could affect the ISL processes [54].

2.1.2 ISL on Skill Acquisition. Implicit statistical learning yields interesting results regarding the skill acquisition. First,

ISL appears within multi-tasking, meaning that people have the ability to implicitly learn one task while executing another

task [51, 60].This is especially interesting for our context, because we expect users to implicitly learn semantically or

visually close elements while interacting with the interface. Second, ISL can help learners to reach faster automatization

of performance without going through the initial cognitive demanding learning stage [38].

2.1.3 ISL on Visual Search. A form of implicit statistical learning is the contextual cueing [18]. Contextual cueing

explains how contextual regularities present in the display can be implicitly detected and learnt during the visual search,

optimising basic visual processing [32]. ISL appears sensitive to several factors [27, 32]:

• Spatial proximity is one of the key factors of contextual cueing. Although ISL on non-spatially close elements is

possible, it occurs under far more restrictive conditions than those required for learning the relations between spatially

close events [32, 48]. This phenomenon relates to the Gestalt’s law of proximity, in which to perceive an assortment of

objects, an individual forms as a group the ones that are close to each other. This law is often used in advertising logos

to emphasize which aspects of events are associated.

• Relative Spatial positioning: recent studies [25, 62] highlight that relative positioning and spatial proximity play an

important role on how individuals detect and learn contextual regularities.

• Temporal proximity: a delay of just 3s between two statistically contingent elements was sufficient to deteriorate

intertrial learning in a contextual cueing task [57].

• Accumulation of instances in memory: only limited contingencies can be learnt in a restricted period, suggesting that

only few associations trigger learning [56].

The aforementioned factors suggest potential ways to encourage the ISL of the UI while the user interacts with it. While

performing a visual search in a User Interface, users are repeatedly exposed to several graphical elements (e.g. icon,

label, text, etc.). It seems plausible that their spatial proximity, exposure timings, as well as the number of those elements

can aid, or impede, the implicit learning of contextual information. Here we study the spatial proximity of the graphical

elements, as it appears to be a key factor of ISL.

2.2 Skills, Attention & Awareness in HCI

Implicit learning is related to several, but different, phenomena such as sequence learning [35], visual search [31, 32, 57],

attentional guidance [11, 58], cue-category association [52], causal learning [30] and motor learning [38, 47]. These

phenomena have been extensively studied in HCI. For instance solutions such as ephemeral adaptation [26] or changing

the background color of an element [59] attract the attention of the users towards this element to improve visual search in

menus. Marking menus[41] favor skill acquisition by letting users repeatedly perform the same gesture.

2.2.1 Experimental studies of ISL in Cognitive Science. ISL has been studied under several contexts and for each

context the experimental protocols differ. The most relevant context for our use case is ISL in visual search which follow a

standard experimental task [57]. During this task, participants search for a T-target within a configuration of L-distractors.

Half configurations are systematically repeated across many blocks of trials. The others are presented only once during

the task. A benefit on search times is typically observed in the repeated contexts compared to the novel contexts. This

indicates that participants encode implicitly some elements of the context.
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Related to our use case, Grossman et al. [33] compare several of these strategies to favor keyboard shortcut adoption.

Interestingly, authors mentioned that these strategies favor “implicit learning” in opposition with “explicit learning”.

However, based on the ISL literature, these strategies primarily focus on explicit learning, not implicit learning, as they

motivate users to intentionally learn keyboard shortcut. In contrast, we investigate whether repeatedly interacting with

a graphical widget can help users to learn information in the surroundings without having the intention to learn them.

Recently, Bailly, et al. proposed a theoretical model of shortcut adoption [9]. The model combines several cognitive

mechanisms including implicit and explicit learning. Both model fitting and model simulation suggest that implicit

learning plays a role in shortcut adoption.

3 REVISITING MENU DESIGN

Our literature review on Implicit Statistical Learning (ISL) suggested that certain statistical regularities, or repeated

patterns, can aid, or, conversely, impede implicit learning. This section attempts to identify and potentially improve such

patterns in menu layouts.

3.1 Extracting Traditional Linear Menu Patterns

C1 C2 C3D

1 Command 

name

2 Icon
3 Keyboard 


Shortcut Cue

4 Submenu 
Symbol

Fig. 1. An example of the traditional linear menu of the inkscape application. The shortcut cue is placed far from the command
name and on its right.

To extract menu design conventions, we analysed approximately 200 menus in various operating systems (Win, Mac,

Linux) and tool-kits (e.g., Qt, Swing) from the 80s to today. Menus followed a linear, rectangular fashion divided into

rows and columns. Each row is a menu item. The number of rows equals the number of available commands (plus the

separators in semantic organizations). A typical linear menu organizes the elements in 3 columns (Figure 1):

-1ST COLUMN contains command icons, the pictorial representations of functionalities (e.g., , ). Such icons depend

on the application and the operating system, e.g., most Mac menus (and few Linux) do not display icons by default.

The icon is sometimes replaced by a symbol ✓ or a widget , . Most menus display icons only for the frequent

commands. Since all icons have the same size, their alignment is always fixed.
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-2ND COLUMN contains command names, the textual labels representing the name of functionalities (e.g., Save , Copy ).

Ellipses can be added [5? ](e.g. Save As... ), if the command requires parameters (i.e. open a dialog box). Few menus (e.g.,

history menu in Safari) use an icon (e.g., website logo) in the command name. The alignment of the command names is

always on the left.

-3RD COLUMN contains keyboard shortcut cues and submenu symbols ( � ). The cues represent the sequence of keys to

activate a functionality. Depending on the operating system the cue can be textual (e.g. Ctrl+S ) or, as in Mac systems, a

combination of symbol and text ( S ). The symbol � , which does not have a cue, indicates hierarchical menu items

(i.e. the item opens a sub-menu). The alignment of the cues is always on the right.

We saw very few exceptions of the above standards. An old Win 3.1 had shortcuts cues with left-alignment, Win had a

4rth column with � , and Blender had both cues and submenus.

Our analysis showed that the linear menu follows a consistent design pattern across operating systems and applications.

The commands appear on the left, while the shortcut cues on the right. Similarly, the commands follow left alignment,

while the shortcut cues follow right alignment. This standard introduces implications for the width of the columns. While

the icons’ width (1st column) is fixed, the command names (2nd column) depend on the longest. Similarly, the shortcuts’

width (3rd column) depend on the shortcuts with the largest number of modifiers (max=3). Consequently, while the

(relative) spatial positioning between the shortcut cue and the command is always the same (i.e. shortcut cue on the

right), their spatial proximity varies a lot from one item to another and from one menu to another (see Figure 1). ISL

theory suggests that such distance might impair the implicit learning of the keyboard shortcuts. Current literature further

highlights that users often ignore keyboard shortcuts and they favor menus to select commands [6, 19, 33]. Existing

solutions aim to increase users’ awareness [33, 40, 45, 53], attract attention [33], inform about the relative performance

[45] and/or change the incentives [53] for using the shortcuts. These approaches mainly focus on when and how to display

information related to keyboard shortcuts, but they haven’t investigated how the spatial relationship between the command

name and the keyboard shortcut may affect the keyboard shortcut adoption.

3.2 Strategies to Improve the Menu Pattern

We identify several approaches favoring spatial proximity between commands and keyboard shortcut cues:

• Decrease variability of command length (2ND COLUMN): As the width of the 2nd column depends on the longest

command name, a designer could maintain similar command lengths. However, changing the wording of commands is

a challenging task for designers [7, 10]. Users are familiar with specific names, e.g., Save , Open while alternative

command names do not always exist.

• Decrease variability of shortcut cue length (3RD COLUMN): Similarly to the command names, the shortcut cues can

also maintain the same width by reducing modifiers or replacing modifiers with symbols (e.g., Apple menus). Designers

tend to anyways follow this solution, favoring simple shortcuts or using symbols. However, given the variability of the

command names, this solution saves only a couple of pixels (as well as solutions that reduce padding or margins).

• Change column alignment (2ND & 3RD COLUMN): This approach changes the position of the elements within columns.

While the 2ND column is left aligned and the 3RD is right aligned several alternatives are possible while maintaining

the column order.

• Change position (2ND & 3RD COLUMN): This approach focuses on the relative position between the command name

and the shortcut cue, typically, changing the order of the columns.

We focus on the two last strategies which do not modify the semantic of the command name or the shortcut cue.
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Select All  Ctrl+A
Play Slideshow Alt+Ctrl+P

Open
Send Backward
Select All
Play Slideshow

Ctrl+O
Alt+Shift+Ctrl+B
Ctrl+A
Alt+Ctrl+P

Ctrl+O Open
Alt+Shift+Ctrl+B Send Backward 

Ctrl+A  Select All  
Alt+Ctrl+P Play Slideshow 

a.

b.

c.

d.

e.

f.

g. h.
cmd ks

cmd ks

ks cmd

cmd ks

cmd ks

cmdks

cmd

ks

cmd

ks

Fig. 2. Design space for placing the keyboard shortcut cue ( ks ) in relation to its command name ( cmd ) regarding two dimensions:
position and alignment. Shortcut positions: left (c,f), right (a,b,d,e) bottom (h), up (g) or diagonal (not shown in the figure). Shortcut
alignments: left (b,h), right (a,c), and centered (f,g). The circled letters highlight the designs that we finally compared in Experiment
1.

3.3 Design Space: Position & Alignment

The design space of the linear menu is enormous involving numerous variables (e.g., font, saliency, icon design etc.)

[10, 28]. We focus on the position and the alignment between the keyboard shortcut cues and the name of the commands.

To describe this design space, we use the iconified notation displayed in Figure 2. The grids on the left of each

menu offer a quick overview of the set of possibilities and facilitate prototyping and brainstorming among designers.

The command name is represented by the icon cmd and the keyboard shortcut cue by the icon ks . Each element is

displayed in a box icon representing the whole space allocated for the elements, typically, the column width. The relative

position (e.g., top, bottom, left, right) of the box represents the dimension position, while their relative position within

the box represents their alignment (e.g., left , right, center). Figure 2 illustrates 8 menu instances of this design space

by manipulating the position and the alignment of the two elements. A key feature of the design space is that the two

elements can share the same box as shown in Figure 2.e.f. In that case, the designer is choosing to allocate one column for

both elements. Consequently, this pair of elements will be following a unique alignment.

All combinations of positions and alignments between keyboard shortcut cues and command names derived 42 different

menu patterns 1 More precisely, we considered 4 relative positions of the keyboard shortcut cue in relation to the command

name: left, right, below or above (e.g., Fig2.c.d.h.g respectively). We also considered 3 alignments for each of these two

elements: left, right, or center (e.g., for cues Fig2.b.c.d respectively). We also considered all (6) the menus where the

elements are appended to each other. Given the configuration of these menus, we considered only 2 relative positions left

or at the right (e.g., Fig2.f.e) and three alignments left (e.g., Fig2.e), right, or center (e.g., Fig2.f).

3.4 Menu Pattern Selection

From the 42 menus, we discarded the 27 which were strongly sensitive to the length of the commands (e.g., in patterns .b

and .d small command names are far from the shortcut cues). This systematic analysis resulted in 14 menu candidates that

increase the spatial proximity between the shortcut cue and the command name 2.

Yet, considering solely spatial proximity might affect other criteria of menu pattern design such as: menu readability, if

commands and shortcut cues are easy to read; menu aesthetics,if they are aesthetically pleasing; and frequency in UI, if it

is familiar in element organization in digital or physical documents (e.g. , applications, web pages, books, documents,

1Figure 2 shows only a subset of the menus. All menus are available in the supplementary material. See the osf link in Experiment 1.
2see osf.io link in Experiment 1 to access the full list of menu designs
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menu aesthetics
frequency in UI

menu readability

shortcut noticeability

BASELINE BELOW RIGHT

R

accumulated

category:  position

14 menus with minimum spatial proximity between command and shortcut cue

7

1
category: aligment 

R B B B A A A
R L L R C R L C

R L L R L R
L L R C C R

LEFT

L
R

Fig. 3. Expert designer average scores for each menu pattern.

journals). To account for those criteria, we consulted 4 design experts (28-48 years, 2 female, 1 male, 1 non-binary)

of years of experience 3, 6-10 years and 1 > 10 years. On a 7-likert scale, the designers volunteered to evaluate the 14

menu patterns as well as the traditional linear menu pattern based on readability, aesthetics and frequency as well as the

shortcut noticeability itself (i.e. if they think that the user will notice the keyboard shortcut of each command in this

menu) Examples of the stimuli are the gray menus Figure 2.

Figure 3 reports the designers’ responses. Each column corresponds to a menu pattern and the blue boxes the average

rating for each criterion. Stronger blue indicates higher rating. Each menu can be identified uniquely by its position: cue

on the (R)ight, (L)eft,(B)elow, (A)bove of the command and alignment: (R)ight, (L)eft, (C)enter, shown in the 2 last rows.

Interestingly, the LEFT (Figure 2.c) was recognized as one of the most promising candidate, especially regarding shortcut

noticeability.

We then performed a trade-off analysis to select the most promising menu patterns. On the one side, we considered

the ratings of the designers for each menu. The relative importance of the criteria was: noticeability of the shortcut >

> readability > > aesthetics > frequency. On the other side, we wanted to ensure that the selected menu patterns were

different enough in terms of spatial relationships. Three promising menu patterns were retained which we will empirically

evaluate next:

• the LEFT (Figure 2.c) where the keyboard shortcut cues are positioned before the command names.

• the RIGHT (Figure 2.e) where the keyboard shortcut cues are appended right after the command names.

• the BELOW (Figure 2.h) where the keyboard shortcut cues are located below the command names.

4 EXPERIMENT 1

Through the exploration of the design space we manage to identify three promising menu layouts however we don’t

know whether they will affect the keyboard shortcut adoption. Therefore, we compare the three aforementioned menu

patterns to the traditional linear menu (BASELINE) on keyboard shortcut adoption. We also manipulate the LENGTH of

the commands as it can influence spatial proximity (but not spatial positioning). Experimental material is available here:

https://osf.io/sgqrf/?view_only=85faa79f72bc40119e380ab0030a53fe
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4.1 Experimental design

Participants & Apparatus: We hired 27 university students (20-30 years) 3. The payment was 10 e/hour and an extra

bonus of 20, 15 and 10 e for the three fastest participants. We used a 23” screen, a keyboard and a mouse. The duration

was 1 hour.

Menu, Targets & Frequency: This experiment follows the rational of the first Grossman’s et al. study [33]: on the top

of the screen, a menu system contained 4 dropdown menus of 12 items each. Each menu had a different layout [33]:

LEFT, BELOW, RIGHT and the traditional menu layout (BASELINE) 4. To compare both technique and individual item

performance, we used an uniform frequency distribution (all items have the same frequency)[33]. The mapping of

command names to keyboard shortcut cues followed the “Bad” quality rule of Grossman’s et al. [33], i.e. the hotkey is

not part of the command name. The design differed from the original only on command lengths, names and target lengths:

–Command name lengths. To create menus containing “realistic” variety of command name lengths and manipulate

this factor, we used a database of about 30 frequent Mac OS applications (1048 menus in total) [8] and we computed

the mean command name length (mean= 10 characters) and the variance [16] (24, with a 95% bootstrap confidence

interval of [22, 25]). From this database, we randomly pick one 12-item menu with command name length distribution:

4-5-6-7-12-13-13-13-14-15-17-18. The mapping command name length-location was randomized for each menu.

–Command names. To fit the command lengths above (3 - 10 chars), we used only a subset of Grossman’s categories [33]:

“animals”, “vegetables”, “fruits” and “office”, synthesising command names with common expressions of 2-3 words (e.g.,

“red fish”) to precisely fit their length (i.e. number of chars).

–Targets. To use the command name length as a factor, each of the 4 menus contained 3 targets: the SMALL word (4

characters), the MEDIUM word (13 characters), and the LONG word (18 characters). This resulted in 12 target items in

total (instead of 14 in [33]).

Stimulus & Task: On top of the screen, a menubar contained 4 buttons for each menu. The stimulus, displayed at the

bottom, was an image depicting the target command (e.g. a “red fish”). The task was to select the target item as fast and

accurately as possible using either the dropdown menu or the corresponding keyboard shortcut [33]. For wrong selections,

a pop-up window appeared at the center of the screen. As a penalty, participants had to close this window and redo the

task ([33] used 3 sec delay penalty instead). The next trial starts when participants executed the command correctly.

Procedure: Participants first performed a pre-test to ensure that they know what is a keyboard shortcut and how to execute

it. We then explained participants the task encouraging them to be as fast and accurate as possible, emphasising also that

they are free to use any method they want. We further mentioned that some previous studies indicate that using keyboard

shortcuts can be faster. We also indicated that it is acceptable to make some mistakes in the beginning, to motivate

risk-averse persons to use keyboard shortcuts. After 5 block of trials (each block consisted of 12 trials) a short dialog box

appeared allowing the participants to take a 20” break. We then asked participants to fill out a post-questionnaire with

gender, age and how often they used keyboard shortcuts. In the end of the study, participants performed a recall test where

we showed them the visual stimuli they encountered during the session and asked them to indicate the corresponding

keyboard shortcut.

3The planned size was 28, but one participant’s data was lost due to a technical crush.
4Two main options exist for within design: either show the 4 conditions within the same menu system (ours and Grossman’s [33]) or sequentially, one
after the other. The drawback of the first option is that one layout motivating the users to use the shortcuts, might also motivates all conditions, resulting in
observing smaller differences between conditions. However, the sequential option can also motivate the users to use shortcuts when switching from one
condition to another, while more trials and mappings can overload participants’ working memory [33].
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Error bars 95% CIs

Fig. 4. Mean% of shortcuts per menu.

Blocks

% Correct keyboard shortucts Selection time

Blocks

 95% CIs con�dence bands

Fig. 5. Mean% of shortcuts & time per menu

Error bars 95% CIs

Fig. 6. Mean% of shortcuts per command length
.

Design: The experiment had two within factors: menu layout (BASELINE vs. RIGHT vs. BELOW vs. LEFT) and command

length (SMALL, MEDIUM and LONG). The mapping was counter-balanced using a Latin square design. Participants

performed 45 blocks of 12 selections. Each selection corresponds to one condition (Menu layout × command length).

Selection order was randomized within block. Overall, the design was 27 participants × 45 blocks × 12 trials (3 command

lengths × 4 targets) = 14580 selections.

Data analysis: We measured shortcut use as the mean rate of correct keyboard shortcuts, i.e the proportion of trials where

participants successfully used the shortcuts without help. This dependent variable is often used to compare different

designs promoting shortcut usage [4, 33, 45, 46] as it captures not only the fact that users use keyboard shortcuts but

also correct mapping. Following recent criticism on p-values [23], we report and interpret our inferential statistics using

bootstrapped confidence intervals (CI) [15].

4.2 Results

Errors bars in Figures 4,6,8 and confidence bands in Figures 5,7 represent 95% confidence intervals (CI) indicating a

range of plausible values for the population mean.
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Blocks

% Correct keyboard shortucts Selection time

Blocks

 95% CIs con�dence bands

Fig. 7. Mean% of shortcuts & time per command length

% Correct answers in recall test
Fig. 8. Mean% of recalls per menu.

masked visible selected

activated
Fig. 9. Experiment 2: Interface with 4 target stages

Keyboard shortcut use per menu: Figure 4 shows that the confidence intervals of the 4 menus are large and with a high

degree of overlap. Thus we can not draw conclusions on whether a menu layout out-performs the others in promoting

correct keyboard shortcuts. Figure 5 shows the learning speed per menu plotting the correct keyboard shortcuts rate and

command selection time per block. Results indicate that for the first 20 blocks BASELINE under-performs to the other

menus in terms of correct keyboard shortcuts rate. After block 20, differences among the 4 menus appear negligible.

Keyboard shortcut use per command length: BASELINE and RIGHT are sensitive to length of the command, because its

length affects the distance between command and shortcut. Thus, we analysed the keyboard shortcut adoption for each

command length. Figure 6 shows no conclusive effect for the menu-command length pairs [21]. Yet, we notice a small

trend favoring the SMALL and LONG for the BASELINE and RIGHT. Similarly, in Figure 7, shows results of learning speed

for each command length which remained inconclusive for both correct keyboard shortcuts rate and selection time.

Recall test: For the keyboard shortcut recall test, Figure 8 shows no conclusive differences among the 4 menus.
10
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5 EXPERIMENT 2

Experiment 1 was inconclusive on the difference among the 4 menus. We considered several explanations including

that (I) the effect is smaller than expected, or that (II) both the instructions and the task were too explicit on prompting

participants to learn shortcuts, masking potential implicit learning behavior, or that (III) the within-subjects design

introduced unintended skill transfer, one menu pattern motivating participants to adopt the shortcuts with the other. We

run a second experiment to mitigate those possibilities.

To further increase statistical power (I), we compared only two conditions, BASELINE with the LEFT, the best rated

by designers in terms of noticeability of the shortcut (Figure 3) and followed between-subjects design (III). To improve

ecological validity within the implicit learning context (II), Experiment 2 builds on Banovic et al. design [12] with

instructions which did not explicitly invite participants to learn keyboard shortcuts. While this scenario was more realistic,

the risk was that a large proportion of participants might not use keyboard shortcuts (lack of awareness, motivation, etc.).

We mitigated this risk with the use of safeguards in periodic times during the experiment, using usage tips. Experiment

2 is identical to Experiment 1 including participant payment, apparatus keyboard shortcuts, identical menu hierarchy

structure and target items. We next detail only the elements that differ between the two experiments.

5.1 Experimental design

Participants: We recruited 72 different university students (20-30 years) from various fields (e.g. engineering, law,

medicine). The duration was 1 hour.

Stimulus & Task: Due to the between-subjects design (III), all sub-menus now had the same layout (all BASELINE or

all LEFT). To increase similarity with real applications (II), we added a context menu as a common method to select

commands. The new interface (Figure 9) displayed a 5x12 grid in the center of the screen. Each cell had four states:

masked, where no image is shown; visible, the image indicates the target command, i.e. the command that the user has

to execute on this cell; selected, the image is outlined in blue when clicking on it (with the left or right mouse button).

Then they can use their preferred method to select the command (menubar, context menu, or shortcuts); activated, the

image is blurred, checked and outlined in green to indicate a successfully selected command. The targets appeared in a

cell inside the grid interface (Figure 9). Participants had to select a cell before executing the command and then select the

next cell, until all cells were activated. The rational behind this design choice was to use a high level task (“complete the

grid”), rather than series of low-level tasks (execute individual commands). Forcing participants to interact with multiple

objects-of-interest (cells) located at different places on the screen can potentially foster more realistic mouse behavior (II).

Moreover, it may help participants to perceive the “real cost” [22] of mouse-based commands. Indeed, the “real cost” of

menu-based methods [22] includes not only the time to reach the menu widget (e.g. menubar) and the time to navigate in

the menu system, but also the time to return back to the objects-of-interest [22] (refer to [7] for extended discussion).

Frequency: Unlike Experiment 1 (uniform distribution), to reflect real application usage (II), we used a zipfian distri-

bution for the frequency of appearance of each target [61]. We used the standard zipfian distribution equation [43, 63]

(exponent==1) and applied it to the set of the 12 target commands of Experiment 1 following the procedure described in

[33]. The resulted frequencies were rounded off and consisted of: 12, 12, 6, 6, 4, 4, 3, 3, 2, 2, 2, 2. For each session, each

item was randomly assigned a frequency.

Procedure: In the pre-test, participants executed again a few simple shortcuts, but this time the keyboard was not

connected to the screen. Participants were then told to complete the grid by executing the corresponding commands on

each image, but they were not informed about the available methods. So, participants did not receive incentives favoring
11
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# of Participants (P) who started the transition

Original 42 P

Extra 30P

Fig. 10. Transitioning to shortcuts after each tip

Error bars 95% CIs

Fig. 11. A:Mean% of shortcuts per menu B: Their mean difference

keyboard shortcuts. Between blocks a dialog encouraged participants to take a 20 second break. To avoid having too many

participants that do not transition we introduced tips. From pilots and Experiment 1 data analysis, we saw that participants

are very likely to “never” transition, if they do not transition during the first three blocks. For this reason, after the third

block, we added tips during the inter block breaks (such as the ones we can find in modern applications, e.g. Pycharm [2])

to encourage the use of keyboard shortcuts. We added 3 tips appearing at different timestamps. The 1st tip (inter-block 5)

informed participants that there are three methods to execute commands (menubar, context menu and keyboard shortcuts).

The 2nd tip (inter-block 6) informed them that studies have shown that keyboard shortcuts are faster than menus. The 3rd

tip (inter-block 7) explicitly informed them that they should use keyboard shortcuts to optimize their performance. Once a

tip was shown, it remained visible during all the following inter-blocks. Such tips ensured having enough data to analyse,

while allowed us to capture an initially more spontaneous behaviour. At the end of the session, we asked participants to

fill a post-questionnaire and preform a recall test similar to Experiment 1.

Design: The experiment had a mixed-subjects design, with participants randomly assigned to one menu (BASELINE or

LEFT). The within design factor was the frequency of the commands. The position of targets in the grid was randomly

assigned in each block. Each participant performed 10 blocks of 58 selections. Overall, the design was 2 menus × 36

participants × 10 blocks × 58 trials = 41760 selections.

Planned analysis: Our original planned analysis was to recruit 42 participants who met the criteria threshold to user

correct keyboard shortcuts for at least 25% of the trials. We based this decision on [42] who used a similar protocol to

ensure that they had enough participants used shortcuts. However, we finally decided to fully report the same analysis of

Experiment 1. We also realised that 42 participants is a rather arbitrary number which might not be enough to capture the

effect 5. Therefore we added 30 participants based on the formula of Prashant et al. [37]. This formula calculates the

sample size for a follow-up experiment based on the results of the initial experiment. We considered those two deviations

acceptable, given that the new analysis includes the planned analysis.

5.2 Results

Errors bars in Figures 11, 15, 14, 16 and confidence bands in Figures 12, 13 represent 95% confidence intervals (CI).

Tips: Figure 10 shows when participants started the transition (i.e., used correct keyboard shortcuts for the first time)

based on the different tips. The bars show the results of the 42 participants and the additional 30 participants. We observe

5In the osf.io link, we provide results for the original planned analysis as well for the 30 added participants separately in which the effects were consistent
with the current reported analysis.

12



Revisiting Menu Design Through the Lens of
Implicit Statistical Learning

Blocks

% Correct keyboard shortucts Selection time

Blocks
 95% CIs con�dence bands

Fig. 12. Mean% of shortcuts & time per menu

Blocks

% Correct keyboard shortucts Selection time

Blocks
 95% CIs con�dence bands

Fig. 13. Mean% of shortcuts & time per command length

Error bars 95% CIs

Fig. 14. A:Mean% of shortcuts per menu and familiarity B: Their mean difference.

Error bars 95% CIs

Fig. 15. Mean% of shortcuts per command length

that the majority of the participants started using correct keyboard shortcuts before the 1st tip ( 82%), indicating the lack

of influence of the tips on the awareness of the keyboard shortcuts for most participants.

Keyboard shortcut use menu: Figure 11 reports the results of our analysis regarding the differences between the two

layouts.Our analysis indicates that the mean rate difference is inconclusive between the 2 layouts. Figure 12 reports the

results of the learning speed analysis. We observe a trend favoring the BASELINE over the LEFT especially regarding the

mean rate adoption per block.

Keyboard shortcut use per menu item length: Similar to Experiment 1 we investigated the effect of the command length

for each layout on the keyboard shortcut adoption. Figure 15 shows no conclusive difference among the menu-command
13
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% Correct answers in recall test Error bars 95% CIs
Fig. 16. Mean% of recalls per menu for all (A), familiar (B) and unfamiliar (C) participants.

length pairs. Figure 13 reports the results of the learning speed analysis. Once again, it remains unclear if the learning

speed was affected by the three conditions.

Keyboard shortcut use per user profile: To better understand our results we decided to perform an extra analysis based

on the users’ profiles. In particular we are interested to see if their familiarity with keyboard shortcuts played a role

in their behavior. In the post-questionnaire of each session in both studies we asked the participants to indicate their

familiarity with keyboard shortcuts. Most Experiment 1 participants (21 out of 26) were UNFAMILIAR with keyboard

shortcuts. In contrast, in Experiment 2, the ratio between the FAMILIAR-UNFAMILIAR users was better (44 FAMILIAR,

28 UNFAMILIAR). We thus decided to investigate where their profiles may have affected our results. Figure 14 reports

the results of the keyboard shortcut adoption per layout(BASELINE, LEFT) and user profile(FAMILIAR, UNFAMILIAR).

Results indicate that FAMILIAR users used more keyboard shortcuts than the UNFAMILIAR but we couldn’t detect any

differences among layouts and user profiles

Recall test: We analyzed the results of the post-questionnaire recall test as we did in Experiment 1. We analyzed the

results for all participants as well as for each familiarity group. Figure 16 shows the mean rate of correct answers for each

menu layout. Our analysis couldn’t detect any possible differences among the 2 layouts.

6 DISCUSSION & FUTURE DIRECTIONS

Although our results did not confirm our original hypothesis, we argue that those findings are informative because,

considering our review of ISL theory, negative results are surprising opening a number of directions for future work:

Familiarity & User Profile. While the familiarity analysis (Figure 14 and 16) did not produce conclusive results,

we observed an interesting trend. The FAMILIAR group performed better with BASELINE than LEFT while participants

in the UNFAMILIAR group performed better with LEFT than BASELINE. It is worth investigation whether interactions

between familiarity and spatial relationships influence implicit learning. It is likely that the FAMILIAR group exploits prior

experience with the menu pattern and how its elements are positioned, while the UNFAMILIAR group lacks this advantage.

Other ISL Factors. In related work of ISL, we identified design factors in addition to the ones investigated in this paper.

For instance, exposure time may increase the adoption of the keyboard shortcut. In drop-down menus, the commands are

only visible when the menu is open which may hinder the repeated exposure of the pattern. Other command selection

widgets like command palettes or toolbars could be more appropriate as they are always visible. Another interesting

factor is accumulation of instances in memory, for which we know that only limited contingencies can be learnt in a

restricted period, suggesting that only a few associations trigger learning [56]. Consequently, a task that includes much

fewer associations, regularities, or contingencies within a block triggers larger learning effects [13]. In our context, this

suggests that limiting the total number of commands can facilitate the implicit learning of the remaining ones.

Methods. It remains unclear how to effectively transpose findings and methodologies from cognitive science to the

HCI context. Alternative experimental protocols can be investigated. For instance, 1-hour experiments may not be enough

to capture such phenomenona. For example, some experimental protocols in cognitive science use multiple sessions as

exposure time [48, 53, 55]. Future investigations could increase exposure time while an eye-tracker can detect when and

how long participants are gazing the menu commands.
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Traditional ISL studies “force" participants to learn a single pattern [57]. In contrast, our study let the participant

decide which modality they wish to use to complete their task. This decision is based on prior work[33], but it could have

affected the ISL processes. Further investigation could examine the role of choice between different modalities in ISL

study design.

Questioning UI design conventions. In a concluding remark, this paper questioned menu design conventions used in

existing systems to some extend. We extracted the design space of spatial relationships in the menu patterns and as future

work, we suggest extending this design space considering additional criteria. For instance, through the lens of ISL theory,

we can revisit icon and symbol (e.g. � ) placements as well as radically different menu patterns (e.g. circular layout [3]).

It is also worth investigating the influence of spatial relationships on other aspects of usability (readability, aesthetics,

preferences etc). To that, our study with professional designers (Figure 3) suggests potential benefits of alternative menu

layouts (e.g BELOW) on usability (e.g. aesthetics). A common barrier for practitioners in questioning conventions is to

confuse users hindering, at least temporally, their performance. On that, our findings showed that it is possible that less

conventional menu designs do not impact negatively user performance even within limited exposure. We thus encourage

HCI research to be open in revisiting such conventions and investigate how design novelty can benefit users.
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