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Abstract 17 

A lot of what we know about past speciation and extinction dynamics is based on statistically 18 

fitting birth-death processes to phylogenies of extant species. Despite their wide use, the 19 

reliability of these tools is regularly questioned. It was recently demonstrated that vast 20 

‘congruent’ sets of alternative diversification histories cannot be distinguished (i.e. are not 21 

identifiable) using extant phylogenies alone, reanimating the debate about the limits of 22 

phylogenetic diversification analysis. Here, we summarize what we know about the 23 

identifiability of the birth-death process and how identifiability issues can be addressed. We 24 



conclude that extant phylogenies, when combined with appropriate prior hypotheses and 25 

regularization techniques, can still tell us a lot about past diversification dynamics.    26 

 27 

Glossary  28 

Asymptotic (or theoretical) unidentifiability: situation when there are distinct combinations 29 

of the model parameters that cannot be told apart even in the limit of an infinite number of 30 

observations  31 

Bias-variance trade-off: trade-off between systematic model error due to limited flexibility 32 

(bias) and uncertainty of the parameter estimates (variance)   33 

Extinction: disappearance of a species, corresponding to the death of its last individual 34 

Homogeneous birth-death (BD) process: birth-death process where speciation and 35 

extinction rates are identical across lineages at any time. Rates may vary in time, but not 36 

across lineages 37 

Identifiability: when fitting statistical models, identifiability means that any two 38 

combinations of parameter values can be distinguished  39 

Likelihood: function of the parameters of a given model that measures the probability of the 40 

observations given the model and its parameter values  41 

Model misspecification: situation when the distribution of data implied by the model (under 42 

best possible parameterization) differs from the distribution of data under the true generating 43 

process 44 

Net diversification rate: speciation rate minus extinction rate 45 

Practical unidentifiability: situation when there are distinct combinations of the model 46 

parameters that cannot be told apart from the limited number of observations available in 47 

practice 48 



Reconstructed phylogeny: estimated phylogenetic tree for present-day species (missing 49 

lineages that have gone extinct and are thus unsampled)  50 

Regularization: set of statistical techniques that consist in adding a regularization term (or 51 

penalty) to the optimization function (typically the likelihood) to solve an ill-posed problem 52 

or avoid overfitting 53 

Speciation: process by which two populations of the same ancestral species give rise to two 54 

distinct descendant species 55 

Extinction fraction: extinction rate divided by speciation rate 56 

 57 

Molecular phylogenies and diversification dynamics 58 

The diversity of life on Earth has arisen from a succession of speciation and extinction 59 

events (see Glossary). The rates at which ancestral species give rise to new daughter species 60 

(the speciation rate, 𝜆) or go extinct (the extinction rate, 𝜇) reflect underlying ecological and 61 

evolutionary processes, and shape species richness over geological timescales. Understanding 62 

how these rates have changed through time has long been of interest to evolutionary biologists 63 

[1–8]. While the first estimates of speciation and extinction rates were derived from the fossil 64 

record, researchers now also widely use dated phylogenies of present-day species (so-called 65 

‘reconstructed (or extant) phylogenies’, thereafter referred to as ‘phylogenies’ for 66 

simplicity) to study past speciation and extinction dynamics [9–12].  67 

 68 

Nee et al. [13] showed, using the homogeneous birth-death (BD) process, that despite 69 

extinct species being absent from a phylogeny, extinctions leave a distinctive signal in the 70 

timing of branching patterns, known as the ‘pull of the present’. Under the assumption of 71 

homogeneous and constant speciation and extinction rates, it is therefore possible to estimate 72 

these rates from phylogenies. A wide range of more complex models grounded on the 73 



homogeneous BD process have now been developed, and used to test hypotheses about past 74 

diversification dynamics [14–22]. 75 

 76 

Increasing flexibility of the models brings new issues, however, such as parameters that may 77 

not be identifiable. Here, we discuss the identifiability of speciation and extinction rates in a 78 

variety of homogeneous BD models, and clarify the theoretical limits that non identifiability 79 

imposes on phylogenetic diversification analysis. We conclude that although speciation and 80 

extinction histories are statistically unidentifiable if the underlying functions are completely 81 

unconstrained [23], this does not imply that phylogenies can’t reveal speciation and extinction 82 

dynamics [23,24]. We hold that in most practical scenarios, a priori hypotheses, biological 83 

knowledge or statistical regularization can make the problem identifiable.  84 

 85 

Identifiability of speciation and extinction rates 86 

 87 

To clarify the issue of identifiability, it is useful to make a distinction between asymptotic (or 88 

fundamental) and practical unidentifiability. Asymptotic unidentifiability corresponds to the 89 

case when distinct parameter combinations cannot be told apart, even in the limit of an 90 

infinite number of observations; practical unidentifiability corresponds to the case when 91 

parameters cannot be told apart from the limited number of observations available in practice.  92 

 93 

Asymptotic identifiability of the homogeneous BD model 94 

 95 

Nee et al. [13] showed that the homogeneous constant rate BD model with complete sampling 96 

(i.e. all present-day species are represented in the phylogeny) is asymptotically identifiable. 97 

Incomplete sampling can be accounted for by assuming that each extant species is sampled 98 



with the same probability 𝜌 (𝜌 < 1), but already in this simple extension of the model, if 𝜌 is 99 

a parameter to be estimated, 𝜆, 𝜇 and 𝜌 are not asymptotically identifiable [25]. To solve this 100 

identifiability problem, the fraction of present-day species represented in the phylogeny is 101 

often included as prior information on 𝜌, which renders 𝜆 and 𝜇 asymptotically identifiable.  102 

 103 

Extending the work of Nee, Stadler [16] showed that the « episodic » birth-death model 104 

(EBD, also called birth-death-shift, BDS), where diversification rates are piecewise constant 105 

(i.e. constant on successive time intervals, or epochs) is asymptotically identifiable. More 106 

recently, Legried & Terhorst [26] confirmed this result and showed that it holds even if the 107 

epochs are not fixed.  However, the BDS model with mass extinction events, i.e. including the 108 

possibility that sudden (simultaneous) extinction events can occur at the end of each epoch 109 

(equivalent to sampling each species with an epoch-specific probability 𝜌), is not identifiable 110 

[16].  111 

 112 

In the case when 𝜆(𝑡) (or 𝜇(𝑡)) are smooth functions of time and are not constrained to follow 113 

specific functional forms such as the exponential or any other biologically-motivated 114 

function, Louca & Pennell [23] showed that there is an infinity of ‘congruent’ functions that 115 

yield the same likelihood, meaning that this process is not asymptotically identifiable (Box 116 

1).  117 

 118 

Practical identifiability of the homogeneous BD model  119 

 120 

When applying birth-death models to real data, a further issue arises: the size of phylogenies 121 

is typically not huge. Finite data sizes impose limits to the identifiability of any given model, 122 

as the confidence in the parameter estimates decreases with decreasing sample sizes. This is 123 



well illustrated by estimates of the extinction rate and the extinction fraction (	*
+

), which 124 

typically have wide confidence intervals even for asymptotically identifiable models (see e.g. 125 

Table S9 in [16]), such that accurate estimates often require sample sizes that are not achieved 126 

in practice. Speciation rates, on the other hand, can be estimated with good accuracy on 127 

phylogenies of moderate size for the constant-rate BD model [27], as well as for the BDS 128 

model if the number of epochs is kept small [16]. Similarly, in BD models with rates that are 129 

constrained to follow a specific and simple functional dependency (such as the exponential) to 130 

time [14,15] or the environment [28], parameters determining the time- or environment-131 

dependency of the extinction rate have wide confidence intervals, while those associated with 132 

the speciation rate can be estimated with good accuracy [15,28]. However, by the usual 133 

arguments about degrees of freedom, the functional complexity that can be supported by a 134 

typically-sized phylogeny of a few hundred tips is	probably	in	the	order	of	a	few	135 

parameters.	Thus, practical identifiability alone dictates that we must put constraints on the 136 

flexibility of the models used to infer diversification dynamics.  137 

 138 

Dealing with practical versus asymptotic identifiability issues 	139 

	140 

Asymptotic	and	practical	identifiability	issues	are	common	in	science,	and	a	large	set	of	141 

ideas	has	emerged	to	address	such	problems.	Practical identifiability issues are commonly 142 

understood as manifestations of the bias-variance trade-off, which states that model 143 

complexity must be adjusted to the data size to minimize the total error (bias + variance) of 144 

the inference (Box 2). This can be achieved by a variety of statistical model selection or 145 

regularization techniques (Box 2). For example, the practical identifiability of the 146 

asymptotically identifiable BDS model (without mass extinctions) can be improved by 147 

introducing temporally-autocorrelated rates drawn from a Bayesian prior, rendering parameter 148 



estimates with time divided in hundreds of epochs identifiable on relatively small phylogenies 149 

(200 tips) [29].  150 

 151 

Addressing asymptotic identifiability issues, such as the non-identifiability of the BD model 152 

with unconstrained 𝜆 and 𝜇 highlighted by Louca & Pennell [23], is a different problem, as 153 

the error of our inference does not decrease with increasing data size. Yet there are 154 

approaches for dealing with asymptotic identifiability as well, that we detail below. 155 

 156 

Reparametrization  157 

 158 

A solution to asymptotic identifiability issues is to reparameterize the model with identifiable 159 

quantities. For example, in the BD model with incomplete sampling and free 𝜌 (which needs 160 

to be considered when total diversity is unknown, which is the case of most microbial and 161 

insect groups), the net diversification rate 𝜆 − 	𝜇 and 𝜆𝜌 are identifiable. The drawback of this 162 

approach, however, is that the reparameterized quantities are often scientifically less 163 

interesting. For example, Louca & Pennell (2020) [23] suggest estimating the pulled 164 

speciation and diversification rates 𝜆D and 𝑟D	instead	of	𝜆(𝑡) and 𝜇(𝑡)	(Box	1), but these 165 

pulled rates are difficult to interpret biologically (see [30] for an attempt), which considerably 166 

limits their practical utility.  167 

 168 

Independent data sources 169 

 170 

Another approach to dealing with asymptotic identifiability issues is to add additional, 171 

independent data sources. Considerable progress has been made in recent years to use both 172 

phylogenetic and fossil data, which is achieved by adding fossil sampling processes to the BD 173 



process [31–38]. In the most elaborate versions of these “fossilized” Birth-Death (FBD) 174 

models, two distinct sampling processes are considered: one with rate 𝜓 for fossils with 175 

character (or molecular) data, which are included in the tree, and one for simple fossil 176 

occurences without character data. The former process is asymptotically identifiable when 𝜆, 177 

𝜇, and 𝜓 are constant [34], unless samples are removed upon sampling [34,39]. The latter, 178 

however, is irrelevant in the case of modeling diversification dynamics, as extinctions and 179 

fossilizations are independent processes. As long as  samples are not removed upon sampling, 180 

the process remains identifiable even if the sampling probability at present 𝜌 is unknown (a 181 

case when the process is not identifiable from extant species alone), which illustrates that 182 

fossils can alleviate identifiability issues [34].  183 

 184 

Despite these encouraging results, more work is needed to determine if and under which 185 

circumstances the FBD process is identifiable when 𝜆, 𝜇, and 𝜓 vary as piecewise constant or 186 

continuous functions of time, to assemble empirical datasets on which to apply FBD models 187 

for diversification analyses (the FBD has so far mainly been applied to improve divergence 188 

times rather than diversification rate estimates, but see e.g. [35,40]), to improve their 189 

computational efficiency (current implementations limit the applicability of the model to 190 

small datasets), as well as to assess whether the inclusion of fossils provide realistic estimates 191 

of extinction rates [41] (see Outstanding questions). 192 

 193 

Constraints from a priori hypotheses  194 

 195 

Identifiability issues are more likely to arise the more flexible our models are. Flexibility is 196 

put to the extreme by Louca & Pennell [23], who set the task to be able to identify any 197 

possible functional forms 𝜆(𝑡), 𝜇(𝑡) from extant phylogenies. A hypothesis-driven research 198 



framework limits this complexity by comparing only a small number of alternative a priori 199 

ideas about the underlying process [42]. Such a priori hypotheses will usually constrain the 200 

functional forms of 𝜆 and 𝜇 and thus render the corresponding BD models identifiable.  201 

 202 

The foundational study of Nee et al. [43] followed such a hypothesis-driven philosophy. After 203 

demonstrating that their bird phylogeny was incompatible with a constant-rate diversification 204 

model and grounded in Simpson’s evolutionary theory of adaptive radiations [44], they 205 

hypothesized that rates of cladogenesis might be affected by niche-filling processes. Finding 206 

that a diversity-dependent model indeed fitted their data better, they concluded that diversity-207 

dependent cladogenesis was a more plausible scenario to explain the diversification of birds.  208 

 209 

This hypothesis-driven approach has inspired more than 30 years of research in phylogenetic 210 

diversification analyses [10]. Exponential time-dependencies have been used, for example, to 211 

mimic early burst patterns expected from adaptive radiation theory [44], or as an 212 

approximation to diversity-dependent cladogenesis [45] (see Box 3 for an illustration with the 213 

Madagascan vangas, Vangidae). In the context of environment-dependent models, functional 214 

hypotheses have often been derived from foundational theories of biodiversity, such as the 215 

metabolic theory of biodiversity [18] and MacArthur & Wilson’s theory of island 216 

biogeography [20]. Phenomenological models, such as simple linear time- or environmental-217 

dependencies, have also been used, but typically either as null models [45] or as the simplest 218 

way to model the effect of an explanatory environmental variable on evolutionary rates [18]. 219 

The primary goal of this research has been to fit, test and compare diversification scenarios 220 

that were defined a priori to reflect different evolutionary hypotheses. Louca & Pennell’s 221 

congruent models do not correspond a priori to any evolutionary hypotheses, and would 222 



never be considered in a hypothesis-driven model selection procedure in the first place [42] 223 

(Box 3).  224 

 225 

A drawback of hypothesis-driven research is that the biological conclusions we draw are 226 

contingent on the a priori hypotheses we formulate. In particular, our hypotheses typically do 227 

not correspond completely to the process underlying the empirical data (“the truth”). Still, it is 228 

usually assumed that if a given hypothesis is statistically supported within a well-chosen set 229 

of alternatives, it is likely that this hypothesis is the closest to the truth. Whether this is the 230 

case for BD models, considering the existence of a large number of congruent models, 231 

remains an open question to be explored in more details (see The future of phylogenetic-based 232 

diversification research and Outstanding questions). 233 

 234 

Constraints on complexity and statistical regularization techniques  235 

 236 

Even in the absence of additional data or a priori hypotheses, there are certain philosophical, 237 

statistical or information-theoretic principles that may allow us to prefer some congruent 238 

solutions over others.  239 

 240 

For example, a widely accepted scientific method of deciding between alternative 241 

explanations is the principle of parsimony (or Occam’s razor, Box 2). If we follow this 242 

traditional thinking in science, when several explanations with different degrees of 243 

complexity are asymptotically unidentifiable, we should prefer the simplest, which is most 244 

probably true, all other things equal. A possible solution to the identifiability issue highlighted 245 

by Louca & Pennell [23] consists then in selecting the simplest diversification scenario in a 246 

congruence class. This preference for simplicity is distinct from the problem of optimizing 247 



complexity to avoid overfitting in the case of finite data, and applies to the case of infinite 248 

data as well. Quantifying and penalizing complexity can be challenging, but it is a classical 249 

problem that can be addressed with a variety of statistical regularization techniques (Box 2).  250 

 251 

Penalizing complexity is just one example of a more general class of regularization 252 

techniques that add additional constraints to solve an ill-posed (for example asymptotically 253 

unidentifiable) problem [46]. Constraints can also come from prior biological knowledge, 254 

information theory or model selection principles, added in the statistical inference in the form 255 

of shrinkage estimators [47], or as priors in the case of Bayesian inference (Box 2). For 256 

example, as shown by May et al. [19], using Bayesian priors that represent the prior belief 257 

that on average 10% of species survive a mass-extinction event in the BDS model with mass 258 

extinction events (an asymptotically unidentifiable model) allows distinguishing rate shifts 259 

from mass extinction events. This example provides a clear counter-example to the 260 

conclusion of Louca & Pennell that regularization cannot solve asymptotic identifiability 261 

issues ([39], S2.2). Another well-known example in phylogenetics is the dating of divergence 262 

times: substitution rates and time are unidentifiable with only sequence data from extant 263 

species, but Bayesian priors on divergence times (e.g. informed by fossils) combined with 264 

relaxed clock models solve this issue (see, e.g. Fig. 1 in [48]). 265 

 266 

The future of phylogenetic-based diversification research  267 

 268 

The asymptotic non-identifiability of the homogeneous BD process led Louca & Pennell [23]  269 

to conclude that phylogenetic-based diversification research should switch from a focus on 270 

speciation and extinction rates to a focus on the identifiable pulled rates. Yet, scientists 271 

interested in testing specific evolutionary hypotheses would have a hard time formulating 272 



their hypotheses in terms of these quantities, which do not correspond to a particular 273 

biological mechanism. Moreover, estimating these rates from limited-size phylogenies is still 274 

a challenging task (SI Text S2 & S3).  275 

 276 

Instead of abandoning the goal of developing models with explicit hypotheses on speciation 277 

and extinction rates, we argue to put more efforts in using all available data (including fossil 278 

data), and testing how robust the inference from these models really is in practice, when using 279 

either a hypothesis-driven research approach, or appropriate statistical regularization 280 

techniques (Fig. 1). In this area, two key questions remain: how robust are biological 281 

conclusions in practice, when we use a hypothesis-driven research framework, given the 282 

existence of congruence classes? And can parsimony considerations or other regularizing 283 

techniques successfully shrink solutions in the congruence class towards the truth? The 284 

answer to these questions depends on the nature of congruence classes, for example on 285 

whether congruence classes typically contain a wide range of disjunct models that all 286 

correspond to reasonable biological hypotheses, or that have similar parsimony/regularization 287 

properties, which remains to be explored by future research.  288 

 289 

We can think of several ways to explore these questions, such as: i) Studying the geometric 290 

properties of congruence classes mathematically, as L&P have started to do but without 291 

definitive conclusions (their S.1.8). This would help make the regularization choices most 292 

likely to render the models identifiable. ii) Simulating phylogenies under general eco-293 

evolutionary models [49–51] and checking whether the application of a hypothesis-driven 294 

framework (with well-chosen a priori hypotheses) selects the hypothesis that best captures a 295 

given simulated scenario; in comparison to the simulation analyses that are already usually 296 

performed to evaluate the power and type I error rates of newly-developed methods, in which 297 



simulations correspond exactly to one of the fitted models, this requires using less idealized 298 

simulation models representing the eco-evolutionary processes that shape diversification 299 

dynamics. iii) Pursuing current efforts to develop regularized models, as detailed in the 300 

following paragraph, and use eco-evolutionary simulations (as in ii) to check whether these 301 

models provide estimates of speciation and extinction rates that approach simulated rates.           302 

 303 

Moreover, in real applications, practical identifiability is often as much a problem as 304 

asymptotic identifiability. Given that regularization can solve practical as well as asymptotic 305 

identifiability issues, developing suitable and biologically motivated regularization 306 

approaches that act directly on speciation and extinction rates seems more promising to us. 307 

Such approaches have already started to be developed (e.g. [19,29]), and including further 308 

general ideas from statistics and machine learning, for example the fused lasso [52] or 309 

generalized additive models (GAMs, [53,54]) could lead to further advances (Box 2). 310 

 311 

The problems as well as their solutions discussed here are likely not limited to homogeneous 312 

BD models. In recent years, models with diversification rates that vary across lineages have 313 

been developed to understand why some groups of organisms are richer than others and to 314 

avoid biased inferences linked to model misspecification [15,55–59]. Unlike for the 315 

homogeneous BD model, for which all topologies are equally likely and therefore only 316 

branching times are informative, both branching times and topology are informative in the 317 

case of heterogeneous BD models. Despite this additional source of information, it is very 318 

likely that models with heterogeneous rates are asymptotically unidentifiable in the absence of 319 

any constraint. Working with biologically interpretable speciation and extinction rates has 320 

helped regularizing this problem, for example by favoring rare rate shifts with large effects 321 

corresponding to the invasion of new ecological space [55–57] or by favoring frequent shifts 322 



with small effects corresponding to heritable rates, formalized by regularization in the form of 323 

autocorrelated Bayesian priors [59,60].  324 

 325 

Concluding Remarks 326 

 327 

Identifiability issues naturally arise in approaches that try to infer the potentially unlimited 328 

complexity of historical processes from limited contemporary data, and inference of past 329 

diversification history from phylogenies of present-day species is no exception. These 330 

identifiability issues are one of the reasons why scientists adhere to hypothesis-driven 331 

research, use parsimony or regularization principles, or integrate multiple data types. 332 

Phylogenetic-based diversification analyses have already adopted these methods in the past, 333 

and need to pursue this effort to provide increasingly robust tools for understanding past 334 

diversification histories from the data that is available today (see Outstanding Questions).  335 

 336 

Box 1: Model congruency and pulled diversification rates 337 

Louca & Pennell [23] consider the homogeneous (i.e. lineage-independent) stochastic birth-338 

death process of cladogenesis with rates of speciation (birth, 𝜆) and extinction (death, 𝜇) that 339 

can change arbitrarily over time 𝑡. They show that for any given derivable (and therefore 340 

continuous) time-dependent speciation function 𝜆 > 0 and extinction function 𝜇 ≥ 0, there 341 

exists an infinite set of alternative functions 𝜆∗ > 0 and 𝜇∗ ≥ 0 such that the probability 342 

distribution of extant trees under the corresponding birth-death processes M and M* is 343 

identical. Consequently, M or M* yield identical likelihood values for any given empirical 344 

tree, which implies that 𝜆(𝑡) and 𝜇(𝑡) are not uniquely identifiable unless further constraints 345 

are imposed on their functional form.  346 



Louca & Pennell then re-parameterize the problem to have only identifiable quantities, which 347 

they call the pulled rates. The pulled speciation rate is given by: 348 

𝜆D = 𝜆(1 − 𝜙)	349 
where 𝜙 is a function of time that denotes the probability that a lineage alive at time 𝑡 has no 350 

descendant in the phylogeny, and which analytical expression is given, for example, by Eq.2 351 

in [15]. The pulled diversification rate is given by:  352 

 𝑟D = 𝜆 − 𝜇 + Q
+
R+
RS

 353 

Congruent models are found by solving Eq. 2 in [23]: 354 

𝑑𝜆∗

𝑑𝑡 = 𝜆∗U𝑟D − 𝜆∗ + 𝜇∗V	355 
Given any 𝜇∗, we can compute 𝜆∗ using the solution to this equation, provided in Louca & 356 

Pennell [23]’s SI (Eq. 39 & 40, 𝜂X = 𝜌𝜆(0),	𝜇X = 𝜇(0)): 357 

 358 

𝜆∗(𝑡) = 	
𝜂X𝑒Z(S)

𝜌 + 𝜂X ∫ 𝑒Z(\)S
X 𝑑𝑠

	359 

with     360 

𝛬(𝑡) = ∫ _𝑟D(𝑠) + 𝜇∗(𝑠)`
S
X 𝑑𝑠. 361 

Alternatively, given any 𝜆∗, we can compute 𝜇∗ as: 362 

𝜇∗ =
1
𝜆∗
𝑑𝜆∗

𝑑𝑡 + 𝜆
∗ − 𝑟D	363 

 364 

Box 2 - Reasons and approaches to select simple models 365 

Deciding between alternative hypotheses through a preference for simplicity is ubiquitous in 366 

statistics and the sciences. Mathematically, this is expressed by viewing the evidence in favor 367 

of a respective hypothesis (or model, denoted by M) as a combination of:  368 

Evidence = Likelihood(M) - Penalty*Complexity(M) 369 

where the penalty term controls the “strength” of the preference for simplicity.  370 



In statistics, the traditional motivation to favor simplicity is based on the bias-variance 371 

trade-off, which posits that increasing model complexity reduces the systematic misfit (bias), 372 

but at the cost of increasing variance (uncertainty) of the parameter estimates. One can prove 373 

that, with limited data, inducing a bias towards simpler models decreases total estimation 374 

error (bias + variance), even if the true underlying model is more complex. The complexity 375 

penalty is selected to optimize the total error. This logic underlies most frequentist 376 

regularization and model selection approaches. 377 

There is a second argument for constraining model complexity, which is independent 378 

of the data size and the bias-variance trade-off. This argument, known as the law of 379 

parsimony or Occam’s razor, relies on an a priori assumption that natural processes tend to be 380 

simple and smooth. The principle of parsimony is not a mathematically provable law, but it 381 

underlies centuries of thinking and experience from physics to machine learning, and from 382 

philosophy as well (see [61] for a discussion).  383 

When implementing preferences for simplicity, it typically makes no difference if they 384 

originate from bias-variance or parsimony principles. The main difference is that in the 385 

former the penalty is chosen from the data, such that more complex models are preferred as 386 

the data size increases, whereas in the later the penalty is chosen independent of the data, 387 

based on prior beliefs. How to best define complexity is a question of constant debate and 388 

development in statistics: we may for example decide that a model is simple if it is 389 

interpretable, if it involves less parameters, if it prevents fast variations, or yet other criteria. 390 

Various statistical regularization techniques implementing these criteria exist. For example, 391 

information-theoretical measures (e.g. the AIC or BIC, [42,62]) add a direct penalty for the 392 

number of parameters, shrinkage estimators such as lasso or ridge or their corresponding 393 

Bayesian priors add a penalty on the deviation of model parameters from zero [52] and 394 



statistical smoothers [63] penalize the roughness of the fitted model (as in generalized 395 

additive models GAMs, see [53,54]).  396 

 397 

Box 3: Diversification of the Madagascan vangas  398 

We illustrate hypothesis-driven research by performing an analysis of the diversification of 399 

the Madagascan vangas (Vangidae) using the logic that would be applied in the field [64], but 400 

simplified for illustrative purposes. We hypothesize that diversification followed an ‘Early 401 

Burst’ pattern [65], with fast speciation at the origin of the group and subsequent slowdown, 402 

rather than constant-rate diversification. The Early Burst pattern, related to the idea of 403 

adaptive radiations [44], is modeled by an exponential decay of the speciation rates through 404 

time, used as an approximation of diversity-dependence. We also consider the hypothesis that 405 

a substantial number of extinction events occurred during the diversification of this group. 406 

Among the four corresponding models, the model with an exponentially declining speciation 407 

rate 𝜆(𝑡) = 𝜆X𝑒aS (time 𝑡 is measured from the present to the past), with speciation rate at 408 

present 𝜆X = 0.018,	rate	of	decline 𝛼 = 0.1 and no extinction 𝜇(𝑡) = 0,	noted	M, is best 409 

supported by the data (see SI Table S1). We conclude that the hypothesis of Early Burst 410 

diversification with negligible extinctions is the most likely of the four hypotheses we 411 

considered.  412 

In order to better grasp the nature of congruent models, we explore models congruent 413 

to our best model M (see SI Text S1). First, we choose the extinction function to be a constant 414 

𝜇Q∗(𝑡) = 𝜇X and compute 𝜆Q
∗(𝑡). Second, we choose the speciation function to be a constant 415 

𝜆d
∗(𝑡) = 𝜆X and compute 𝜇d∗(𝑡). We find (SI Text S1; Fig. I; here we take 𝜌 = 1 as the tree 416 

of the Madagascan vangas is complete [64]):  417 

𝜆Q
∗(𝑡) = +ef
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and 419 

 𝜇d∗(𝑡) = 	 𝜆X − 	𝛼 −	𝜆X𝑒aS 420 

 421 

The biological interpretation of these models and of their parameters is not obvious. The 422 

equation for 𝜇d∗ looks more interpretable at first, but it expresses the temporal change and the 423 

extinction rate at present through the same parameter 𝛼, which means that a positive 424 

extinction rate at present (𝛼 < 0) will force extinction rates to decline over time. Here M2* 425 

infers negative extinction rates, and is therefore not plausible (Fig. I). M1* infers a decline in 426 

speciation rate from the origin of the group to the present for extinction rates 𝜇X ranging from 427 

at least 0.05 to 0.3, consistent with our previous results (Fig. I). While rate estimates do vary 428 

substantially, the general temporal trend is preserved.  429 

 430 

 431 

Fig I. Diversification of the Madagascan vangas as inferred from congruent models.  432 

The black curves represent the dynamics of speciation (solid line) and extinction (dashed line) 433 

corresponding to our best-fit model M (exponential decline in speciation rate, non-significant 434 

extinctions). The colored curves illustrate the rate dynamics of congruent models that were 435 



obtained by (A) fixing increasing values of a constant extinction rate (M1*) and (B) fixing the 436 

speciation rate to 𝜆X (M2*). In the case of constant extinction (A), we can choose any value for 437 

𝜇X and find 𝜆Q
∗(𝑡) (so there is an infinity of congruent models), while in the case of constant 438 

speciation (B), 𝜆X needs to be taken equal to the 𝜆X of model M , as two congruent models 439 

necessarily have the same speciation rate at present if 𝜌 is fixed [23] (so there is only one 440 

congruent model). Note that M1* infers a speciation rate decline regardless of the assumed 441 

extinction rate and that M2* infers biologically implausible negative extinction rates. See also 442 

Online Supplemental Information Figure S1 & S2. 443 

 444 

 445 

Fig. 1. Conceptual figure illustrating how constraints imposed by prior hypotheses and 446 

regularization may help to approach the true process. Following Fig. 3 in [23], the pink 447 

area represents the congruence class of the true process (red circle).  A: When considering a 448 

small number of biologically motivated hypotheses (H1 to H4), the models will usually be 449 

identifiable, meaning that the optimum solution under a given hypothesis is unique (one black 450 

circle per hypothesis), and we will select the hypothesis that comes closest to the congruence 451 

class (here, H1, dashed lines convey the distance to the congruence class). This hypothesis, 452 

which is the one with highest likelihood, is traditionally assumed to be the closest to the true 453 

process. B: Parsimony and regularization assumptions constrain the congruence class (grey 454 

circle). From the experience in other fields, we would expect the congruence class to be 455 

constrained towards the true process. These two expectations are likely to be met if 456 



biologically and statistically (i.e. with respect to parsimony and regularity properties) 457 

reasonable models within the congruence class cluster around the true process. Whether this 458 

assumption holds in reality is a question for future research.  459 
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