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Non-hyperbolicity at large scales of a high-dimensional
chaotic system

Caroline L. Wormell∗

February 3, 2022

Abstract

The dynamics of many important high-dimensional dynamical systems are both chaotic and
complex, meaning that strong reducing hypotheses are required to understand the dynamics.
The highly influential chaotic hypothesis of Gallavotti and Cohen states that the large-scale
dynamics of high-dimensional systems are effectively uniformly hyperbolic, which implies many
felicitous statistical properties. We obtain direct and reliable numerical evidence, contrary to
the chaotic hypothesis, of the existence of non-hyperbolic large-scale dynamical structures in
a mean-field coupled system. To do this we reduce the system to its thermodynamic limit,
which we approximate numerically with a Chebyshev basis transfer operator discretisation.
This enables us to obtain a high precision estimate of a homoclinic tangency, implying a failure
of uniform hyperbolicity. Robust non-hyperbolic behaviour is expected under perturbation. As
a result, the chaotic hypothesis should not be a priori assumed to hold in all systems, and a
better understanding of the domain of its validity is required.

1 Introduction
Most complex systems have chaotic dynamics on a large set of parameters: such systems include
those in statistical mechanics, and the Earth’s climate system. The chaotic dynamics of such systems
being almost universally too complicated to treat from rigorous first principles, general simplifying
principles are necessary to understand the system’s most important components. When the system
is spatially structured, such as in climate models, these components are often the dynamics taking
place on large spatial scales [48].

The paradigmatic subclass of chaotic systems are uniformly hyperbolic systems, which have
a uniform splitting between expanding and contracting directions [11]. Because of their simple
geometry, these systems are very amenable to study. Without good hyperbolicity assumptions,
however, our rigorous knowledge of multidimensional chaotic systems is meagre [8]. This is a major
problem, because real-life examples of hyperbolic chaotic dynamics are very rare [26], whereas strong
violations of hyperbolicity are common [31].

Nonetheless, it is conjectured that, when considered at large scales, typical chaotic dynamics
resolve as hyperbolic [17]:

Hypothesis 1 (Gallavotti–Cohen [18, 19]) The macroscopic dynamics of a (high-dimensional)
chaotic system on its attractor can be regarded as a transitive hyperbolic (“Anosov”) evolution.
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In fact, many “nice” statistical properties possessed by uniformly hyperbolic systems are also found in
the macroscopic-scale dynamics of certain large non-uniformly hyperbolic systems. These properties
include existence of physical invariant measures, exponential mixing and large deviation laws [27, 29].
Hypothesised mechanisms include emergent stochastic effects in coupled systems [51, 52], matching
of topological equivalency classes between different subsystems under perturbations [52], and generic
distribution of singularities in the system [41]. The chaotic hypothesis suggests that general high-
dimensional chaotic systems may be studied using techniques developed for uniformly hyperbolic
systems, an idea which has been much taken up in the geophysics literature [21, 30].

However, potential counter-examples arise when considering the response of the physical invariant
measure to dynamical perturbations. Hyperbolic systems are known to have a so-called “linear
response”, that is to say their statistics vary differentiably when a parameter of the chaotic system is
varied [40]: many smooth non-uniformly hyperbolic systems on the other hand fail to have a linear, or
even a continuous response [1, 3]. This can be traced to the failure of the physical invariant measure’s
derivative to exist in a function space where the transfer operator decays summably under iteration
(e.g. has a spectral gap) [1, 20]. While in many geophysical systems linear response theory has
been successful [5, 39, 28], certain ones appear to respond non-differentiably to perturbations in
broad regimes [15, 13], where linear response would not be excluded through slow mixing of general
smooth functions [46]. Nonetheless, although it is commonly accepted that the chaotic hypothesis
implies some reasonable expectation of structural stability, it is debatable that linear response falls
outside the scope of the chaotic hypothesis, because the hypothesis (1) only pertains to individual
systems, whereas a linear response is a property of a family of systems [51], notwithstanding that the
existence of a formal linear response candidate is a good indicator of the existence of linear response
[1].

In recent times, linear response behaviours of complex chaotic systems have been investigated
through the increasingly popular model of mean-field coupled maps. These are systems composed
of many chaotic subsystems that interact with each other through a mean-field [23]. They are a
subset of globally-coupled maps [12]. As the number of subsystems tends to infinity, the large-scale
behaviour of these systems can be described by a so-called thermodynamic limit system [38, 24].
These limit systems may exhibit non-trivial and sometimes complex dynamics [44, 14]. With certain
smooth hyperbolic subsystems and sufficiently weak couplings, linear responses have been proven
to exist in thermodynamic limit systems [45, 16]. On the other hand, [52] presented a mean-field
coupled system whose thermodynamic limit’s response to perturbations appeared to be non-smooth.
This was argued to be the result of an apparent structural similarity between the thermodynamic
limit and the non-uniformly hyperbolic Hénon map, for which linear response fails.

The goal of this paper is to furnish an explicit example of non-hyperbolic structures in a ther-
modynamic limit system similar to that of [52]. The non-uniformly hyperbolic limit system we
present has a homoclinic orbit whose stable and unstable directions are tangent to each other, a
non-hyperbolic structure which is definitionally excluded in uniformly hyperbolic dynamics [11].
Because the thermodynamic limit system’s attractor contains this homoclinic tangency, it violates
Hypothesis 1.

We note that our result does not exclude that, despite the non-hyperbolic structure, the system
may still have some kind of non-uniform hyperbolic dynamics on some attractor. However, we
only expect hyperbolicity in the dynamics in the sense that Lyapunov exponents exist and are
bounded away from zero almost everywhere [54]. This is a notably less powerful property than
that of Hypothesis 1, and in particular does not imply most of the favourable statistical properties
mentioned above.

Apart from self-evidently demonstrating a failure of uniform hyperbolicity for a single limit
system, the existence of a generic homoclinic tangency also suggests so-called wild dynamical phe-
nomena on a generic set of nearby limit systems. Examples include the existence of infinitely many
sinks (i.e. stable periodic orbits), each with their own basin of attraction [33, 6, 7], or more rele-
vantly, of other tangencies between stable or unstable manifolds, which is to say the persistence of
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non-hyperbolic behaviour [37]. Thus, the homoclinic tangency we obtained for one system would
imply a violation of the chaotic hypothesis for an O(1)-size open set of nearby systems.

Our evidence for the homoclinic tangency is numerical. To approximate the infinite-dimensional
limit system, we will apply Chebyshev Galerkin discretisations for the transfer operators that de-
scribe the thermodynamic limit [50, 4], using the software package Poltergeist.jl [49]. Such
discretisations are very accurate and efficient in approximating such objects. To obtain the homo-
clinic tangency in this system we will use a shooting method. With these methods the homoclinic
tangency is estimated to a very high accuracy. This furnishes very strong evidence of its existence.

The paper is structured as follows. In Section 2, the mean-field coupled system and its ther-
modynamic limit are presented, and in Section 3 the mathematical objects required to describe a
homoclinic tangency are introduced. In Sections 4-5 numerical methods are presented: first the
scheme to approximate the thermodynamic limit map, and then the method to find the homoclinic
tangency. The results are presented in Section 6 and in Section 7 implications and further directions
are discussed.

2 Model

2.1 Mean-field system
We introduce a mean-field system, similar to those proposed in [52], whose dynamic variables are
M � 1 one-dimensional chaotic subsystems q(j) coupled together via a mean field Φ. These chaotic
subsystems q(j) ∈ [−1, 1] each evolve according to smooth, individually hyperbolic (in fact uniformly-
expanding) chaotic dynamics

q
(j)
n+1 = ftΦn(q(j)

n ), (1)

modulated by a mean field of the q(j)
n

Φn =
1

M

M∑
j=1

q(j)
n (2)

and a fixed parameter t ≥ 0 which determines the strength of the coupling.
For the subsystem dynamics we choose

fα(q) = d(q) + g(α)(1− d(q)2), (3)

where d(q) := 2q − sign q is the doubling map on [−1, 1], and

g(α) = 3
16 cos 8α ∈ (− 3

16 ,
3
16 ).

These maps, given in Figure 1, are piecewise analytic maps of the interval, with two full branches.
They are uniformly expanding, with each |f ′α| ≥ 5

4 > 1.
Dynamically, the choice of f (in particular of g) encourages the q(j) to take higher values (in-

creasing Φn+1) for Φn close to zero, and towards q = −1 for Φn appropriately far from zero. For
t . 3, this induces quasi-unimodal dynamics in the mean position of the q(j)’s.

2.2 Thermodynamic limit reduction
Because the q(j) are exchangeable, the macroscopic aspects of the system should be expressible as
functions of the distribution of the q(j) at fixed times.
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Figure 1: Top: graph of the microscopic maps fα for some representative values of α.
Bottom: for various α, the action of fα on Lebesgue measure: that is, Lα1 for various values of
α. Note that because the Lebesgue measure of the domain [−1, 1] is 2, these measures are actually
twice a probability measure.

It is in fact possible to use this exchangeability to form an exact closure of the system (1-2) in
terms of precisely this empirical distribution µn = 1

M

∑M
j=1 δq(j)n

:

µn+1 = (ftΦn)∗µn,

Φn =

∫ 1

−1

q dµn(q),

where (ftΦn)∗ is the push-forward of ftΦn . Statistics of the q(j)
n can then be recovered through

averages over µn. As the number of subsystems M → ∞ we can expect the discrete empirical
measures µn to converge to probability distributions with appropriately smooth Lebesgue densities
[24]. In a mild abuse of notation, we will henceforth use µn to refer to these density functions. We
can thus rewrite our dynamics as

µn+1 = LtΦnµn, (4)
Φn = ϕµn (5)

where Lα is the transfer operator of fα, with explicit expression

(Lαh)(x) =
∑

x∈f−1
α (y)

h(y)

f ′α(y)
, (6)

and the functional ϕ is given ϕµ :=
∫
qµ(q) dq.

While the system (4-5) can be reformulated as a delay equation in mean field Φn using the theory
of transfer operator cocycles [52], we will solve it as a function of the measure distribution

µn+1 = Ft(µn) := Ltϕµnµn. (7)

These maps Ft are our thermodynamic limit systems: they sometimes known as self-consistent
transfer operators [44, 45].

Because we have assumed that µn are smooth, absolutely continuous probability measures, we
assume that the dynamics takes place within the space U of positive, twice-differentiable densities
that integrate to 1 on [0, 1]. However, we can use the uniform analyticity of the maps fα to further
restrict the thermodynamic limit dynamics Ft to act on a scale of function spaces on which it has
relatively nice compactness properties.
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Figure 2: Bernstein ellipses for various parameters ρ.

2.3 Hardy function spaces
The Banach spaces we use are Hardy spaces Hρ, ρ > 0 of analytic functions. For small enough
ρ, the sets Hρ ∩ U are invariant sets of the F -dynamics on U . In fact, for any sufficiently large
C > 0, N ∈ N, the sets {h : ‖h‖Hρ ≤ C} ∩ U are attracting invariant sets1 for some iterate FN .

The domain of a function in Hρ is the Bernstein ellipse Eρ:

[−1, 1] ⊆ Eρ = cos ([0, π] + i[−ρ, ρ]) ⊂ C.

These are ellipses in the complex plane centred at 0 with semi-axes cosh ρ > 1 and sinh ρ > 0: a
range are plotted in Figure 2. The Hardy space Hρ is composed of continuous complex functions on
Eρ which are analytic on its interior, equipped with the supremum norm

‖h‖ρ = sup
z∈Eρ

|h(z)|.

As an edge case, the space H0 is simply the space of continuous functions C0([−1, 1],C).
Now, because of its definition through function composition (6), the transfer operator Lα is

bounded from smaller-ρ Hardy spaces into larger-ρ ones [4].
In particular, if 0 < R ≤ Rmax := 0.5 and r ≥ 0.93R, one can show that all α ∈ R that f−1

α (ER)
is a subset of Er. Hence, if h ∈ Hr,

‖Lαh‖R = sup
z∈ER

∣∣∣∣∣∣
∑

w∈f−1
α (z)

h(w)

f ′α(w)

∣∣∣∣∣∣
≤ 2 sup

w∈f−1
α (ER)

∣∣∣∣ h(w)

f ′α(w)

∣∣∣∣
≤

2 supw∈Er |h(w)|
infw∈fα−1(ER)

|f ′α(w)|

≤ 1.85‖h‖r, (8)

1We have that µn = Fnt (µ0) = Lαn−1 · · · Lα0µn for some αk depending on µ0. Because {Lαk} forms a cocycle
of transfer operators uniformly bounded in both Hρ and C2, there exists some N such that each LαN+n · · · Lαn is a
contraction on both Hρ ∩ U and C2 ∩ U in their respective norms. In particular, µn will converge exponentially in
C2 to the time-dependent absolutely continuous invariant measure of the cocycle, which lies in Hρ and has uniformly
bounded Hρ norm.
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In particular, every Lα is uniformly bounded as an operator Hr → HR for R ∈ (0, Rmax] and
r ≥ 0.93Rmax.

This means Lα is bounded as an endomorphism on both Hr and HR since ‖·‖r ≤ ‖·‖R for r ≤ R.
Better than this, inclusions between Hardy spaces of different parameters are very strongly compact,
in fact nuclear. This is a simple fact falling out of Fourier analysis [47]. Hence as an endomorphism
on Hr, the transfer operator Lα has the same strong compactness properties uniformly in α.

On these Hardy spaces, the transfer operator also has a very nice perturbation theory. It is a
standard fact of complex analysis the differentiation operator ∂q and its iterates ∂kq are also bounded
as operators HR → Hr for any r < R. A particular consequence of this is that, since the derivatives
of the transfer operator with respect to dynamical perturbations, that is dkLα

dαk
, can be expressed as

linear combinations of ∂jqLα, j ≤ k [43, Section 2.3], these derivatives are also bounded as operators
Hr → Hr. In our setting, the map α 7→ Lα is therefore a C∞ function R→ L(Hr, Hr) for appropriate
positive choices of r < 0.93Rmax. This justifies the perturbation theory used in the rest of the paper.

3 Manifolds and tangencies
It is now necessary to define the manifold structure of Ft, which will allow us to speak to its
hyperbolicity or absence thereof.

Let us suppose that we have a differentiable dynamical system F acting on an affine subspace
M of a Banach space with tangent space TM which we may naturally identify with M × (M −m∗)
for any m∗ ∈ M . The stable manifold of a point x ∈ M is the set of points near x whose forward
orbits converge to that of x:

Vsx = {y ∈M : lim
n→∞

dM (Fnx, Fny) = 0},

where dM is the metric on M . The local stable manifold of x is the set of such points which
additionally do not leave some small δ-neighbourhood of x:

Vs,loc
x = {y ∈M : lim

n→∞
dM (Fnx, Fny) = 0, sup

n∈N
dM (Fnx, Fny) ≤ δ} ⊂ Vsx.

Similarly, when F is a diffeomorphism, the unstable manifold of x is the set of points with
backward orbits converging to that of x:

Vux = {y ∈M : lim
n→∞

dM (F−nx, F−ny) = 0}.

Along hyperbolic trajectories of x and under reasonable conditions, these stable and unstable man-
ifolds are indeed manifolds. Furthermore, if the range of DxF is dense in TxM for all x, then the
global stable manifold Vsx has the same codimension as the local stable manifold [22] (we prove this
for our maps Ft in the Appendix). On the other hand, if the kernel of DxF avoids the unstable
space then the global unstable manifold V ux can be expected to have the same dimension as the local
unstable manifold.

We can extend these notions of stable and unstable manifolds onto the tangent bundles. For
x ∈ M let DxF : TM → TM be the differential of F , that is to say that for all tangent vectors
v ∈ TM

F (x+ εv) = F (x) + εDxFv +O(ε2).

The stable subspace (resp. unstable subspace) at x, Esx (resp. Eu(x)) ⊆ TM , is then the set of
tangent vectors at x which converge to zero under the action of DF (resp. F−1):

Esx = {v ∈ TxM : lim
n→∞

DxF
n v = 0}

Eux = {v ∈ TxM : lim
n→∞

DxF
−n v = 0},

6



where DxF is the Jacobian (or differential) of F . These are respectively tangent to local stable and
unstable manifolds [11].

Because our limiting dynamics Ft given in (7) are not diffeomorphisms,2 the unstable manifolds
and subspaces are ill-defined. However, it is possible to define the unstable manifold (resp. subspace)
of a backward orbit (x−n)n∈N: this can be achieved using the machinery of natural extensions. If
x∗ is a fixed point then for convenience we will define Vux∗ (resp. Eux∗) to be the unstable manifold
(resp. subspace) of the orbit x−n ≡ x∗.

If x is a fixed point, then Vsx are the set of points with orbits converging to x, and Vux are the set of
points with orbits emanating from x; furthermore, provided that the differential DxF is hyperbolic
(i.e. its spectrum is bounded away from the unit circle), Esx is the span of the stable eigenspaces
and Eux the span of the unstable eigenspaces.

A separation between unstable and stable subspaces is a key property of most well-behaved
chaotic systems. A system is uniformly hyperbolic if at every point x ∈M the tangent space has an
F -invariant splitting TxM = Esx⊕Eux , and there are constants c > 0, γ < 1 such that for all x ∈M ,

‖DxF
n
|Esx‖ ≤ cγ

n,

‖DxF
−n
|Eux ‖ ≤ cγ

n.

According to Hypothesis 1, the Ft are supposedly transitive and (uniformly) hyperbolic on their
respective attractors. These two conditions together are the Axiom A of Smale [11].

One generic mechanism to generate non-uniformly hyperbolic dynamics is via homoclinic tan-
gencies. A homoclinic tangency in a map F : M 	 is a hyperbolic fixed point p of F together
with a different point q ∈ Vup ∩ Vsp such that Vup and Vsp are tangent at q [42]. In particular, because
E
s/u
q = TqV

s/u
p , the stable and unstable subspaces Esq and Euq have non-trivial intersection, implying

non-hyperbolicity of the given map F .
It is easy enough to show that a homoclinic tangency is equivalent to having that q ∈ Vup with

limn→∞ Fn(q) = p and limn→∞ ‖DqF
n|Euq ‖ → 0, because the stable subspaces Es· vary continuously

at p since it is a hyperbolic fixed point.

4 Spectral methods
In Section 2.3 we discussed the strong compactness and regularity properties of Ft in certain Hardy
spaces. This allows us to very effectively approximate the dynamics of the Ft and invariant manifolds
on the computer, through projection onto a basis of Chebyshev polynomials.

The Chebyshev polynomials Tk, k = 0, 1, . . . are a polynomial family orthogonal in L2
Cheb :=

L2([−1, 1],dx/
√

1− x2): ∫ 1

−1

Tk(x)Tj(x)
dx√

1− x2
= wkδjk,

where wk := π(1+δ0k)
2 . They have explicit expression

Tk(x) = cos(k cos−1 x),

from which falls out a natural connection to Fourier series under the one-to-two transformation
x = cos θ.

Chebyshev approximation is well-adapted to this compact inclusion. Let Pn be the L2
Cheb

orthogonal projection onto the first n Chebyshev polynomials. It is a standard result that if
2Note that, at the expense of complicating the perturbation theory, we could make the maps Ft closer to diffeo-

morphisms by adding hidden dynamics rn+1 = 1
2

(rn + 1qn>1/2) ∈ [0, 1] and choosing Ft to act on an appropriate
subset of a Triebel space [2].
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CR−r := (1− e−(R−r))−1 then for 0 ≤ r < R we have [47]

‖(I − Pn)h‖r ≤ CR−re−(R−r)n‖h‖R. (9)

On the other hand, from (8) we know that for r ≤ 0.93R, R ∈ (0, Rmax]

sup
α∈R
‖Lαh‖r ≤ 0.85‖h‖R.

From these two equations we therefore know that for such r,R and for all α ∈ R,

‖(I − Pn)Lα‖r ≤ ‖I − Pn‖r→R‖Lα‖R→r ≤ 0.85CR−re
−(R−r)n.

This implies that the so-called Chebyshev Galerkin approximation PnLα of the transfer operator
Lα converges exponentially to the true operator, and thus so do its spectrum and eigenvalues [4].
This can also be extended to more complex functions of Lα such as the differential of Ft defined in
(10) below.

The Galerkin approximations PnLα are finite-dimensional, and such operators can be easily
computed to high accuracy and faithfully represented using the theory of Chebyshev series [47]. In
particular, if we represent the image of the projection Pn in the Chebyshev basis {Tk}k=0,...,n−1,
then the finite-rank operators PnLα|Pn can be represented as n × n matrices in this basis, with
entries

Ljkα = w−1
k

∫ 1

−1

(L − αTk)(x)Tj(x)
dx√

1− x2
.

These entries can be computed very efficiently by interpolating the action of the operator on a
sufficiently large number of Chebyshev nodes, which are cosines of evenly-spaced Fourier nodes.
Indeed, we have exponential convergence in the number of interpolating points N [47]

Ljkα = w−1
k N−1

N−1∑
l=0

(Tj LTk)

(
cos

(2l + 1)π

2N

)
+O(e−RmaxN ).

These sums themselves may be computed for all j < N very quickly using the fast Fourier transform.
Further details may be found in [50].

In practice, we note that when simulating the F dynamics acting on a specific function h, it is
often more efficient to approximate the action of F directly

F (h) ≈ Pn(Lαh)

rather than constructing a numerical representation of the operator PnLα and applying it to h.
This is because at every step α and therefore Lα is different, and there is therefore no time saved
by storing a representation of the transfer operator.

5 Numerically obtaining the homoclinic
Given that we can compute that action and derivatives of the thermodynamic limit map Ft to
high accuracy, it then remains to present a method to compute other dynamical objects associ-
ated with the thermodynamic limit. In this section, these objects and the methods to compute
them are described, starting from the unstable fixed point (Section 5.1), through its local manifold
approximations (Section 5.2) to the homoclinic tangency itself (Section 5.2).
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Figure 3: In blue, the (ρ-independent) Hρ spectrum of the differential Dµ∗
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Ft of the fixed point of

Ft, computed for t = 2.8 using Poltergeist.jl. This package uses an adaptive-order Galerkin
truncation [50] and computes eigenvalues via the QR algorithm [35]. Away from zero, the spectrum
is uniformly stable to perturbations in t.

5.1 Hyperbolic fixed point
For all t > 0 the thermodynamic limit system Ft given in (7) has a unique fixed point µ∗t with
Φ∗t := ϕµ∗t lying between (0, π/16t). If we define µacim(α) to be the invariant probability density of
transfer operator Lα, then this can be computed numerically3 simply as µ∗t = µacim(tΦ∗t ) where Φ∗t
solves

Φ∗t = ϕµacim(tΦ∗t ).

This equation also gives the existence and uniqueness of the fixed point, as α 7→ ϕµacim(α) is strictly
decreasing on [0, π/16] with a zero at α = π/16.

At µ∗t the Jacobian of Ft is given by

Dµ∗
t
Ftψ = LtΦ∗

t
ψ − tϕψLtΦ∗

t
∂qXtΦ∗

t
, (10)

where Xα is given by
fα+ε(q) = fα(q) + εXα(fα(q)) +O(ε2) (11)

and is explicitly written in the Appendix.
Because our Ft dynamics are restricted to probability densities, we restrict the operator DFt to

functions of zero mean in Hρ. Under this restriction, Dµ∗
t
Ft is hyperbolic in the sense of that its

spectrum (which is independent of ρ) uniformly bounded away from the unit circle. In particular, its
spectrum outside the unit disc consists of a single eigenvalue λt < −1 (see Figure 3). This unstable
eigenvalue has right eigenfunction eut ∈ Hρ and left eigenfunctional dut ∈ H∗ρ . We normalise eut so
that ‖eut ‖L2

Cheb
= 1 with 〈1, eut 〉Cheb > 0, and we normalise dut to have dut eut = 1. We estimate

these quantities to near-floating point precision very easily using the Chebyshev spectral methods
in Section 4. In the case of eut this may be done adaptively using Poltergeist.jl.

3This may be computed via bisection on Φ∗
t ∈ [0, π/16t]. For t close to the homoclinic tangency, a faster-converging

method however is to compute µ∗t iteratively as a stable fixed point of the relation µm+1 = 2
3
Ft(µm) + 1

3
F 2
t (µm).

Given a sufficiently accurate initial guess, the convergence is justified by considering the Jacobian of this iteration
about µ∗t , which is Dµ∗

t
Ft(

2
3

+ 1
3
Dµ∗

t
Ft). This operator has spectral radius bounded by 0.2 for t ≈ tht, which is

a result of its spectrum being that of Dµ∗
t
Ft under the mapping z 7→ z+2

3
z, which almost annihilates the unstable

eigenvalue (see Figure 3).
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5.2 Local manifold approximations
The fixed point’s unstable manifold Vuµ∗

t
, which we write for short as Vu,∗t , is parametrised near µ∗t

by
Vu,∗t (a) = µ∗t + eut a+ 1

2h
u
t a

2 +O(a3). (12)

where the second-order correction is

hut = ((λt)
2 −Dµ∗

t
Ft)
−1Hµ∗

t
Ft(e

u
t , e

u
t ).

The tensor Hµ∗
t
Ft is the Hessian of Ft at µ∗t , with an explicit formula given in Appendix 7. Like eut ,

the function hut is also easy to accurately approximate with spectral methods.
The parametrisation (12) can be chosen to have the useful property that Ft(Vu,∗t (a)) = Ft(Vu,∗t (λta)).

Furthermore, the tangent vectors to Vu,∗t (a) are generated by

(Vu,∗t )′(a) = eut + hut a+O(a2). (13)

At each point Vu,∗t (a) in the unstable manifold, this tangent vector generates its unstable subspace
EuVu,∗t (a)

.
It is not a priori guaranteed that the global unstable manifold has the same dimension as it

does near the fixed point4, but we can produce a dimension-one global manifold from the local
manifold by iteration, provided that its tangent vectors avoid the kernel of DFt. In our system,
the unstable manifold in fact appears to uniformly avoid the kernel: random sampling of both the
unstable manifold and the attractor indicates that there is a bound on the contraction rate

sup
µ∈Vu,∗t

‖(DFt|Eux )−1‖ ≤ 0.18−1

for all t ∈ [2.7, 2.83]. Numerical investigation suggests the existence of an invariant cone on TM
which would yield a robust rigorous bound of this sort on the contraction rate.

On the other hand, the fixed point’s local stable manifold p ∈ Vs,loc
µ∗
t

, which we write for short as
Vs,∗t , is close to the kernel of the functional dut , so that for µ ∈ Vs,∗t ,

dut (µ− µ∗t ) = O(‖µ− µ∗t ‖2ρ), (14)

for µ ∈ Vs,∗t . We expect that, for all local stable points µ ∈ Vs,∗t and stable tangent vectors
v ∈ TµVs,∗t , the tangent hyperplanes to such an Vs,∗t satisfy

dut v = O(‖µ− µ∗t ‖ρ)‖v‖ρ. (15)

They constitute the stable subspace Est,µ for µ ∈ Vs,∗t . In the Appendix, we show that DµFt always
has dense range on HR, implying that the global stable manifold Vsµ∗

t
also has codimension one.

All these quantities can also be accurately estimated via spectral methods. They converge
exponentially to the true estimates in the Hardy space HR for certain R > 0, except notably for the
leading left eigenfunctional dut of Dµ∗

t
Ft at the fixed point, which will converge exponentially in the

dual space H∗r for small r ∈ (0, R).
We used the Julia package Poltergeist.jl to make and adaptively choose the order of the

estimates [50]. The exception again is the left eigenfunctional dut , which we computed iteratively
via applying L∗ to a vector of Chebyshev coefficients until convergence was attained. The order of
this approximation (i.e. the number of Chebyshev coefficients used) was chosen to be approximately
that used by Poltergeist.jl for estimating the right eigenfunctions5.

4Although it is generic: the kernel of the differential is smaller than that of the transfer operator (see Appendix),
which has infinite codimension.

5At higher numerical precisions it was also most efficient here to compute eigendata iteratively via the power
method, using Poltergeist.jl to compute the action of Dµ∗

t
Ft on an eigenvector estimate, renormalising and so on.
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5.3 Shooting method
Our aim is to find a parameter t and a point q ∈ Vu,∗t such that q ∈ Vs,∗t also, with unstable subspace
Eut,q a subset of the stable subspace Est,q. Because we have good knowledge of the local stable and
unstable manifolds near fixed points µ∗t , we rephrase this as attempting to find a pair (t, a) such
that

Fnt (Vu,∗t (a))→ µ∗t , (H1)
(DVu,∗t (a)F

n
t )(Vu,∗t )′(a)→ 0. (T1)

Since Fnt (Vu,∗t (a)) converges towards µ∗t , we can use the local linearisation of the stable manifold
(14) and (H1–T1) becomes equivalent to solving for (t, a)

dut (Fnt (Vu,∗t (a))− µ∗t )→ 0, (H2)
dut (DVu,∗t (a)F

n
t )(Vu,∗t )′(a)→ 0, (T2)

where now the left-hand quantities are one-dimensional instead of lying in a Banach space Hr as
before.

One way to satisfy these conditions is to find for each t an a(t) satisfying (T2), and then finding
a (t, a(t)) satisfying (H2). This turns out to be the most numerically stable option, because when
done in this order the roots of both problems are simple and isolated, which is not the case for other
approaches6. In both cases, because of the finite relative precision ε of floating-point arithmetic,
and because µ∗t is a saddle, we will not in practice be able to compute an orbit converging to µ∗t by
simple shooting. Instead, we must assume that the convergence holds along the orbit up until some
n = n∗ determined by the floating-point precision, and do some careful error analysis based on the
blowup of this error in ε.

We eventually chose our floating-point precision to be 159 bits (i.e. three times as many bits as
the standard double precision), using the GNU MPFR library implemented as the BigFloat type in
Julia: in particular, the relative precision of the floating-point encoding is ε ≈ 2.7× 10−48. Having
progressively refined our guess at lower precisions, as bracketing intervals we chose

a ∈ 0.792 760 229 502 464 90 + [0, 2× 10−17]

t ∈ 2.786 033 304 650 978 791 + [0, 2× 10−18].

To compute qt = Vu,∗t (a) accurately we apply the approximation (12) to F−nε(qt) = Vu,∗t (λ−n0a),
where we choose n0 = dlog2.19(ε−1/3)e = 16. Because λt ≈ −2.19 for t ≈ 30, this gives us an error
|F−n(qt) − µ∗t | = O(ε2/3). Because we are shrinking our starting point by O(ε1/3), it also gives us
an effective numerical precision of O(ε2/3) rather than the full O(ε).

To estimate the tangent vector at q, (Vu,∗t )′(a), we estimate

(Vu,∗t )′(a) = λ−2n0
t

(
DVu,∗t (λ

−n0
t a)

Fn0
t

) (
DVu,∗t (λ

−2n0
t a)

Fn0
t

)
(Vu,∗t )′(λ−2n0

t a)

where Vu,∗t and its derivative are computed using (13) when they are evaluated at λ−2n0
t a. This also

returns an error of O(ε2/3).
For fixed n = n1, the left-hand sides of (H2) and (T2) are monotone in a and t over sufficiently

small intervals. We therefore fixed n in these two equations and used interval subdivision over
parameters of t to find (t, a(t)) satisfying (H2), where for each t we found (again by subdivision)
a(t) satisfying (T2).

We fixed n1 = 5 + dlog2.19×0.255−2 ε−2/3e = 12, which is approximately when we expect the
quantities in (H2) and (T2) to reach their minimum within the bounds of our numerical precision.

6To lowest order, the left-hand side of (H2) is ∼ (a − aht)
2 + (t − tht) and the left-hand side of (T2) is ∼

(a− aht) + (t− tht).
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Figure 4: Left: plot of the homoclinic orbit (dots) and its covariant unstable vectors (lines centred
on dots), plotted in colours from red (n small) to blue (n large), projected onto delay coordinates in
the mean-field Φn. The attractor of the F dynamics is plotted in black, and the fixed point µ∗tht is
plotted as a green cross. Note that the unstable vectors are as expected all tangent to the attractor.
Right: detail near the fixed point. The homoclinic orbit emanates from (red) and falls into (blue)
the fixed point, with the unstable vector clearly expanded (resp. contracted) by the dynamics.

This choice can be explained as follows. The homoclinic orbit Fn(Vu,∗t (a)) approaches µ∗t as O(λ̃nt ),
where λ̃t ≈ 0.255 is the spectral radius of the fixed point differential Dµ∗

t
F in the stable subspace.

Because dut captures the local stable manifold of µ∗t to first order, it has a second-order error in the
distance to the fixed point, and so the quantities in (H2) and (T2) decay as O(0.2552n). On the other
hand, the initial error grows as O(ε2/3λnt ). This halts the decay of the quantities we are interested
in at n ≈ n1, and the magnitudes of these quantities bottom out at ε2/3(1+log 0.255−1/2 log 2.19) =
3× 10−20.

Our shooting method (as well as routines to compute stable and unstable manifolds in extended
floating point) is contained in the supplementary file quadratic3.jl.

6 Results
We can now present the results we used to compute these quantities.

6.1 Existence of a homoclinic tangency
Using the shooting method we obtained the following (non-rigorously validated) estimates for the
parameters of a homoclinic tangency:

tht = 2.786 033 304 650 978 792 184 539 709 484 2± 2× 10−31

aht = 0.792 760 229 502 464 909 617 483 088 582 5± 2× 10−31.

The relevant homoclinic orbit is plotted with its unstable vectors in Figure 4, and the quantities
(H2–T2) we aimed to minimise are plotted in Figure 5. In Figure 5 we also verify that the original
homoclinic tangency conditions (H1–T1) are also satisfied.

The precision achieved in these estimates is of a comparable ε2/3 = 2 × 10−32 error with our
159-bit floating point precision. The quantities in (H2) and (T2) reach their minima a little before

12
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Figure 5: The norm of the left-hand side of various equations (which theoretically should converge
to zero as n→∞) for our numerical approximation of the homoclinic tangency. Background colours
correspond to those in Figure 4.
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Figure 6: Left: the unstable manifold near the homoclinic point Fn1(Vutht(aht)) (red) and the lin-
earised stable manifold (blue). These are projected to one dimension with the eigenfunctional dutht .
Right: the same projection of the unstable manifold’s derivative d

daF
n1(Vutht(aht)) (red) and of the

linearised stable manifold (blue).

n = n1 = 12, as predicted, and these minima are of the order of ε2/3(1+log 0.255−1/2 log 2.19) = 8×10−21,
also as predicted.

These results are obtained to a high precision, with all apparent errors being of the predicted
order. Because the thermodynamic limit system Ft has very high regularity with strong compactness
properties, it is therefore essentially guaranteed that such a homoclinic tangency exists.

We also have evidence that the homoclinic tangency is generic in two ways that together suggest
persistent wild, non-hyperbolic behaviour under perturbation [6].

Firstly, the homoclinic tangency is quadratic, that is to say that the tangency between the stable
and unstable manifolds is a quadratic tangency. The functional dut measures the distance to the
local stable manifold of µ∗t (to first order in the distance from µ∗t ): in Figure 6 we plot the distances
to the unstable manifold at Fntht(V

u
tht

(a)) for a ≈ aht, as well as the derivative of this with respect
to a. The derivative is smooth and clearly has non-zero slope at a = aht, meaning the tangency is
quadratic. This could be explicitly demonstrated in future work by showing d2

da2F
n1
tht

(Vutht(a)) 6= 0.
Secondly, we also have strong evidence that tangency is perturbed generically, in the sense that

for all t slightly less than tht the unstable manifold around the homoclinic orbit is locally separated
from the stable manifold (see Figure 7). In fact, as we might expect, the displacement of the
unstable manifold as t is varied is linear and transversal to the stable manifold. If our system was
a diffeomorphism, satisfaction of these criteria for a quadratic tangency would imply the existence
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Figure 7: In block colour, the displacement from the local unstable manifold to the local stable
manifold at Fn1(Vut (a)) for a ≈ aht and t . tht, projected onto one dimension using dut . As a line,
the minimum value attained for given t.

of heteroclinic tangencies (i.e. non-uniform hyperbolicity) on an open set of parameters t [34, 37].
To this end, we find that at t = tht, the fixed point is sectionally dissipative: the differential of

the fixed point has leading eigenvalue λt < −1.9898 and all other eigenvalues having modulus less
than 0.255 < |− 1.9818|−1, meaning that any product of two eigenvalues has modulus less than one.
As a result, we can also expect a Baire generic Cantor set of parameters t where an infinite number
of stable periodic orbits coexist [37, 7]

6.2 Dynamics at t = tht

Although we have that the map Ft is non-uniformly hyperbolic, Hypothesis 1 applies only to dynam-
ics on the attractor of the system, which is to say, presumably, on the attractor of the macroscopic
dynamics. We therefore wish to have some idea of the macroscopic dynamics’s attractor, and in
particular whether homoclinic tangency lies on it.

We simulated the thermodynamic limit dynamics at t = tht using Poltergeist.jl [52, Ap-
pendix B]. The dynamics is chaotic: through simulations on 10 time series of 104 realisations we
estimated the leading Lyapunov exponents as λ1 = 0.381 ± 0.005 > 0, λ2 = −1.150 ± 0.003 < 0,
λ3 = −2.015± 0.004 < 0. The existence of a positive Lyapunov exponent suggests the attractor has
dimension at least 1: the estimates on the Lyapunov exponents then suggest that its Kaplan-Yorke
dimension is 1.249± 0.002. The dynamics also appears to be exponentially mixing over a timescale
t1/e ≈ 9. Because there appear to be Lyapunov exponents that are well-defined and away from zero,
it is reasonable to claim that the dynamics on the attractor are indeed non-uniformly hyperbolic, if
only in a rather weak sense [54].

Under this assumption that the attractor is chaotic, there is substantial evidence that the fixed
point’s unstable manifold, and hence the homoclinic orbit actually lies on this attractor. In Figure 4
it is clear that the attractor contains long unstable manifolds that pass near the fixed point in a
direction generally parallel to the unstable vector of the fixed point. We therefore expect that these
unstable manifold must have intersections with the stable manifold of the fixed point, implying that
the fixed point lies on the attractor. To support this, we took a long time series of Ft dynamics and
collected the H0.4 distance of points in the time series to the fixed point µ∗t (see Figure 8). There
is a regular scaling of the physical measure of the Ft dynamics as the distance from the fixed point
tends to zero corresponding with a measure dimension at the fixed point of around 1.6. The closest
point in the time series was 6 × 10−7 away from the fixed point in H0.4 distance, which is of the
order expected when the true minimum distance to the attractor is zero.

Because the attractor contains the fixed point and the system is chaotic (so cannot be confined
to the stable manifold of the fixed point), the attractor must also contain the unstable manifold of
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Figure 8: In blue, a histogram of the Hardy space H0.4 distance from fixed point µ∗t in the attracting
Ft-dynamics. In orange, a logarithmic slope of gradient 0.6, indicating a local fractal dimension of
around 1.6 for the SRB measure of Ft at the fixed point. The histogram was obtained from a single
time series µn of which 400, 000 timesteps had dH0.4

(µn, µ
∗
t ) ≤ 0.003.

the fixed point and thus the homoclinic tangency. As a consequence, we can conclude that, not just
the map F , but the actual large-scale dynamics on the attractor are non-uniformly hyperbolic. This
is in contradiction of Hypothesis 1.

7 Conclusion
The chaotic hypothesis (Hypothesis 1) makes a broad claim about the large-scale behaviour of
complex chaotic systems. This paper provides a counterexample to it in a mean-field coupled
system. We studied this system’s thermodynamic limit, which encodes the large-scale dynamics
and which the chaotic hypothesis therefore predicts to be hyperbolic on its attractor. We have
found however that this attractor contains a homoclinic tangency, and the dynamics on it therefore
are non-uniformly hyperbolic.

On the other hand, a commonly cited restriction on Hypothesis 1 is that it holds only for generic
systems: thus, the homoclinic tangency we find could be a special point. However, as a result
of having certain genericity properties discussed in Section 6.1, our homoclinic tangency can be
expected to generate non-hyperbolic structures on an open set of parameters, following a result of
[37]. This results state that for C∞ diffeomorphisms with one unstable direction but perhaps infinite
stable directions, these genericity properties imply the existence of heteroclinic tangencies between
stable and unstable manifolds of (non-fixed) hyperbolic points, on an open set of nearby parameters7
[37]. While our system is not a diffeomorphism, this arises because of very strong stable contracting
directions and so fits the spirit of the result. Thus, as well as having a non-uniformly hyperbolic
system at one parameter t = tht, we in fact expect a failure of uniform hyperbolicity on an interval
of parameters near t = tht.

Furthermore, homoclinic tangencies can birth a wide array of exotic objects [9, 32, 53, 37]. Of
particular note is the Newhouse phenomenon, where infinitely many sinks may coexist in a single
system: because the fixed point of the homoclinic tangency is sectionally dissipative, this peculiar
phenomenon occurs on a Baire generic8 set of parameters t close to tht [37, 33]. It is a curiosity

7Similar results extending finite-dimensional results with more unstable directions [10] may also hold in this infinite-
dimensional setting, although they may be difficult to prove.

8A Baire generic set is the countable intersection of open dense sets. Baire genericity does not imply a set is of
positive measure. For diffeomorphisms of two-dimensional manifolds, the Hausdorff dimension of the set of Newhouse
parameters is at least 1/2 [7] and is conjectured to be of measure zero [36].
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therefore that for these Newhouse parameters, it is impossible to sample all possible (if unlikely)
attracting dynamics. On the other hand, passing from the thermodynamic limit back to finite
ensemble size M introduces a small Gaussian noise that will immediately break such dynamical
structures.

Although they demonstrate a kind of generic non-uniform hyperbolicity in globally coupled sys-
tems, these coupled systems are somewhat atypical of many real-world systems in the sense that they
have a uniform all-to-all network structure. In many more realistic systems such as in geophysics,
interactions may be spatially localised, and separation between spatial scales may be incomplete. In
such systems, emergent noise that forms the first-order correction to the thermodynamic limit may
lead to large-scale stochastic dynamics [51, 52], which share many helpful similarities with hyper-
bolic dynamics [55]. Furthermore, even in a globally-coupled systems, physically meaningful coupling
types such as attractive or repulsive behaviours may impose their own dynamical constraints which
preclude non-uniformly hyperbolic behaviour [25]. Nonetheless, our results show that one cannot
guarantee “nice” large-scale dynamics: these depend on the structure of the complex system.
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Appendix

Xα and derivative operators
The perturbation function of fα as defined in (11) is given explicitly by

Xα(q) = g′(α)(1− d(f−1(q))2) = g′(α)

1−

(
2(q − g(α))

1 +
√

1− 4g(α)(q − g(α))

)2


Let X(1)
α := ∂Xα

∂α be its derivative with respect to α.
If we define the operator Γt(µ) := Ltϕµ then we have Ft(µ) = Γt(µ)µ. It is standard [1] that the

operator
DµΓtv = (ϕv)∂qXtϕµΓt(µ)

and by recursion, the Hessian

HµΓt(v, w) = (ϕv)∂q

(
X

(1)
tϕµΓt(µ) +Xtϕµ(DµΓtv)

)
.

As a result, the differential and Hessian of F are respectively given by

(DµFt)(v) = Γt(µ)v +Dµ(Γtv)µ

(HµFt)(v, w) = (DµΓt(v + w))µ+HµΓt(v, w)µ.

Further derivatives of the operator Γt(µ) (and hence of Ft(µ)) can be obtained from [43].
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Proof that the range of DµF : Hρ 	 is dense
We first prove that the range of Lα : Hρ 	 is dense for any α ∈ R. Let us first note from (3)
that we can decompose fα = m−1

α ◦ b where b(x) := x mod 1, such that mα : Eρ 7→ mα(Eρ) is
biholomorphic for some sufficiently small ρ > 0. For these ρ > 0, transfer operator Lα can therefore
be shown to have the form

Lαh = wα ((I + B)h) ◦mα

for some weight function wα : Eρ → C\{0}, where (Bχ)(z) := χ(z − 1). We would like to show that
for any ψ ∈ Hρ and ε > 0 there exists h ∈ Hρ such that ‖ψ − Lαh‖Hρ ≤ ε. This is to say that we
would like to find an h such that the following is small:

sup
z∈mα(Eρ)

∣∣∣∣((I + B)h) (z)− ψ(m−1
α (z))

wα(m−1
α (z))

∣∣∣∣ (16)

By the Stone-Weierstrass theorem, there exist a series of polynomials {pn}n∈N approximating
the continuous second term in (16) arbitrarily closely on mα(Eρ). If Eδ(z) := eδz, it is also possible
to choose δ > 0 such that Eδ − 1 is arbitrarily small on mα(Eρ). Let us therefore choose

h =

∞∑
i=1

(−B)iEδpn.

This function lies in Hρ because Eδpn is entire and decays exponentially as <z → −∞, uniformly
for bounded =z. Furthermore, (I + B)h = Eδpn, giving us what is required, that is, the density of
the range of Lα : Hρ 	.

We now show that DµFt(Hρ) ⊇ Lα(Hρ), which will deliver us the density of the range of DµFt.
We have from (10) that

DµFth = Ltϕµh− ϕh tLtϕµ∂qXtϕµ.

Note now that u(x) = π
2 sinπx lies in Hρ with ϕu = 1, and, because it is odd, lies in the kernel of

all the Lα. Hence, for any h ∈ Hρ we can set h̃ = h− (ϕh)u so that ϕh̃ = 0 and thus

DµFth̃ = Ltϕµh̃ = Ltϕµh,

implying the required inclusion of images.
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