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1 Université Sorbonne Paris Nord – LIPN – CNRS, UMR 7030
Olivier.Bodini@lipn.univ-paris13.fr
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Abstract. In this paper we study a model of Schröder trees whose la-
belling is increasing along the branches. Such tree family is useful in
the context of phylogenetic. The tree nodes are of arbitrary arity (i.e.
out-degree) and the node labels can be repeated throughout different
branches of the tree. Once a formal construction of the trees is formal-
ized, we then turn to the enumeration of the trees inspired by a renormal-
isation due to Stanley on acyclic orientations of graphs. We thus exhibit
links between our tree model and labelled graphs and prove a one-to-
one correspondence between a subclass of our trees and labelled graphs.
As a by-product we obtain a new natural combinatorial interpretation
of Stanley’s renormalising factor. We then study different combinato-
rial characteristics of our tree model and finally, we design an efficient
uniform random sampler for our tree model which allows to generate
uniformly Erdös-Renyi graph with a constant number of rejections on
average.

Keywords: Evolution process · Schröder trees · Increasing trees · Monotonic
trees · Erdös-Rényi graphs · Combinatorics · Uniform sampling.

1 Introduction

Increasing trees are ubiquitous in combinatorics especially because they aim at
modelling various classical phenomena: phylogenetics, the frequencies of family
names or the graph of the Internet [24] for example. Meir and Moon [19] studied
the distance between nodes in their now classical model of recursive trees. Berg-
eron et al. [2] studied several families of increasingly-labelled trees for a wide
range of models embedded in the simple families of trees. We also refer to [8]
where recent results on various families of increasing trees and the methods to
study them, from a quantitative point of view, are surveyed.

Increasing trees can often be described as the result of a dynamical con-
struction: the nodes are added one by one at successive integer-times in the tree
(their labels being the time when they are added). This dynamical process al-
lows sometimes to apply probabilistic methods to show results about different
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characteristics on the trees and often gives an efficient way to uniformly sample
large trees using simple, iterative and local rules.

In the recent years, many links were found between evolution processes in
the form of increasing trees and classical combinatorial structures, for instance
permutations are known to be in bijection with increasing binary trees [11], in-
creasing even trees and alternating permutations are put in bijection in [17,6],
plane recursive trees are related to Stirling permutations [16] and more recently
increasing Schröder trees have been proved in one-to-one correspondence with
even permutations and with weak orderings on sets of n elements (counted by
ordered Bell numbers) in [3,4]. By adding some constraint in the increasing la-
belling of the latter model, Zhicong et al. [26] exhibited closed relationships be-
tween various families of polynomials (especially Eulerian, Narayana and Savage
and Schuster polynomials).

The theory of analytic combinatorics developed in [11] gives a framework to
study many classes of discrete structures by applying principles based on the now
classical symbolic method. In various situations we get direct answers to questions
concerning the count of the number of objects, the study of typical shapes and
the development of methods for the uniform sampling of objects. Using this
approach we explore links between labelled directed graphs and an evolution
process that generates increasing trees seen as enriched Schröder trees. Schröder
in [23] studied trees with possible multifurcations to model phylogenetic. The
trees he studied where counted by their number of leaves which represent the
number of species. We pursue enriching Schröder trees in the same vein as [3,4]
but with a more general model.

Our evolution process can be reinterpreted as a builder for phylogenetic tree
that represents the evolutionary relationship among species. At each branching
node of the tree, the descendant species from distinct branches have distinguished
themselves in some manner and are no more dependent: the past is shared but
the futures are independent. For more information on the phylogenetic links the
reader may refer to the thesis [20].

The study of this evolution process leads to exhibit unexpected links between
our trees and labelled graphs: we then prove a bijection between both families of
structures. The links we find also give a new combinatorial interpretation of the
renormalisation factor that Stanley used in [25] based on ideas of [7] and more
recently for graphic generating functions by de Panafieu and Dovgal in [22].

Our main contributions: A study of an evolution process that produces in-
creasing trees with label repetitions. The study of this evolution process us-
ing tools of analytic combinatorics produces functional equations for generating
functions that are divergent. Next, using a renormalisation we provide a quanti-
tative study for the enumeration problem and the asymptotic analysis of several
parameters. After that, we introduce a one-to-one correspondence between a
sub-family of our increasing trees and directed labelled graphs. Finally, we de-
sign a uniform random sampler for the increasing trees which easily translates
to a uniform random sampler for labelled directed graphs with constant time
rejection.
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This work is part of a long term project, in which we aim at relaxing the
classical rules of increasing labelling (described in, e.g., [2]), by allowing label
repetitions in the tree.

In Table 1 we provide the main statistics of our enriched Schröder tree model
that we will call strict monotonic general tree model. Due to its relationship with
Schröder trees the size of a tree is given by its number of leaves, independently
of its number of internal nodes.

Number
of trees

Average number
of distinct labels

Average number
of internal nodes

Average
height

Strict monotonic
general trees

c (n− 1)!

· 2(n−1)(n−2)/2 Θ(n) Θ(n2) Θ(n)

Table 1: Main analytic results for the characteristics of a large typical tree.
n stands for the size of the trees and the results are asymptotic when n → +∞.

Plan of the paper: The paper is organized as follows. First, in Section 2
we present our evolution process and then extract from it a general recursive
formula to count the number of trees of a given size. We end this section by
giving the statement of Theorem 2 on the asymptotic enumeration of the trees.
Next, in Section 3 we count the trees according to their sizes, we also study the
distribution of the number of iteration steps to construct the trees of a given as
size. As a result, we can simply prove Theorem 2 and give detailed characteristics
of the shape of large trees. Based on the previous results, in Section 4.1 we make
quantitative studies of several tree parameters: the number of internal labels and
the height of the trees. We then turn to show the relationship between our trees
and labelled graphs. We exhibit a bijection in Section 5. Finally, in Section 6 we
design an unranking method for the sampling of strict monotonic general trees.
It naturally can be tuned to define a uniform random sampler. We conclude the
paper by showing of this sampler can be used to generate Erdös-Renyi graphs
with a constant number of rejections.

2 The model and its enumeration

Definition 1 A strict monotonic general tree is a labelled tree constructed by
the following evolution process:

– Start with a single (unlabelled) leaf.
– At every step ℓ ≥ 1, select a non-empty subset of leaves, replace all of them

by internal nodes labelled by ℓ, attach to at least one of them a sequence of
two leaves or more, and attach to all others a unique leaf.

The two trees in Fig. 1 are sampled uniformly among all strict monotonic gen-
eral trees of respective sizes (i.e. number of leaves) 15 and 500. The left-hand-side
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Fig. 1: Two strict monotonic general trees, with respective sizes 15 and 500

tree has 14 distinct node-labels, i.e. it can be built in 14 steps using Definition 1.
The right-hand-side tree is represented as a circular tree with stretched edges:
the length of an edge is proportional to the label difference of the two nodes
it connects. Here the tree contains 500 leaves built with 499 iterations of the
growth process. Thus the maximal arity is 2. This tree contains 62494 internal
nodes almost all of them (unless 499) being unary nodes.

We can specify strict monotonic general trees using the symbolic method [11];
the internal node labelling is transparent and does not appear in the specification
in consequence, we use ordinary generating functions. We denote by F (z) the
generating function of strict monotonic general trees and by Fn the set of all
strict monotonic general trees of size n; from Definition 1, we get

F (z) = z + F

(
z +

z

1− z

)
− F (2z). (1)

The combinatorial meaning of this specification is the following: A tree of is
either a single leaf, or it is obtained by taking an already constructed tree, and
replace each leaf by either a leaf (i.e. no change) or an internal node attached
to a sequence of at least one leaf. Furthermore we omit the case where no leaf is
replaced by an internal node with at least two children (this is encoded in the
subtracting F (2z)).
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From this equation we extract the recurrence for the number fn of strict
monotonic general trees with n leaves. In fact we get

fn = [zn]F (z) = [zn]

(
z + F

(
z +

z

1− z

)
− F (2z)

)
= δn,1 − 2nfn + [zn]

∑
ℓ≥1

fℓ

(
z +

z

1− z

)ℓ

= δn,1 − 2nfn +
∑
ℓ≥1

fℓ [z
n−ℓ]

ℓ∑
i=0

(
ℓ

i

)(
1

1− z

)i
,

which implies that

fn =


1 if n = 1,
n−1∑
ℓ=1

min(n−ℓ,ℓ)∑
i=1

(
ℓ
i

)
2ℓ−i

(
n−ℓ−1
i−1

)
fℓ for all n ≥ 2.

(2)

The inner sum can be explained combinatorially: starting with a tree of size ℓ we
reach a tree of size n in one iteration by adding n− ℓ leaves. The index i in the
inner sum stands for the number of leaves that are replaced by internal nodes
or arity at least 2, by definition of the model we have 1 ≤ i ≤ min(n − ℓ, ℓ).
There are

(
ℓ
i

)
possible choices for the i leaves that are replaced by nodes of

arity at least 2. Each of the remaining ℓ − i leaves is either kept unchanged or
replaced by a unary node, which gives 2ℓ−i possible choices. And finally, there
are

(
n−ℓ−1
ℓ−1

)
possible ways to distribute the (indistinguishable) n − ℓ additional

leaves among the i new internal nodes so that each of the i nodes is given at least
one additional leaf (it already has one leaf, which is the leaf that was replaced
by an internal node). The first terms of the sequence are the following:

(fn)n≥0 = (0, 1, 1, 5, 66, 2209, 180549, 35024830, 15769748262, . . . ) .

Theorem 2. There exists a constant c such that the number fn of strict mono-
tonic general trees of size n satisfies, asymptotically when n tends to infinity,

fn ∼
n→∞

c (n− 1)! 2
(n−1)(n−2)

2 .

In the proof of the theorem we exhibit the following bounds: 1.4991 < c < 1.8932.
But through several experimentations we see that c < 3/2 but it is close to 3/2.
For instance when n = 1000, we get c ≈ 1.49913911. We postpone the proof to
the next section to make use of the number of iteration steps.

3 Iteration steps and asymptotic enumeration

In this section, we look at the number of distinct internal-node labels that occur
in a typical strict monotonic general tree, i.e. the number of iterations needed
to build it.
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Proposition 1. Let fn,k denotes the number of strict monotonic general trees
of size n with k distinct node-labels, then, for all n ≥ 1,

fn,n−1 = (n− 1)! 2
(n−1)(n−2)

2 .

Note that the first terms are

(fn,n−1)n≥0 = (0, 1, 1, 4, 48, 1536, 122880, 23592960, 10569646080, . . . ) .

This is a shifted version of the sequence OEIS A011266 used by Stanley in [25]
that is in relation with acyclic orientations of graphs.

Proof. We use a new variable u to mark the number of iterations (i.e. the number
of distinct node-labels) in the iterative Equation (1). We get

F (z, u) = z + u F

(
z +

z

1− z
, u

)
− u F (2z, u). (3)

Using either Equation (3) or a direct combinatorial argument, we get that, for
all k ≥ n, fn,k = 0 and

fn,k =


1 if n = 1 and k = 0,
n−1∑
ℓ=k

min(n−ℓ,ℓ)∑
i=1

(
ℓ
i

)
2ℓ−i

(
n−ℓ−1
i−1

)
fℓ,k−1 if 1 ≤ k < n.

In particular, for k = n− 1, we get fn,n−1 = (n− 1) 2n−2 fn−1,n−2. Solving the
recurrence we get

fn,n−1 = f1,0

n−1∏
j=1

j 2j−1 = (n− 1)! 2
∑n−2

j=0 j = (n− 1)! 2
(n−1)(n−2)

2 ,

because f1,0 = 1. This concludes the proof. ⊓⊔

Alternatively the recurrence of fn,n−1 can be obtained by extracting the
coefficient [zn] in the following functional equation T (z) = z + z2 T ′(2z).

Lemma 1. Both sequences (fn) and (fn,n−1) have the same asymptotic be-
haviour up to a multiplicative constant.

Proof. Let us start with the definition of a new sequence

gn =

{
1 if n = 1,
fn/fn,n−1 otherwise.

This sequence gn satisfies the following recurrence:

gn =


1 if n = 1,
n−1∑
ℓ=1

min(n−ℓ,ℓ)∑
i=1

(
ℓ
i

)
2ℓ−i

(
n−ℓ−1
i−1

)
gℓ

(ℓ−1)! 2(ℓ−1)(ℓ−2)/2

(n−1)! 2(n−1)(n−2)/2 otherwise.

https://oeis.org/A011266
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When n > 1, extracting the term gn−1 from the sum we get

gn = gn−1 +

n−2∑
ℓ=1

min(n−ℓ,ℓ)∑
i=1

(
ℓ

i

)
2ℓ−i

(
n− ℓ− 1

i− 1

)
gℓ

(ℓ− 1)! 2(ℓ−1)(ℓ−2)/2

(n− 1)! 2(n−1)(n−2)/2
.

Since all summands are non-negative, this implies that gn ≥ gn−1, and thus that
this sequence is non-decreasing. To prove that this sequence converges, it only
remains to prove that it is (upper-)bounded.

Equation (2) implies that, for n ≥ 2,

fn ≤
n−1∑
ℓ=1

2ℓ−1

min(n−ℓ,ℓ)∑
i=1

(
ℓ

i

) (
n− ℓ− 1

i− 1

)
fℓ.

Chu-Vandermonde’s identity states that, for all ℓ ≤ n,

min(n−ℓ,ℓ)∑
i=1

(
ℓ

i

) (
n− ℓ− 1

i− 1

)
=

(
n− 1

ℓ− 1

)
.

This implies the following upper-bound for fn:

fn ≤
n−1∑
ℓ=1

2ℓ−1

(
n− 1

ℓ− 1

)
fℓ =

n−1∑
ℓ=1

2n−ℓ−1

(
n− 1

ℓ

)
fn−ℓ.

Using the same argument for gn we get

gn ≤ gn−1 +

n−1∑
ℓ=2

2(ℓ−1)(ℓ−2n+2)/2

ℓ!
gn−ℓ.

We look at the exponent of 1 in the sum: For all ℓ ≥ 2 (as in the sum), we have
2ℓ ≥ ℓ + 2, and thus 2n − ℓ − 2 ≥ 2(n − ℓ). This implies that for all ℓ ≥ 2,
(ℓ− 1)(ℓ− 2n+ 2)/2 ≤ −(n− ℓ), and thus that

gn ≤ gn−1 +

n−1∑
ℓ=2

1

ℓ! 2n−ℓ
gn−ℓ.

Since the sequence (gn)n is non-decreasing, we obtain

gn ≤ gn−1 +
gn−1

2n

n−1∑
ℓ=2

2ℓ

ℓ!
≤ gn−1 + gn−1

e2 − 3

2n
.

We set α = e2 − 3. Iterating the last inequality, we get that

gn ≤ gn−1

(
1 +

α

2n

)
≤ g1

n∏
i=2

(
1 +

α

2i

)
= exp

(
n∑

i=2

ln
(
1 +

α

2i

))
,
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because g1 = 1. Note that, when i → +∞, we have ln(1+α2−i) ≤ α2−i (because
ln(1 + x) ≤ x for all x ≥ 0). This implies that, for all n ≥ 1,

gn ≤ exp

(
α

∞∑
i=2

2−i

)
= exp(α/2).

In other words, the sequence (gn)n is bounded. Since it is also non-decreasing,
it converges to a finite limit c, which is also non-zero since gn ≥ g1 ̸= 0 for all
n ≥ 1. This is equivalent to fn ∼ cfn,n−1 when n → +∞ as claimed. To get a
lower wound on c, note that, for all n ≥ 1, c ≥ gn ≥ g1000 = f1000/f1000,999 ≈
1.49913911. ⊓⊔

Lemma 1 gives first step for a proof of Theorem 2. But in order to get an
upper bound for the constant c, we have to introduce a proof slightly more
technical. It is given in the Appendix A.

This result means that asymptotically a constant fraction of the strict mono-
tonic general trees of size n are built in (n − 1) steps. For these trees, at each
step of construction only one single leaf expands into a binary node. All other
leaves either become a unary node or stay unchanged, meaning that on average
half of the leaves will expand into unary node with one leaf expanding into a
binary node. The number of internal nodes of these trees then grows like n2

/4.

4 Analysis of typical parameters

4.1 Quantitative analysis of the number of internal nodes

Theorem 3. Let IFn be the number of internal nodes in a tree taken uniformly
at random among all strict monotonic general trees of size n. Then for all n ≥ 1,
we have

(n− 1)(n+ 2)

6
≤ E[IFn ] ≤ (n− 1)n

2
.

To prove this theorem, we use the following proposition.

Proposition 2. Let us denote by sn,k the number of strict monotonic general
trees of size n that have n− 1 distinct node-labels and k internal nodes. For all
n ≥ 1 and k ≥ 0,

sn,k = (n− 1)!

(
(n− 1)(n− 2)/2

k − (n− 1)

)
,

and thus, if ISn is the number of internal nodes in a tree taken uniformly at
random among all strict monotonic general trees of size n that have n−1 distinct
label nodes, then, for all n ≥ 1,

E[ISn ] =
(n− 1)(n+ 2)

4
.

The proof is provided in the Appendix B. We are now ready to prove the main
theorem of this section.
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Proof (of Theorem 3). Note that the number of internal nodes of a strict mono-
tonic general tree of size n belongs to {1, . . . , n(n − 1)/2}. The upper bound
follows from the fact that, at the ℓ-th iteration in Definition 1, a maximum of
ℓ internal nodes is added to the tree, and

∑n
ℓ=1 ℓ = n(n− 1)/2. In particular,

we thus have that, almost surely for all n ≥ 1, IFn ≤ n(n− 1)/2, and thus
E[IFn ] = O(n2).

For the lower bound, we denote by Sn the set of strict monotonic general
trees of size n that have n− 1 distinct node-labels. Moreover, we denote by tn a
tree taken uniformly at random in Fn, and by IFn its number of internal nodes.
We have, for all n ≥ 1,

E[IFn ] = E[IFn | tn ∈ Sn] · P(tn ∈ Sn) + E[IFn | tn /∈ Sn] · P(tn /∈ Sn)

≥ E[IFn | tn ∈ Sn] · P(tn ∈ Sn) = E[ISn ] · fn,n−1

fn
,

where we have used conditional expectations and the fact that conditionally on
being in Sn, tn is uniformly distributed in this set, and, in particular, E[IFn | tn ∈
Sn] = EISn . Using Proposition 2 and the upper bound of Proposition 1, we thus
get

E[IFn ] ≥ 2

3

(n− 1)(n+ 2)

4
,

which concludes the proof. ⊓⊔

4.2 Quantitative analysis of the number of distinct labels

Theorem 4. Let XF
n denotes the number of distinct internal-node labels (or

construction steps) is a tree taken uniformly at random among all strict mono-
tonic general trees of size n, then for all n ≥ 1,

2

3
(n− 1) ≤ E[XF

n ] ≤ n− 1.

Proof. First note that since at every construction step in Definition 1 we add
at least one leaf in the tree, then after ℓ construction steps, there are exactly ℓ
distinct labels and at least ℓ+1 leaves in the tree. Therefore, n ≥ XF

n +1 almost
surely for all n ≥ 1, which implies in particular that E[Xn] ≤ n− 1, as claimed.

For the lower bound, we reason as in the proof of Theorem 3, and using the
same notations:

E[XF
n ] ≥ E[XF

n | tn ∈ Sn] · P(tn ∈ Sn) = (n− 1)
fn,n−1

fn
,

because E[XF
n | tn ∈ Sn] = n− 1 by definition of Sn (being the set of all strict

monotonic general trees of size n that have n−1 distinct node-labels). Using the
upper bound of Proposition 1 gives that E[XF

n ] ≥ 2(n − 1)/3, which concludes
the proof. ⊓⊔
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4.3 Quantitative analysis of the height of the trees

Theorem 5. Let HF
n denotes the height of a tree taken uniformly at random

in Fn, the set of all strict monotonic general trees of size n. Then we have, for
all n ≥ 0,

n

3
≤ E[HF

n ] ≤ n− 1.

To prove this theorem, we first prove the following:

Proposition 3. Let us denote by HS
n the height of a tree taken uniformly at

random in Sn, the set of all strict monotonic general trees of size n that have
n− 1 distinct labels. Then we have, for all n ≥ 0,

n

2
≤ E[HS

n ] ≤ n− 1.

Proof. Define the sequence of random trees (tn)n≥0 recursively as: t1 is a single
leaf; and given tn−1, we define tn as the tree obtained by choosing a leaf uniformly
at random among all leaves of tn−1, replacing it by an internal nodes to which
two leaves are attached, and, for each of the other leaves of tn−1, choose with
probability 1/2 (independently from the rest) whether to leave it unchanged or
to replace it by a unary node to which one leaf is attached.

One can prove by induction on n that for all n ≥ 1, tn is uniformly distributed
in Sn. We denote by HF

n the height of tn. Since the height of tn is at most the
height of tn−1 plus 1 for all n ≥ 2, we get that HS

n ≤ n− 1 almost surely.
For the upper bound, we note that, for the height of tn to be larger than

the height of tn−1, we need to have replaced at least one of the maximal-height
leaves in tn−1. There is at least one leaf of tn−1 which is at height HS

n−1 and
this leaf is replaced by an internal node with probability

1

2

(
1− 1

n− 1

)
+

1

n− 1
≥ 1

2
.

Therefore, for all n ≥ 1, we have

P(HS
n = HS

n−1 + 1) ≥ 1

2
,

which implies, since HS
n ∈ {HS

n−1, H
S
n−1 + 1} almost surely,

E[HS
n ] = E[HS

n−1] + P(HS
n = HS

n−1 + 1) ≥ E[HS
n−1] +

1

2
.

Therefore, for all n ≥ 1, we have E[HS
n ] ≥ E[HS

0 ] + n/2 = n/2, as claimed. ⊓⊔

Proof (of Theorem 5). By Definition 1, it is straightforward to see that the height
of a tree built in ℓ steps is at most ℓ since the height increases by at most one
per construction step. Since a tree of size n is built in at most n−1 steps, we get
that HF

n ≤ n−1 almost surely, which implies, in particular, that E[HF
n ] ≤ n−1.
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For the lower bound, note that, if tn is a tree taken uniformly at random
in Fn and HF

n is its height, then

E[HF
n ] ≥ E[HF

n |tn ∈ Sn] · P(X ∈ Sn) ≥
2

3
E[HS

n ],

where we have used Proposition 1 and the fact that tn conditioned on being in
Sn is uniformly distributed in this set and thus E[HF

n | tn ∈ Sn] = EHS
n . By

Proposition 3, we thus get E[HF
n ] ≥ n/3, as claimed. ⊓⊔

4.4 Quantitative analysis of the depth of the leftmost leaf

Theorem 6. Let us denote by DF
n the depth of the leftmost leaf of a tree taken

uniformly at random in Fn, the set of all strict monotonic general trees of size n.
Then we have, for all n ≥ 0,

n

3
≤ E[HF

n ] ≤ n− 1.

Proposition 4. Let us denote by DS
n the depth of the leftmost leaf of a tree

taken uniformly at random in Sn, the set of all strict monotonic general trees of
size n that have n− 1 distinct labels. Then we have, for all n ≥ 0,

n

2
≤ E[DS

n ] ≤ n− 1.

Proof. Given the uniform process of trees tn presented in Proposition 3. The
depth of the leftmost leaf is always smaller than n − 1. Let Xn be a Bernoulli
variable taking value 1 if the leftmost leaf of tn has been expanded at iteration
n and the value 0 otherwise. Then for n ≥ 1,

P (Xn = 1) =
1

n
+

(n− 1)

n

1

2
=

n+ 1

2n
≥ 1

2
.

Since at each iteration step either the leftmost leaf expand to make a binary
node which gives 1

n or it has not created a binary and then it has 1
2 probability

to make a unary node. The depth of the leftmost leaf is DS
n =

n∑
k=1

Xk. Therefore

for n ≥ 1,

E[DS
n ] ≥

n

2
.

Which concludes the proof. ⊓⊔

Proof (of Theorem 6). By the same arguments as in Theorem 5 the result follows
directly since we have the same bounds on the depth of leftmost leaf as we had
in the height of the tree. ⊓⊔
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5 Correspondence with labelled graphs

In Section 3 we defined fn,k the number of strict monotonic general trees of size n
with exactly k distinct node-labels. Then we have shown that, for all n ≥ 1,

fn,n−1 = (n− 1)! 2
(n−1)(n−2)

2 .

The factor 2(n−1)(n−2)/2 = 2(
n−1
2 ) in the context of graphs with n − 1 vertices

counts the different combinations of undirected edges between vertices. The fac-
tor (n− 1)! accounts for all possible permutations of vertices. We will denote Sn

to be the trees that fn,n−1 counts and exhibit a bijection between strict mono-
tonic general trees of S = ∪n≥1Sn with a class of labelled graphs with n − 1
vertices defined in the following.

For all n ≥ 1, we denote by Gn the set of all labelled graphs (V, ℓ, E) such that
V = {1, . . . , n}, E ⊆ {{i, j} : i ̸= j ∈ V } and ℓ = (ℓ1, . . . , ℓn) is a permutation
of V (see Fig. 2 for an example). We set G = ∪∞

n=0Gn. Choosing a graph in Gn

is equivalent to (1) choosing ℓ (there are n! choices) and (2) for each of the
(
n
2

)
possible edges, choose whether it belongs to E or not (there are 2(

n
2) choices in

total). In total, we thus get that |Gn| = n! 2(
n
2).

2 1 3

Fig. 2: The graph G3. In this representation, the vertices V = {1, . . . , n} are
drawn from left to right (node 1 is the leftmost one, node n is the rightmost
one), and their label is their image by ℓ: in this example ℓ = (2, 1, 3).

A size-n permutation σ is denoted by (σ1, . . . , σn), and σi is its i-th element
(the image of i), while σ−1(k) is the preimage of k (the position of k in the
permutation).

Another important bijection that we will use is the bijection between binary
increasing trees and permutations, see [11, p. 143].

We define M′′
: S → G recursively on the size of the tree it takes as an input:

first, if t is the tree of size 1 (which contains only one leaf) or the tree of size 2
(one internal node attached to two leaves), then we set M′′(t) to be the graph
({1}, (1), ) (the graph with one vertex labelled 1 and no edge). Now assume we
have defined M′′

on ∪n−1
ℓ=1 Sℓ, and consider a tree t ∈ Sn. By Definition 1 and

since t ∈ Sn, then there exists a unique binary node in t labelled by n−1, and this
node is attached to two leaves. Consider t̂ the tree obtained when removing all
internal nodes labelled by n−1 (and all the leaves attached to them) from t and
replacing them by leaves. Denote by vn the position (in, e.g., depth-first order)
of the leaf of t̂ that previously contained the binary node labelled by n− 1 in t.
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Denote by u1, . . . , um the positions or the leaves of t̂ that previously contained
unary nodes labelled by n − 1 in t. We set M′′

(t̂) = ({1, . . . , n − 1}, ℓ̂, Ê) and
define M′′

(t) = ({1, . . . , n}, ℓ, E) where

ℓi =


vn if i = n

ℓ̂i if ℓ̂i < vn

ℓ̂i + 1 if ℓ̂i ≥ vn,

E = Ê ∪ {{ℓ̂−1(uj), n} : 1 ≤ j ≤ m}. An example of the bijection is depicted in
Fig. 3.

Theorem 7. The mapping M′′
is bijective, and M′′

(Sn) = Gn−1.

Proof. From the definition, it si clear that two different trees have two distinct
images by M′′

, thus implying that M′′
is injective; this is enough to conclude

since |Gn−1| = |Sn| (see Theorem 1 for the cardinality of Sn).

Remark: It is interesting to note that this graph model is a labelled version of the
binomial random graph Gn(1/2) = (V,E) defined as follows: V = {1, . . . , n} and
each edge belong to E with probability 1/2, independently from the other edges.
This model, also called the Erdös-Renyi random graph was originally introduced
by Erdös and Renyi [10], and simultaneously by Gilbert [14], and has been since
then extensively studied in the probability and combinatorics literature (see, for
example, the books [5] and [9] for introductory surveys).

1

2

2 1

1

2 3

3 4 4

2 4 1 3

1

2 3

3

2 1 3

1

2 3

3 4 4

5 5 5

2 4 1 3 5

Fig. 3: Bijection between an evolving tree in S from size 3 to 6 and its corre-
sponding graph in G
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6 Uniform random sampling

In this section we exhibit a very efficient way for the uniform sampling of strict
monotonic general trees using the described evolution process. We finally explain
how this same uniform sampler can be used to generate Erdös-Renyi graphs.

The global approach for our algorithmic framework deals with the recursive
generation method adapted to the analytic combinatorics point of view in [12].
But in our context we note that we can obtain for free (from a complexity
view) an unranking algorithm. This fact is sufficiently rare to mention it: usually
unranking algorithm are less efficient than recursive generation ones. Unranking
algorithmic has been developed in the 70’s by Nijenhuis and Wilf [21] and then
has been introduced to the context of analytic combinatorics by Mart́ınez and
Molinero [18]. We use the same method as the one described in [4].

In our recurrence when r grows, the sequence (fn−r)r decreases extremely
fast. Thus for the uniform random sampling, it will appear more efficient to read
Equation (2) in the following way:

fn =

(
n− 1

1

)
2n−2 fn−1 +

2∑
i=1

(
n− 2

i

)
2n−2−i fn−2

+

3∑
i=1

(
n− 3

i

)
2n−3−i

(
2

i− 1

)
fn−3 + · · ·+ f1. (4)

Using the latter decomposition the algorithm can now be described as Algo-
rithm 1.

In Algorithm 1 note that the While loop allows to determine the values for
ℓ, i and r (see Equation (2) to identify the variables). Then the recursive call
is done using the adequate rank r mod fn−ℓ. The last lines of the algorithm
(for 21 to 27) are necessary to modify the tree T of size n − ℓ that has just
been built. In line 22 we determine which leaves of T will be substituted by
internal nodes (of arity at most 2) with new leaves. It is based on the unranking
of combinations, see [13] for a survey in this context. Then for the other leaves
that are either kept as they are of replaced by unary internal nodes attached
to a leaf we use the integer F seen as a n − ℓ − i-bit integer: if the bit #s is
0 then the corresponding leaf is kept, and if it is 1 then the leaf is substituted.
And finally the composition unranking allows to determine how many leaves are
attached to the nodes selected with B.

Theorem 8. The function UnrankTree is an unranking algorithm and calling
it with the parameters n and a uniformly-sampled integer s in {0, . . . , fn − 1}
gives as output a uniform strict monotonic general tree of size n .

The correctness of the algorithm follows directly from the total order over the
trees deduced from the decomposition Equation (4).

Theorem 9. Once the pre-computations have been done, the function Unrank-
Tree needs in average Θ(n) arithmetic operations to construct a tree of size n.
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Algorithm 1 Strict Monotonic General Tree Unranking

1: function UnrankTree(n, s)
2: if n = 1 then
3: return the tree reduced to a single leaf

4: ℓ := 1
5: r := s
6: i := 1
7: while r >= 0 do
8: t :=

(
n−ℓ
i

)
2n−ℓ−i

(
ℓ−1
i−1

)
9: r := r − t · fn−ℓ

10: i := i+ 1
11: if i > min(ℓ, n− ℓ) then
12: i := 1
13: ℓ := ℓ+ 1

14: if i > 1 then
15: i := i− 1
16: else
17: ℓ := ℓ− 1
18: i := min(ℓ, n− ℓ)

19: r := r + t · fn−ℓ

20: T :=UnrankTree(n− ℓ, r mod fn−ℓ)
21: r := r // fn−ℓ ▷ // stands for the integer division
22: B :=UnrankBinomial(n− ℓ, i, r //

(
n−ℓ
i

)
) ▷ see Algorithm 2 in [4]

23: r := r mod
(
n−ℓ
i

)
24: F := r //

(
ℓ−1
i−1

)
25: C :=UnrankComposition(ℓ, i, r mod

(
ℓ−1
i−1

)
) ▷ see Algorithm 2 in [4]

26: Using F , substitute in T , using any traversal, the leaves selected with B with
27: internal nodes and new leaves according to C; the other leaves are changed as
28: unary nodes with a leaf or not
29: return the tree T

The sequences (fℓ)ℓ≤n and (ℓ!)ℓ∈{1,...,n} have been pre-computed and stored.

Proof. The proof for this theorem is analogous to the one for Theorem 3.6.5 in
[4] after showing that both UnrankBinomial and UnrankComposition run
in Θ(n) in the number of arithmetic operations.

Finally, using the previous bijection between trees and Erdös-Renyi graphs
we remark that Algorithm 1 generates uniformly an Erdös-Renyi graphs Gn(1/2)
with probability p > 1/2. In fact, from the results of Theorem 2 we know that
Algorithm 1 generates a tree of Sn in more than 1/1.8932 ≈ 0.5282 of the time,
and from the correspondence shown in Section 5 we obtain an Erdös-Renyi
graphs Gn(1/2).

As a last remark, we deduce, with an average of less than 1 rejection, Algo-
rithm 1 generates uniformly an Erdös-Renyi graph of Gn(1/2).

Acknowledgement. The authors thank Cécile Mailler for fruitful discussions
to relate this general model of Schröder trees to the models presented in [4].
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A Proof details for Section 3

Proof (of Theorem 2). In the proof of Lemma 1, by denoting gn = fn/fn,n−1

when n > 1 and g1 = 1, we have proved

gn ≤ gn−1 + gn−1
e2 − 3

2n
.

We set α = e2 − 3 and define two other sequences as

ḡn =

{
1 if n = 1 or n = 2,
ḡn−1 +

α
2n ḡn−2 otherwise,

and

¯̄gn =

{
1 if n = 1 or n = 2,
¯̄gn−1 +

1
n(n+1)

¯̄gn−2 otherwise.

Due to the two first terms and the recurrence equation we have for all positive
n, gn ≤ ḡn ≤ ¯̄gn. By induction we prove a new expression for ¯̄gn:

¯̄gn =

{
ḡn if n ≤ 3,
¯̄gn−1 +

2
(n+1)! an−1 otherwise,

with the sequence (an)n such that a1 = 0, a2 = 1 and for n ≥ 3, an = nan−1 +
an−2. This sequence (an) is a shifted version of OEIS A058307. We can either
follow the work of Janson [15] to study it, but we need less details than him so we
describe here an easier approach. We define a new sequence as bn = an/n!. We
easily prove that bn = bn−1 + bn−2/(n(n− 1)) with b1 = 0 and b2 = 1/2. Using
the later recurrence, we obtain an equation satisfied by its generating function
B(z) =

∑
n>0 bnz

n:

B(z) =
z2

2
+ zB(z) +

∫ u

t=0

∫ z

t=0

B(u)du.

we thus obtain
(z − 1)B′′(z) + 2B′(z) +B(z) + 1 = 0,

with B(0) = 0 and B′(0) = 0. By dividing the equation by i
√
1− z and then by a

change of variable: u = 2i
√
1− z, we recognize the classical differential equation

satisfied by Bessel functions [1]. We thus derive

B(z) = −1 +
1√
1− z

(
α J1(2i

√
1− z) + β Y1(2i

√
1− z)

)
,

where J·(·) and Y·(·) are the Bessel functions and α and β are two complex
constants determined with the initial conditions:

α =
Y1(2i)− iY0(2i)

J1(2)Y0(2i) + iJ0(2)Y1(2i)
, β = − J1(2)− iJ0(2)

J1(2)Y0(2i) + iJ0(2)Y1(2i)
.

https://oeis.org/A058307
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We are interested in the asymptotic behaviour of bn. The dominant singularity
of B(z) is at z = 1 and there

B(z) ∼
z→1

− β

iπ

1

1− z
.

We thus deduce that bn tends to −β/(iπ) ≈ 0.68894. Since the sequence ¯̄gn
satisfies ¯̄gn = ¯̄gn−1 +

2
n(n+1) bn−1. We deduce that the increasing sequence (¯̄gn)

admits a finite limit. Hence it is also the case for the increasing sequence (gn).
Finally, Proposition 1 allows to conclude for the existence of the constant c.
Furthermore we get

c < ¯̄g3 +
∑
ℓ≥4

2

ℓ(ℓ+ 1)
· lim
n→∞

bn ≈ 1.8932.

The stated result is thus proved. ⊓⊔

B Proof details for Section 4.1

Proof (of Proposition 2). Let us prove the formula for sn,k by induction. For
n = 1, k can only be 0 thus s1,0 = 1 = 0!

(
0
0

)
.

We suppose that sm,k = (m − 1)!
(
(m−1)(m−2)/2

k−(m−1)

)
holds for m = n − 1 and

k ∈ {n− 1, . . . , (n− 2)(n− 3)/2}.
Then, we are interested in the value of sn,k:

sn,k =

k−(n−1)∑
s=0

(n− 2)!

(
(n− 2)(n− 3)/2

s− (n− 2)

)(
n− 1

k − s− 1

)
(k − s− 1).

Let k′ = k− (n− 1) and s′ = s− (n− 2). Replacing k′ and s′ in the equation
gives,

s̃n,k′ =

k′∑
s′=0

(n− 2)!

(
(n− 2)(n− 3)/2

s′

)(
n− 1

k′ − s′ + 1

)
(k′ − s′ + 1)

= (n− 1)!

k′∑
s′=0

(
(n− 2)(n− 3)/2

s′

)(
n− 2

k′ − s′

)
.

Using Chu-Vandermonde identity, we finally obtain

sn,k = (n− 1)!

(
(n− 1)(n− 2)/2

k − (n− 1)

)
.

We now can compute the average number of internal nodes of Sn:

En[I
S
n ] =

n(n−1)/2∑
k=n−1

k(n− 1)!
(
(n−1)(n−2)/2

k−(n−1)

)
(n− 1)! 2(n−1)(n−2)/2

.
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Again we reverse the sum: k′ = k − (n− 1),

E[ISn ] =

(n−1)(n−2)/2∑
k′=0

(k′ + (n− 1))(n− 1)!
(
(n−1)(n−2)/2

k′

)
(n− 1)! 2(n−1)(n−2)/2

=

(n−1)(n−2)/2∑
k′=0

k ′((n−1)(n−2)/2
k′

)
+ (n− 1)

(n−1)(n−2)/2∑
k′=0

(
(n−1)(n−2)/2

k′

)
2(n−1)(n−2)/2

=
(n− 1)(n− 2)

4
+ (n− 1) =

(n− 1)(n+ 2)

4
.

⊓⊔
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