
HAL Id: hal-03682250
https://hal.sorbonne-universite.fr/hal-03682250

Submitted on 30 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simultaneous Assimilation and Downscaling of
Simulated Sea Surface Heights with Deep Image Prior

Arthur Filoche, Dominique Béréziat

To cite this version:
Arthur Filoche, Dominique Béréziat. Simultaneous Assimilation and Downscaling of Simulated Sea
Surface Heights with Deep Image Prior. RFIAP (Congrès Reconnaissance des Formes, Image, Ap-
prentissage et Perception), Jul 2022, Vannes, France. �hal-03682250�

https://hal.sorbonne-universite.fr/hal-03682250
https://hal.archives-ouvertes.fr


Simultaneous Assimilation and Downscaling of Simulated Sea Surface
Heights with Deep Image Prior

Arthur Filoche1 Dominique Béréziat1

1 Sorbonne Université, CNRS, LIP6

arthur.filoche@lip6.fr

Résumé
Les observations océanographiques existent à différentes
résolutions spatio-temporelles et peuvent être assimilées
à résolutions variables. La disponibilité de simulations
numériques, telles que des réanalyses, rendent pertinent
l’apprentissage supervisé pour traiter des problèmes
inverses liés aux échelles. Toutefois, l’assimilation
de données aux résolutions les plus fines de ces
modèles océanographiques est très coûteux en ressource
de calcul et construire ainsi une base d’apprentissage
n’est difficilement qu’accessible. Dans ce travail, nous
nous intéressons à l’utilisation d’un réseau génératif
de type “deep image prior” à l’intérieur même d’un
algorithme d’assimilation variationnelle de données et
cela pour assimiler à échelle grossière des observations
de la hauteur d’eau de la surface océanographique.
L’algorithme reconstruit alors les hauteurs d’eau à échelle
plus fine et cela de façon non supervisée. Nous illustrons
les performances de l’algorithme sur des expériences
jumelles en utilisant un modèle shallow-water et en les
comparant avec des méthodes classiques. Nous constatons
que l’utilisation d’un réseau “deep image prior” a des
effets régularisants forts.

Mots Clef
Descente d’échelle dans les images de hauteur d’eau,
assimilation de données, Deep Image prior, Shallow-water

Abstract
Oceanographic observations exist with different spatio-
temporal resolutions and can be assimilated at various
resolutions. The availability of numerous numerical
simulations like ocean re-analysis makes supervised
machine learning appealing to deal with scale-related
inverse problems. However, data assimilation at
finest resolutions using detailed oceanographic models
is computationally intensive, and building an exhaustive
database may not be practical. In this work, we investigate
the use of a deep image prior within the variational

data assimilation framework to simultaneously assimilate
and downscale sea surface height observations. The
algorithm then estimates the whole high-resolution system
state trajectory in a fully-unsupervised manner. We set
a twin assimilation experiment using a shallow-water
model and compare the results with traditional methods to
demonstrate its use. We observe that using a deep image
has a strong regularizing effect.

Keywords
Sea surface height downscaling, Data assimilation, Deep
Image Prior, Shallow water.

1 Introduction
Monitoring and modeling the Ocean is a constant scientific
preoccupation whether for global climate understanding
or numerical weather prediction. To do so, information
from various sensors are combined with physics-based
dynamical models in a data assimilation scheme, in
order to estimate the state of the ocean. However,
available data and known physics came with numerous
spatio-temporal resolutions [14, 30] which leads to scale-
matching problems [15, 28].
Data assimilation [8] provides a strong framework to
handle various observations and physical models at
different scales. Approaches are being developed to
assimilate observations directly in high-resolution [3].
Such problems being often ill-posed, regularization is
needed. It is usually done parametrizing explicit
prior knowledge to enforce satisfying solution. Even
though variational data assimilation has a long standing
experience in model-constrained optimization, deep
learning techniques have revolutionized inverse problems
solving [26]. Leveraging an exhaustive database, it is
possible to directly learn such parametrization [6]. But
available satellite observations are usually sparse, noisy
and indirect, so that a supervised learning set up is not
realistic. Regarding the super-resolution (or downscaling),
it has been shown in this survey [34] that an unsupervised
method like Deep Image Prior (DIP) [32] can provide
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performances close to supervised approaches.
In this work we propose to use a DIP in a data assimilation
framework to simultaneously assimilate and downscale
observations. The architecture is trained in a fully-
unsupervised manner using the variational assimilation
loss so that gradients are backpropagated through the
observation operator, the dynamical model, and then the
neural network.
Finally we test the proposed method in a twin experiment
based on a shallow water dynamical model and compare it
with classical methods, still used in operational numerical
weather forecasting. We show that using a deep prior
provides interesting regularizing properties for the studied
inverse problem. The code is available at the Github
address 1.

2 Related work
2.1 Unsupervised Inversion
Using the inverse problem in imaging classification
provided in [26], variational data assimilation and deep
image prior [32] both belong to the unlearned methods
class. In both cases the forward model is partially known
and the training done only using observation, so they
perform unsupervised inversion with the particularity to be
optimized on a single observation. Using multiple series of
observations, adversarial learning could be considered as
depicted in [7].

2.2 Error in Data Assimilation
The partially known forward operator is usually the result
of many years of physical and sensor modeling, back-
tested and tuned on observations. Even best models are not
able to resolve physics at all scale so that representation
errors persist [16] which lead to bias in the estimation [10].
Correcting the forward model with offline or online
machine learning methods is still investigated [12].

2.3 Physics-constrained Learning
Variational data assimilation has a pioneering expertise
in PDE-constrained optimization [19], making use of
automatic differentiation to retro-propagate gradients
through the dynamical system. Several physics-
constrained deep learning architectures already exist
and [5] describes a general framework. In [9] and [24] the
output of a neural network is used as input in a dynamical
model and architectures are trained in supervised and
adversarial manner, respectively. We proceed similarly but
using a deep image prior.

2.4 Downscaling Ocean simulation
Increasing the resolution of numerical simulations
allows to represent finer physical dynamics, instead of
representing it with parametrization [6], and then better
explain spatio-temporal variability of eddy fields. But

1https://github.com/EarthVision22id44/cvpr_
workshop

when coupled with various satellite observations in a data
assimilation scheme, the interpolation tends to smooth
small-scale processes [15] and results in diminishing
forecast skills [28]. By simultaneously assimilating and
increasing the resolution of observations, we hope to
participate in developing methods softening this issue.

3 Method
3.1 Data assimilation framework
A dynamical system is considered where a state X evolves
over time following a perfectly-known dynamics M, see
Eq. (1). Partial and noisy observations Y are available
through an observation operator H, Eq. (2). A background
X𝑏 gives prior information about the initial system state,
Eq. (3).

Evolution: X𝑡+1 = M𝑡 (X𝑡 ) (1)
Observation: Y𝑡 = H𝑡 (X𝑡 ) + 𝜀𝑅𝑡

(2)
Background: X0 = X𝑏 + 𝜀𝐵 (3)

Additive noise 𝜀𝐵 and 𝜀𝑅 represent uncertainties about
the observations and the background, respectively. These
noises are quantified by their assumed known covariance
matrices B and R, respectively. The dynamics is here
considered perfect, but the framework could easily be
extended to an imperfect dynamics. For any given matrix
A, we note ∥𝑥− 𝑦∥2

𝐴
= ⟨(𝑥 − 𝑦) |A−1 (𝑥 − 𝑦)⟩ the associated

Mahalanobis square distance.

3.2 Strong-constraints 4DVar
The objective of data assimilation is to provide an
estimation of the system state X by optimally combining
available data, X𝑏 and Y, and the dynamical model M.
In the variational formalism [19], this is done via the
minimization of a cost function which is the sum of
background errors and observational errors, J4DVar =
1
2 ∥𝜀𝑏∥

2
B + 1

2
∑𝑇

𝑡=0 ∥𝜀𝑅𝑡
∥2

R𝑡
. The optimization problem

is model-constrained and the dynamics being assumed
perfect, estimating the full system state trajectory is
equivalent to estimate the initial condition, as described
in Eq. (4). What motivates this cost function is that
minimizing it leads to the maximum a posteriori estimation
of the state under independent Gaussian errors, linear
observation operator and linear model hypothesis. The
corresponding optimization algorithm is named 4DVar.

min
X0

J4DVar (X0) =
1
2
∥X0 − X𝑏∥2

B + 1
2

𝑇∑︁
𝑡=0

∥Y𝑡 − H𝑡 (X𝑡 )∥2
R𝑡

s.t. X𝑡+1 = M𝑡 (X𝑡 )
(4)

The link between variational assimilation and Tikhonov
regularization is well described in [18]. For example,



choosing a particular matrix B will promote a particular set
of solutions. Therefore, making alike choices can be seen
as a handcrafted regularization to take advantage of expert
prior knowledge.

3.3 Super-resolution
The single image super-resolution task consists in
recovering a particular high resolution image denoted Xℎ

from a low-resolution observation X𝑙 , modeled as the
output of a decimation operator denoted 𝑑, such that X𝑙 =

𝑑 (Xℎ). Estimating super-resolution from an observation
can be seen as an optimization problem minimizing an
energy function of the general form ∥𝑑 (Xℎ) − X𝑙 ∥. By
rewriting the observation operator H = 𝑑 ◦ 𝑝 where 𝑝

depends on the application, we highlight the fact that
the variational data assimilation framework is suited for
simultaneous system state estimation and super-resolution.
However, as 𝑑 is non-injective, it increases the ill-
posedness of the inverse problem. For the sake of
simplicity, we won’t use the notation Xℎ so that when X, it
is implicitly at high-resolution.

3.4 Deep Image Prior
The idea behind DIP is that using a well-suited neural
architecture to generate a solution of the variational
problem can act as a handcrafted regularization. This
means that the control parameters are shifted from the
system state space to the neural network parameters space.
From a practical standpoint, a generator network 𝑔𝜽 outputs
the solution from a latent variable 𝑧 such that 𝑔𝜽 (𝑧) = X̂ℎ

0 .
In our case, we ask the network to output a super-resolution
estimation of a full system state trajectory from sparse,
noisy and low-resolved observations. An overview of the
performed forward integration is drawn in Figure 1.

Cost function. The generator is then trained with the
variational assimilation cost J (𝜽). To emphasize the
regularizing effect of the deep prior method, we choose to
fix B−1 = 0 so that no background information is used.
It means that J (𝜽) = 1

2
∑𝑇

𝑡=0 ∥𝜀𝑅𝑡
∥2
𝑅𝑡

and by denoting
multiple integration between two times M𝑡1→𝑡2 , the cost
can be developed as in Eq. (5).

J (𝜽) = 1
2

𝑇∑︁
𝑡=0

∥Y𝑡 − H𝑡 (M0→𝑡 (𝑔𝜽 (𝑧)))∥2
𝑅𝑡

(5)

It is important to note that this approach is unsupervised,
the architecture being trained from scratch on one
assimilation window with no pre-training. All the prior
information should be contained in the architecture choice.

Gradient. The gradient of this cost function can be
determined analytically. First, the chain rule gives Eq. (6).
Then using the adjoint state method we can develop
∇X0J (X0) as in Eq. (7). In the differentiable programming
paradigm, such analytical expression is not needed to
obtain gradients, adjoint modeling is implicitly performed

observation
numerical cost

strong constraint

state variable

stochastic latent variable
parameters

control variable

Figure 1: Overview of the forward operator to be optimized
in the super-resolution 4DVar with deep image prior

as gradients are backpropagated automatically.

∇𝜽J (𝜽) = ∇X0J (X0)∇𝜽X0 = ∇X0J (X0)∇𝜽𝑔𝜽 (𝑧) (6)

∇X0J (X0) =
𝑇∑︁
𝑡=0

[
𝜕 (H𝑡M0→𝑡 )

𝜕X0

]⊤
R𝑡

−1𝜀𝑅𝑡
(7)

4 Experiments
4.1 Twin experiment
The proposed methodology is tested within a twin
experiment where data are generated from a numerical
dynamical model. Observations are then created by
sub-sampling, decimating (down-sampling) and adding
noise. The aim of this experiment is to highlight the
regularizing effect of DIP in an excessively ill-posed,
ocean-like data assimilation problem. To do so, we
compare several super-resolution 4DVar algorithms, one
using a deep image prior. We repeat the same experiments
with different downscaling ratios and different levels of
noise. In all the assimilation experiments, the dynamical
model M and the decimation operator 𝑑 are assumed
perfectly known.

4.2 Dynamical system
State. State variables of the considered system are 𝜂, the
height deviation of the horizontal pressure surface from its
mean height, and w, the associated velocity field. w can be
decomposed in 𝑢 and 𝑣, the zonal and meridional velocity,
respectively. At each time 𝑡, the system state is then X𝑡 =(
𝜂𝑡 w⊤

𝑡

)⊤.

Shallow water model. The dynamical model used here
corresponds to a discretization of the shallow water
equations system in Eq. (8) with first order explicit
numerical schemes. 𝐻 represents the mean height of
the horizontal pressure surface and 𝑔 the acceleration due
to gravity. After reaching an equilibrium starting from



Gaussian random initial conditions, system trajectories are
simulated.



𝜕𝜂

𝜕𝑡
+ 𝜕 (𝜂 + 𝐻)𝑢

𝜕𝑥
+ 𝜕 (𝜂 + 𝐻)𝑣

𝜕𝑦
= 0

𝜕𝑢

𝜕𝑡
+ 𝑔

𝜕𝜂

𝜕𝑥
= 0

𝜕𝑣

𝜕𝑡
+ 𝑔

𝜕𝜂

𝜕𝑦
= 0

(8)

Observations. At regularly-spaced observational dates,
a low-resolution of 𝜂 is observed, up to an additive white
noise. The velocity field w is never observed. The chosen
decimation operator 𝑑 is a 2-dimensional average pooling
convolution of kernel size 𝑟×𝑟 , 𝑟 being the upscaling factor.
This means that at observational date 𝑡, the observation
operator H is the composition of a linear projector and 𝑑

so that HX𝑡 = 𝑑 (𝜂𝑡 ). White noise is then added. Examples
of generated observations are displayed in Figure 2.
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Figure 2: Examples of one noiseless generated observation
series, using different down-sampling ratio 𝑟

4.3 Algorithms
The objective of each 4DVar algorithm is to estimate the
high-resolution true system state X from low-resolution
observation of 𝜂. The downscaling factor of the algorithm
then corresponds to the upscaling factor of the decimation
operator.

4DVar. We denote 4DVar the simple version only
optimizing the fit-to-data term in the cost function. No
prior knowledge on the solution is used, the background
covariance matrix B−1 vanishes. It is optimized with the
L-BFGS algorithm.

Regularized 4DVar. We denote Reg. 4DVar the same
algorithm additionally optimizing a background penalty
term. The estimated motion field is forced to be smooth
by constraining ∥∇w0∥2

2 and ∥∇.w0∥2
2 to be small. As

proved in [21], these terms can be directly included in

the background error using a particular matrix B such that
𝛼∥∇w0∥2

2 + 𝛽∥∇.w0∥2
2 = ∥X0 − X𝑏∥2

𝐵𝛼,𝛽
where 𝛼 and

𝛽 are hyper-parameters to be tuned. Such regularization
is a classical optical flow regularization and fits in ocean
motion estimation [4, 29].

Deep image prior 4DVar. As depicted in the previous
section, the only choice to be made is the architecture of
the network 𝑔𝜽 . We use the generative architecture with
the associated Adam optimizer and momentum parameters
presented in [27]. We just replaced deconvolution
operations by upsampling followed by convolution to avoid
checkerboard artifacts, as described in [25]. Finding hyper-
parameters, and particularly the number or epoch, for
DIP is still an active research field as described in [33].
Investigated early-stopping methods are beyond the scope
of our study so we made the choice to fix the number of
epoch to 1000 and only having the learning rate as hyper-
parameter.

Numerical details.

Shallow water simulation
The high-resolution ground truth for each physical quantity
at each time step ground truth is a 64 × 64 image. It
represents a square area of 105 × 105 m2 so that each
pixel corresponds to a square of side 𝑑𝑥 = 𝑑𝑦 ≈ 1500 m
mimicking the scale of high-resolution Ocean simulation
[22]. 𝐻 and 𝑔 are fixed to 100 m and 9.81 m.s−2,
respectively. The integration time step 𝑑𝑡 is defined for
numerical stability as 𝑑𝑡 = min(𝑑𝑥, 𝑑𝑦)/2

√
𝑔𝐻. 100

ground truth trajectories are simulated.

Observations
The considered temporal window has a fixed length of
10 × 𝑑𝑡 so that 𝑇 = 9. Observations are sampled at date
𝑡 = 0, 3, 6, 9. Several upscaling factors, 𝑟 = 1, 2, 4, 8,
are investigated, 𝑟 = 4, 8 roughly corresponding to the
factor between high resolution numerical simulations and
sea surface height satellite resolution [30]. Several levels
of white noise are investigated. The standard deviation of
the noise is expressed as a percentage of the low-resolution
observation dynamic range. We investigate 0%, 1%, 2%,
and 3% which is the level of noise to be expected in most
recent altimeter [17]. For each upscaling factor and each
level of noise, 100 series of observations are generated.

Hyper-parameters tuning
For each downscaling factor, hyper-parameters are
tuned using Bayesian optimization on low-resolution
observations forecasts so that ground truth is never used.
The noise level is fixed to 1%. Regarding DIP, we
experimentally found similar optimal learning rate for each
downscaling factor.

5 Results
For each downscaling factor and each level of noise,
we optimized the three different version of 4DVar
on 100 series of observations. As the dynamical



model is considered perfect, the initial condition entirely
characterize the estimated state so that 𝜂0 and ŵ0 are the
quantities to look at to assess the quality of the estimation.
Once such condition estimated, it is possible to produce
a forecast integrating the dynamics, we will then compute
𝜂𝑇+1 and 𝜂𝑇+5 to evaluate forecasts performances. All these
estimations are in high-resolution and are then compared
quantitatively and visually to the ground truth.

5.1 Quantitative results
To quantify the quality of the estimation, we use several
metrics the root mean square error (RMSE) and the
structural similarity (SSIM) for the the height deviation 𝜂.
For velocity map we use optical flow metrics, the endpoint
error (EPE) and the average angular error (AAE). They
calculate the Euclidean distance and the average angular
deviation between the estimation and the ground truth,
respectively. Quantitative results of the main experiment
are displayed in Table 1. Such table is available for each
level of noise. We decided to display the one for 1% level
of noise as it is the closest to satellite noise range and
because we tuned hyper-parameters at this level.
The first interesting result to note is that when no
downscaling task is performed (𝑟 = 1), classical 4DVar
algorithms perform better, which makes sense as the
optimized cost function has been designed assuming
Gaussian errors. However, augmenting 𝑟 , the DIP 4DVar
algorithm seems to be performing better, at least in forecast
performances. Regarding metrics quantifying the quality
of the motion fields estimation, DIP 4DVar systematically
underperforms 4DVar and more particularly Reg. 4DVar.

5.2 Qualitative results
To better understand error sources, we displayed in
Figures 3, 4, 5 error maps for 𝜂0, ŵ0 and 𝜂𝑇+5. First looking
at assimilation results, we see that square patterns tend to
appear in estimated states with 4DVar and Reg. 4DVar
while DIP 4DVar estimation stay smooth. The harder the
downscaling task the bigger the squares. When combining,
square degradation propagate through the dynamical model
which explains the better forecasts performances of DIP
4DVar. However, DIP 4DVar seems less precise and this
is confirmed in Figure 6 in a experiment with no noise, we
see that the used deep prior can’t perfectly fit observations,
contrarily to the classical prior.

5.3 Sensitivity to noise
We repeated similar experiments with different levels of
noise and constated in Figure 6 that the used deep prior
is robust against noise increases. It is to be reminded that
hyper-parameters has been tuned at a single level of noise
so thay may be less relevant in other cases.
We believe that the inductive bias from the architecture
choice brings a desirable regularity to our problem. For
instance the qualitative results show that the estimated
motion fields have interesting characteristics that are not
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Figure 3: Assimilated height 𝜂0 error maps for each
downscaling factors and 4DVar algorithms, noise level of
1%
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Table 1: Metrics quantifying the quality of the assimilation and the following forecast for various downscaling factors and a
fixed level of noise of 1%

Assimilation Forecast

Quantity 𝜂0 𝑤̂0 𝜂𝑇+1 𝜂𝑇+5

Metric RMSE (×102) SSIM EPE (×102) AAE RMSE (×102) SSIM RMSE (×102) SSIM

𝑟 = 1

4DVar 1.4 ± 0.2 0.98 ± 0.01 1.1 ± 0.2 7 ± 1 3.9 ± 0.8 0.87 ± 0.05 3.8 ± 0.7 0.89 ± 0.04
Reg. 4DVar 1.3 ± 0.2 0.98 ± 0.01 1.1 ± 0.3 6 ± 1 1.8 ± 0.3 0.96 ± 0.01 1.8 ± 0.3 0.97 ± 0.01
DIP 4DVar 2.8 ± 0.9 0.94 ± 0.04 5.6 ± 1.3 31 ± 5 4.2 ± 1.3 0.92 ± 0.04 4.8 ± 1.5 0.91 ± 0.04

𝑟 = 2

4DVar 7.2 ± 2.7 0.74 ± 0.12 5.4 ± 1.8 29 ± 6 16.7 ± 5.7 0.40 ± 0.07 17.7 ± 5.6 0.39 ± 0.12
Reg. 4DVar 7.0 ± 5.8 0.77 ± 0.19 1.9 ± 0.6 11 ± 2 6.6 ± 4.7 0.76 ± 0.18 6.9 ± 4.5 0.76 ± 0.16
DIP 4DVar 2.9 ± 0.9 0.93 ± 0.05 5.5 ± 1.0 30 ± 5 4.4 ± 1.4 0.92 ± 0.05 5.0 ± 1.6 0.90 ± 0.05

𝑟 = 4

4DVar 2.4 ± 0.3 0.95 ± 0.01 2.1 ± 0.4 13 ± 2 6.0 ± 1.1 0.76 ± 0.07 6.1 ± 1.1 0.77 ± 0.05
Reg. 4DVar 4.7 ± 1.3 0.85 ± 0.06 1.6 ± 0.3 9 ± 1 4.5 ± 0.9 0.85 ± 0.05 4.6 ± 1.0 0.85 ± 0.04
DIP 4DVar 3.3 ± 0.8 0.92 ± 0.04 6.1 ± 1.3 33 ± 6 5.3 ± 1.3 0.89 ± 0.04 5.7 ± 1.6 0.88 ± 0.04

𝑟 = 8

4DVar 8.1 ± 1.6 0.71 ± 0.11 3.9 ± 0.3 25 ± 5 11.8 ± 0.9 0.51 ± 0.06 11.9 ± 1.0 0.51 ± 0.06
Reg. 4DVar 8.1 ± 1.6 0.71 ± 0.11 3.9 ± 0.3 25 ± 5 11.7 ± 1.0 0.51 ± 0.06 11.8 ± 1.0 0.51 ± 0.07
DIP 4DVar 7.9 ± 1.7 0.74 ± 0.12 9.7 ± 3.0 47 ± 9 11.2 ± 1.3 0.66 ± 0.08 10.9 ± 1.4 0.67 ± 0.09

4DVar Reg. 4DVar DIP 4DVar
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Figure 5: Forecasted 𝜂𝑇+5 error maps for each downscaling
factors and 4DVar algorithms, noise level of 1%
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Figure 6: Evolution of RMSE of 𝜂𝑇+5 forecasts regarding
the level of noise in the observation, with 𝑟 = 4, for each
4DVar algorithm



translated in the chosen optical flow metrics. So we looked
at ∥∇w0∥2, ∥∇.w0∥2 and ∥Δw0∥2, statistics characterizing
smoothness and observed in Figure 7 that are naturally
close the desired ones and not very sensitive to noise
increase.

 0
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Figure 7: Evolution of ∥Δŵ0∥ regarding the level of noise
in the observation, with 𝑟 = 4, for each 4DVar algorithm
and for the ground truth

5.4 Ensemble of DIP
By training multiple times the same network in the
same context, we noticed significant differences in
performances. We verified that stochasticity in the
latent space stabilizes the optimization as described
in the original paper [32]. But we identified that
theses differences were mainly explained by weights
initialization. It is now well documented that ensemble
of neural networks can produced significantly better
results [2]. Even though our approach is unsupervised we
observed similar behaviors. Training multiple networks
with different weights initialization and averaging their
outputs, we obtain better estimation than the best one
performed by an individual network.
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Figure 8: Evolution of deep prior ensembles RMSE
and AAE scores, realized on 1 series of observations,
downscaling factor 𝑟 = 4, noise level 1%

In Figure 8 we focus on the ×4 super-resolution
assimilation one series of observations images. We then

optimize 50 deep image prior, and note that scores of
averaged estimation are superior to the average score. We
arbitrarily displayed RMSE and AAE assimilation scores
but same behaviors are obtained with all the metrics. A
similar plot with various downscaling factor is presented in
Figure 9 and show that the enhanced performances appears
every time for every measured metrics.
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Figure 9: Evolution of deep prior ensembles RMSE
(forecast) and EPE scores, realized on 1 series of
observations, downscaling factor 𝑟 = 1, 2, 4, 8, noise level
1%, scores presented here are relative so that the whole
curve is normalized by the performance of the first member

Looking at errors for different members in Figure 9, we
see that they tend to compensate. We conclude that
ensemble of deep image prior enhances performances. To
be fair, ensemble of 4DVar already exist and could provide
similar improvement. However, as the optimization is
deterministic others strategies have to be found like adding
noise to the observations.
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Figure 10: Evolution of deep prior ensembles RMSE
(forecast) and AAE scores, realized on 1 series of
obsevrations, downscaling factor 𝑟 = 1, 2, 4, 8, noise level
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6 Perspectives
6.1 Large-scale ocean data
The presented preliminary study aims to be deployed
on large-scala data delivered by the ocean physics-based
model NATL60 [1], based on NEMO 3.6 [22] and using
initial conditions from MERCATOR [20]. The finality is
to propose better unsupervised methods to simultaneously
interpolate data from various satellites [14]. Even though
scaling the method involves engineering work, the main
issue remains the non-availability of the ocean model in a
differentiable framework. A solution would be to learn it



from re-analysis with a neural network, differentiable by
nature.

6.2 Weak-constraints assimilation
From a data assimilation standpoint, an other possibility
would be to relax strong constraints and allow model errors
as introduced in [31]. This raises further questions as
model error statistics are usually not known. Tackling
this problem with machine learning is an active research
field [13] and after the presented experiment, we believe
DIP may help to capture important statistics. Also, from a
numerical optimization perspective, allowing error model
in the architecture could be done as ResNet-like shortcut,
avoiding complication from backpropagation through time
with chaotic models [23].

6.3 Ensemble methods
Quantifying uncertainty is a constant preoccupation in
numerical weather forecasting. And this is naturally
done by ensemble data assimilation methods, like the
ensemble Kalman filter, but not by variational ones,
even if hybrid methods already exist [11]. By sampling
the latent space of our model, it is possible to obtain
probabilistic forecasts in the same fashion. However, we
did not observe significant correlation between errors and
estimated uncertainty and do not fully understand the role
in the estimation, besides from numerical optimization, of
the stochasticity introduced in the latent space.

7 Conclusion
We presented a framework bridging unsupervised
inversions image methods with physics-constrained
problems inspired by geosciences, where ground truth
is rarely known. We show in a twin experiment that
using a deep image prior in a 4DVar algorithm brings
interesting regularity in very ill-posed case. Finally, we
drew perspectives towards further developments.
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