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Abstract 26 

Deciding about courses of action involves minimizing costs and maximizing benefits. Decision 27 

neuroscience studies have implicated both the ventral and dorsal medial prefrontal cortex 28 

(vmPFC and dmPFC) in signaling goal value and action cost, but the precise functional role of 29 

these regions is still a matter of debate. Here, we suggest a more general functional partition 30 

that applies not only to decisions but also to judgments about goal value (expected reward) and 31 

action cost (expected effort). In this conceptual framework, cognitive representations related to 32 

options (reward value and effort cost) are dissociated from metacognitive representations 33 

(confidence and deliberation) related to solving the task (providing a judgment or making a 34 

choice). We used an original approach aiming at identifying consistencies across several 35 

preference tasks, from likeability ratings to binary decisions involving both attribute integration 36 

and option comparison. fMRI results in human male and female participants confirmed the 37 

vmPFC as a generic valuation system, its activity increasing with reward value and decreasing 38 

with effort cost. In contrast, more dorsal regions were not concerned with the valuation of 39 

options but with metacognitive variables, confidence being reflected in mPFC activity and 40 

deliberation time in dmPFC activity. Thus, there was a dissociation between the effort attached 41 

to choice options (represented in the vmPFC) and the effort invested in deliberation 42 

(represented in the dmPFC), the latter being expressed in pupil dilation. More generally, 43 

assessing commonalities across preference tasks might help reaching a unified view of the 44 

neural mechanisms underlying the cost/benefit tradeoffs that drive human behavior. 45 

 46 

Significance statement 47 

Decision neuroscience studies have implicated the medial prefrontal cortex in forming the 48 

cognitive representations that drive human choice behavior. However, different studies using 49 

different tasks have suggested somewhat inconsistent links between precise computational 50 

variables and specific brain regions. Here, we use fMRI to demonstrate a robust functional 51 

partition of the medial PFC that generalizes across tasks involving an estimation of goal value 52 

and/or action cost to provide a judgement or make a choice. This general functional partition 53 

makes a critical dissociation between neural representations of decisional factors (the expected 54 

costs and benefits attached to a given option) and metacognitive estimates (confidence in the 55 

judgment or choice, and effort invested in the deliberation process). 56 

57 
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Introduction 58 

Standard decision theory assumes that selecting a course of action can be reduced to 59 

maximizing a net value function, where expected benefits are discounted by expected costs. 60 

Numerous studies in decision neuroscience have implicated key regions of the medial prefrontal 61 

cortex (PFC) in computing the net values of options during choice. While there is a general 62 

agreement for a functional dissociation between ventral and dorsal parts of the medial PFC 63 

(vmPFC, sometimes called medial OFC, versus dmPFC, sometimes called dACC), the specific 64 

roles of these subregions are still a matter of debate.  65 

Some accounts insist on the opponency between costs and benefits (Rangel and Hare, 66 

2010; Pessiglione et al., 2018): the vmPFC would estimate the expected reward while the 67 

dmPFC would estimate the expected effort (Bartra et al., 2013; Kurniawan et al., 2013; Clithero 68 

and Rangel, 2014; Skvortsova et al., 2014). However, this view has been challenged by 69 

representations of effort cost found in vmPFC activity and reward value in dmPFC activity 70 

(Gläscher et al., 2009; Fouragnan et al., 2015; Klein-Flugge et al., 2016; Pisauro et al., 2017; 71 

Arulpragasam et al., 2018; Seaman et al., 2018; Aridan et al., 2019; Hogan et al., 2019; 72 

Westbrook et al., 2019; Lopez-Gamundi et al., 2021). Other accounts insist on the comparison 73 

between options that occurs during choice and suggest that the two regions estimate decision 74 

values in opposite fashion (Boorman et al., 2009; Wunderlich et al., 2009; Hunt et al., 2012; 75 

Jocham et al., 2012): the vmPFC would activate while the dmPFC would deactivate with value 76 

difference (chosen minus unchosen option value). Yet this other view has been questioned 77 

because the correlation with chosen and unchosen option values is not always observed in these 78 

regions, and because the value difference may be confounded with other constructs such as 79 

default preference, choice confidence and decision time (Lim et al., 2011; Qin et al., 2011; De 80 

Martino et al., 2013; Jocham et al., 2014; Massar et al., 2015; Lopez-Persem et al., 2016; 81 

Bobadilla-Suarez et al., 2020). Thus, both types of accounts have received empirical support 82 

but also contradictory evidence, such that their validity is still debated.  83 

Here, we intend to take a step aside from these debates and propose a functional partition 84 

that would generalize beyond choice tasks. Indeed, contrary to the view that there is no value 85 

representation outside of choice contexts (Hayden and Niv, 2021), neural correlates of values 86 

in the medial PFC have been found in many tasks that do not involve any choice between the 87 

items presented, including likeability rating and distractive tasks or even passive viewing, 88 

during which covert likeability ratings are spontaneously generated (Lebreton et al., 2009; 89 

Plassmann et al., 2010; Harvey et al., 2010; Levy et al., 2011; Abitbol et al., 2015; De Martino 90 

et al., 2017; Shenhav and Karmarkar, 2019; Lopez-Persem et al., 2020). We therefore reasoned 91 
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that a general account for the role of the medial PFC in expressing preference should explain 92 

the pattern of activity observed during both rating and choice. 93 

The new functional partition that we propose here is based on a metacognitive account 94 

(Lee and Daunizeau, 2021): the idea is that, whatever the task, the brain invests effort in 95 

deliberation until it reaches a satisfactory level of confidence in the intended response. Thus, a 96 

second cost/benefit tradeoff would govern the meta-decision about when to make a response, 97 

the cost being the amount of time spent in deliberation and the benefit being the level of 98 

confidence attained. During this double cost/benefit arbitration, the brain would represent two 99 

sorts of variables: 1) at the decisional level, the reward and effort values associated to options 100 

proposed for rating or choice, and 2) at the metacognitive level, the expected confidence in the 101 

response and the required amount of deliberation. The aim of the present study is to test whether 102 

this functional partition can account for the pattern of activity observed in medial prefrontal 103 

regions across rating and choice tasks.  104 
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Materials and Methods 105 

General overview 106 

To this aim, we reversed the typical logic of standard functional neuroimaging approach, which 107 

specifies the roles of brain regions with contrasts that isolate minimal differences between 108 

conditions. On the contrary, we intended to generalize our findings across various conditions 109 

and tasks, with the aim to reach more robust conclusions. Thus, we employed a series of 110 

preference tasks (also called ‘value-based’ tasks) that enable the investigation of 1) the 111 

assignment of reward value or effort cost to a single option, with likeability rating tasks, 2) the 112 

comparison between two reward or two effort options with A/B choice tasks, and 3) the 113 

integration of reward and effort attributes for one option to accept or reject, with Yes/No choice 114 

tasks. In all these tasks, we defined the same key variables of interest as the global stimulus 115 

value (Val), which increases with more appetitive reward and/or less aversive effort, the 116 

confidence in the response (Conf), which is higher for more extreme ratings and more likely 117 

choices, and deliberation time (DT), meaning duration of the effort invested in the valuation 118 

process so as to reach a satisfactory response. We then explored the relationships between these 119 

three variables at the behavioral level, and their representations in the medial PFC at the neural 120 

level.  121 

 122 

Subjects 123 

In total, 40 right-handed volunteers participated in this fMRI study, which was approved by the 124 

Pitié-Salpêtrière Hospital local ethics committee. Participants were recruited through the RISC 125 

(Relais d’Information en Sciences de la Cognition) online platform (https://www.risc.cnrs.fr/) 126 

and signed inform consent prior to participation in the study. All participants were screened for 127 

the use of psychotropic medications and drugs, history of psychiatric and neurologic disorders, 128 

and traumatic brain injury. One participant was excluded from all analyses because of a clear 129 

misunderstanding about task instructions, leaving n=39 participants for behavioral data analysis 130 

(22 females / 17 males, aged 25.4±4.1 years). Another participant was excluded from the fMRI 131 

analysis due to excessive movement inside the scanner (>3mm within-session per direction). 132 

Eleven additional participants were excluded from pupil size analysis, due to poor signal 133 

detection in at least one of the sessions (leaving a total of n=27 participants for pupil analysis). 134 

All participants gave informed consent and were paid a fixed amount for their 135 

participation. The 15 first subjects were paid 60€ and the 25 other subjects were paid 75€. The 136 

difference in payoff corresponds to a difference in scanning protocols, although all participants 137 

performed the same tasks. The pilot protocol (n=15) aimed at comparing fMRI data acquisition 138 

https://www.risc.cnrs.fr/
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sequences: regular EPI, EPI with multiband acceleration, EPI with multiband acceleration + 139 

multi-echo acquisition. The main protocol (n=25) aimed at addressing the neurocognitive 140 

question of interest with the best acquisition sequence. For this main protocol, we kept the 141 

regular EPI sequence for all sessions, as we saw no clear advantage for multiband acceleration 142 

or multi-echo acquisition in basic contrast images. Therefore, the analyses only include fMRI 143 

data using regular EPI acquisition (three sessions for the pilot protocol, all nine sessions for the 144 

main protocol). 145 

Behavioral tasks 146 

All tasks were programmed using the Psychtoolbox (Brainard, 1997) Psychtoolbox-3 running 147 

in Matlab (The MathWorks, Inc., Version 2012). Participants were given a 4-button box (fORP 148 

932, Current Designs Inc, Philadelphia, USA) placed under their right hand to provide their 149 

responses. Stimuli were projected on a computer screen, their luminance being estimated using 150 

standard function of red-green-blue composition (0.299∙red + 0.587∙green + 0.114∙blue, see 151 

http://www.w3.org/TR/AERT#color-contrast). Stimuli comprised 144 reward items (72 food and 152 

72 goods) and 72 effort items (36 mental and 36 physical). Half the reward items were presented 153 

with text only (Rewt items), and the other half was presented with both text and image (Rewti 154 

items). All effort items were only described with text (Efft). For each task, fMRI sessions were 155 

preceded by a short training (not included in the analysis), for participants to familiarize with 156 

the sort of items they would have to valuate and with the button pad they would use to express 157 

their preferences. 158 

Participants all started with a (dis-)likeability rating task (Fig. 1A), performed during 159 

the first three fMRI sessions, each divided into three 24-trial blocks corresponding to the three 160 

stimulus type (Rti, Rt, Et). The order of blocks within a session was counterbalanced across 161 

participants. The items were presented one by one, and participants rated them by moving a 162 

cursor along a visual analog scale. They used their index and middle fingers to press buttons 163 

corresponding to left and right movements, and validated the final position of the cursor by 164 

pressing a third button, which triggered the new trial. The initial position of the cursor, at the 165 

beginning of each trial, was randomly placed between 25 and 75% of the 0-100 rating scale. 166 

There was no mark on the scale, giving the impression of a continuous rating, although it was 167 

in practice discretized into 100 steps. The left and right extremes of the scale were labeled “I 168 

would not care” and “I would like it enormously” for reward items, “I would not mind” and “I 169 

would dislike it enormously” for effort items. Note that both reward and effort scales included 170 

indifference at one extremity, such that the two scales could form a continuum of increasing 171 

http://www.w3.org/TR/AERT#color-contrast
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likeability from very aversive effort to very appetitive reward. In any case, the situations to be 172 

rated were hypothetical: the question was about how much they would like the reward (should 173 

it be given to them at the end of the experiment) and how much they would dislike the effort 174 

(should it be imposed to them at the end of the experiment). Should the timeout (10 s in rating 175 

tasks and 5s in choice tasks) be reached, the message ‘too slow’ would have been displayed on 176 

screen and the trial repeated later, but this remained exceptional. 177 

After the three rating sessions, participants performed a series of binary choices. The 178 

A/B choice task (Fig. 1B) involved expressing a preference between two options of a same 179 

dimension, presented on the left and right of the screen. The two options were items presented 180 

in the rating task, drawn from the same category, regarding both the presentation mode (Rewti 181 

vs Rewti, Rewt vs Rewt, Efft vs Efft) and type of stimulus (food vs. food, goods vs. goods, 182 

mental vs mental, physical vs physical). Each item was presented twice, following two 183 

intermixed pairing schedules: one varied the mean rating (i.e., stimulus value) while controlling 184 

for distance (i.e., decision value or choice difficulty), whereas the other varied the distance in 185 

rating while controlling the mean. Participants selected the reward they would most like to 186 

obtain, or the effort they would least dislike to exert, by pressing the left or right button with 187 

their middle or index finger. The chosen option was then highlighted with a red frame, so 188 

participants could check that their choice was correctly recorded. The fMRI sessions devoted 189 

to the A/B choice task included three 24-trial blocks presenting the three types of options (Rti, 190 

Rt, Et), the order of blocks being counterbalanced across participants.  191 

Then participants performed the Yes/No choice task (Fig. 1C), which involved deciding 192 

whether to accept exerting a given effort in order to get a given reward. Thus, every trial 193 

proposed one option combining two dimensions (one Rewt and one Efft item). Each item was 194 

presented twice, following two intermixed pairing schedules: one associating more pleasant 195 

reward with more painful effort (thus controlling for decision value or choice difficulty), the 196 

other associating more pleasant reward with less painful effort (thus varying choice difficulty). 197 

The mean net value was also balanced across fMRI sessions. Participants selected their response 198 

by pressing the button corresponding to ‘yes’ or ‘no’ with their index or middle finger. The 199 

left/right position of yes/no responses was counterbalanced across trials. To give participants a 200 

feedback on their choice, the selected option was highlighted with a red frame. The three fMRI 201 

sessions devoted to the Yes/No choice task contained 48 trials each. 202 

Note that, as were ratings, all choices were hypothetical. This was implemented to 203 

enable the use of natural reward and effort items that can be encountered in everyday life but 204 

are difficult to implement in the lab (such as walking a 1-km distance). Another reason was to 205 



8 
 

allow for a distinction between the estimation of effort cost and motor preparation processes 206 

that are triggered when efforts are implemented (Hogan et al., 2019). 207 

 208 

Behavioral data analysis 209 

All data were analyzed using Matlab 2017a (The MathWorks, Inc., USA). 210 

Choices were fitted with logistic regression models of decision value, with intercept and slope 211 

parameters.  212 

For A/B choices, the model was: 213 

𝑷𝒍𝒆𝒇𝒕 =
1

1 + 𝑒−(𝛽0+ 𝛽1∙𝛥𝑉)
 214 

Where Pleft is the probability of choosing the left option, ΔV is the decision value, i.e. the 215 

difference in likeability rating between left and right options (Vleft - Vright), while β0 and β1 are 216 

the intercept and slope parameters capturing potential bias and choice consistency (inverse 217 

temperature).  218 

For Yes/No choices, the model was: 219 

𝑷𝒂𝒄𝒄𝒆𝒑𝒕 =
1

1 + 𝑒−(𝛽0+ 𝛽𝑅𝑒𝑤.𝑉𝑅𝑒𝑤+ 𝛽𝛦𝑓𝑓.𝑉𝐸𝑓𝑓)
 220 

Where Paccept is the probability of accepting the offer (make the effort to get the reward), VRew 221 

and VEff are the likeability ratings provided for the reward and effort items. Thus, the decision 222 

value (or net value) here is a weighted sum of reward and effort likeability (one being positive 223 

and the other negative), the parameter weights βRew and βEff serving as both scaling factors and 224 

inverse temperature. 225 

The stimulus value (Val) and response confidence (Conf) regressors used in the analysis 226 

of deliberation time (DT) and fMRI data were respectively defined as the addition of likeability 227 

ratings assigned to the items on screen and the squared distance from the mean response. They 228 

were adapted to each task, as follows:  229 

 Rating task A/B choice task Yes/No choice task 

Val V Vleft + Vright βRew∙VRew + βEff∙VEff 

Conf [V-mean(V)] ² [Pleft – mean(Pleft)]² [Paccept – mean(Paccept)]² 

 230 

In each case, V is either the reward or effort likeability provided by z-scored individual 231 

rating of the item presented in a given trial, and P is the probability generated for each trial 232 

using the logistic model fitted to choices. Note that, by construction (before z-scoring), V is 233 

positive for reward items (which are liked) and negative for effort items (which are disliked). 234 
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The mean response used in confidence estimation is simply the mean rating over trials, the 235 

mean frequency of left choice and the mean frequency of accept choice, depending on the task. 236 

The validity of our confidence proxy had been previously assessed and confirmed in two 237 

independent datasets (Fig. 3). 238 

Deliberation time (DT) was defined across tasks as the time between stimulus onset and 239 

first button press. Trial-wise variations in DT were fitted with linear regression models, 240 

including a session-specific intercept, factors of no interest - fixation cross, display duration 241 

(Jitter), stimulus luminance (Lum), text length in number of words (Length) - and factors of 242 

interest - stimulus value (Val), response confidence (Conf). Thus, the model was: 243 

𝐷𝑇 = 𝛽𝑠1 + 𝛽𝑠2 + 𝛽𝑠3 +  𝛽𝑗𝑖𝑡 ∙ 𝐽𝑖𝑡𝑡𝑒𝑟 + 𝛽𝑙𝑢𝑚. 𝐿𝑢𝑚 + 𝛽𝑙𝑒𝑛. 𝐿𝑒𝑛𝑔𝑡ℎ + 𝛽𝑣𝑎𝑙. 𝑉𝑎𝑙 +  𝛽𝑐𝑜𝑛𝑓. 𝐶𝑜𝑛𝑓 244 

fMRI data acquisition 245 

Functional and structural brain imaging data was collected using a Siemens Magnetom Prisma 246 

3-T scanner equipped with a Siemens 64 channel Head/Neck coil. Structural T1-weighted 247 

images were coregistered to the mean echo planar image (EPI), segmented and normalized to 248 

the standard T1 template and then averaged across subjects for anatomical localization of 249 

group-level functional activation. Functional T2*-weighted EPIs were acquired with BOLD 250 

contrast using the following parameters: repetition time TR = 2.01 seconds, echo time TE = 25 251 

ms, flip angle = 78°, number of slices = 37, slice thickness = 2.5 mm, field of view = 200 mm. 252 

A tilted-plane acquisition sequence was used to optimize sensitivity to BOLD signal in the 253 

orbitofrontal cortex (Deichmann et al., 2003; Weiskopf et al., 2007). Note that the number of 254 

volumes per session was not predefined, because all responses were self-paced. Volume 255 

acquisition was just stopped when the task was completed. 256 

Most subjects (n=25) performed nine fMRI sessions (three per task) using this standard 257 

EPI sequence. The pilot subgroup (n=15) also performed nine fMRI sessions, but the fMRI data 258 

acquisition sequences were alternated between standard EPI, EPI with multi-band acceleration 259 

factor (TR = 1.20 s; TE = 25 ms; flip angle = 66°; number of slices = 44; slice thickness = 2.5 260 

mm; acceleration factor = 2) and EPI with multi-band acceleration factor + multi-echo (TR = 261 

1.28 s; TE = 11.00 ms and 29.89 ms; flip angle = 69°; number of slices = 44; slice thickness = 262 

2.5 mm; acceleration factor = 2). The order of fMRI sequences was counterbalanced across 263 

participants. Preliminary analyses of basic contrast images were done using the pilot dataset to 264 

select the best acquisition sequence. As there was no clear benefit with the multi-band and 265 

multi-echo add-ons, we retained the standard EPI for the main experiment. 266 
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fMRI data analysis 267 

Functional MRI data were preprocessed and analyzed with the SPM12 toolbox (Wellcome 268 

Trust Center for NeuroImaging, London, UK) running in Matlab 2017a. Preprocessing 269 

consisted of spatial realignment, normalization using the same transformation as anatomical 270 

images, and spatial smoothing using a Gaussian kernel with a full width at a half-maximum of 271 

8 mm. 272 

Preprocessed data were analyzed with a standard general linear model (GLM) approach 273 

at the first (individual) level and then tested for significance at the second (group) level. All 274 

GLM included the six movement regressors generated during realignment of successive scans. 275 

In our main GLM, stimulus onset was modeled by a stick function, modulated by the following 276 

regressors: 1) fixation cross duration, 2) luminance, 3) text length, 4) Val, 5) Conf, 6) DT. The 277 

first three were factors of no interest that were found to significantly impact DT in the linear 278 

regression analysis. The regressors of interest (Val, Conf and DT) were defined as explained in 279 

the behavioral data analysis section. The different blocks of the rating and A/B choice tasks 280 

(presenting reward as text + image, reward as text and effort as text) were modeled in separate 281 

regressors. All regressors of interest were z-scored and convolved with the canonical 282 

hemodynamic response function and its first temporal derivative. All parametric modulators 283 

were serially orthogonalized. At the second level, correlates of Val, Conf and DT were obtained 284 

with contrasts tested across tasks of corresponding regression estimates against zero. Note that 285 

likeability ratings obtained for effort items were negative in all regressors (meaning that they 286 

can only decrease stimulus value).  287 

Several alternative GLM were built to test variants of the main GLM. GLM2 was 288 

identical to GLM1 except that orthogonalization was removed such that all native regressors 289 

could compete to explain variance in fMRI time series. GLM3 was identical to GLM1, except 290 

that instead of a stick function, stimulus onsets were modeled with a boxcar function modeling 291 

periods from stimulus onset to first button press. Three additional GLM were built to further 292 

explore the choice tasks. In GLM4, the Val regressor (sum of option values) was replaced by 293 

the difference between option values (Vc − Vuc) for the two choice tasks. This GLM served to 294 

perform a group-level Bayesian model comparison to test which value regressor (sum or 295 

difference) best explains the fMRI time series during choice tasks. In GLM5, Conf and DT 296 

were removed and Val was replaced by two separate regressors for the chosen and unchosen 297 

option values (Vc and Vuc). This GLM was used to test whether regressor estimates for chosen 298 

and unchosen values had the same sign (as in a sum) or opposite signs (as in a difference). In 299 

GLM6, reward and effort values were split in two separate regressors for all tasks (including 300 
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the Yes/No choice task). The purpose of this GLM was to distinguish between neural correlates 301 

of reward value and effort cost in brain valuation regions. Finally, a last GLM was built with 302 

one event per trial, modeled with a stick function, at the time of stimulus onset, with the aim to 303 

extract trial-by-trial activity levels in regions of interest, which then served as regressors to 304 

explain pupil size data (see next section). 305 

Regions of interest (ROI) were defined as clusters in group-level statistical maps that 306 

survived significance threshold of p < 0.05 after family-wise error correction for multiple 307 

comparisons at the voxel level. To avoid double dipping (Kriegeskorte et al., 2009) in statistical 308 

tests, regression estimates were extracted from ROI re-defined for each participant through a 309 

leave-one-out procedure. Regarding Bayesian Model Selection, to avoid biasing the 310 

comparison in favor of one or the other GLM, an independent ROI was defined as the 311 

conjunction between the positive minus negative value contrast in a published meta-analysis 312 

(Bartra et al., 2013) and the bilateral medial orbitofrontal cortex region from the AAL atlas 313 

(Tzourio-Mazoyer et al., 2002). Additionally, we defined twelve 8-mm radius spherical ROI in 314 

the medial wall to illustrate the distribution of regression estimates for Val, Conf and DT. 315 

Parameter estimates were extracted from each voxel within these ROI and then averaged across 316 

voxels.  317 

Meta-analysis of fMRI studies 318 

The meta-analytic maps were extracted from the online platform Neurosynth 319 

(https://www.neurosynth.org/), using the keywords “value” (470 studies), “confidence” (79 320 

studies) and “effort” (204 studies) for “uniformity test”, which displays brain regions that are 321 

consistently activated across papers mentioning the target keyword.  Each map was binarized 322 

to visualize clusters surviving a significance threshold of p < 0.01 after false discovery rate 323 

(FDR) correction for multiple comparisons. 324 

Pupil size  325 

Pupil diameter was recorded at a sampling rate of 1000Hz, using an EyeLink 1000 plus (SR 326 

Research) eye-tracker. The eye-tracker was calibrated before the start of fMRI sessions, once 327 

the subject was positioned inside the scanner. A cubicle interpolation was performed to 328 

compensate for any period of time when the pupil signal was lost due to blinking. The pupil 329 

size time series were subsequently band-pass filtered (1/128 to 1 Hz) and z-scored per session. 330 

 Within-trial variations in pupil size was baseline-corrected (by removing the mean 331 

signal over the 200 ms preceding stimulus onset) and time-locked either to stimulus onset or 332 

button press. Then trial-wise variations in pupil size were fitted with a linear regression model 333 

https://www.neurosynth.org/
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that included factors of no interest (an intercept per block, jitter duration, stimulus luminance 334 

and text length), variables of interest (Val, Conf and DT defined as in the behavioral data 335 

analysis section) and neural activity (extracted from vmPFC, mPFC and dmPFC ROI clusters). 336 

Within-trial individual time series of regression estimates were then smoothed using a 100ms 337 

kernel. Group-level significant time clusters were identified after correction for multiple 338 

comparisons estimated according to random field theory, using the RFT_GLM_contrast.m 339 

function of the VBA toolbox (available at http://mbb-team.github.io/VBA-toolbox/).  340 

http://mbb-team.github.io/VBA-toolbox/
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Results 341 

Behavior 342 

Participants (n=39 in total, 22 females) first performed a series of ratings, divided into three 343 

fMRI sessions (Fig. 1A). Each session presented 72 items to be valuated one by one. Within a 344 

session, items were grouped into three blocks: one block with 24 reward items presented by 345 

text + image (Rewti), one block with 24 reward items presented by text only (Rewt) and one 346 

block with 24 effort items presented by text only (Efft). The reason for varying the mode of 347 

presentation was to assess the generality of the neural valuation process across different inputs 348 

that require more or less imagination, according to previous study (Lebreton et al., 2013). For 349 

reward, participants were asked to rate how much they would like it, should they be given the 350 

item immediately after the experiment. Symmetrically, the instruction for effort was to rate how 351 

much they would dislike it, should they be requested to exert it immediately after the 352 

experiment. We included both food and non-food (goodies) reward items, and both mental and 353 

physical effort items. There was no number on the scale, just labels on endpoints, and ratings 354 

were pseudo-continuous, from ‘I would not care / mind’ to ‘I would like / dislike it enormously’. 355 

Thus, the left endpoint corresponded to indifference and the right endpoint to extreme attraction 356 

or extreme aversion (Fig. 1A). 357 

The z-scored rating was taken as a proxy for stimulus value (Val) in this task, while the 358 

square of z-score rating was taken as a proxy for response confidence (Conf). The quadratic 359 

relationship between confidence and rating has been validated empirically and accounted for 360 

by a Bayes-optimal model mapping a probabilistic distribution (over likeability) onto a bounded 361 

visual scale (Lebreton et al., 2015; Lopez-Persem et al., 2020). Under this model, confidence is 362 

inversely proportional to the variance of the underlying probability distribution, hence to the 363 

variability in likeability rating across presentations of the same item when they are repeated 364 

(which was not the case in the present design). The confidence proxy used here is not to be 365 

confounded with motivational salience, which would be maximal for very appetitive reward 366 

and very aversive effort. Instead, confidence is maximal at the extremes of the rating scale, 367 

meaning for both very appetitive and null reward or for both very aversive and null effort (Fig. 368 

2A). Note also that Val and Conf were orthogonal variables by construction (Conf being a U-369 

shaped function of Val for both reward and effort). 370 

Deliberation time (DT) was defined as the time between item onset and the first button 371 

press used to move the cursor along the scale. DT was regressed against a linear model that 372 

included Val and Conf proxies (Fig. 2B), in addition to factors of no interest (such as jitter 373 

duration, stimulus luminance, text length and trial index, see methods). Irrespective of stimulus 374 
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type, we found a significant effect of both value (Rewti: βVal = -0.21 ± 0.02, p = 4∙10-11; Rewt: 375 

βVal = -0.17 ± 0.02, p = 6∙10-11; Efft: βVal = 0.26 ± 0.03, p = 2∙10-11) and confidence (Rewti: βConf 376 

= -0.17 ± 0.03, p = 3∙10-8; Rewt: βConf = -0.19 ± 0.03, p = 7∙10-8
; Efft: βConf = -0.13 ± 0.04; p = 377 

0.0024). Thus, participants were faster to provide their rating when the item was more appetitive 378 

(or less aversive) and when they were more confident (going towards the extremes of the rating 379 

scale). Among the factors of no interest, we observed effects of jitter duration, stimulus 380 

luminance and text length, which were therefore included as regressors in subsequent analyses. 381 

However, there was no significant effect of trial index, which discards a possible contamination 382 

of DT by habituation or fatigue. 383 

Then participants performed a series of binary choices, either A/B choices or Yes/No 384 

choices. The choice tasks were always performed after the rating tasks because the ratings were 385 

used to control the difficulty of choices (i.e., the difference in value between the two options). 386 

In the A/B choice task (Fig. 1B), participants were asked to select the reward they would prefer 387 

to receive at the end of the experiment, if they were offered one of two options, or the effort 388 

they would prefer to exert, if they were forced to implement one of two options. Thus, the two 389 

options always pertained to the same dimension (reward or effort), and even to the same sub-390 

category (food or good for reward, mental or physical for effort), to avoid shortcut of 391 

deliberation by general preference. The mode of presentation (text or image) was also the same 392 

for the two options, to avoid biasing the choice by a difference in salience. To obtain a same 393 

number of trials as in the rating task, each item was presented twice, for a total of 72 choices 394 

per stimulus type (Rewti, Rewt, Efft) distributed over three fMRI sessions. Within a session, 395 

items were grouped into three blocks: one block with 24 choices between reward items 396 

presented with text + image (Rewti), one block with 24 choices between reward items presented 397 

with text only (Rewt) and one block with 24 choices between effort items presented with text 398 

only (Efft). In the Yes/No choice task (Fig. 1C), participants were asked whether they would be 399 

willing to exert an effort in order to obtain a reward, at the end of the experiment. Only items 400 

described with text were retained for this task (since there was no picture for effort items), each 401 

item again appearing twice, for a total of 144 choices divided into three fMRI sessions of 48 402 

trials each. 403 

The A/B choice task was meant to assess value comparison between the two options, 404 

within a same dimension. The decision value (ΔV) in this task was defined as the difference in 405 

(dis-)likeability rating between the two options. We checked with a logistic regression (Fig. 406 

2A) that ΔV was a significant predictor of choices, irrespective of stimulus type (Rewti: βΔV = 407 

3.38 ± 0.27, p = 7∙10-15; Rewt: βΔV = 2.67 ± 0.16, p = 2∙10-19; Efft: βΔV = -2.28 ± 0.16, p = 4∙10-408 
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17). The Yes/No choice task was meant to assess value integration across two dimensions, for a 409 

single option. The decision value (or net value) in this task was defined as a linear combination 410 

of reward and effort ratings. Note that it would make no sense to fit an effort discounting 411 

function here, because such function is meant to capture the mapping from objective effort 412 

levels to subjective effort estimates, which we directly collected (with dislikeability ratings). 413 

We checked with a logistic regression that both reward and effort ratings were significant 414 

predictors of choice in this task (βRew = 1.50 ± 0.09, p = 6∙10-20; βEff = -1.12 ± 0.08, p = 1∙10-415 

16). 416 

To analyze DT (time between stimulus onset and button press) in choice tasks, we 417 

defined proxies for stimulus value and response confidence, as we did for the rating task. 418 

Stimulus value (Val) was defined as the addition of the likeability ratings assigned to the two 419 

stimuli on screen. In the A/B choice task, this is simply the sum of the two item ratings. In the 420 

Yes/No choice task, this is a weighted sum (with a scaling factor to adjust the unit of reward 421 

and effort ratings). In both cases, choice probability was calculated with the logistic regression 422 

model (softmax function of decision value). Response confidence (Conf) was defined, by 423 

analogy to the rating task, as the square of the difference between choice probability and mean 424 

choice rate. Linear regression showed that DT decreased with value in the A/B choice task 425 

(Rewti: βVal = -0.06 ± 0.01, p = 3∙10-7; Rewt: βVal = -0.06 ± 0.01, p = 3∙10-7; Efft: βVal = 0.05 ± 426 

0.01, p = 8∙10-4), albeit not in the Yes/No choice task (βVal = 0.033 ± 0.024, p = 0.172). DT also 427 

decreased with confidence (Fig. 2B) in both the A/B choice task (Rewti: βConf = -1.74 ± 0.20, p 428 

= 2∙10-10; Rewt: βConf = -1.98 ± 0.18, p = 4∙10-13; Efft: βConf = -1.73 ± 0.22, p = 2∙10-9) and the 429 

Yes/No choice task (βConf = -1.15 ± 0.15, p = 1∙10-9). Thus, the relationship between DT and 430 

confidence was similar in rating and choice tasks: participants were faster when they were more 431 

confident (because of a strong preference for one response or the other). They also tended to be 432 

faster when the options were more appetitive (or less aversive), but this trend was not significant 433 

in all tasks. 434 

Because we did not measure confidence in the present study, we verified that our proxy 435 

could predict confidence ratings in separate datasets. Note that this proxy has already been 436 

validated for likeability rating tasks used in previous studies (Lebreton et al., 2015; De Martino 437 

et al., 2017; Lopez-Persem et al., 2020), a result that we reproduced here (Fig. 3). To test 438 

whether the same proxy could also predict confidence in choice tasks, we used another dataset 439 

from a published study (Lee and Daunizeau, 2020). In this study, participants provided 440 

confidence ratings about having selected the best option in binary A/B choices (between food 441 

items presented two by two). Our confidence proxy could significantly predict confidence 442 
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judgments not only in the likeability rating task but also in the A/B choice task even when 443 

including Val and DT as competitors (without orthogonalization) in the same regression model 444 

(rating: βConf = 0.49 ± 0.09; p = 8∙10-5; choice: βConf = 0.21 ± 0.02; p = 2∙10-11). 445 

 446 

Neural activity 447 

The aim of fMRI data analysis was to dissociate the first-level variables related to option 448 

attributes (reward and effort estimates) from the second-level variables related to metacognition 449 

(confidence and deliberation) across value-based tasks (rating and choice). To assess whether 450 

these variables can be dissociated on the basis of existing literature, we conducted a meta-451 

analysis of fMRI studies using Neurosynth platform (Fig. 4A) with value, confidence and effort 452 

as keywords. Results show that the three keywords are associated to similar activation patterns, 453 

with clusters in both vmPFC and dmPFC. To better dissociate the neural correlates of these 454 

constructs in our dataset, we built a general linear model where stimulus onset events were 455 

modulated by our three variables of interest - Val, Conf and DT (defined as in the behavioral 456 

data analysis). Factors of no interest that were found to influence DT (jitter duration, stimulus 457 

luminance, text length) were also included as modulators of stimulus onset events, before the 458 

variables of interest. Note that by construction, the correlation between regressors of interest 459 

was low (between -0.084 and -0.204). Nevertheless, to avoid any confound in the interpretation, 460 

we employed serial orthogonalization. Thus, the variables of interest were orthogonalized with 461 

respect to factors of no interest, and DT was made orthogonal to all other regressors, including 462 

Val and Conf. 463 

After correction for multiple comparisons at the voxel level, we found only three 464 

significant clusters in the prefrontal cortex (Fig. 4B): Val was signaled in vmPFC activity 465 

(Table Fig. 4-1), Conf in mPFC activity (Table Fig. 4-2) and DT in dmPFC activity (Table Fig. 466 

4-3). All three correlations were positive, there was no significantly negative correlation in any 467 

brain region when correcting for multiple comparisons. With a more lenient threshold 468 

(correction at the cluster level), we observed significant positive association with Val in other 469 

brain regions, such as the ventral striatum (vS), posterior cingulate cortex (pCC) and primary 470 

visual cortex (V1). Note that vS and pCC are standard components of the brain valuation 471 

system, whereas V1 activation is likely to be an artifact of gaze position on the rating scale, as 472 

it was not observed in the choice tasks. Consistently, positive correlation with Val was found 473 

in right V1 activity, and negative correlation in left V1 activity (a pattern that was not observed 474 

with other clusters). To provide a more exhaustive depiction, we examined the distribution of 475 
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regression estimates below statistical thresholds, along a path going from vmPFC to dmPFC 476 

within a medial plane (Fig. 6A). Results show that the three associations did not correspond to 477 

separate clusters (as was suggested by thresholded maps) but to gradual variations peaking at 478 

different positions along the path. 479 

To assess whether the triple association between variables and clusters of interest was 480 

robust, we conducted a number of additional analyses using variants of the main GLM (Fig. 5). 481 

The same three clusters were significantly associated with the Val, Conf and DT regressors 482 

when 1) removing serial orthogonalization such that regressors could compete for variance and 483 

2) replacing stick functions by boxcar functions extending from stimulus onset to behavioral 484 

response (showing a modulation of dmPFC activity by DT in amplitude and not just duration). 485 

In addition, we tested the triple association using different fMRI acquisition sequences in 486 

participants of the pilot study (n=15). The fMRI sessions acquired with multiband acceleration 487 

sequences (see methods) were not included in the main analysis, since they were not directly 488 

comparable to those using our standard EPI sequence. We separately regressed fMRI activity 489 

recorded during these sessions against our main GLM, and observed similar trends in this 490 

independent dataset. Due to a three times smaller sample, activations did not pass whole-brain 491 

corrected thresholds. However, using group-level significant clusters (from the main dataset) 492 

as regions of interest (ROI), we observed significant associations of Val and DT with vmPFC 493 

and dmPFC, respectively (vmPFC: βVal = 0.164 ± 0.044, p = 0.0024; dmPFC: βDT = 0.236 ± 494 

0.062, p = 0.0021). 495 

We further analyzed the relationship between computational variables and activity in 496 

the three medial prefrontal ROI with post-hoc t-tests on regression estimates. To avoid any 497 

double-dipping issue, we used a leave-one-out procedure, such that clusters were defined from 498 

group-level analyses including all subjects but the one in whom regression estimates were 499 

extracted. We first verified that the three main associations were not driven by any particular 500 

task (Fig. 6B and 6C). Indeed, regression estimates were significant in both rating and choice 501 

tasks, more specifically for Val in vmPFC activity (rating: βVal = 0.69 ± 0.13, p = 6∙10-6 ; choice: 502 

βVal = 0.47 ± 0.10, p = 3∙10-5), for Conf in mPFC activity (rating: βConf = 0.75 ± 0.11, p = 8∙10-503 

8 ; choice: βConf = 0.31 ± 0.10, p = 0.004) and for DT in dmPFC activity (rating: βDT = 0.39 ± 504 

0.11, p = 9∙10-4 ; choice: βDT = 0.74 ± 0.11, p = 7∙10-8). Note that our point was to generalize 505 

the associations across different tasks - comparing between tasks would be meaningless because 506 

tasks were not designed to be comparable (any possible significant contrast could be due to 507 

many differences of no interest). 508 
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We also investigated whether each cluster of interest was better associated with the 509 

corresponding variable (across tasks), again using a leave-one-out procedure to avoid double 510 

dipping (Fig. 6B): Val was better reflected in vmPFC activity (βVal/vmPFC > βVal/mPFC : p = 9∙10-8 511 

; βVal/vmPFC > βVal/dmPFC : p = 4∙10-7), Conf in mPFC activity (βConf/mPFC > βConf/vmPFC : p = 0.0043; 512 

βConf/mPFC > βConf/dmPFC : p = 3∙10-7) and DT in dmPFC activity (βDT/dmPFC > βDT/vmPFC : p = 0.066; 513 

βDT/dmPFC > βDT/mPFC : p = 7∙10-4). However, the fact that vmPFC, mPFC and dmPFC better 514 

reflected Val, Conf and DT, respectively, does not imply that these regions were not affected 515 

by the other variables. In particular, vmPFC activity was also associated with Conf and DT, 516 

(βConf = 0.26 ± 0.10, p = 0.012; βDT = 0.40 ± 0.11, p = 0.001), even if it was dominated by Val-517 

related activity. Nevertheless, all cross-over interactions between regions and variables were 518 

significant: from vmPFC to mPFC, the relative encoding of Val and Conf (βVal - βConf) 519 

significantly reversed (0.29 ± 0.11 vs. -0.30 ± 0.10, p=2∙10-8) and similarly, from mPFC to 520 

dmPFC, the relative encoding of Conf and DT (βConf - βDT) significantly reversed (0.27 ± 0.13 521 

vs. -0.72 ± 0.14, p = 9∙10-6). The distant cross-over interaction between vmPFC and dmPFC 522 

(βVal - βDT) was also significant (0.15 ± 0.15 vs. -0.30 ± 0.10, p=10-5). 523 

We next looked for further generalization of the valuation signal, not solely across tasks 524 

but also across stimuli. In the main analysis, fMRI time series were regressed against a GLM 525 

that separated stimulus types (Rewti, Rewt and Efft) into different onset regressors, each 526 

modulated by corresponding ratings. Instead of testing the average regression estimates across 527 

stimulus categories, we tested regression estimates obtained for each category, separately (Fig. 528 

6D). Regression estimates (extracted using leave-one-out procedure across rating and choice 529 

tasks) show that vmPFC activity was positively related to the subjective value of reward items, 530 

whether or not they are presented with an image (Rewti: βVal = 0.49 ± 0.13, p = 8∙10-4; Rewt: 531 

βVal = 0.61 ± 0.13, p = 5∙10-5), and negatively correlated to the subjective cost of effort items 532 

(Efft: βVal = -0.35 ± 0.13, p = 0.017). Thus, the association between Val and vmPFC activity 533 

was independent of the presentation mode, and integrated costs as well as benefits.  534 

On a different note, we questioned the validity of our Val proxy to capture value-related 535 

activity in choice tasks. Again, the reason for summing stimulus values in choice tasks instead 536 

of taking the difference between chosen and unchosen option values, as is often done, was that 537 

we wanted a proxy that could generalize to rating tasks, in which there is no notion of difference, 538 

since there is only one stimulus on screen. Note that the value difference regressor (chosen 539 

minus unchosen option value) is related to all three variables that we intend to dissociate here 540 

as capturing different concepts (stimulus value, response confidence, deliberation effort). 541 

Nevertheless, we wondered whether vmPFC activity in choice tasks would be better captured 542 
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by the difference (Vc − Vuc) than by the sum (Vc + Vuc). To test this, we simply replaced our 543 

partition (Val / Conf / DT) by Vc and Vuc regressors, and fitted the GLM to fMRI activity 544 

recorded during choice tasks only (Fig. 6E). The two regression estimates, extracted from the 545 

Val cluster in the main analysis, were significantly positive (βVc= 0.42 ± 0.12, p = 9∙10-4; βVuc 546 

= 0.29 ± 0.07, p = 2∙10-4), with no significant difference between the two (p = 0.36), therefore 547 

showing no evidence for a representation of the difference. We completed this simple analysis 548 

by a comparison using Bayesian Model Selection at the group level, between two variants of 549 

the main GLM where Val was replaced by either the sum (Vc + Vuc) or the difference (Vc − Vuc), 550 

competing to explain choice-related activity in a vmPFC ROI defined from the literature (to 551 

avoid non-independence issues). Although not formally conclusive, the comparison showed 552 

that exceedance probability was in favor of the sum model (Fig. 6F), thus validating our Val 553 

proxy as most relevant to capture vmPFC activity, even during choices. Another advantage of 554 

this Val proxy is being orthogonal to confidence, whereas the difference between option values 555 

is not. The consequence is that the neural correlates of Conf were unaffected by introducing the 556 

Val regressor, or by serial orthogonalization (Fig. 5). 557 

Importantly, no consistent association with reward value or effort cost was observed in 558 

putative opponent brain regions such as the dmPFC, which was instead systematically reflecting 559 

DT. Thus, it appeared that dmPFC activity reflected the metacognitive effort cost invested in 560 

the ongoing task (deliberation about the response) rather than the effort cost attached to the 561 

option on valuation. Importantly, the association with DT was observed despite the fact that DT 562 

was orthogonalized to both value and confidence, suggesting that the dmPFC represents the 563 

effort invested above and beyond that induced by the difficulty of value-based judgment or 564 

decision. The parametric modulation by DT was also obtained when dmPFC activation was 565 

fitted with a boxcar function extending from stimulus response (Fig. 5), suggesting a 566 

modulation in amplitude beyond prolonged activity.  567 

However, DT is a very indirect proxy for the effort invested in solving the task, and 568 

could be affected by many other factors (such as distraction or mind-wandering). We therefore 569 

investigated the relationship between brain activity and another proxy that has been repeatedly 570 

related to effort: pupil size. Neural activity was extracted in each ROI by fitting a GLM 571 

containing one event (stimulus onset) per trial. Then pupil size at each time point was regressed 572 

across trials against a GLM that contained factors of no interest (luminance, jitter duration, text 573 

length), variables of interest (Val, Conf, DT) and neural activity (vmPFC, mPFC, dmPFC). 574 

A positive association between pupil size and dmPFC activity was observed in both 575 

rating and choice tasks (Fig. 7), about one second before the response. This association was not 576 
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an artifact of the trial being prolonged (and therefore of the response to luminance being cut at 577 

different durations), since it was observed both when locking time courses on stimulus onset 578 

and on motor response (button press). Finally, it was specific to the dmPFC ROI, and observed 579 

even if dmPFC was made independent (through serial orthogonalization) to all other variables 580 

(notably Val, Conf and DT). Thus, the association between dmPFC and pupil size was observed 581 

above and beyond DT and factors that could affect DT. In contrast, there was no consistent 582 

association between vmPFC and pupil size before the response, suggesting that the correlates 583 

of DT observed in vmPFC were not related to effort but to some other factors affecting DT, 584 

such as mind-wandering. 585 

586 
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Discussion 587 

Exploring the neural correlates of variables that are common to rating and choice tasks, we 588 

observed a functional partition within the medial PFC: stimulus value, response confidence and 589 

deliberation time were best reflected in vmPFC, mPFC and dmPFC activity, respectively. 590 

 Our results confirm the role attributed to the vmPFC as a generic valuation system (Levy 591 

and Glimcher, 2012; Bartra et al., 2013). The subjective value of reward items was reflected in 592 

vmPFC activity irrespective of the category (food versus goods), as was reported in many 593 

studies (Chib et al., 2009; Lebreton et al., 2009; Abitbol et al., 2015; Lopez-Persem et al., 2020). 594 

Also, vmPFC value signals were observed whether or not reward items were presented with 595 

images, suggesting that they can be extracted from both direct perceptual input or from text-596 

based imagination, which was shown to recruit episodic memory systems (Lebreton et al., 597 

2013). Critically, our results show that the vmPFC also reflects the effort cost (whether mental 598 

or physical) attached to potential courses of actions. Therefore, they challenge previous 599 

suggestions that the vmPFC is involved in stimulus valuation, independently of action costs 600 

(Rangel and Hare, 2010; Pessiglione et al., 2018). They rather suggest that the vmPFC might 601 

compute a net value, its activity increasing with reward benefit and decreasing with effort cost, 602 

so as to prescribe whether or not an action is worth engaging. This idea is in line with recent 603 

mounting evidence that vmPFC activity decreases with effort demand (Aridan et al., 2019; 604 

Hogan et al., 2019; Westbrook et al., 2019; Lopez-Gamundi et al., 2021). 605 

 The mPFC was not affected by reward value or effort cost, but the confidence in the 606 

response. Our notion of confidence (defined as the squared distance from the mean response) 607 

was orthogonal to stimulus value (defined as the addition of reward and/or effort values). This 608 

confidence proxy was previously shown to correlate with confidence ratings and to elicit similar 609 

neural correlates (De Martino et al., 2017; Lopez-Persem et al., 2020). The value proxy is 610 

related to the representation of overall value (or ‘set liking’) assigned to choice options, which 611 

was previously observed in vmPFC activity (Blair et al., 2006; Palminteri et al., 2009; Hare et 612 

al., 2011; Jocham et al., 2014; Gluth et al., 2015; Shenhav and Karmarkar, 2019). The two 613 

notions are close to the sum and difference signals that may emerge from an attractor network 614 

model in which two neuronal populations compete for their favorite option through mutual 615 

inhibition (Hunt et al., 2012). Our results suggest a partial dissociation of value and confidence 616 

signals (as in Shenhav & Karmarkar, 2019) that is consistent with a previously described 617 

ventro-dorsal gradient from value to confidence (De Martino et al., 2017). The same 618 

dissociation applied to the rating task, where there is no comparison between unrelated options. 619 

Note that there could be a covert comparison between current and previous items, with the 620 
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purpose to adjust the rating, not to select an option and discard the others. We also acknowledge 621 

that in a sense, likeability ratings can be conceived as a choice, since one position on the rating 622 

scale must be selected. However, this would be choosing between a large number (virtually 623 

infinite) of possible responses ordered along a single dimension (likeability). It is highly 624 

unlikely that the brain would solve the rating task through a competition mechanism in which 625 

each neuronal population would vote for one position on the scale. Thus, observing the same 626 

pattern of medial PFC activity across rating and choice tasks suggests that the functional role 627 

of this region cannot be reduced to models narrowly applied to the classical case of comparison 628 

between two options. It is more compatible with a neural network model (Pessiglione and 629 

Daunizeau, 2021) whose function is to generate values (from stimulus features), not to compare 630 

them for option selection. As rating and choice tasks both involve valuating the stimuli and 631 

selecting the response in which confidence is maximal, it may not be surprising that they share 632 

a common representation of stimulus value and response confidence, in the vmPFC and mPFC, 633 

respectively. Confidence was the only variable significantly associated to mPFC activity, but 634 

was also positively reflected in vmPFC activity, as previously reported (Chua et al., 2006; De 635 

Martino et al., 2013; Gherman and Philiastides, 2018). Indeed, the addition of value and 636 

confidence signals in the vmPFC is a pattern that has been already observed in both fMRI and 637 

iEEG activity (Lebreton et al., 2015; Lopez-Persem et al., 2020). On the contrary, dmPFC 638 

activity tended to decrease with confidence, but this trend did not survive significance 639 

threshold. 640 

  The variable that was robustly associated with dmPFC activity was deliberation time. 641 

This variable was not orthogonal to the others, since it decreased with both stimulus value and 642 

response confidence. In some of our analyses, deliberation time was post-hoc orthogonalized 643 

with respect to the other variables, meaning that the association with dmPFC activity was 644 

observed above and beyond the variance explained by stimulus value and response confidence. 645 

This association alone would not yield a clear-cut interpretation, since many factors may affect 646 

response time. However, the systematic link observed between trial-wise dmPFC activation and 647 

the increase in pupil size just before the response hints that this association might reflect the 648 

cognitive effort invested in the task. Indeed, pupil size has been associated to the intensity of 649 

not only physical effort, such as handgrip squeeze (Zénon et al., 2014) but also mental effort, 650 

such as focusing attention to resolve conflict or overcome task difficulty (Kahneman and 651 

Beatty, 1966; Alnaes et al., 2014; van der Wel and van Steenbergen, 2018). By contrast, we did 652 

not observe this systematic link with pupil size during deliberation with vmPFC activity. The 653 

link between vmPFC and deliberation time might therefore reflect other sources of variance, 654 
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such as mind-wandering (being slower because of some off-task periods), in accordance with a 655 

previous report that elevated baseline vmPFC activity predicts prolonged response time (Hinds 656 

et al., 2013). Regarding dmPFC, our ROI overlaps with clusters that have been labeled dorsal 657 

anterior cingulate cortex, or sometimes pre-supplementary motor area, in previous studies 658 

(Shenhav et al., 2013; Kolling et al., 2016; Kamiński et al., 2017). The association with 659 

deliberation time is compatible with a role attributed to this region in the exertion of both 660 

physical effort (Kurniawan et al., 2013; Skvortsova et al., 2014; Chong et al., 2017) and 661 

cognitive control (Botvinick et al., 2001; Kerns et al., 2004; Sohn et al., 2007). Importantly, 662 

this dmPFC region differs from clusters located with the cingulate gyrus that have been more 663 

specifically related to physical effort (Prevost et al., 2010; Klein-Flugge et al., 2016). 664 

 To recapitulate, we have teased apart the neural correlates of likeability, confidence and 665 

deliberation in the medial prefrontal cortex, which have been confused in previous fMRI 666 

studies, as shown by meta-analytic maps. The key distinction operated here is perhaps between 667 

effort as an attribute of choice option and effort as a resource allocated to solving the task, or 668 

in other words, between valuation applied to effort (implicating the vmPFC) and effort invested 669 

in valuation (implicating the dmPFC). This dissociation is consistent with the idea that the 670 

vmPFC anticipates the aversive value of a potential effort, while the dmPFC represents the 671 

intensity of effort when it must be exerted. It could be related to efforts being hypothetical in 672 

our design, but previous studies have observed similar effort representation in the vmPFC (not 673 

the dmPFC) when efforts were not hypothetical but only implemented later, at the end of the 674 

experiment (Aridan et al., 2019; Hogan et al., 2019; Westbrook et al., 2019). At a metacognitive 675 

level, our results could be interpreted in the frame of a resource allocation model, where the 676 

effort or time invested in the deliberation is meant to increase confidence in the response, 677 

whether a rating or a choice (Lee and Daunizeau, 2021). Yet our results cannot tell whether the 678 

dmPFC signals the need for deliberation effort, monitors the time invested in deliberation, or 679 

generates an aversive feeling related to the prolongation of deliberation. 680 

Even if showing robust associations between brain regions and cognitive variables, our 681 

approach (looking for robust associations across tasks) also bears limitations. Notably, our 682 

design would not allow comparing between conditions, as is traditionally done in neuroimaging 683 

studies. One may want for instance to compare between tasks and test whether brain regions 684 

are more involved in one or the other, but this would be confounded by several factors, such as 685 

the order (choice tasks being performed after rating tasks). A significant contrast would not be 686 

interpretable anyway, because there is more than one minimal difference between tasks. Thus, 687 

the aim to generalize the role of brain regions across tasks carries the inherent drawback of a 688 
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limited specificity, but also the promises of a more robust understanding of anatomo-functional 689 

relationships. We hope this study will pave the way to further investigations following a similar 690 

approach, assessing a same concept across several tasks in a single study, instead of splitting 691 

tasks over separate reports, with likely inconsistent conclusions.  692 
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Figures 859 

 860 

Figure 1. Behavioral tasks. 861 

Example trials are illustrated as a succession of screenshots from top to bottom, with durations in 862 

seconds. Only the duration of fixation cross display at the beginning of trials is jittered. The duration of 863 

the response screen depends on deliberation time, as both rating and choice are self-paced. 864 

A] Rating task. In every trial, subjects are shown an item that can be a reward described with both text 865 

and image (Rewti), a reward described with text only (Rewt) or an effort described with text only (Efft). 866 

The task for subjects is to rate how much they would like receiving the proposed reward or dislike 867 

performing the proposed effort, should it occur, hypothetically, at the end of the experiment. They first 868 

move the cursor using left and right buttons on a pad to the position that best reflect their (dis)likeability 869 

estimate, then validate their response with a third button and proceed to the next trial. 870 

B] A/B choice task. In every trial, two options belonging to the same category are shown on screen and 871 

subjects are asked to select their favorite option, i.e. which reward they would prefer to receive if they 872 

were offered the two options or which effort they would prefer to exert if they were forced to implement 873 

one of the two options at the end of the experiment (hypothetically). The choice is expressed by selecting 874 

between left and right buttons with the index or middle finger. The chosen option is then highlighted in 875 

red, and subjects proceed to the next trial. 876 

C] Yes/No choice task. In every trial, one option combining the two dimensions is shown on screen and 877 

subjects are asked to state whether they would be willing to exert the effort in order to receive the reward, 878 
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if they were given the opportunity at the end of the experiment (hypothetically). They select their 879 

response (‘yes’ or ‘no’, positions counterbalanced across trials) by pressing the left or right button, with 880 

their index or middle finger. 881 

  882 
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 883 

 884 

Figure 2: Behavioral measures of value, confidence and deliberation. 885 

A] Response rate. For ratings, plots show the average response rate for each bin (portion of the rating 886 

scale). Effort items (on the left) are rated between bin 0 (‘I would not mind’) and bin -10 (‘I would 887 

dislike it enormously’). Reward items (on the right) are rated between bin 0 (‘I would not care’) and bin 888 

+10 (‘I would like it enormously’). Note that the x-axis has been reverted for effort ratings, compared 889 

to the visual scale presented in the task, such that it globally indicates increasing values (less aversive 890 

effort from -100 to 0 and more appetitive rewards from 0 to +100). For choices, the response rate is 891 

plotted as a function of binned decision value (ΔV). In the A /B task, decision value is the difference in 892 

likeability rating between left and right options (Vleft − Vright), and choice rate is the frequency of left 893 

option being selected. In the Yes/No task, decision value is the addition of weighted reward and effort 894 

likeability ratings (βR∙VR + βE∙VE), which is equivalent to both stimulus value (Val) and to the value 895 

difference between yes and no options (net value minus zero). Continuous lines show logistic regression 896 

fits of choice rate and dashed lines show variations in the confidence proxy (Conf). 897 
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B] Deliberation time as a function of confidence proxy (Conf), defined as the square of centered 898 

likeability rating (V2) for rating tasks and the square of centered choice likelihood (P2) for choice tasks. 899 

The Conf proxy was validated in two different datasets where confidence in rating or choice was directly 900 

asked to participants (see Fig. 3). 901 

Dots represent mean across participants, x and y error bars are inter-participant standard errors.  902 

  903 
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 904 

 905 

Figure 3: Validation of the confidence proxy (Conf). 906 

Our proxy for confidence (Conf = square of centered likeability rating or choice likelihood) was tested 907 

against confidence ratings collected in independent datasets. Left panel: in the likeability rating task 908 

(Lopez-Persem et al., 2020), participants first rated the likeability of food, face and painting items and 909 

then provided a confidence rating about their own likeability judgment. Right panel: in the A/B binary 910 

choice task (Lee and Daunizeau, 2020), participants selected their preferred item between options shown 911 

in pairs, and then provided a confidence rating about having made the best choice. The graphs show 912 

confidence rating as a function of binned Conf. Dots represent means over participants, error bars are 913 

inter-participant standard errors, dotted lines show linear regression fits. 914 
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 916 

 917 

Figure 4: Neural mapping of value, confidence and deliberation. 918 

A] Meta-analysis of fMRI studies. Statistical maps (sagittal slices) were extracted from the Neurosynth 919 

platform with the ‘value’, ‘confidence’ and ‘effort’ keywords. Significant clusters in the medial 920 

prefrontal cortex are similar across keywords, being located in both ventral and dorsal regions. 921 

B] Neural correlates of value, confidence and deliberation constructs in the present dataset (in red, blue, 922 

and green, respectively). Statistical maps were obtained with a GLM including the different variables as 923 

parametric modulators of stimulus onset, across rating and choice tasks. Sagittal slice was taken at the 924 

same coordinates as the Neurosynth output, and superimposed on the average anatomical scan 925 

normalized to canonical (MNI) template. Coronal slices show the extent of the different medial 926 

prefrontal clusters. Statistical threshold was set at p < 0.05 after family-wise error for multiple 927 

comparisons at the voxel level. For clusters outside the medial prefrontal cortex, see activations in 928 

Tables Fig. 4-1, 4-2 and 4-3. For clusters obtained using the same GLM without orthogonalization of 929 

regressors and using the same GLM with events modeled as boxcar instead of stick functions, see Fig. 930 

5 and Tables 5-1, 5-2, 5-3. 931 

  932 
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 933 

 934 

Figure 5: Neural mappings of value, confidence and deliberation obtained with alternative GLM. 935 

A] Statistical map (same as in Fig. 4B) obtained with the main GLM is shown for comparison. 936 

B] Statistical map obtained with the same GLM when serial orthogonalization was removed. 937 

C] Statistical map obtained with the same GLM when events were modeled with a boxcar function 938 

encompassing the period from trial onset to first button press. 939 

For all maps, sagittal slices were taken at the same coordinates as the Neurosynth output (shown in Fig. 940 

4A), and superimposed on the average anatomical scan normalized to canonical (MNI) template. Maps 941 

were thresholded at p < 0.05 after voxel-wise family-wise error correction for multiple comparisons. 942 

For all maps, only the main clusters of interest located in the medial prefrontal cortex are shown. For 943 

clusters outside the medial prefrontal cortex, please refer to Tables in Figures 5-1, 5-2 and 5-3. 944 
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 946 

Figure 6: Neural representations of value, confidence and deliberation across behavioral tasks 947 

A] Distribution of regression estimates (inter-subject means ± standard errors) obtained for Val, Conf 948 

and DT variables along a ventro-dorsal line within the medial prefrontal cortex (sampled in each 8mm-949 

radius shown on the average anatomical map). Colored circles show sampled spheres in which 950 

correlation with the corresponding variable was maximal (Val – red, Conf – blue and DT – green). 951 

B] Decomposition of regression estimates obtained for each variable of interest, plotted separately for 952 

rating and choice tasks (noted R and C) and for the different ROI (vmPFC, mPFC, dmPFC).  953 

C] Decomposition of regression estimates obtained for each variable of interest (Val, Conf and DT), 954 

plotted separately for each choice task (noted A/B and Y/N) in the different ROI (vmPFC, mPFC, 955 

dmPFC). For the three region – variable associations, there was no significant difference between 956 

regression estimates obtained in the A/B and Yes/No choice tasks.  957 

D] Regression estimates were extracted across rating and choice tasks, separately for rewards presented 958 

as text (Rewt) or text + image (Rewti) and separately for reward (Rew) and effort (Eff) values. The 959 

vmPFC ROI was based on group-level cluster activated with Val using GLM1, following a leave-one 960 

out procedure to avoid double dipping. 961 

E] Regression estimates were extracted from the vmPFC (group-level cluster associated to Val), using 962 

a GLM where Val, Conf and DT were replaced by the chosen and unchosen option values (Vc and Vuc), 963 

across the two choice tasks. In more details, Vc / Vuc were Vleft / Vright for a left choice in the A/B task, 964 

and βRew∙VRew + βEff∙VEff / 0 for a yes choice in the Yes/No task (and vice-versa for opposite choices). 965 
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F] Results of a Bayesian Model Comparison between the main GLM (GLM1) where Val is the sum, 966 

and an alternative GLM (GLM4) where Val is the difference between option values (Vc - Vuc), for 967 

explaining vmPFC activity across the two choice tasks. The vmPFC was defined by a conjunction 968 

between the correlates of positive minus negative value from a published meta-analysis (Bartra et al., 969 

2013) and the medial prefrontal cortex region from the AAL atlas (Tzourio-Mazoyer et al., 2002) to 970 

avoid biasing the comparison in favor of the first GLM. Exceedance probability estimates were averaged 971 

across all voxels within the vmPFC ROI. Note that similar results were obtained when restricting the 972 

comparison to the A/B choice task. 973 

In all plots, bars show mean across participants; error bars show inter-participant standard errors. Stars 974 

indicate significance of t-test against zero (*** p < 0.005, ** p < 0.01, * p< 0.05, (*) p < 0.10). 975 
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 977 

 978 

Figure 7: Pupillometric validation of the link between brain activity and deliberation 979 

effort. 980 

Plots show the time course of regression estimates, obtained with a GLM built to explain pupil size. The 981 

GLM included factors of no interest (jitter duration, stimulus luminance, text length), variables of 982 

interest (Val, Conf, DT) and activities in main ROI (vmPFC, mPFC, dmPFC, corresponding to red, blue 983 

and green traces, respectively). Each row corresponds to a different task (likeability rating, choice tasks). 984 

Left and right columns show time courses aligned onto stimulus onset and button press, respectively. 985 

Lines represent means across participants and shaded areas inter-participant standard errors. Horizontal 986 

bars indicate significant time clusters after correction for multiple comparisons using random-field 987 

theory. 988 
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 990 

Extended Data - Tables 991 

 992 

Region P cluster Peak x Peak y Peak z 
No. of 

Voxels 

vmPFC 3∙10-10 -10 48 -12 364 

Lingual Gyrus 1∙10-4 16 -70 -6 64 

Orbitofrontal cortex 2∙10-4 -28 36 -14 57 

Posterior cingulate 

cortex 
0.003 -6 -54 14 22 

Cingulate Gyrus 0.005 -8 38 6 16 

Extended Figure 4-1: Brain activity signaling stimulus value (Val) across rating and choice tasks.  993 

Regions survived a significance threshold of P < 0.05 after FWE correction for multiple 994 

comparisons at the voxel level. Clusters smaller than 12 voxels, corresponding to the size of 995 

our smoothing kernel, were excluded from the table. Coordinates refer to the MNI space. The 996 

p-value reported is the p-value of the cluster after a FWE correction at the cluster level. 997 
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 999 

Region 
P FWE 

cluster 
Peak x Peak y Peak z 

No. of 

Voxels 

mPFC 5∙10-6 -8 52 18 128 

Middle Temporal 

Gyrus 
2∙10-4 -56 -26 -10 63 

Supramarginal Gyrus 3∙10-4 -62 -40 32 56 

Middle Temporal 

Gyrus 
0.003 -46 -64 12 22 

Caudate Nucleus 0.006 -12 14 -12 14 

Inferior Temporal 

Gyrus 
0.007 -46 2 -36 13 

Extended Figure 4-2: Brain activity signaling response confidence (Conf) across rating and choice 1000 

tasks.  1001 

Regions survived a significance threshold of P < 0.05 after FWE correction for multiple comparisons at 1002 

the voxel level. Clusters smaller than 12 voxels, corresponding to the size of our smoothing kernel, were 1003 

excluded from the table. Coordinates refer to the MNI space. The p-value reported is the p-value of the 1004 

cluster after a FWE correction at the cluster level. 1005 
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 1007 

Region 
P FWE 

cluster 
x y z 

No. of 

Voxels 

dmPFC 1∙10-9 10 12 48 365 

Inferior Frontal Gyrus 7∙10-8 -40 22 24 242 

Anterior Insula (left) 2∙10-5 -30 26 4 110 

Anterior Insula (right) 4∙10-5 32 26 4 95 

Lingual Gyrus 0.003 -18 -88 -10 23 

Extended Figure 4-3: Brain activity signaling deliberation time (DT) across rating and choice 1008 

tasks.  1009 

Regions survived a significance threshold of P < 0.05 after FWE correction for multiple comparisons at 1010 

the voxel level. Clusters smaller than 12 voxels, corresponding to the size of our smoothing kernel, were 1011 

excluded from the table. Coordinates refer to the MNI space. The p-value reported is the p-value of the 1012 

cluster after a FWE correction at the cluster level. 1013 
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 1015 

Region P cluster Peak x Peak y Peak z 
No. of 

Voxels 

vmPFC 1∙10-12 -10 44 -10 423 

Cingulate Gyrus 2∙10-4 -4 40 4 46 

Lingual Gyrus 0.004 -12 -50 4 14 

Extended Figure 5-1: Brain activity signaling stimulus value (Val) across rating and choice tasks 1016 

when regressors were not orthogonalized.  1017 

Regions survived a significance threshold of P < 0.05 after FWE correction for multiple comparisons at 1018 

the voxel level. Clusters smaller than 12 voxels, corresponding to the size of our smoothing kernel, were 1019 

excluded from the table. Coordinates refer to the MNI space. The p-value reported is the p-value of the 1020 

cluster after a FWE correction at the cluster level. 1021 
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 1023 

Region 
P FWE 

cluster 
Peak x Peak y Peak z 

No. of 

Voxels 

mPFC 1∙10-7 -6 52 18 222 

Temporal mid pole 0.001 -60 -28 -10 47 

Temporal Superior 

Pole 
0.007 -36 18 -26 13 

Inferior Frontal Gyrus 0.007 -40 28 -2 13 

Extended Figure 5-2: Brain activity signaling response confidence (Conf) across rating and choice 1024 

tasks when regressors were not orthogonalized.  1025 

Regions survived a significance threshold of P < 0.05 after FWE correction for multiple comparisons at 1026 

the voxel level. Clusters smaller than 12 voxels, corresponding to the size of our smoothing kernel, were 1027 

excluded from the table. Coordinates refer to the MNI space. The p-value reported is the p-value of the 1028 

cluster after a FWE correction at the cluster level. 1029 
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 1031 

Region 
P FWE 

cluster 
x y z 

No. of 

Voxels 

dmPFC 8∙10-10 10 12 48 370 

Inferior Frontal Gyrus 5∙10-8 -40 22 24 249 

Anterior Insula (left) 1∙10-5 -30 26 4 110 

Anterior Insula (right) 3∙10-5 32 26 4 96 

Lingual Gyrus 0.003 -18 -88 -10 23 

Extended Figure 5-3: Brain activity signaling deliberation time (DT) across rating and choice 1032 

tasks when regressors were not orthogonalized.  1033 

Regions survived a significance threshold of P < 0.05 after FWE correction for multiple comparisons at 1034 

the voxel level. Clusters smaller than 12 voxels, corresponding to the size of our smoothing kernel, were 1035 

excluded from the table. Coordinates refer to the MNI space. The p-value reported is the p-value of the 1036 

cluster after a FWE correction at the cluster level. 1037 

 1038 


