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I. INTRODUCTION

Geometrical acoustics is a common method to study long-range infrasound propagation in the atmosphere. It relies on a high frequency approximation applied to fluid mechanics equations [START_REF] Candel | Numerical solution of conservation equations arising in linear wave theory: application to aeroacoustics[END_REF][START_REF] Ostashev | Acoustics in moving inhomogeneous media[END_REF][START_REF] Pierce | Acoustics : An Introduction to Its Physical Principles and Applications (Acoustical Society of America), p. 371. boom propagation[END_REF][START_REF] Whitham | On the propagation of weak shock waves[END_REF]. It reduces the propagation as a series of one dimensional cases along acoustical rays. This ray-tracing method is attractive because it allows simple and fast computation taking into account 3-D sources, earth orography and atmospheric data [START_REF] Scott | Weakly nonlinear propagation of small-wavelength, impulsive acoustic waves in a general atmosphere[END_REF]. Nowadays, infrasound propagation and particularly ray tracing, is a reference tool for inversion problems such as source localization [START_REF] Blom | Modeling infrasonic propagation through a spherical atmospheric layer -Analysis of the stratospheric pair[END_REF][START_REF] Gainville | A re-analysis of Carancas meteorite seismic and infrasound data based on sonic boom hypothesis[END_REF] or atmospheric sounding [START_REF] Drob | Inversion of infrasound signals for passive atmospheric remote sensing[END_REF][START_REF] Lalande | Infrasound data inversion for atmospheric sounding[END_REF][START_REF] Vanderbecken | Bayesian selection of atmospheric profiles from an ensemble data assimilation system using infrasonic observations of may 2016 mount etna eruptions[END_REF]. However, this method leads to the apparition of caustics and shadow zones. Caustics are zones of rays focusing, described by catastrophe theory as amplitude singularities [START_REF] Thom | Mathematical models of morphogenesis[END_REF]. They can be due to either atmospheric refraction or to source motion (Pierce and Maglieri, 1972). In shadow zones no ray penetrates, and the observable pressure field there is due to diffraction [START_REF] Kulichkov | Nonlinear effects manifested in infrasonic signals in the region of a geometric shadow[END_REF]. Shadow zones are related to either caustics or to geometrical discontinuities of the propagation medium, in particular the Earth surface for infrasound.

Infrasound stations of the International Monitoring System network of the Comprehensive Nuclear-Test-Ban Treaty are frequently located into shadow zones (Blixt et al., 2019;[START_REF] De Groot-Hedlin | Atmospheric variability and infrasound monitoring[END_REF][START_REF] Evers | Anomalous infrasound propagation in a hot stratosphere and the existence of extremely small shadow zones[END_REF][START_REF] Farges | Infrasound thunder detections across 15 years over ivory coast: Localization, propagation, and link with the stratospheric semi-annual oscillation[END_REF][START_REF] Gainville | A re-analysis of Carancas meteorite seismic and infrasound data based on sonic boom hypothesis[END_REF][START_REF] Green | Regional infrasound generated by the humming roadrunner ground truth experiment[END_REF][START_REF] Le Pichon | Infrasound monitoring for atmospheric studies[END_REF][START_REF] Sabatini | Three-dimensional direct numerical simulation of infrasound propagation in the earth's atmosphere[END_REF].

In order to predict the signal in shadow zone of caustics, several geometrical methods have been proposed. The Maslov summation [START_REF] Kendall | Maslov ray summation, pseudo-caustics, lagrangian equivalence and transient seismic waveforms[END_REF][START_REF] Kravtsov | Theory of Diffraction[END_REF][START_REF] Piserchia | Propagation et conversion des ondes t par simulation numerique hydride[END_REF][START_REF] Thomson | An introduction to maslov's asymptotic method[END_REF], takes into account a hybrid space where caustics no longer exists. The uniform theory of diffraction (UTD) computes the field locally around the caustic [START_REF] Ludwig | Uniform asymptotic expansions at a caustic[END_REF][START_REF] White | Evaluation of shadow-zone fields by uniform asymptotics and complex rays[END_REF]. Gaussian beams add a width to rays [START_REF] Porter | Gaussian beam tracing for computing ocean acoustic fields[END_REF]. Complex ray theory was first introduced by [START_REF] Keller | Geometrical theory of diffraction[END_REF] with the Geometrical Theory of Diffraction and was used by Kravtsov in optics [START_REF] Kravtsov | Complex rays and complex caustics[END_REF][START_REF] Kravtsov | Description of the 2d Gaussian beam diffraction in a free space in frame of eikonal-based complex geometric optics[END_REF][START_REF] Kravtsov | I theory and applications of complex rays[END_REF][START_REF] Kravtsov | Caustics, catastrophes, and wave fields[END_REF][START_REF] Kravtsov | Theory of Diffraction[END_REF]. Note all these methods describe caustics associated diffraction. However, the deep shadow zone can be also insonified by scattering due to turbulence [START_REF] Ostashev | Acoustics in moving inhomogeneous media[END_REF] or more likely at low frequencies by fine structures of the middle and upper atmosphere [START_REF] Kulichkov | New type of infrasonic arrivals in the geometric shadow region at long distances from explosions[END_REF][START_REF] Kulichkov | Simulating the in-fluence of an atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic signals[END_REF].

Kravtsov was the first one to detail numerical implementation of complex ray theory [START_REF] Egorchenkov | Complex ray-tracing algorithms with application to optical problems[END_REF]. Chapman et al. (1999) applied this theory to various types of caustics. Complex rays were also applied for seismic propagation for viscoelastic media (Thomson, 1997;[START_REF] Wu | Effective and efficient approaches for calculating seismic ray velocity and attenuation in viscoelastic anisotropic media[END_REF]. Finally, complex rays have recently been applied in aeroacoustics to predict high frequency acoustic propagation in subsonic mean jet flow [START_REF] Stone | Cones of silence, complex rays and catastrophes: high-frequency flow-acoustic interaction effects[END_REF]. This last study is the first one to investigate complex ray tracing in a moving medium.

Large sound speed stratifications, wave advection by wind, multiple arrivals due to stratospheric and thermospheric waveguides and impulsive sources are key features of infrasound propagation. Key features of infrasound propagation involve: 1) sound speed stratifica-stratopause and 400 m/s or more in the thermosphere, 2) wave advection by wind with tropospheric jets of the order of 30 m/s and stratospheric ones of the order of 50 m/s undergoing seasonal inversions, 3) and consequently multiple arrivals depending on the direction and intensity of these jets. An example is found in Fig. 1 with a stratospheric wind inducing both stratospheric and thermospheric arrivals. In this configuration, a classical shadow zone exist at ground level up to more than 200 km introduced by the upward refraction in the troposphere. Moreover, infrasound are generally emitted as impulsive signals from transient sources (explosions, volcanoes, meteorites, lightning) with the noticeable exception of swell.

The main objective of our work is to propose an adapted algorithm to predict efficiently by complex ray theory characteristics of infrasonic signals at ground level: arrival times, apparent velocities, azimuths, amplitudes and pressure waveforms. In particular, we emphasize the development of a specific algorithm searching for complex eigenrays between the source and the receiver.

Firstly, in section II, we recall the complex ray theory including equations of both ray tracing and pressure amplitude. In section III we introduce the realistic case of a groundbased point source (explosion source) in a stratified atmosphere with a shear wind jet. In the next section IV, the numerical algorithm searching for eigenrays is detailed, with this case as an example. Physical results are presented in section V and compared to simulations based on a parabolic approximation. file in section VI. We summarize our work in section VII and give some perspectives for improvement.

II. COMPLEX GEOMETRICAL ACOUSTICS

Geometrical acoustics, i.e. ray theory, is a standard way to compute infrasound propagation [START_REF] Pierce | Acoustics : An Introduction to Its Physical Principles and Applications (Acoustical Society of America), p. 371. boom propagation[END_REF]. Ray theory requires acoustic wavelengths to be small compared with atmospheric scales. It conveys the idea that the wavefront motion is mostly due to a combination of acoustic propagation and convection by wind. In subsections II A and II B, we define equations of ray paths and amplitude along rays. All equations and parameters are here written in a two dimensional space (x, z) but can potentially be generalized in three dimensions.

A. Ray tracing

The propagation of impulsive infrasound waves in a windy inhomogeneous atmosphere can be described by linear geometrical acoustics. The underlying assumptions are that the acoustic perturbation is located near a wavefront and that medium properties vary slowly over a typical wavelength. The wavefront, defined implicitly by Φ(x, t) = 0, evolves spatially with the time t following the eikonal equation:

∂Φ ∂t + v • ∇Φ 2 = c 2 ∇Φ • ∇Φ, (1) 
with c the sound speed and v the wind velocity. This equation is derived from linearized Euler equations using either a multiple-scale asymptotic analyzis [START_REF] Gréa | Ray theory of flow instability and the formation of caustics in boundary layers[END_REF][START_REF] Pierce | Acoustics : An Introduction to Its Physical Principles and Applications (Acoustical Society of America), p. 371. boom propagation[END_REF][START_REF] Scott | Weakly nonlinear propagation of small-wavelength, impulsive acoustic waves in a general atmosphere[END_REF][START_REF] Stone | Cones of silence, complex rays and catastrophes: high-frequency flow-acoustic interaction effects[END_REF] or by applying the WKB ansatz to the Helmholtz equation (Babich and Buldyrev, 1991;[START_REF] Candel | Numerical solution of conservation equations arising in linear wave theory: application to aeroacoustics[END_REF]Chapman et al., 1999;[START_REF] Kravtsov | Complex rays and complex caustics[END_REF]Thomson, 1997). The eikonal equation has two roots, which implies a choice of sign associated with the direction of propagation of the wavefront along ∇Φ so that:

∂Φ ∂t + w • ∇Φ = 0, (2) 
with w = cn + v the group velocity and

n = ∇Φ/ √ ∇Φ • ∇Φ the unit normal (n • n = 1)
to the surface Φ = constant at constant time. This eikonal equation (Eq. ( 2)) implies that the wavefront surface Φ = constant moves with velocity w. Here, both real and complex solutions of the eikonal equation (Eq. ( 2)) are considered. Real solutions are associated with classical geometrical acoustics in the illuminated (insonified) zone, while complex solutions are associated with diffracted waves into shadow (silent) zones. For complex solutions, Φ,

x and t are complex-valued. The sound speed c(x, t) and wind vector v(x, t) are extended as holomorphic functions in the complex plane (Chapman et al., 1999;[START_REF] Kravtsov | Complex rays and complex caustics[END_REF]Thomson, 1997). In the eikonal equations ( 1) and ( 2), the scalar product of complex vectors is the Euclidean one, a • b = k a k b k with a k and b k real or complex quantities [START_REF] Kravtsov | Complex rays and complex caustics[END_REF]. For complex vectors, this scalar product is neither real nor zero-definite, but is a holomorphic function.

Rays are the characteristic curves of the eikonal Eq. ( 2) [START_REF] Courant | Methods of Mathematical Physics: Partial Differential Equations[END_REF].

Φ(X, t) is constant along a given ray X whose position evolves according to the ray-tracing equation dX dt a = cn + v.

(3)

Here t a , the wave travel time along the ray, is considered as an integration parameter. Note that the ray integration parameter could also be the physical ray length. However, t a is the natural integration parameter for a time dependant media. Taking the gradient of (2) and setting K = ∇Φ along rays give

dK dt a = -K∇c -∇v • K. ( 4 
)
The two rays equations ( 3) and ( 4) form a closed system with n = K/K and

K = + √ K • K.
The positive sign determines the direction of propagation according to the sign chosen for (2).

This system of ray equations is valid for a three dimensional, inhomogeneous, time dependent and convected atmosphere. With the underlying assumptions of ray theory, the wavefront Φ(x, t) = 0 is considered as locally plane with local wave pulsation ω = -∂Φ/∂t and local wavevector K = ∇Φ. The eikonal Eq. ( 2) is locally equivalent to the dispersion relation

ω = K • w.
For a time independent media, ω is constant along rays [START_REF] Candel | Numerical solution of conservation equations arising in linear wave theory: application to aeroacoustics[END_REF]. In this case, the equations can be written in a Hamiltonian form [START_REF] Gréa | Ray theory of flow instability and the formation of caustics in boundary layers[END_REF][START_REF] Lalande | Infrasound data inversion for atmospheric sounding[END_REF]Thomson, 1997;[START_REF] Virieux | Paraxial ray tracing for atmospheric wave propagation[END_REF] and Φ is related to the wave phase.

The wavefront at the source is defined as Φ(x s , t s ) = 0 with x s the source position and t s the time at the source. Initial conditions for rays at the source also involve the wavefront unit normal n s at the source:

X(φ, t s ) = x s , K(φ, t s ) = k s n s , (5) 
eter φ defines the initial conditions, e.g. the geometrical shape of the initial wavefront (a curved line). This parameter is specific to the investigated source. Two parameters are needed at 3D, as the initial wavefront is then a curved surface.

For a 2D point source modeling an explosion, φ is the ray elevation angle so that n s = cos φe x + sin φe z , with (e x , e z ) the unit vectors in the horizontal x and vertical z directions respectively. The source position x s and the time at the source t s are independent of φ. For a 3D point source modeling an explosion, we add another emission parameter corresponding to the emission azimuth ψ. In that case n s = cos φ sin ψe x + cos φ cos ψe y + sin φe z , with e y the unit vector in the y direction.

Ray equations ( 3) and ( 4) with initial conditions (5) are solved for all values of the ray parameter φ to obtain the full set of rays X(φ, t a ), K(φ, t a ). For complex rays, these equations and initial conditions remain the same, with all parameters now getting complexvalued in the 4D complex space.

In a two dimensional complex space x = (x, z), the associated manifold is of dimension 4.

Complex rays are hyperplanes (of dimension 2) of the complex space described by X(φ, t a )| φ where t a is a complex-valued. Complex wavefronts Φ(x, t) = 0 at a given time t a are two dimensional hypersurfaces defined by X(φ, t a )| ta = constant. Nevertheless, only real points X(φ, t a ) are physical solutions [START_REF] Kravtsov | Complex rays and complex caustics[END_REF]Thomson, 1997). For complex rays, generally only one position of the two dimensional manifold is real, compared to real rays where every point is real. The main difficulty of complex ray tracing is therefore to ensure that the ray point physically representing the receiver x r , is real. The determination of ray parame-1996; [START_REF] Stone | Cones of silence, complex rays and catastrophes: high-frequency flow-acoustic interaction effects[END_REF]. This problem is solved numerically in section IV. Furthermore, complex ray solutions at a real receiver in the shadow zone are complex conjugates. Only one is physical, the one keeping the amplitude of the solution bounded at large distances in the shadow zone [START_REF] Egorchenkov | Complex ray-tracing algorithms with application to optical problems[END_REF][START_REF] Kravtsov | Caustics, catastrophes, and wave fields[END_REF].

B. Field amplitude

To compute the evolution of the wave amplitude along rays, the asymptotic expansion of linearized Euler equation leads at second order to the transport equation (conservation of wave action) [START_REF] Blokhintzev | The propagation of sound in an inhomogeneous and moving medium I[END_REF][START_REF] Gréa | Ray theory of flow instability and the formation of caustics in boundary layers[END_REF][START_REF] Pierce | Acoustics : An Introduction to Its Physical Principles and Applications (Acoustical Society of America), p. 371. boom propagation[END_REF][START_REF] Scott | Weakly nonlinear propagation of small-wavelength, impulsive acoustic waves in a general atmosphere[END_REF][START_REF] Stone | Cones of silence, complex rays and catastrophes: high-frequency flow-acoustic interaction effects[END_REF]. This one can also be obtained from the Helmholtz equation (Babich and Buldyrev, 1991;[START_REF] Candel | Numerical solution of conservation equations arising in linear wave theory: application to aeroacoustics[END_REF]Chapman et al., 1999;[START_REF] Kravtsov | Complex rays and complex caustics[END_REF]Thomson, 1997).

∂A ∂t + ∇ • (wA) = 0, (6) 
with w = cn + v the group velocity and A = p 2 /Kρc 3 the wave action with p the acoustic overpressure and ρ the atmospheric density. For time independent media this conservation equation is reduced to ∇ • (wA) = 0 [START_REF] Candel | Numerical solution of conservation equations arising in linear wave theory: application to aeroacoustics[END_REF].

At a position X(t a ) along one given ray, the acoustic overpressure signature p(X, t) is approximated by [START_REF] Scott | Weakly nonlinear propagation of small-wavelength, impulsive acoustic waves in a general atmosphere[END_REF]:

p(X(t a ), t) = K ρc 3 ν 1/2 u(Φ(X(t a ), t), t a ), (7) 
where the wavenumber K and the infinitesimal ray tube area ν are evaluated along the ray at t a , atmospheric sound speed c and atmospheric density ρ are evaluated at X(t a ). At using geodesic equations described in (Scott et al., 2017, Eq. A1 and A2) or in (Blom and Waxler, 2017, Eq. 5 and 6) where they are called equations of auxiliary parameters. Here these equations keep unchanged but get fully complex considering the correct definition for complex-valued K. For linear propagation in a non-absorbing media, the normalized waveform u(ξ, t a ) is conservative along rays:

du dt a = 0, (8) 
where ξ = Φ(x, t a ) is the scaled distance to the wavefront and is zero on the wavefront.

In the wavefront vicinity Φ(X(t a ), t a ) = 0, a Taylor expansion leads to ξ = Φ(X(t a ), t) ≈ ω(t a -t) where ω = K • w. For complex rays reaching a receiver at X(t a ) located in shadow zones with a complex-valued t a , Re(ξ) = Re(ω(t a -t)) and Im(ξ) = Im(ωt a ) at a time t close to t a . This closed-form approximation of ξ is replaced in (7).

Because the ray tube area ν(t a ) may vanish at the source t s , the conservation of wave action along a given ray has to be initialized slightly away from it, at actual emission time t e . For each ray, the scaled waveform u(ξ, t e ) and the ray cross section ν e are defined at this emission time t e , sufficiently close to the source so that we can assume propagation in a homogeneous medium during the small time interval t e -t s . There the ray tube area is not zero anymore, p(X(t e ), t) is assumed to be known and real, and is used to quantify the pressure field all along the ray.

We extend u(ξ) for complex values of the phase function ξ by means of the Fourier transform:

u(ξ) = 1 2π ∞ -∞ ũ(q)e -|q|Im(ξ) e iqRe(ξ) dq, (9) 
where function ũ(q) is obtained from the real function u(ξ)

ũ(q) = ∞ -∞ u(ξ)e -iqξ dξ. ( 10 
)
We can note that qω/2π is the physical frequency and |K|q the physical acoustic wavenumber. To preserve the asymptotic decay of the amplitude [START_REF] Chapman | Fundamentals of seismic wave propagation (Cambridge University Press). of complex rays[END_REF] into shadow zone when q < 0, the complex conjugate of all parameters (t, ξ, φ, X, K, ν) should be taken. If ξ is real-valued, i.e. for real rays, we find the classical real Fourier transform of ũ(q).

The Hermitian symmetry of the argument ũ(q)e -|q|Im (ξ) shows that the waveform u(ξ) remains a real-valued signature. For a time independent media (ω is constant), in the shadow zone, we find the classical behavior of the argument e -|qω|Im(ta) imposing Im(t a ) > 0 along rays, with an exponential decay proportional to the physical frequency qω/2π (Chapman et al., 1999;[START_REF] Kravtsov | Complex rays and complex caustics[END_REF].

For both real and complex rays, the quantity √ ν in Eq. ( 7) should be analyzed. Along real rays, a caustic is encountered when ν = 0, leading to an infinite amplitude [START_REF] Jensen | Computational Ocean Acoustics[END_REF][START_REF] Pierce | Acoustics : An Introduction to Its Physical Principles and Applications (Acoustical Society of America), p. 371. boom propagation[END_REF] and a change of sign for ν. Using complex notation ν = |ν|e iθ , θ = arg(ν) undergoes a π increase each time a caustic is encountered. It is therefore convenient to introduce the number n c [START_REF] Chapman | Fundamentals of seismic wave propagation (Cambridge University Press). of complex rays[END_REF][START_REF] Jensen | Computational Ocean Acoustics[END_REF] of caustics crossed along a ray starting from the source, so that θ -θ e = n c π, with θ e = arg(ν e ). Note that for real rays with ν e < 0, θ e = ±π.

complex notations, we obtained for real rays the π/2 signal phase shift at caustic of the catastrophe theory [START_REF] Chapman | Fundamentals of seismic wave propagation (Cambridge University Press). of complex rays[END_REF][START_REF] Kravtsov | Caustics, catastrophes, and wave fields[END_REF][START_REF] Thom | Mathematical models of morphogenesis[END_REF]. We can note that the argument of √ ν is 2π periodic and that θ should be considered at least 4π periodic.

It should be noted that the choice of the sign of θ is made with the choice of the pulsation q sign with respect to Fourier transform convention (10). Therefore, the acoustic overpressure for each ray is obtained by taking the real part of p:

p(X(t a ), t) = 1 2π ∞ -∞ K ρc 3 |ν| 1/2 ũ(q) × exp [-isgn(q)θ/2 -|q|Im(ωt a ) + iqRe(ω(t a -t))] dq. ( 11 
)
Assuming linear acoustics in the caustic region, shows that for one ray, the waveform after crossing a caustic is the Hilbert transform of the waveform before crossing the caustic. Then, in the Fourier domain, for a waveform leaving the caustic ũout (q) and an arriving waveform ũin (q): ũout (q) = -isgn(q)ũ in (q), for real rays.

Finally, if several rays arrive at a given receiver, all their contributions have to be added.

We can have both real and complex rays at the same receiver, for example close to a cusp caustic.

For time independent media, ω is real and constant, then, in the frequency domain, ωq is substituted by the physical pulsation ω in Eq. ( 11). The overall overpressure at the receiver point x of all eigenrays subfixed by j is:

p(x, ω) = j K ρc 3 |ν j | 1/2 ũ ω ω × exp [-isgn(ω)θ j /2 -|ω|Im(t aj ) + iωRe(t aj -t)] . (12) 
To study the neighborhood of the caustic (ν → 0), the method of complex rays can be completed with for example Maslov's method [START_REF] Kravtsov | Theory of Diffraction[END_REF] which is not treated in this paper, or the uniform asymptotic theory at the caustic.

C. Uniform theory of diffraction at the caustic

Uniform theory of diffraction (UTD) provides an accurate value of the overpressure amplitude in the neighborhood of the caustic singularity, uniformly dependent on the frequency, and which matches asymptotically geometrical complex ray theory [START_REF] White | Evaluation of shadow-zone fields by uniform asymptotics and complex rays[END_REF]. In the insonified zone of a fold caustic, two rays arrive respectively at time t fast for the fast direct ray, and at time t slow for the slow ray (which reaches the considered point x c after having tangented the caustic). Therefore one has X(t fast ) = X(t slow ) = x c . This pair arrivals are discussed in detail for stratospheric ones by [START_REF] Waxler | The stratospheric arrival pair in infrasound propagation[END_REF], see especially their figures 9 and 10. The interference and diffraction of the two rays is mainly characterized by the scaled time difference τ = ω slow +ω fast 4 (t slow -t fast ) which is a positive value.

Following [START_REF] White | Evaluation of shadow-zone fields by uniform asymptotics and complex rays[END_REF], the overpressure signature of the uniform theory in the insonified zone is defined using Airy's function Ai and its derivative Ai as

p c (x c , t) = 1 2π ∞ -∞ U slow |ν slow | 1 2 + U fast |ν fast | 1 2 π 1 2 (-ζ) 1 4 Ai(ζ) +isgn(q) U slow |ν slow | 1 2 - U fast |ν fast | 1 2 π 1 2 (-ζ) -1 4 Ai (ζ) × exp -isgn(q) θ slow + θ fast 4 +iq ω fast t f + ω slow t s 2 - ω fast + ω slow 2 t dq, (13) 
from the caustic, when ζ → -∞, Eq. ( 13) matches perfectly with the sum of geometrical ray theory overpressures (11) p(X(t fast ), t)+p(X(t slow ), t). In the shadow zone, the overpressure signature of the uniform theory is defined from the single complex ray at position X(t d ) as

p c (X(t d ), t) = 1 2π ∞ -∞ 2U d |ν d | 1 2 π 1 2 cos θ d -θ fast 2 - π 4 ζ 1 4 Ai(ζ) +isgn(q) sin θ d -θ fast 2 - π 4 ζ 1 4 Ai (ζ) × exp -isgn(q) θ fast 2 + π 4 + iqRe (ω d (t d -t)) dq, ( 14 
)
with ζ = 3 2 |q|Im(ωt d )
2/3 and the amplitude U d (q) of the complex ray. θ fast is the angle of ν for the real incident ray at the caustic and its value is a multiple of π. Up to a medium distance to the caustic,

θ fast = θ d -(θ d [π]), with [] the modulo operator.
Far from the caustic, when ζ → ∞, Eq. ( 14) matches perfectly the overpressure (11) of the geometrical complex ray theory. At the caustic, when ζ → 0, Eq. ( 13) and Eq. ( 14) reach the same limit without singularity. Finally, for other rays which arrived at the receiver and are not connected with the caustic, their contribution sum independently as in Eq. (12).

D. Numerical complex ray integration

Rays equations ( 3) and ( 4) and geodesic equations constitute an inhomogeneous system of complex ordinary differential equations depending on the complex variable t a :

dF dt a = R(F , t a ), (15) 
with R(F ) a function of the eight-dimensional complex vector F (twelve dimensions at 3D) with a known initial condition at the source F (t s ). This system is integrated between the complex plane, with σ a real curvilinear variable such that t σ (0) = t s and t σ (1) = t a , [START_REF] Hille | Ordinary differential equations in the complex domain[END_REF]). The complex system of differential equations can therefore be recast as depending on real variables :

dF (t σ (σ)) dσ = dt σ dσ R(F , t σ (σ)). ( 16 
)
and evaluated numerically using a classical Runge and Kutta 4 th order scheme [START_REF] Press | Numerical Recipies in Fortran 90[END_REF]. In this paper, as in Amodei et al. (2006); [START_REF] Egorchenkov | Complex ray-tracing algorithms with application to optical problems[END_REF]; [START_REF] Kravtsov | Theory of Diffraction[END_REF]; Thomson (1997), a straight integration path is always used with t σ (σ) = t s + σ(t a -t s ) and dt σ /dσ = (t a -t s ) which is indentified for the sake of simplicity with the complex ray. Other paths could be considered to overlap singularities of the atmospheric profiles, but are not considered here.

As only real points X(φ, t) are physical solutions [START_REF] Kravtsov | Complex rays and complex caustics[END_REF]Thomson, 1997), a numerical method is used to find eigenrays at receivers x such that X(φ, t) = x. For complex rays, four parameters (Re(φ), Im(φ), Re(t a ), Im(t a )) must be optimized. The numerical method is detailed using a realistic case in the section IV.

III. POINT SOURCE IN A WINDY ATMOSPHERE

We consider an impulsive point source on the ground, at the position x s = (0, 0) and with the emission time at the source t s = 0. The initial spherical wavefront is defined by its normal vector n s = cos φe x + sin φe z , with φ the emission angle. Infrasound generated by this source can propagate at long range due to the thermospheric and the stratospheric waveguides [START_REF] Blom | Modeling infrasonic propagation through a spherical atmospheric layer -Analysis of the stratospheric pair[END_REF][START_REF] Drob | Global morphology of infrasound propagation[END_REF][START_REF] Scott | Weakly nonlinear propagation of small-wavelength, impulsive acoustic waves in a general atmosphere[END_REF]. The thermospheric waveguide is associated with the increase in the thermosphere of the atmospheric temperature vertical profile. To model this one, we use the realistic profile defined by rational function (Lingevitch et al., 1999, Eq. (49)). The associated sound speed profile c presented in Fig. 1(a) satisfies the analytical condition of the complex ray method. The stratospheric waveguide is associated with combined effects of the increase of the both temperature in the stratosphere and the stratospheric wind jet. For the wind, we use an analytical Gaussian profile [START_REF] Blom | Modeling infrasonic propagation through a spherical atmospheric layer -Analysis of the stratospheric pair[END_REF]:

v = v w e - (z-zw ) 2 σ 2 w e x , (17) 
with a maximum jet speed v w = 50 m/s observed at an altitude z w = 60 km and with a width of the Gaussian distribution σ w = 17.5 km. The effective sound speed in e x direction c eff = c+v is shown in Fig. 1(a). The ray computation is performed with these expressions of c and v through equations ( 3) and ( 4). Resulting real rays, obtained with the shooting method with φ variation between 0 and 60 degrees with ∆φ = 0.5 • , are represented in Fig. 1(b).

For the sake of clarity the reflected rays are not represented. This advected profile gives stratospheric and thermospheric arrivals. Each kind of arrivals have direct rays (black) and that which crossed a caustic (gray). The stratospheric and thermospheric caustics (purple dashed thick lines) are both altitude cusp caustics whose one branch continues until the ground. These caustics begins at x = 133 km with an altitude of 45 km for the stratospheric one and at x = 214.2 km with an altitude of 123 km for the thermospheric one.

At ground level, rays focusing form two locally fold caustics and thus, two shadow zones.

The stratospheric ground caustic is located at x = 225.7 km and the thermospheric one at x = 361.8 km. The ray intersection with the ground, necessary to be known for the complex ray method, is indicated with black and gray dots in Gray rays reach the ground after having through one caustic.

IV. EIGENRAYS ALGORITHM

In this section, we consider receivers at ground level between 1 and 500 km from the source. We present the numerical process of integration and optimization, to obtain real and complex eigenrays.

Numerically, a difficulty of the complex ray tracing method is the determination of all eigenrays at a given receiver x r . Searching for eigenrays means computing all couples of complex ray parameters (φ, t) satisfying X(φ, t) = x r for the real receiver position x r . As exemplified below, multiple eigenrays can reach a single receiver. This multi-valued problem can be recast as a classical two points boundary value problem [START_REF] Press | Numerical Recipies in Fortran 90[END_REF]Stone Im(t). Four parameters generate a too large space to be numerically explored at reasonable costs to find all eigenray solutions. Additionally, some complex numerical solutions can be unphysical. Therefore, we restrict the problem to complex eigenrays connected to real rays through a caustic. This allows one to use a real ray tracing method to identify real eigenrays, and then to extend the solution to shadow zones. This strategy gives a numerically tractable way to find all physical eigenrays at receivers. However, it is necessary to identify all caustics, bounds of waveguides and ground limited rays for the real ray tracing problem. Moreover, caustics are singularities where the Jacobian determinant of the transformation from ray parameters (φ, t) to spatial coordinates x vanishes. This singularity is a numerical difficulty for optimization algorithms, especially in the vicinity of the caustic.

To solve the eigenray problem, we developed an algorithm using real interpolation and extrapolation for real solutions, and complex extrapolation at caustics for complex solutions in the shadow zones. It is illustrated by the previous example of a ground-based point source in a vertically stratified atmosphere with Gaussian wind profile (see Fig. 1(a)). We restrict the problem to ground based receivers with x r between 1 and 500 km. The process in three steps is described below and illustrated in Fig. 2.

The first step of our method is a real ray shooting, with a regularly discretized emission parameter, here the angle φ varying from 0 to 60 • (see the first line of Fig. 2). The number of integrated rays in this shooting phase is chosen equal to 120. This φ democratization is enough to distinguish stratospheric and thermospheric waveguides, as well as caustics. As all receivers are on the ground, we extract all rays intersection with the ground. Then, we obtain one discrete ground position x i for each launched real ray φ i and the eigenray procedure leads to know all real φ(x). Ground arrivals form two discrete sets: stratospheric arrivals for φ between 0 and 0.45 rad and thermospheric arrivals for φ between 0.48 and 0.87 rad.

For larger values of φ, rays reaching the ground beyond 500 km are not calculated. These two sets have two visible branches of φ and t, the direct rays in black and that ones having tangented once a caustic in gray. Caustics and waveguide bounds are both characterized by a sign changes of dx/dφ. For caustics dx/dφ goes through zero and for waveguides it jumps from -∞ to +∞ or the inverse (Chapman, 2004, Sec. 2.4). These changes are determined numerically, by searching for changes of sign of quantity If the mean value is lower than the median, we assume that the point is close to a caustic, otherwise that it is close to the limit of a waveguide.

D i = x i+1 -x i φ i+1 -φ i .
The second step consists in extrapolating the discrete real ray arrivals to the whole space (see the second line of Fig. 2). This step will provide, for each ground point, initial guesses for emission parameters of eigenrays, both real and complex. Let us begin with real rays.

For receiver positions within the limits of discrete branches obtained in step 1, we simply perform a quadratic interpolation. Resulting points appear in figure as lines with squares with corresponding colors to the shooting step. Boundaries of real discrete branches from step 1, interpreted as a waveguide limit, are real extrapolated with a log fitting (line with circle and same color) so that [START_REF] Chapman | Fundamentals of seismic wave propagation (Cambridge University Press). of complex rays[END_REF]. The emission parameter associated to the waveguide limit φ w and the constant c are chosen to minimize the difference between this theoretical function and the computed five values of x r for the five rays φ k-3 to φ k+1 . While in this waveguide configuration x r is highly sensitive to φ w , the following optimization in step 3 is robust enough so that the finally computed rays indeed reach the receiver with the desired precision.

x r = -C log(|φ -φ w |) with C = c/2 if φ i ≤ φ w and C = c if φ i > φ w
For complex rays, we use the caustic position referred by index k from step 1. A real interpolation is first performed around the three neighboring points K = (k -1, k, k + 1), with a second order polynomial X 2 (φ) with real coefficients, interpolating exactly the three shooting positions x j at the three emission parameters φ j for j ∈ K. A similar interpolation for arrival time t a is performed, the resulting polynomial being noted T 2 (φ). Then search for the complex roots of the polynomial X 2 (φ) -x r = 0 provides the complex extrapolation for any receiver x r in the shadow zone. As the two complex roots are complex conjugate from one another, the selected φ solution is such that Im(T 2 (φ)) > 0, so that the pressure field decays exponentially according to Eq. ( 9). These guesses are indicated as lines with blue upward triangles for the first shadow zone and with red downward triangles in the second one. The penetration range of x r inside the shadow zones is arbitrarily limited to 120 km. Beyond this range, guess values would be too far from the actual parameters, and optimization process in step 3 would be unsuccessful. This problem will be solved in the next step 3.

The third step (illustrated by the third line of Fig. 2) is the determination of eigenrays by finding the real or complex values (φ, t a ) that minimize the quantity |X(φ, t) -x r |. For this we use the Levenberg-Marquardt algorithm (LMA) [START_REF] Moré | The levenberg-marquardt algorithm: implementation and theory[END_REF][START_REF] Transtrum | Improvements to the levenberg-marquardt algorithm for nonlinear least-squares minimization[END_REF], with initial guesses determined in step 2.

LMA is a combination of two minimization methods: gradient descent and Gauss-Newton.

For the gradient descent the sum of squared errors is reduced by updating the parameters in the steepest descent direction. For Gauss Newton method, the sum of the squared errors is reduced by assuming that least squares function is locally quadratic and by finding the minimum of this quadratic. Thus, LMA behaves more like gradient descent when parameters are far from the optimum, and more like Gauss Newton when parameters are close. The balance between the two methods is achieved by the damping parameter, that avoids singular Jacobian. In particular, the LMA is efficient in our case around caustic points where the Jacobian vanishes.

For a receiver located deep inside the shadow zone (here in practice at a distance from the caustic larger than 120 km), the initial guess used in the LMA is determined by the output of LMA for the nearest receiver position already computed and closer to the caustic. This implies that eigenrays for receivers in the shadow zone are computed by moving away from the caustic. The distance of 120 km has been chosen as it minimizes the global computation time.

Eigenray solutions are illustrated in Fig. 2 as lines with black and gray dots for real solutions, blue upward triangles for complex solutions in the first shadow zone and red downward triangles for the second shadow zone. The method allows to obtain eigenrays for any receiver position x r . Here the fifty receivers are shown in Fig. 3 with the corresponding real and complex rays.

Hence, with our complex ray method we are able to obtain all eigenrays for any receiver position x r with a precision of order 10 -8 to 10 -12 . 

V. RESULTS

In this section, we present real and complex eigenrays as well as geometrical parameters

for receivers at ground level between 1 and 500 km from the point source. These results are obtained with our complex ray method using the algorithm described in IV and considering the analytical sound speed profile shown in Fig. 1(a).

A. Real and complex ray arrivals at ground level

The optimized emission parameters φ and t presented in Fig. 2 and computed with our complex eigenrays algorithm allow to find eigenrays for given receivers. Resulting real and complex rays projected in the real plane (x, z) are represented in Fig. 3(a). Arrivals at ground level due to refraction either in the stratosphere or in the thermosphere are labeled respectively Is and It. For each waveguide (indexed by s for the stratospheric one, and by t for the thermospheric one), there are two arrivals of real rays in insonified zones, the direct or fast one (referred as Is f and It f with black points) and the one which tangented a caustic, also called slow arrival (referred as Is s and It s with grey points). The presence of these two real rays is clearly visible with the separation of branches for the arrival time and apparent speed (see Fig. 4) with a characteristic cusped wavefront shape. Though these arrivals are always simulated, the time delay between Is s and Is f can be quite small. Depending on the frequency f , the two arrivals cannot always be distinguished from one another. The thickness δ of the diffraction boundary layer around the caustic is given by δ = (c 2 R/2f 2 ) 1/3 [START_REF] Buchal | Boundary layer problems in diffraction theory[END_REF], where R is the ray curvature relative to the caustic one. At the distance δ, the Airy's function argument ζ used in the UTD equation ( 13) is equal to -(2π 2 ) 1/3 and the ray arrival time difference satify (t slow -t fast )f = 2 √ 2/3 ≈ 0.94. Following this criteria, the two arrivals can be distinguished at distances from the caustic surface larger than δ, all the larger as the frequency f is larger. For example, for the stratospheric caustic of relative curvature R = 150 km and f = 1 Hz, δ ≈ 2050 m. These paired arrivals are discussed in details in [START_REF] Waxler | The stratospheric arrival pair in infrasound propagation[END_REF] and [START_REF] Blom | Modeling infrasonic propagation through a spherical atmospheric layer -Analysis of the stratospheric pair[END_REF]. Even when these two arrivals are theoretically separated, intermediate arrivals due to scattering by fine structures of the atmosphere such as internal gravity waves [START_REF] Lalande | The interaction between infrasonic waves and gravity wave perturbations: Application to observations using UTTR rocket motor fuel elimination events[END_REF] may obscur this separation especially if one of the two phases is of small amplitude.

At ground level, rays focusing form two fold caustics and thus, two shadow zones. The stratospheric caustic is located at x = 225.7 km and the thermospheric one at x = 361.8 km.

In these two shadow zones, field information at any point can be computed with complex rays, shown in Fig. 3 with stratospheric arrivals labeled as Is d and thermospheric ones It d .

We recall that only physical point of complex rays are taken into account and that complex rays are two dimensional surfaces.

To understand the behavior of complex rays, we represent the same rays projected in the plane (Re(z), Im(z)) and superposed to the colormap of Im(c) (see Fig. 3(b)). For each real or complex ray, the imaginary part of the altitude Im(z) is the same for a given real altitude Re(z). When a complex ray reaches the turning point, also called point of refraction [START_REF] Chapman | Fundamentals of seismic wave propagation (Cambridge University Press). of complex rays[END_REF], it goes through the same path in (Re(z), Im(z)) plane. In other words, the upward and downward paths are symmetric, see Fig. 

B. Geometrical parameters

With a view to compare results with infrasound records at stations, it is interesting to capture frequently used geometrical parameters, such as the arrival time and the horizontal apparent phase velocity v a = ω/k x . From ray equations, k x is constant along rays for a stratified media, and therefore equals its value at the source v a = v(z s ) + c(z s )/cos φ. These quantities are represented for ground receivers in Fig. 4 with same labels and color code as in Fig. 3. As c(z s ) and v(z s ) are constant for a point source, v a depends only on the emission angle φ. Therefore, the evolution of v a in the shadow zones could not have been found without using the complex ray method which provides φ(x r ).

For all real arrivals, the apparent velocity v a is in the range 340 m/s to 550 m/s with lowest values closer to the ground speed of sound of 340 m/s for stratospheric arrivals Is nounced, than for stratospheric ones. In the shadow zone but close to the caustic, the real value of arrival time of complex rays first tends to linearly extrapolate the limit value at the caustic, as complex rays remove the singularity around caustics. This behavior will be further used to initialize the algorithm searching for eigenrays. Deeper inside the shadow zone, when approaching the source, stratospheric arrivals however deviate more and more from this extrapolation.

C. Comparison of transmission losses with parabolic approximation

Atmospheric infrasound propagation can also be simulated using a two dimensional, fourth order split-step Padé parabolic approximation (Ostashev and Wilson, 2015, p.61), [START_REF] Collins | A split-step Padé solution for the parabolic equation method[END_REF][START_REF] Nguyen-Dinh | A one-way coupled euler and parabolic model for outdoor blast wave simulation in real environment[END_REF] with the assumption of effective sound speed (see dashed line Fig. 1(a)). This method accounts for diffraction into shadow zone. However, the effective sound speed assumption may induce some error, in addition to the parabolic approximation. These errors are detailed in (Assink et al., 2017). Nevertheless we use it to validate complex ray tracing method. For a monochromatic point source of frequency f = 1 Hz and amplitude p e , we consider the transmission losses (TL) relatively to r ref = 1 m in dB for ground receivers between 1 and 400 km from the source:

TL(x, ω) = 20 log 10 |p/p e | r/r ref , (18) 
with r = x the distance to the source and p defined by the Eq. ( 12) for complex rays. The √ r term allows to scale the wave amplitude computed in two dimensions to a three dimensional case with axi-symmetric long range divergence hypothesis. This scaling is also performed in the parabolic approximation solution (Nguyen-Dinh et al., 2018, eq. 5). For a point source at ground level in an homogenous media, TL = -20 log 10 (r/r ref ).

Transmission losses obtained with the ray tracing method for each arrival are represented in Fig. 5 independently (with the same color code as in Fig. 3): fast direct real arrivals (black line with dots), slow real arrivals (gray line with dots), complex stratospheric arrivals (blue upward triangles) and complex thermospheric arrivals (red downward triangles). The TL associated with the sum of all rays (green line) and the TL computed with the uniform theory of diffraction of equations ( 13) and ( 14) (green dashed lines), are compared to the parabolic approximation TL (black line) for which arrivals can not be distinguished from one another. The propagation allows us to define eight zones between 0 and 400 km, each one associated with a specific physical behavior. Zones I and II are associated with the so called anormal shadow zone [START_REF] Pierce | Acoustics : An Introduction to Its Physical Principles and Applications (Acoustical Society of America), p. 371. boom propagation[END_REF], zones III to VI are associated with stratospheric refraction and zones VII and VIII are associated with thermospheric refraction.

Parabolic approximation describes in zone I, which is the closest to the source, the exponential decay of creeping waves [START_REF] Pierce | Acoustics : An Introduction to Its Physical Principles and Applications (Acoustical Society of America), p. 371. boom propagation[END_REF] propagating over a rigid ground. This creeping waves contribution is not provided yet by the complex ray method. In zone II, the distance from either the source or the first caustic is such that wave amplitude is indeed exponentially small (-180 dB) so that parabolic approximation reaches the limits of its nu- [START_REF] Gainville | Modélisation de la propagation atmosphérique des ondes infrasonores par une méthode de tracé de rayons non linéaires[END_REF]. Changing the frequency (we tested 0.1, 0.5, 2 and 5 Hz) does not modify this offset. Such mismatches of the order of the kilometer have been similarly observed in (Assink et al., 2017). Except this position offset, the parabolic equation turns out to be a good reference for an assessment of the complex ray tracing method, especially for the amplitude. As already mentioned, ray-tracing method diverges in a small region around caustics. This singularity of amplitude is resolved using the UTD described in section II C. The solution around caustics is shown with green dashed lines for stratospheric in Fig. 6(a), and thermospheric one in Fig. 6(b). The evolution of the uniform solution allows to reproduce the parabolic solution one and the correct amplitude at the caustic. In the insonified zones (IV and VIII) and except this diffraction layer around caustics, ray tracing and parabolic approximation differ only from 1.2 dB in zone IV, and from 1.3 dB in zone VIII (see Fig. 6). In the main zone of discrepancy (zone V)

the geometric field resulting from the interferences of fast and slow stratospheric arrivals Is f and Is s . However, the amplitude of slow ones diverges at the distance of 266.8 km. There, rays emitted at the source at angles approaching zero degree, return to ground after being refracted at an altitude of around 50 km (see gray stratospheric rays Is s in Fig. 3(a)).

The limit real ray emitted horizontally at the source, tangentially to the ground surface, has a ray tube section which varies along the ray but goes back to zero at the distance of 266.8 km where it tangents the ground for the second time. Hence, the ray method has a singularity in amplitude reduced to one ray (this horizontal ray), again creating an infinite amplification. However, a full caustic does not exist here and cannot be identified as such by our method because it is masked by the ground. This virtual caustic generates diffracted waves at the ground analogous to creeping waves, that are not captured by our complex ray method. Beyond this amplification point (in zone VI), parabolic equation shows the interference of these diffracted waves with geometrical fast stratospheric arrival Is f , while the ray tracing method gives only the Is f contribution, hence a smooth evolution of TL.

Transmission Losses are nevertheless of similar orders of magnitude. Inside zones III and 

D. Signatures

In this section, we analyze waveform signatures in the illuminated and shadow zones for the previous case of point source. The emitted signal at 1 m from the source p s (t) = s(f (t -t s )) is a band limited frequency signal around the main frequency f = 3 Hz defined as:

s(τ ) = -0.5 sin(πτ ) [1 + cos(πτ )] , (19) 
for τ ∈ [-1, 1] and s(τ ) = 0 otherwise. We display pressure signatures for stratospheric and thermospheric arrivals in Fig. 7, obtained using complex ray tracing method. Geometrical Fast arrivals (black) keep the initial waveform s(t) with an amplitude between 10 -3 and 2.5×10 -3 Pa. Slow arrivals corresponding to the Hilbert transform of the direct ones [START_REF] Pierce | Acoustics : An Introduction to Its Physical Principles and Applications (Acoustical Society of America), p. 371. boom propagation[END_REF], with an amplitude between 1.8 × 10 -3 and 2.3 × 10 -3 Pa. At the caustic, the two arrivals merge with a singular amplitude. In the shadow side, the single diffracted wave decreases exponentially with the distance from the caustic, with an amplitude of 3 × 10 -4 at 220 km (i.e. 5.7 km from the caustic). As this decay is frequency dependent the signal loses its high frequency content and gets longer and asymetric.

For thermospheric arrivals (Fig. 7(b)), we observe a similar evolution with the distance.

The amplitude of slow arrivals (gray) is noticeably smaller than those of fast arrivals. Note that stratospheric fast phases arriving much earlier and of very low amplitude.

In the shadow zone, such as the stratospheric ones, the amplitude decreases exponentially with an amplitude of 5.3 × 10 -5 at 355 km (i.e. 6.8 km from the caustic).

VI. POINT SOURCE IN A WINDY AND RANGE DEPENDENT ATMOSPHERE

In this section, we consider the same point source located at (0,0) but with a range dependent atmosphere.

The singularity appearing in zone V in the previous case appears because the atmospheric data are range independent, thus allowing the ray launched horizontally to be refracted and reflects the ground again horizontally. According to catastrophe theory, this is not a full caustic as it is not structurally stable. For example, introducing range-dependent data should make this phenomenon disappear. The complex ray tracing method is perfectly adapted to simulate propagation in such an atmosphere. For comparison with the previous case, we keep the sound speed profile unchanged [START_REF] Lingevitch | Parabolic equations for gravity and acousto-gravity waves[END_REF]. The horizontal wind profile v is also a Gaussian function defined by Eq. ( 17), but now its amplitude v w (x) varies with range, decreasing linearly from 50 m/s at 0 km to -13 m/s at 500 km. The effective sound speed is shown in Fig. 8 the range independent case) for the stratospheric one, and 344.9 km (closer to the source)

for the thermospheric one (see Fig. 8(b)).

Transmission losses are represented in Fig. 9 (with the same symbols and color codes as in Fig. 5). Seven zones, similar to those appearing in the range-independent case, can be observed, with the same types of arrivals. Only the former zone V, is no longer visible because the virtual caustic has disappeared. As a consequence, the main singularity of ray tracing method has been removed. When comparing with the numerical output of parabolic approximation, we observe that stratospheric (resp. thermospheric) ground arrivals are predicted by the parabolic simulation at shorter (resp. greater) distances than by ray tracing, with a difference of -1.1 km (resp. +4.4 km), (see Fig. 10). Except this offset, oscillations in zones IV and VII have the same shape for the two methods, but amplitudes differ by 2.6 dB in zone IV and by 2.3 dB in the zone VII. Inside stratospheric Is d (zone III) and 

VII. CONCLUSION

The objective of the present work was to implement complex ray theory and search for eigenrays in the case of infrasound propagation in stratified, and range dependent, atmospheres with wind. In particular, we wanted to capture diffraction around caustics. To our knowledge, complex ray theory has never been applied to infrasonic propagation. The method is appealing because it allows one to benefit from the efficiency of ray tracing even in shadow zones of caustics, where usual ray tracing methods fail. The key element of the method is the three stage algorithm developed to search for complex eigenrays between the source and the receiver. First, classical real ray shooting enables to identify caustics, shadow zones, bounds of waveguides and ground limited rays. Then, real interpolation and extrapolation in sonified zones, and complex extrapolation in the shadow zones, provides the initial solved by means of the Levenberg-Marquardt algorithm. The method has been validated by comparison with parabolic approximation for a stratified, and then for a range-dependent atmosphere. This comparison outlines the ability of the method to predict wave arrivals and amplitudes in the shadow zone of caustics.

The method nevertheless remains singular in tiny regions around caustics. This singularity is removed by a proper matching with the uniform theory of diffraction (Babich and Buldyrev, 1991;[START_REF] Felsen | Geometrical theory of diffraction, evanescent waves, complex rays and Gaussian beams[END_REF][START_REF] Keller | Geometrical theory of diffraction[END_REF][START_REF] Ludwig | Uniform asymptotic expansions at a caustic[END_REF], using the universal field behavior around identified caustics.

Matching with other types of non-geometrical behavior, such as creeping waves, would need to be explored , along with extension of the method to three-dimensional cases, especially for meteorite sonic boom [START_REF] Gainville | A re-analysis of Carancas meteorite seismic and infrasound data based on sonic boom hypothesis[END_REF]. Working with atmospheric data will also require to examine the proper interpolation of these data with analytical functions.
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  Fig. 1. (a) Rational sound speed profile c (solid line) of[START_REF] Lingevitch | Parabolic equations for gravity and acousto-gravity waves[END_REF] and effective

  To identify caustics and waveguides, we denote k the point where the sign of D k changes compared to D k-1 , and compare the mean value (D k-1 + D k )/2 with the median of the full set of values D i .

Fig. 2 .

 2 Fig. 2. (color inline) Real and imaginary parts of the emission parameter φ and arrival time

  Fig. 3. (color inline) (a) Eigenrays reaching receivers at the ground obtained with the complex ray

  Fig. 4. (color inline) Real values of geometric parameters at ground receivers. (a) Reduced time

  merical precision. In insonified zones (IV and VIII), the ray tracing shows the field results from the interference between fast and slow arrivals, either stratospheric ones (Is f and Is s ) in zone IV and mainly thermospheric ones (It f and It s ) in zone VIII. Amplitude of the total field oscillates due to these interferences. Ray predicted oscillations are slightly shifted compared to output of the parabolic method, but with similar frequency while amplitudes also show similar levels of transmission losses. The comparison shows that stratospheric and thermospheric ground arrivals are predicted by the parabolic simulation at a shorter distance than by ray tracing. This difference is more important for stratospheric arrivals (1.9 km, see Fig.6(a)), than for thermospheric ones (1.5 km, see Fig. 6(b)). It is due to the parabolic approximation of the Helmholtz equation, only partly compensated by the use of the effective sound speed c eff

Fig. 5 .

 5 Fig. 5. (color inline) Transmission losses at ground level for a 1 Hz point source with the stratified

  Fig. 6. (color inline) Same as Fig. 5 with zooms around the (a) stratospheric and (b) thermospheric

  figures. Respective maxima of overpressure, noted p , are indicated on the right with again

  Fig. 7. (color inline) Time signatures around each caustics, for the incident wave defined by (19),

  (a). The obtained stratospheric (Is f , Is s , Is d ) and thermospheric (It f , It s , It d ) rays are illustrated in Fig.8(b) with same color code as for the range-independent case. Compared to this one, the slow-down of stratospheric jet tends to limit stratospheric refraction. In particular, with the same density of ground sensor, the number of slow stratospheric arrivals is sharply reduced. The position of the two caustics is consequently shifted, at distances of respectively 258.3 km (farther from the source than in

  Fig. 8. (color inline) (a) Range dependent effective sound speed profile c eff = c + v. (b) Same as

Fig. 9 .

 9 Fig. 9. (color inline) Same as Fig. 5 for range-dependent case.

  Fig. 10. (color inline) Same as Fig. 9 with zooms on the (a) stratospheric and (b) thermospheric

|q|τ ) 2/3 and the amplitudes U i (q) = K i ũi (q)(ρ i c

i ) 1/2 with i = slow or fast. Far