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The ray-tracing is a simple and efficient three dimensional method, which reduces the1

problem of infrasound propagation to a series of one dimensional cases along acous-2

tical rays. However, in relatively frequent cases, infrasound stations are located into3

geometrical shadow zones, where only diffracted waves are recorded. The correspond-4

ing arrivals cannot be predicted by ray theory. To simulate infrasound propagation5

in these zones, the ray-tracing method is generalized to complex ray theory. The6

source, the media and the ground parameters are all considered as complex numbers.7

For applications with realistic atmospheric data including stratified temperature and8

wind, as well as range-dependency of atmospheric profiles, an efficient algorithm de-9

termining complex eigenrays in shadow zones is presented. It is illustrated by a two10

dimensional case of a point source.11

a)Also at: Institut Jean le Rond d’Alembert, Sorbonne Universite, UMR CNRS 7190, France
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I. INTRODUCTION12

Geometrical acoustics is a common method to study long-range infrasound propagation13

in the atmosphere. It relies on a high frequency approximation applied to fluid mechanics14

equations (Candel, 1977; Ostashev and Wilson, 2015; Pierce, 1994; Whitham, 1956). It15

reduces the propagation as a series of one dimensional cases along acoustical rays. This16

ray-tracing method is attractive because it allows simple and fast computation taking into17

account 3-D sources, earth orography and atmospheric data (Scott et al., 2017). Nowadays,18

infrasound propagation and particularly ray tracing, is a reference tool for inversion problems19

such as source localization (Blom, 2019; Gainville et al., 2017) or atmospheric sounding (Drob20

et al., 2010; Lalande et al., 2012; Vanderbecken et al., 2020). However, this method leads to21

the apparition of caustics and shadow zones. Caustics are zones of rays focusing, described22

by catastrophe theory as amplitude singularities (Thom, 1983). They can be due to either23

atmospheric refraction or to source motion (Pierce and Maglieri, 1972). In shadow zones no24

ray penetrates, and the observable pressure field there is due to diffraction (Kulichkov and25

Golikova, 2013). Shadow zones are related to either caustics or to geometrical discontinuities26

of the propagation medium, in particular the Earth surface for infrasound.27

Infrasound stations of the International Monitoring System network of the Comprehen-28

sive Nuclear-Test-Ban Treaty are frequently located into shadow zones (Blixt et al., 2019;29

de Groot-Hedlin et al., 2010; Evers et al., 2012; Farges et al., 2021; Gainville et al., 2017;30

Green et al., 2018; Le Pichon et al., 2010; Sabatini et al., 2019).31
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In order to predict the signal in shadow zone of caustics, several geometrical methods have32

been proposed. The Maslov summation (Kendall and Thomson, 1993; Kravtsov and Zhu,33

2010; Piserchia, 1998; Thomson and Chapman, 1985), takes into account a hybrid space34

where caustics no longer exists. The uniform theory of diffraction (UTD) computes the35

field locally around the caustic (Ludwig, 1966; White and Pedersen, 1981). Gaussian beams36

add a width to rays (Porter and Bucker, 1987). Complex ray theory was first introduced37

by Keller (1962) with the Geometrical Theory of Diffraction and was used by Kravtsov in38

optics (Kravtsov, 1967; Kravtsov and Berczynski, 2004; Kravtsov et al., 1999; Kravtsov and39

Orlov, 1983; Kravtsov and Zhu, 2010). Note all these methods describe caustics associated40

diffraction. However, the deep shadow zone can be also insonified by scattering due to41

turbulence (Ostashev and Wilson, 2015) or more likely at low frequencies by fine structures42

of the middle and upper atmosphere (Kulichkov et al., 2002, 2010).43

Kravtsov was the first one to detail numerical implementation of complex ray the-44

ory (Egorchenkov and Kravtsov, 2001). Chapman et al. (1999) applied this theory to various45

types of caustics. Complex rays were also applied for seismic propagation for viscoelastic46

media (Thomson, 1997; Wu et al., 2021). Finally, complex rays have recently been ap-47

plied in aeroacoustics to predict high frequency acoustic propagation in subsonic mean jet48

flow (Stone et al., 2018). This last study is the first one to investigate complex ray tracing49

in a moving medium.50

Large sound speed stratifications, wave advection by wind, multiple arrivals due to strato-51

spheric and thermospheric waveguides and impulsive sources are key features of infrasound52

propagation. Key features of infrasound propagation involve: 1) sound speed stratifica-53
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tion between around 340 m/s at the ground, 280 m/s at the tropopause, 330 m/s at the54

stratopause and 400 m/s or more in the thermosphere, 2) wave advection by wind with tro-55

pospheric jets of the order of 30 m/s and stratospheric ones of the order of 50 m/s undergoing56

seasonal inversions, 3) and consequently multiple arrivals depending on the direction and57

intensity of these jets. An example is found in Fig. 1 with a stratospheric wind inducing58

both stratospheric and thermospheric arrivals. In this configuration, a classical shadow zone59

exist at ground level up to more than 200 km introduced by the upward refraction in the60

troposphere. Moreover, infrasound are generally emitted as impulsive signals from transient61

sources (explosions, volcanoes, meteorites, lightning) with the noticeable exception of swell.62

The main objective of our work is to propose an adapted algorithm to predict efficiently63

by complex ray theory characteristics of infrasonic signals at ground level: arrival times,64

apparent velocities, azimuths, amplitudes and pressure waveforms. In particular, we em-65

phasize the development of a specific algorithm searching for complex eigenrays between the66

source and the receiver.67

Firstly, in section II, we recall the complex ray theory including equations of both ray68

tracing and pressure amplitude. In section III we introduce the realistic case of a ground-69

based point source (explosion source) in a stratified atmosphere with a shear wind jet. In70

the next section IV, the numerical algorithm searching for eigenrays is detailed, with this71

case as an example. Physical results are presented in section V and compared to simulations72

based on a parabolic approximation.73
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Such a comparison is also performed in the case of a range dependent atmospheric pro-74

file in section VI. We summarize our work in section VII and give some perspectives for75

improvement.76

II. COMPLEX GEOMETRICAL ACOUSTICS77

Geometrical acoustics, i.e. ray theory, is a standard way to compute infrasound propa-78

gation (Pierce, 1994). Ray theory requires acoustic wavelengths to be small compared with79

atmospheric scales. It conveys the idea that the wavefront motion is mostly due to a com-80

bination of acoustic propagation and convection by wind. In subsections II A and II B, we81

define equations of ray paths and amplitude along rays. All equations and parameters are82

here written in a two dimensional space (x, z) but can potentially be generalized in three83

dimensions.84

A. Ray tracing85

The propagation of impulsive infrasound waves in a windy inhomogeneous atmosphere86

can be described by linear geometrical acoustics. The underlying assumptions are that the87

acoustic perturbation is located near a wavefront and that medium properties vary slowly88

over a typical wavelength. The wavefront, defined implicitly by Φ(x, t) = 0, evolves spatially89

with the time t following the eikonal equation:90

(
∂Φ

∂t
+ v ·∇Φ

)2

= c2∇Φ ·∇Φ, (1)
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with c the sound speed and v the wind velocity. This equation is derived from linearized91

Euler equations using either a multiple-scale asymptotic analyzis (Gréa et al., 2005; Pierce,92

1994; Scott et al., 2017; Stone et al., 2018) or by applying the WKB ansatz to the Helmholtz93

equation (Babich and Buldyrev, 1991; Candel, 1977; Chapman et al., 1999; Kravtsov, 1967;94

Thomson, 1997). The eikonal equation has two roots, which implies a choice of sign associ-95

ated with the direction of propagation of the wavefront along ∇Φ so that:96

∂Φ

∂t
+ w ·∇Φ = 0, (2)

with w = cn + v the group velocity and n = ∇Φ/
√
∇Φ ·∇Φ the unit normal (n · n = 1)97

to the surface Φ = constant at constant time. This eikonal equation (Eq. (2)) implies that98

the wavefront surface Φ = constant moves with velocity w. Here, both real and complex99

solutions of the eikonal equation (Eq. (2)) are considered. Real solutions are associated with100

classical geometrical acoustics in the illuminated (insonified) zone, while complex solutions101

are associated with diffracted waves into shadow (silent) zones. For complex solutions, Φ,102

x and t are complex-valued. The sound speed c(x, t) and wind vector v(x, t) are extended103

as holomorphic functions in the complex plane (Chapman et al., 1999; Kravtsov, 1967;104

Thomson, 1997). In the eikonal equations (1) and (2), the scalar product of complex vectors105

is the Euclidean one, a · b =
∑

k akbk with ak and bk real or complex quantities (Kravtsov,106

1967). For complex vectors, this scalar product is neither real nor zero-definite, but is a107

holomorphic function.108

Rays are the characteristic curves of the eikonal Eq. (2) (Courant and Hilbert, 2008).109

Φ(X, t) is constant along a given ray X whose position evolves according to the ray-tracing110
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equation111

dX

dta
= cn + v. (3)

Here ta, the wave travel time along the ray, is considered as an integration parameter. Note112

that the ray integration parameter could also be the physical ray length. However, ta is the113

natural integration parameter for a time dependant media. Taking the gradient of (2) and114

setting K = ∇Φ along rays give115

dK

dta
= −K∇c−∇v ·K. (4)

The two rays equations (3) and (4) form a closed system with n = K/K andK = +
√
K ·K.116

The positive sign determines the direction of propagation according to the sign chosen for (2).117

This system of ray equations is valid for a three dimensional, inhomogeneous, time dependent118

and convected atmosphere. With the underlying assumptions of ray theory, the wavefront119

Φ(x, t) = 0 is considered as locally plane with local wave pulsation ω = −∂Φ/∂t and local120

wavevector K = ∇Φ. The eikonal Eq. (2) is locally equivalent to the dispersion relation121

ω = K ·w. For a time independent media, ω is constant along rays (Candel, 1977). In this122

case, the equations can be written in a Hamiltonian form (Gréa et al., 2005; Lalande et al.,123

2012; Thomson, 1997; Virieux et al., 2004) and Φ is related to the wave phase.124

The wavefront at the source is defined as Φ(xs, ts) = 0 with xs the source position and125

ts the time at the source. Initial conditions for rays at the source also involve the wavefront126

unit normal ns at the source:127

X(φ, ts) = xs, K(φ, ts) = ksns, (5)
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with ks = ω/(c(xs, ts) + ns · v(xs, ts)). For two dimensional propagation, only one param-128

eter φ defines the initial conditions, e.g. the geometrical shape of the initial wavefront (a129

curved line). This parameter is specific to the investigated source. Two parameters are130

needed at 3D, as the initial wavefront is then a curved surface.131

For a 2D point source modeling an explosion, φ is the ray elevation angle so that ns =132

cosφex + sinφez, with (ex, ez) the unit vectors in the horizontal x and vertical z directions133

respectively. The source position xs and the time at the source ts are independent of φ. For134

a 3D point source modeling an explosion, we add another emission parameter corresponding135

to the emission azimuth ψ. In that case ns = cosφ sinψex + cosφ cosψey + sinφez, with ey136

the unit vector in the y direction.137

Ray equations (3) and (4) with initial conditions (5) are solved for all values of the138

ray parameter φ to obtain the full set of rays X(φ, ta), K(φ, ta). For complex rays, these139

equations and initial conditions remain the same, with all parameters now getting complex-140

valued in the 4D complex space.141

In a two dimensional complex space x = (x, z), the associated manifold is of dimension 4.142

Complex rays are hyperplanes (of dimension 2) of the complex space described by X(φ, ta)|φ143

where ta is a complex-valued. Complex wavefronts Φ(x, t) = 0 at a given time ta are two144

dimensional hypersurfaces defined by X(φ, ta)|ta = constant. Nevertheless, only real points145

X(φ, ta) are physical solutions (Kravtsov, 1967; Thomson, 1997). For complex rays, gener-146

ally only one position of the two dimensional manifold is real, compared to real rays where147

every point is real. The main difficulty of complex ray tracing is therefore to ensure that the148

ray point physically representing the receiver xr, is real. The determination of ray parame-149
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ters (φ, t) associated with real receivers, is a two point boundary value problem (Press et al.,150

1996; Stone et al., 2018). This problem is solved numerically in section IV. Furthermore,151

complex ray solutions at a real receiver in the shadow zone are complex conjugates. Only152

one is physical, the one keeping the amplitude of the solution bounded at large distances in153

the shadow zone (Egorchenkov and Kravtsov, 2001; Kravtsov and Orlov, 1983).154

B. Field amplitude155

To compute the evolution of the wave amplitude along rays, the asymptotic expansion156

of linearized Euler equation leads at second order to the transport equation (conservation157

of wave action) (Blokhintzev, 1946; Gréa et al., 2005; Pierce, 1994; Scott et al., 2017; Stone158

et al., 2018). This one can also be obtained from the Helmholtz equation (Babich and159

Buldyrev, 1991; Candel, 1977; Chapman et al., 1999; Kravtsov, 1967; Thomson, 1997).160

∂A

∂t
+ ∇ · (wA) = 0, (6)

with w = cn + v the group velocity and A = p2/Kρc3 the wave action with p the acoustic161

overpressure and ρ the atmospheric density. For time independent media this conservation162

equation is reduced to ∇ · (wA) = 0 (Candel, 1977).163

At a position X(ta) along one given ray, the acoustic overpressure signature p(X, t) is164

approximated by (Scott et al., 2017):165

p(X(ta), t) = K

(
ρc3

ν

)1/2

u(Φ(X(ta), t), ta), (7)

where the wavenumber K and the infinitesimal ray tube area ν are evaluated along the ray166

at ta, atmospheric sound speed c and atmospheric density ρ are evaluated at X(ta). At167

9



JASA/Complex eigenrays algorithm for infrasound propagation in a windy range dependent atmosphere

two dimensions, ν = (Xφ ∧ ey) · n in the (x, z)-plane. The ray tube area ν is computed168

using geodesic equations described in (Scott et al., 2017, Eq. A1 and A2) or in (Blom and169

Waxler, 2017, Eq. 5 and 6) where they are called equations of auxiliary parameters. Here170

these equations keep unchanged but get fully complex considering the correct definition171

for complex-valued K. For linear propagation in a non-absorbing media, the normalized172

waveform u(ξ, ta) is conservative along rays:173

du

dta
= 0, (8)

where ξ = Φ(x, ta) is the scaled distance to the wavefront and is zero on the wavefront.174

In the wavefront vicinity Φ(X(ta), ta) = 0, a Taylor expansion leads to ξ = Φ(X(ta), t) ≈175

ω(ta− t) where ω = K ·w. For complex rays reaching a receiver at X(ta) located in shadow176

zones with a complex-valued ta, Re(ξ) = Re(ω(ta − t)) and Im(ξ) = Im(ωta) at a time t177

close to ta. This closed-form approximation of ξ is replaced in (7).178

Because the ray tube area ν(ta) may vanish at the source ts, the conservation of wave179

action along a given ray has to be initialized slightly away from it, at actual emission time180

te. For each ray, the scaled waveform u(ξ, te) and the ray cross section νe are defined at181

this emission time te, sufficiently close to the source so that we can assume propagation in182

a homogeneous medium during the small time interval te − ts. There the ray tube area is183

not zero anymore, p(X(te), t) is assumed to be known and real, and is used to quantify the184

pressure field all along the ray.185
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We extend u(ξ) for complex values of the phase function ξ by means of the Fourier186

transform:187

u(ξ) =
1

2π

∫ ∞
−∞

ũ(q)e−|q|Im(ξ)eiqRe(ξ)dq, (9)

where function ũ(q) is obtained from the real function u(ξ)188

ũ(q) =

∫ ∞
−∞

u(ξ)e−iqξdξ. (10)

We can note that qω/2π is the physical frequency and |K|q the physical acoustic189

wavenumber. To preserve the asymptotic decay of the amplitude (Chapman, 2004) into190

shadow zone when q < 0, the complex conjugate of all parameters (t, ξ, φ,X,K, ν) should191

be taken. If ξ is real-valued, i.e. for real rays, we find the classical real Fourier transform of192

ũ(q).193

The Hermitian symmetry of the argument ũ(q)e−|q|Im(ξ) shows that the waveform u(ξ)194

remains a real-valued signature. For a time independent media (ω is constant), in the shadow195

zone, we find the classical behavior of the argument e−|qω|Im(ta) imposing Im(ta) > 0 along196

rays, with an exponential decay proportional to the physical frequency qω/2π (Chapman197

et al., 1999; Kravtsov, 1967).198

For both real and complex rays, the quantity
√
ν in Eq. (7) should be analyzed. Along199

real rays, a caustic is encountered when ν = 0, leading to an infinite amplitude (Jensen200

et al., 1995; Pierce, 1994) and a change of sign for ν. Using complex notation ν = |ν|eiθ,201

θ = arg(ν) undergoes a π increase each time a caustic is encountered. It is therefore202

convenient to introduce the number nc (Chapman, 2004; Jensen et al., 1995) of caustics203

crossed along a ray starting from the source, so that θ − θe = ncπ, with θe = arg(νe). Note204

that for real rays with νe < 0, θe = ±π.205

11



JASA/Complex eigenrays algorithm for infrasound propagation in a windy range dependent atmosphere

For real rays, the square root in (7) is rewritten as
√
ν = |ν|1/2ei(ncπ/2+θe/2). Using these206

complex notations, we obtained for real rays the π/2 signal phase shift at caustic of the207

catastrophe theory (Chapman, 2004; Kravtsov and Orlov, 1983; Thom, 1983). We can note208

that the argument of
√
ν is 2π periodic and that θ should be considered at least 4π periodic.209

It should be noted that the choice of the sign of θ is made with the choice of the pulsation q210

sign with respect to Fourier transform convention (10). Therefore, the acoustic overpressure211

for each ray is obtained by taking the real part of p:212

p(X(ta), t) =
1

2π

∫ ∞
−∞

K

(
ρc3

|ν|

)1/2

ũ(q)

× exp [−isgn(q)θ/2− |q|Im(ωta) + iqRe(ω(ta − t))] dq.

(11)

Assuming linear acoustics in the caustic region, shows that for one ray, the waveform after213

crossing a caustic is the Hilbert transform of the waveform before crossing the caustic. Then,214

in the Fourier domain, for a waveform leaving the caustic ũout(q) and an arriving waveform215

ũin(q): ũout(q) = −isgn(q)ũin(q), for real rays.216

Finally, if several rays arrive at a given receiver, all their contributions have to be added.217

We can have both real and complex rays at the same receiver, for example close to a cusp218

caustic.219

For time independent media, ω is real and constant, then, in the frequency domain, ωq is220

substituted by the physical pulsation ω̃ in Eq. (11). The overall overpressure at the receiver221

point x of all eigenrays subfixed by j is:222

p̃(x, ω̃) =
∑
j

K

(
ρc3

|νj|

)1/2

ũ

(
ω̃

ω

)

× exp [−isgn(ω̃)θj/2− |ω̃|Im(taj) + iω̃Re(taj − t)] .

(12)
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To study the neighborhood of the caustic (ν → 0), the method of complex rays can be223

completed with for example Maslov’s method (Kravtsov and Zhu, 2010) which is not treated224

in this paper, or the uniform asymptotic theory at the caustic.225

C. Uniform theory of diffraction at the caustic226

Uniform theory of diffraction (UTD) provides an accurate value of the overpressure am-227

plitude in the neighborhood of the caustic singularity, uniformly dependent on the frequency,228

and which matches asymptotically geometrical complex ray theory (White and Pedersen,229

1981). In the insonified zone of a fold caustic, two rays arrive respectively at time tfast for230

the fast direct ray, and at time tslow for the slow ray (which reaches the considered point xc231

after having tangented the caustic). Therefore one has X(tfast) = X(tslow) = xc. This pair232

arrivals are discussed in detail for stratospheric ones by Waxler et al. (2015), see especially233

their figures 9 and 10. The interference and diffraction of the two rays is mainly charac-234

terized by the scaled time difference τ = ωslow+ωfast

4
(tslow − tfast) which is a positive value.235

Following White and Pedersen (1981), the overpressure signature of the uniform theory in236

the insonified zone is defined using Airy’s function Ai and its derivative Ai′ as237

pc(xc, t) =
1

2π

∫ ∞
−∞

[(
Uslow

|νslow|
1
2

+
Ufast

|νfast|
1
2

)
π

1
2 (−ζ)

1
4 Ai(ζ)

+isgn(q)

(
Uslow

|νslow|
1
2

− Ufast

|νfast|
1
2

)
π

1
2 (−ζ)−

1
4 Ai′(ζ)

]

× exp

[
−isgn(q)

(
θslow + θfast

4

)
+iq

(
ωfasttf + ωslowts

2
− ωfast + ωslow

2
t

)]
dq,

(13)

13
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with ζ = −(3
2
|q|τ)2/3 and the amplitudes Ui(q) = Kiũi(q)(ρic

3
i )

1/2 with i = slow or fast. Far238

from the caustic, when ζ → −∞, Eq. (13) matches perfectly with the sum of geometrical ray239

theory overpressures (11) p(X(tfast), t)+p(X(tslow), t). In the shadow zone, the overpressure240

signature of the uniform theory is defined from the single complex ray at position X(td) as241

pc(X(td), t) =
1

2π

∫ ∞
−∞

2Ud

|νd|
1
2

π
1
2

[
cos

(
θd − θfast

2
− π

4

)
ζ

1
4 Ai(ζ)

+isgn(q) sin

(
θd − θfast

2
− π

4

)
ζ

1
4 Ai′(ζ)

]
× exp

[
−isgn(q)

(
θfast

2
+
π

4

)
+ iqRe (ωd(td − t))

]
dq,

(14)

with ζ =
(

3
2
|q|Im(ωtd)

)2/3
and the amplitude Ud(q) of the complex ray. θfast is the angle of242

ν for the real incident ray at the caustic and its value is a multiple of π. Up to a medium243

distance to the caustic, θfast = θd − (θd[π]), with [] the modulo operator.244

Far from the caustic, when ζ → ∞, Eq. (14) matches perfectly the overpressure (11) of245

the geometrical complex ray theory. At the caustic, when ζ → 0, Eq. (13) and Eq. (14)246

reach the same limit without singularity. Finally, for other rays which arrived at the receiver247

and are not connected with the caustic, their contribution sum independently as in Eq. (12).248

D. Numerical complex ray integration249

Rays equations (3) and (4) and geodesic equations constitute an inhomogeneous system250

of complex ordinary differential equations depending on the complex variable ta:251

dF

dta
= R(F , ta), (15)

with R(F ) a function of the eight-dimensional complex vector F (twelve dimensions at 3D)252

with a known initial condition at the source F (ts). This system is integrated between the253
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complex emission time ts and the complex final time ta following any path tσ(σ) in the254

complex plane, with σ a real curvilinear variable such that tσ(0) = ts and tσ(1) = ta, (Hille,255

1997). The complex system of differential equations can therefore be recast as depending256

on real variables :257

dF (tσ(σ))

dσ
=

dtσ
dσ

R(F , tσ(σ)). (16)

and evaluated numerically using a classical Runge and Kutta 4th order scheme (Press et al.,258

1996). In this paper, as in Amodei et al. (2006); Egorchenkov and Kravtsov (2001); Kravtsov259

and Zhu (2010); Thomson (1997), a straight integration path is always used with tσ(σ) =260

ts + σ(ta− ts) and dtσ/dσ = (ta− ts) which is indentified for the sake of simplicity with the261

complex ray. Other paths could be considered to overlap singularities of the atmospheric262

profiles, but are not considered here.263

As only real points X(φ, t) are physical solutions (Kravtsov, 1967; Thomson, 1997), a264

numerical method is used to find eigenrays at receivers x such that X(φ, t) = x. For265

complex rays, four parameters (Re(φ), Im(φ), Re(ta), Im(ta)) must be optimized. The266

numerical method is detailed using a realistic case in the section IV.267

III. POINT SOURCE IN A WINDY ATMOSPHERE268

We consider an impulsive point source on the ground, at the position xs = (0, 0) and269

with the emission time at the source ts = 0. The initial spherical wavefront is defined by270

its normal vector ns = cosφex + sinφez, with φ the emission angle. Infrasound generated271

by this source can propagate at long range due to the thermospheric and the stratospheric272

waveguides (Blom, 2019; Drob et al., 2003; Scott et al., 2017). The thermospheric waveguide273
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is associated with the increase in the thermosphere of the atmospheric temperature vertical274

profile. To model this one, we use the realistic profile defined by rational function (Lingevitch275

et al., 1999, Eq. (49)). The associated sound speed profile c presented in Fig. 1(a) satisfies the276

analytical condition of the complex ray method. The stratospheric waveguide is associated277

with combined effects of the increase of the both temperature in the stratosphere and the278

stratospheric wind jet. For the wind, we use an analytical Gaussian profile (Blom, 2019):279

v = vw e
− (z−zw)2

σ2w ex, (17)

with a maximum jet speed vw = 50 m/s observed at an altitude zw = 60 km and with a width280

of the Gaussian distribution σw = 17.5 km. The effective sound speed in ex direction ceff =281

c+v is shown in Fig. 1(a). The ray computation is performed with these expressions of c and282

v through equations (3) and (4). Resulting real rays, obtained with the shooting method283

with φ variation between 0 and 60 degrees with ∆φ = 0.5◦, are represented in Fig. 1(b).284

For the sake of clarity the reflected rays are not represented. This advected profile gives285

stratospheric and thermospheric arrivals. Each kind of arrivals have direct rays (black)286

and that which crossed a caustic (gray). The stratospheric and thermospheric caustics287

(purple dashed thick lines) are both altitude cusp caustics whose one branch continues288

until the ground. These caustics begins at x = 133 km with an altitude of 45 km for the289

stratospheric one and at x = 214.2 km with an altitude of 123 km for the thermospheric one.290

At ground level, rays focusing form two locally fold caustics and thus, two shadow zones.291

The stratospheric ground caustic is located at x = 225.7 km and the thermospheric one at292

x = 361.8 km. The ray intersection with the ground, necessary to be known for the complex293

ray method, is indicated with black and gray dots in Fig. 1(b)294
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(a) (b)

Fig. 1. (a) Rational sound speed profile c (solid line) of (Lingevitch et al., 1999) and effective

sound speed profile ceff = c + v (dashed line) with Gaussian wind profile (Blom, 2019). (b) Real

rays obtained with ray shooting method, for an emission angle varying from 0 to 60 degrees.

Stratospheric and thermospheric caustics are indicated by purple (color inline) dashed thick lines.

Gray rays reach the ground after having through one caustic.

IV. EIGENRAYS ALGORITHM295

In this section, we consider receivers at ground level between 1 and 500 km from the296

source. We present the numerical process of integration and optimization, to obtain real297

and complex eigenrays.298

Numerically, a difficulty of the complex ray tracing method is the determination of all299

eigenrays at a given receiver xr. Searching for eigenrays means computing all couples of300

complex ray parameters (φ, t) satisfying X(φ, t) = xr for the real receiver position xr. As301

exemplified below, multiple eigenrays can reach a single receiver. This multi-valued problem302

can be recast as a classical two points boundary value problem (Press et al., 1996; Stone303
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et al., 2018) with, in the general complex case, four real unknowns : Re(φ), Im(φ), Re(t) and304

Im(t). Four parameters generate a too large space to be numerically explored at reasonable305

costs to find all eigenray solutions. Additionally, some complex numerical solutions can be306

unphysical. Therefore, we restrict the problem to complex eigenrays connected to real rays307

through a caustic. This allows one to use a real ray tracing method to identify real eigenrays,308

and then to extend the solution to shadow zones. This strategy gives a numerically tractable309

way to find all physical eigenrays at receivers. However, it is necessary to identify all caustics,310

bounds of waveguides and ground limited rays for the real ray tracing problem. Moreover,311

caustics are singularities where the Jacobian determinant of the transformation from ray312

parameters (φ, t) to spatial coordinates x vanishes. This singularity is a numerical difficulty313

for optimization algorithms, especially in the vicinity of the caustic.314

To solve the eigenray problem, we developed an algorithm using real interpolation and315

extrapolation for real solutions, and complex extrapolation at caustics for complex solutions316

in the shadow zones. It is illustrated by the previous example of a ground-based point source317

in a vertically stratified atmosphere with Gaussian wind profile (see Fig. 1(a)). We restrict318

the problem to ground based receivers with xr between 1 and 500 km. The process in three319

steps is described below and illustrated in Fig. 2.320

The first step of our method is a real ray shooting, with a regularly discretized emission321

parameter, here the angle φ varying from 0 to 60◦ (see the first line of Fig. 2). The number322

of integrated rays in this shooting phase is chosen equal to 120. This φ democratization is323

enough to distinguish stratospheric and thermospheric waveguides, as well as caustics. As all324

receivers are on the ground, we extract all rays intersection with the ground. Then, we obtain325
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one discrete ground position xi for each launched real ray φi and the eigenray procedure326

leads to know all real φ(x). Ground arrivals form two discrete sets: stratospheric arrivals327

for φ between 0 and 0.45 rad and thermospheric arrivals for φ between 0.48 and 0.87 rad.328

For larger values of φ, rays reaching the ground beyond 500 km are not calculated. These329

two sets have two visible branches of φ and t, the direct rays in black and that ones having330

tangented once a caustic in gray. Caustics and waveguide bounds are both characterized by331

a sign changes of dx/dφ. For caustics dx/dφ goes through zero and for waveguides it jumps332

from −∞ to +∞ or the inverse (Chapman, 2004, Sec. 2.4). These changes are determined333

numerically, by searching for changes of sign of quantity Di = xi+1−xi
φi+1−φi . To identify caustics334

and waveguides, we denote k the point where the sign of Dk changes compared to Dk−1,335

and compare the mean value (Dk−1 + Dk)/2 with the median of the full set of values Di.336

If the mean value is lower than the median, we assume that the point is close to a caustic,337

otherwise that it is close to the limit of a waveguide.338

The second step consists in extrapolating the discrete real ray arrivals to the whole space339

(see the second line of Fig. 2). This step will provide, for each ground point, initial guesses340

for emission parameters of eigenrays, both real and complex. Let us begin with real rays.341

For receiver positions within the limits of discrete branches obtained in step 1, we simply342

perform a quadratic interpolation. Resulting points appear in figure as lines with squares343

with corresponding colors to the shooting step. Boundaries of real discrete branches from344

step 1, interpreted as a waveguide limit, are real extrapolated with a log fitting (line with345

circle and same color) so that xr = −C log(|φ − φw|) with C = c/2 if φi ≤ φw and C = c346

if φi > φw (Chapman, 2004). The emission parameter associated to the waveguide limit φw347
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and the constant c are chosen to minimize the difference between this theoretical function348

and the computed five values of xr for the five rays φk−3 to φk+1. While in this waveguide349

configuration xr is highly sensitive to φw, the following optimization in step 3 is robust350

enough so that the finally computed rays indeed reach the receiver with the desired precision.351

For complex rays, we use the caustic position referred by index k from step 1. A real352

interpolation is first performed around the three neighboring points K = (k − 1, k, k + 1),353

with a second order polynomial X2(φ) with real coefficients, interpolating exactly the three354

shooting positions xj at the three emission parameters φj for j ∈ K. A similar interpolation355

for arrival time ta is performed, the resulting polynomial being noted T2(φ). Then search356

for the complex roots of the polynomial X2(φ)− xr = 0 provides the complex extrapolation357

for any receiver xr in the shadow zone. As the two complex roots are complex conjugate358

from one another, the selected φ solution is such that Im(T2(φ)) > 0, so that the pressure359

field decays exponentially according to Eq. (9). These guesses are indicated as lines with360

blue upward triangles for the first shadow zone and with red downward triangles in the361

second one. The penetration range of xr inside the shadow zones is arbitrarily limited to362

120 km. Beyond this range, guess values would be too far from the actual parameters, and363

optimization process in step 3 would be unsuccessful. This problem will be solved in the364

next step 3.365

The third step (illustrated by the third line of Fig. 2) is the determination of eigenrays366

by finding the real or complex values (φ, ta) that minimize the quantity |X(φ, t)−xr|. For367

this we use the Levenberg-Marquardt algorithm (LMA) (Moré, 1978; Transtrum and Sethna,368

2012), with initial guesses determined in step 2.369
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LMA is a combination of two minimization methods: gradient descent and Gauss-Newton.370

For the gradient descent the sum of squared errors is reduced by updating the parameters371

in the steepest descent direction. For Gauss Newton method, the sum of the squared errors372

is reduced by assuming that least squares function is locally quadratic and by finding the373

minimum of this quadratic. Thus, LMA behaves more like gradient descent when parameters374

are far from the optimum, and more like Gauss Newton when parameters are close. The375

balance between the two methods is achieved by the damping parameter, that avoids singular376

Jacobian. In particular, the LMA is efficient in our case around caustic points where the377

Jacobian vanishes.378

For a receiver located deep inside the shadow zone (here in practice at a distance from the379

caustic larger than 120 km), the initial guess used in the LMA is determined by the output380

of LMA for the nearest receiver position already computed and closer to the caustic. This381

implies that eigenrays for receivers in the shadow zone are computed by moving away from382

the caustic. The distance of 120 km has been chosen as it minimizes the global computation383

time.384

Eigenray solutions are illustrated in Fig. 2 as lines with black and gray dots for real385

solutions, blue upward triangles for complex solutions in the first shadow zone and red386

downward triangles for the second shadow zone. The method allows to obtain eigenrays for387

any receiver position xr. Here the fifty receivers are shown in Fig. 3 with the corresponding388

real and complex rays.389

Hence, with our complex ray method we are able to obtain all eigenrays for any receiver390

position xr with a precision of order 10−8 to 10−12.391
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Fig. 2. (color inline) Real and imaginary parts of the emission parameter φ and arrival time

t. Description of the three-step eigenray research method, on the point source case Fig. 1. First

line: ray tracing shooting with the same color code as Fig. 1. Second line: real interpolation

(squares), complex extrapolation (triangles - blue upward for stratospheric and red downward for

thermorpheric rays) and real extrapolation (circles) of initial guesses. Third line: final eigenrays

parameters with the same color code.
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V. RESULTS392

In this section, we present real and complex eigenrays as well as geometrical parameters393

for receivers at ground level between 1 and 500 km from the point source. These results are394

obtained with our complex ray method using the algorithm described in IV and considering395

the analytical sound speed profile shown in Fig. 1(a).396

A. Real and complex ray arrivals at ground level397

The optimized emission parameters φ and t presented in Fig. 2 and computed with our398

complex eigenrays algorithm allow to find eigenrays for given receivers. Resulting real and399

complex rays projected in the real plane (x, z) are represented in Fig. 3(a). Arrivals at400

ground level due to refraction either in the stratosphere or in the thermosphere are labeled401

respectively Is and It. For each waveguide (indexed by s for the stratospheric one, and by t402

for the thermospheric one), there are two arrivals of real rays in insonified zones, the direct403

or fast one (referred as Isf and Itf with black points) and the one which tangented a caustic,404

also called slow arrival (referred as Iss and Its with grey points). The presence of these two405

real rays is clearly visible with the separation of branches for the arrival time and apparent406

speed (see Fig. 4) with a characteristic cusped wavefront shape. Though these arrivals are407

always simulated, the time delay between Iss and Isf can be quite small. Depending on408

the frequency f , the two arrivals cannot always be distinguished from one another. The409

thickness δ of the diffraction boundary layer around the caustic is given by δ = (c2R/2f 2)1/3
410

(Buchal and Keller, 1960), where R is the ray curvature relative to the caustic one. At411
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the distance δ, the Airy’s function argument ζ used in the UTD equation (13) is equal to412

−(2π2)1/3 and the ray arrival time difference satify (tslow−tfast)f = 2
√

2/3 ≈ 0.94. Following413

this criteria, the two arrivals can be distinguished at distances from the caustic surface larger414

than δ, all the larger as the frequency f is larger. For example, for the stratospheric caustic415

of relative curvature R = 150 km and f = 1 Hz, δ ≈ 2050 m. These paired arrivals are416

discussed in details in Waxler et al. (2015) and Blom (2019). Even when these two arrivals417

are theoretically separated, intermediate arrivals due to scattering by fine structures of the418

atmosphere such as internal gravity waves (Lalande and Waxler, 2016) may obscur this419

separation especially if one of the two phases is of small amplitude.420

At ground level, rays focusing form two fold caustics and thus, two shadow zones. The421

stratospheric caustic is located at x = 225.7 km and the thermospheric one at x = 361.8 km.422

In these two shadow zones, field information at any point can be computed with complex423

rays, shown in Fig. 3 with stratospheric arrivals labeled as Isd and thermospheric ones Itd.424

We recall that only physical point of complex rays are taken into account and that complex425

rays are two dimensional surfaces.426

To understand the behavior of complex rays, we represent the same rays projected in427

the plane (Re(z), Im(z)) and superposed to the colormap of Im(c) (see Fig. 3(b)). For428

each real or complex ray, the imaginary part of the altitude Im(z) is the same for a given429

real altitude Re(z). When a complex ray reaches the turning point, also called point of430

refraction (Chapman, 2004), it goes through the same path in (Re(z), Im(z)) plane. In431

other words, the upward and downward paths are symmetric, see Fig. 3(b). Imaginary432

value of z increases in absolute value as the distance between the real point at the ground433
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(a) (b)

Fig. 3. (color inline) (a) Eigenrays reaching receivers at the ground obtained with the complex ray

tracing method with the same color code as Fig. 2. Real stratospheric (Iss, Isf ) and thermospheric

(Its, Itf ) rays, and stratospheric (Isd) and thermospheric (Itd) complex rays projected in the real

plane (x, z). (b) These same complex rays projected in the (Re(z), Im(z)) plane with same red/blue

color code, superimposed to the colormap of Im(c). Black arrow indicates increasing x distance of

rays ground arrivals.

level and the caustic increases: for instance Im(z) = −30 km (resp. Im(z) = −25 km) for434

the stratospheric (resp. thermospheric) ray nearest to the source. For thermospheric rays,435

the dip at altitude Re(z) = 92 km corresponds to the minimum of Re(c). At this position436

the imaginary part of c changes of sign (Re(ceff) = 0) which creates a pole preventing the437

integration of thermospheric complex rays, arriving below x = 230 km. However, such rays438

penetrating deep into the shadow zone, would provide a negligible contribution in terms of439

amplitude. On the contrary, the Gaussian function because it has no singularity, induces no440

such limitation on ray computation.441

25



JASA/Complex eigenrays algorithm for infrasound propagation in a windy range dependent atmosphere

B. Geometrical parameters442

With a view to compare results with infrasound records at stations, it is interesting to443

capture frequently used geometrical parameters, such as the arrival time and the horizontal444

apparent phase velocity va = ω/kx. From ray equations, kx is constant along rays for a445

stratified media, and therefore equals its value at the source va = v(zs) + c(zs)/cosφ. These446

quantities are represented for ground receivers in Fig. 4 with same labels and color code447

as in Fig. 3. As c(zs) and v(zs) are constant for a point source, va depends only on the448

emission angle φ. Therefore, the evolution of va in the shadow zones could not have been449

found without using the complex ray method which provides φ(xr).450

For all real arrivals, the apparent velocity va is in the range 340 m/s to 550 m/s with lowest451

values closer to the ground speed of sound of 340 m/s for stratospheric arrivals Iss and Isf ,452

while thermospheric ones reach higher values Its and Itf and larger variations. Right at the453

caustics va approximately equals 359 m/s for stratospheric arrival and approximately equals454

450 m/s for thermospheric one. For stratospheric complex arrivals Isd, va first increases from455

359 m/s at the caustic to 409 m/s at x = 63 km and then decreases at higher distance from456

the caustic where Re(φ) → π/2. In the second shadow zone Itd, on the contrary va stays457

roughly constant as Re(φ).458

Reduced arrival times t − x/cref (s) decrease with distance. Indeed, at infinite distance,459

influence of vertical propagation is negligible, propagation is quasi horizontal and thus re-460

duced time tends to zero. Larger values and larger differences between fast and slow arrivals461

are observed for thermospheric arrivals, for which vertical stratification effects are more pro-462
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(a) (b)

Fig. 4. (color inline) Real values of geometric parameters at ground receivers. (a) Reduced time

tred = t− x/cref (s) with cref = 340 m/s and (b) apparent velocity va (m/s), with same labels and

color codes as in Fig. 3.

nounced, than for stratospheric ones. In the shadow zone but close to the caustic, the real463

value of arrival time of complex rays first tends to linearly extrapolate the limit value at464

the caustic, as complex rays remove the singularity around caustics. This behavior will be465

further used to initialize the algorithm searching for eigenrays. Deeper inside the shadow466

zone, when approaching the source, stratospheric arrivals however deviate more and more467

from this extrapolation.468

C. Comparison of transmission losses with parabolic approximation469

Atmospheric infrasound propagation can also be simulated using a two dimensional,470

fourth order split-step Padé parabolic approximation (Ostashev and Wilson, 2015, p.61),471

(Collins, 1993; Nguyen-Dinh et al., 2018) with the assumption of effective sound speed (see472
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dashed line Fig. 1(a)). This method accounts for diffraction into shadow zone. However,473

the effective sound speed assumption may induce some error, in addition to the parabolic474

approximation. These errors are detailed in (Assink et al., 2017). Nevertheless we use it475

to validate complex ray tracing method. For a monochromatic point source of frequency476

f = 1 Hz and amplitude pe, we consider the transmission losses (TL) relatively to rref = 1 m477

in dB for ground receivers between 1 and 400 km from the source:478

TL(x, ω̃) = 20 log10

(
|p̃/pe|√
r/rref

)
, (18)

with r = x the distance to the source and p̃ defined by the Eq. (12) for complex rays. The
√
r479

term allows to scale the wave amplitude computed in two dimensions to a three dimensional480

case with axi-symmetric long range divergence hypothesis. This scaling is also performed in481

the parabolic approximation solution (Nguyen-Dinh et al., 2018, eq. 5). For a point source482

at ground level in an homogenous media, TL = −20 log10(r/rref).483

Transmission losses obtained with the ray tracing method for each arrival are represented484

in Fig. 5 independently (with the same color code as in Fig. 3): fast direct real arrivals485

(black line with dots), slow real arrivals (gray line with dots), complex stratospheric arrivals486

(blue upward triangles) and complex thermospheric arrivals (red downward triangles). The487

TL associated with the sum of all rays (green line) and the TL computed with the uniform488

theory of diffraction of equations (13) and (14) (green dashed lines), are compared to the489

parabolic approximation TL (black line) for which arrivals can not be distinguished from490

one another. The propagation allows us to define eight zones between 0 and 400 km, each491

one associated with a specific physical behavior. Zones I and II are associated with the so492
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called anormal shadow zone (Pierce, 1994), zones III to VI are associated with stratospheric493

refraction and zones VII and VIII are associated with thermospheric refraction.494

Parabolic approximation describes in zone I, which is the closest to the source, the ex-495

ponential decay of creeping waves (Pierce, 1994) propagating over a rigid ground. This496

creeping waves contribution is not provided yet by the complex ray method. In zone II, the497

distance from either the source or the first caustic is such that wave amplitude is indeed498

exponentially small (-180 dB) so that parabolic approximation reaches the limits of its nu-499

merical precision. In insonified zones (IV and VIII), the ray tracing shows the field results500

from the interference between fast and slow arrivals, either stratospheric ones (Isf and Iss)501

in zone IV and mainly thermospheric ones (Itf and Its) in zone VIII. Amplitude of the to-502

tal field oscillates due to these interferences. Ray predicted oscillations are slightly shifted503

compared to output of the parabolic method, but with similar frequency while amplitudes504

also show similar levels of transmission losses. The comparison shows that stratospheric505

and thermospheric ground arrivals are predicted by the parabolic simulation at a shorter506

distance than by ray tracing. This difference is more important for stratospheric arrivals507

(1.9 km, see Fig. 6(a)), than for thermospheric ones (1.5 km, see Fig. 6(b)). It is due to the508

parabolic approximation of the Helmholtz equation, only partly compensated by the use509

of the effective sound speed ceff (Gainville, 2008). Changing the frequency (we tested 0.1,510

0.5, 2 and 5 Hz) does not modify this offset. Such mismatches of the order of the kilome-511

ter have been similarly observed in (Assink et al., 2017). Except this position offset, the512

parabolic equation turns out to be a good reference for an assessment of the complex ray513

tracing method, especially for the amplitude. As already mentioned, ray-tracing method514
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diverges in a small region around caustics. This singularity of amplitude is resolved using515

the UTD described in section II C. The solution around caustics is shown with green dashed516

lines for stratospheric in Fig. 6(a), and thermospheric one in Fig. 6(b). The evolution of517

the uniform solution allows to reproduce the parabolic solution one and the correct ampli-518

tude at the caustic. In the insonified zones (IV and VIII) and except this diffraction layer519

around caustics, ray tracing and parabolic approximation differ only from 1.2 dB in zone520

IV, and from 1.3 dB in zone VIII (see Fig. 6). In the main zone of discrepancy (zone V)521

the geometric field resulting from the interferences of fast and slow stratospheric arrivals Isf522

and Iss. However, the amplitude of slow ones diverges at the distance of 266.8 km. There,523

rays emitted at the source at angles approaching zero degree, return to ground after be-524

ing refracted at an altitude of around 50 km (see gray stratospheric rays Iss in Fig. 3(a)).525

The limit real ray emitted horizontally at the source, tangentially to the ground surface,526

has a ray tube section which varies along the ray but goes back to zero at the distance of527

266.8 km where it tangents the ground for the second time. Hence, the ray method has a528

singularity in amplitude reduced to one ray (this horizontal ray), again creating an infinite529

amplification. However, a full caustic does not exist here and cannot be identified as such530

by our method because it is masked by the ground. This virtual caustic generates diffracted531

waves at the ground analogous to creeping waves, that are not captured by our complex532

ray method. Beyond this amplification point (in zone VI), parabolic equation shows the533

interference of these diffracted waves with geometrical fast stratospheric arrival Isf , while534

the ray tracing method gives only the Isf contribution, hence a smooth evolution of TL.535

Transmission Losses are nevertheless of similar orders of magnitude. Inside zones III and536
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Fig. 5. (color inline) Transmission losses at ground level for a 1 Hz point source with the stratified

windy atmospheric profile of Fig. 1(a). For rays, the same color code is used as in Fig. 4. The

green line is the sum of all ray contributions. The thin black line is the parabolic approximation

computation (PE). Dashed line is the amplitude decay observed in a homogeneous atmosphere.

VII, corresponding respectively to stratospheric Isd (zone III) and thermospheric Itd (zone537

VII) shadow zones, the exponential decay of amplitudes coincide almost perfectly, with the538

same slope, for both methods. The same spatial offset of slightly more than 1 km is observed539

as for real arrivals in zones IV and VIII. For the stratospheric shadow zone (zone IV, blue540

upward triangles), results coincide in the range 210-225.9 km, throughout approximately541

16 km. For the thermospheric shadow zone (zone VII), results (red downward triangles) also542

coincide down to 355 km, throughout 7 km. Deeper inside this shadow zone (in zone VI)543

this diffracted field Itd vanishes, and the pressure field is dominated by real stratospheric544

fast arrivals Isf . This comparison validates the method and algorithm developed in the545

present manuscript for implementing complex ray theory applied to infrasonic long-range546

propagation in an atmosphere with wind.547
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(a) (b)

Fig. 6. (color inline) Same as Fig. 5 with zooms around the (a) stratospheric and (b) thermospheric

caustics.

D. Signatures548

In this section, we analyze waveform signatures in the illuminated and shadow zones549

for the previous case of point source. The emitted signal at 1 m from the source ps(t) =550

s(f(t− ts)) is a band limited frequency signal around the main frequency f = 3 Hz defined551

as:552

s(τ) = −0.5 sin(πτ) [1 + cos(πτ)] , (19)

for τ ∈ [−1, 1] and s(τ) = 0 otherwise. We display pressure signatures for stratospheric and553

thermospheric arrivals in Fig. 7, obtained using complex ray tracing method. Geometrical554

reduced arrival times of the mid-signal are indicated by the same color code as in previous555

figures. Respective maxima of overpressure, noted p?, are indicated on the right with again556

same color code. Considering f = 3 Hz, the results for stratospheric arrivals (Fig. 7(a)) have557
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similar shapes and reduced arrival times as in Blom (2019, Fig. 5) for receivers between 230558

and 250 km.559

Fast arrivals (black) keep the initial waveform s(t) with an amplitude between 10−3 and560

2.5×10−3 Pa. Slow arrivals corresponding to the Hilbert transform of the direct ones (Pierce,561

1994), with an amplitude between 1.8 × 10−3 and 2.3 × 10−3 Pa. At the caustic, the two562

arrivals merge with a singular amplitude. In the shadow side, the single diffracted wave563

decreases exponentially with the distance from the caustic, with an amplitude of 3 × 10−4
564

at 220 km (i.e. 5.7 km from the caustic). As this decay is frequency dependent the signal565

loses its high frequency content and gets longer and asymetric.566

For thermospheric arrivals (Fig. 7(b)), we observe a similar evolution with the distance.567

The amplitude of slow arrivals (gray) is noticeably smaller than those of fast arrivals. Note568

that stratospheric fast phases arriving much earlier and of very low amplitude.569

In the shadow zone, such as the stratospheric ones, the amplitude decreases exponentially570

with an amplitude of 5.3× 10−5 at 355 km (i.e. 6.8 km from the caustic).571

VI. POINT SOURCE IN A WINDY AND RANGE DEPENDENT ATMOSPHERE572

In this section, we consider the same point source located at (0,0) but with a range573

dependent atmosphere.574

The singularity appearing in zone V in the previous case appears because the atmospheric575

data are range independent, thus allowing the ray launched horizontally to be refracted and576

reflects the ground again horizontally. According to catastrophe theory, this is not a full577

caustic as it is not structurally stable. For example, introducing range-dependent data578
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(a) (b)

Fig. 7. (color inline) Time signatures around each caustics, for the incident wave defined by (19),

for (a) stratospheric and (b) thermospheric arrivals, in the case of range-independent atmospheric

profile.

should make this phenomenon disappear. The complex ray tracing method is perfectly579

adapted to simulate propagation in such an atmosphere. For comparison with the previous580

case, we keep the sound speed profile unchanged Lingevitch et al. (1999). The horizontal581

wind profile v is also a Gaussian function defined by Eq. (17), but now its amplitude vw(x)582

varies with range, decreasing linearly from 50 m/s at 0 km to -13 m/s at 500 km. The ef-583

fective sound speed is shown in Fig. 8(a). The obtained stratospheric (Isf , Iss, Isd) and584

thermospheric (Itf , Its, Itd) rays are illustrated in Fig. 8(b) with same color code as for the585

range-independent case. Compared to this one, the slow-down of stratospheric jet tends to586

limit stratospheric refraction. In particular, with the same density of ground sensor, the587

number of slow stratospheric arrivals is sharply reduced. The position of the two caustics is588

consequently shifted, at distances of respectively 258.3 km (farther from the source than in589
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(a) (b)

Fig. 8. (color inline) (a) Range dependent effective sound speed profile ceff = c + v. (b) Same as

Fig. 3(a) for range dependent case.

the range independent case) for the stratospheric one, and 344.9 km (closer to the source)590

for the thermospheric one (see Fig. 8(b)).591

Transmission losses are represented in Fig. 9 (with the same symbols and color codes592

as in Fig. 5). Seven zones, similar to those appearing in the range-independent case, can593

be observed, with the same types of arrivals. Only the former zone V, is no longer visible594

because the virtual caustic has disappeared. As a consequence, the main singularity of ray595

tracing method has been removed. When comparing with the numerical output of parabolic596

approximation, we observe that stratospheric (resp. thermospheric) ground arrivals are597

predicted by the parabolic simulation at shorter (resp. greater) distances than by ray tracing,598

with a difference of -1.1 km (resp. +4.4 km), (see Fig. 10). Except this offset, oscillations599

in zones IV and VII have the same shape for the two methods, but amplitudes differ by600

2.6 dB in zone IV and by 2.3 dB in the zone VII. Inside stratospheric Isd (zone III) and601
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Fig. 9. (color inline) Same as Fig. 5 for range-dependent case.

thermospheric Itd (zone VI) shadow zones, the exponential decay of amplitudes coincide602

almost perfectly for both methods with the same offset as observed on the other side of the603

caustic. For the stratospheric shadow zone, results coincide in the range 236.8-258.3 km,604

throughout approximately 21 km. For the thermospheric shadow zone, the good matching605

is observed down to 336 km, throughout 8 km. Inside zone V the Itd contribution vanishes606

and the pressure field is dominated by real stratospheric fast arrivals Isf only. Much better607

agreement between parabolic approximation and ray tracing is observed here compared608

to the equivalent zone VI in the range independent case, though field oscillations are not609

captured there by the ray tracing method. Similar as for the range-independent case, the610

UTD solution around stratospheric (Fig. 10(a)) and thermospheric (Fig. 10(b)) is represented611

with green dashed lines. The UTD maximum amplitude at the caustic agrees with the612

parabolic approximation one. The interference between the amplitude of the thermospheric613

caustic and the one of the Isf ray is also well reproduce by UTD.614
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(a) (b)

Fig. 10. (color inline) Same as Fig. 9 with zooms on the (a) stratospheric and (b) thermospheric

caustics.

VII. CONCLUSION615

The objective of the present work was to implement complex ray theory and search for616

eigenrays in the case of infrasound propagation in stratified, and range dependent, atmo-617

spheres with wind. In particular, we wanted to capture diffraction around caustics. To618

our knowledge, complex ray theory has never been applied to infrasonic propagation. The619

method is appealing because it allows one to benefit from the efficiency of ray tracing even620

in shadow zones of caustics, where usual ray tracing methods fail. The key element of the621

method is the three stage algorithm developed to search for complex eigenrays between the622

source and the receiver. First, classical real ray shooting enables to identify caustics, shadow623

zones, bounds of waveguides and ground limited rays. Then, real interpolation and extrapo-624

lation in sonified zones, and complex extrapolation in the shadow zones, provides the initial625
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guesses for the search of eigenrays expressed as an optimization process. This one is then626

solved by means of the Levenberg-Marquardt algorithm. The method has been validated by627

comparison with parabolic approximation for a stratified, and then for a range-dependent628

atmosphere. This comparison outlines the ability of the method to predict wave arrivals629

and amplitudes in the shadow zone of caustics.630

The method nevertheless remains singular in tiny regions around caustics. This singu-631

larity is removed by a proper matching with the uniform theory of diffraction (Babich and632

Buldyrev, 1991; Felsen, 1984; Keller, 1962; Ludwig, 1966), using the universal field behavior633

around identified caustics.634

Matching with other types of non-geometrical behavior, such as creeping waves, would635

need to be explored , along with extension of the method to three-dimensional cases, espe-636

cially for meteorite sonic boom (Gainville et al., 2017). Working with atmospheric data will637

also require to examine the proper interpolation of these data with analytical functions.638

639

Amodei, D., Keers, H., Vasco, D., and Johnson, L. (2006). “Computation of uniform wave640

forms using complex rays.,” Physical Review E 73(3), 036704.641

Assink, J., Waxler, R. and Velea, D. (2017). “A wide-angle high Mach number modal642

expansion for infrasound propagation,” The Journal of the Acoustical Society of America643

141(3), 1781–1792.644

Babich, V. M., and Buldyrev, V. S. (1991). Short-wavelength diffraction theory: asymptotic645

methods (Springer-Verlag).646

38



JASA/Complex eigenrays algorithm for infrasound propagation in a windy range dependent atmosphere
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