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Abstract

The Weierstrass function is known as one of these so-called pathological mathematical objects,
continuous everywhere, while nowhere differentiable. In the sequel, we have chosen, first, to con-
centrate on the unconventional history of this function, a function breaking with the mathematical
canons of classical analysis of the XIX'" century. We recall that it then took nearly a century for
new mathematical properties of this function to be brought to light. It has since been the object of
a renewed interest, mainly as regards the box-dimension of the related curve. We place ourselves
in this vein, and, thanks to our result of 2018, which shows that this value can be obtained in a
simple way, without calling for theoretical background in dynamic systems theory, we put forward
the link between the non-differentiability and the value of the box-dimension of the curve.

AMS Classification: 37F20-28A80-05C63.

Introduction

The Weierstrass function, introduced in the the second part of the nineteenth century by Karl Weier-
strass [KH16|, [Wei75], is known as one of these so-called pathological mathematical objects, continuous

3
everywhere, while nowhere differentiable; given A €0, 1[, and b such that A\b > 1+ ?ﬂ, it is the sum

of the uniformly convergent trigonometric series

“+o0o
r € R— Z)\” cos (mb" x).
n=0
The story of this function, and its introduction, by Karl Weierstrass, is of interest. It has to
be placed in both a mathematical and a historical context. On the mathematical point of view, of
course, much better than done by Bernhard Riemann in 1861 [Dar75|, because the proof of the non-
differentiability was given to the whole community, it challenged all the existing theories that went
back to André-Marie Ampére at the beginning of the century, and led a new impulse that aroused, in
the community, the emergence of new functions bearing the same type of properties.



In the historical point of view, it coincides with the global upgrade, material, moral and concep-
tual, initiated by Prussia in the XIX*"® century, within the framework of German unity, upgrade which
is certainly behind the appointment of Karl Weierstrass, a former high-school teacher, as Professor at
the Friedrich-Wilhelms University of Berlin.

Karl Weierstrass had distinguished himself by his results on Abelian functions [Wei54|, [Wei56|:
the German University could not miss such a talent. This choice proved more than just right. The
introduction of the Weierstrass function has made history. Its impact lasts since, even if it took a while
before new properties came to light.

Actually, in addition to its nowhere differentiability, an interesting feature of the function is its self
similarity properties. After the works of A. S. Besicovitch and H. D. Ursell [BU37|, it is Benoit Man-

delbrot [Man77| who particularly highlighted the fractal properties of the Weierstrass Curve. He also

In A
conjectured that the Hausdorff dimension of the graph is Dy, =2 + aA
n

In the view of all that we have evoked, it seemed important to us to consider the Weierstrass
function under the prism of an historical perspective, as we expose it in section 1, all the more as
interesting discussions still occupy the mathematician community, and us in particular.

For instance, in [Dav18], we have showed that, in the case where b = N, is an integer, and con-
trarily to existing work on the subject, the box-counting dimension (or Minkowski dimension) of the
Weierstrass curve, which happens to be equal to its Hausdorff dimension [KMPY84|, [BBR14], can be
obtained in a simple way, without calling for theoretical background in dynamic systems theory, as it is
usually the case. At stake are prefractals, by means of a sequence of graphs, that converge towards the
Weierstrass Curve. This sequence of graphs enables one to show nice geometric properties, since, for
any natural integer m, the consecutive vertices of the m®-order graph T'yy, are the vertices of simple
not self-intersecting polygons with NV, sides, as it is exposed in section 2, polygons which play a part
in the determination of the box-counting dimension of the curve.

Also, we improve or retrieve more classical results, and rather simply, as exposed in the sequel:
in section 3, we put the light on the fact that our result concerning the box-dimension of the graph
also gives an explicit lower bound, which is not given in existing works. Furthermore, we give a new
proof of the non-differentiability of the Weierstrass function in the aforementioned case.

1 An historical overview: From Ampére and well-established beliefs,
to the so-called pathological objects

In 1806, André-Marie Ampére [Amp06| gave what he considered as a “proof”, according to which,
for a given curve, it is always possible, except in a finite number of points, to calculate the slope.
This “proof”; that one can find in the Mathematics books of the time, served as a reference until the
mid-nineteenth century.



148 ANALYSE.

MEMOIRE.

Recherches sur quelques points de la théorie des fonctions dérivées
qui conduisent & une nouvelle démonstration de la série de Taylor,
er a Pexpression finie.des termes qu’on néglige lorsqu’on arréte
cette série & un terme gquelconque.

Par M. AmpERE, Répétiteur a I'Ecole polytechnique.

T ouTk fonction de deux variables x et i, se change, lorsqu'on donne
3 j une valeur détermincde, en une fonction de x, & moins quelle ne
prenne alors une valeur infinie ou nulle pour toutes les valeurs de x.

Je dis pour toutes les valeurs de x, car si cette fonction ne devenait
nulle ni infinie quand on donne & i cette valeur déterminée, que pour
certaines valeurs de x, ce n'en serait pas moins une fonction de x ,
seulement cette fonction deviendrait nulle’ ou infinie pour ces valeurs
de x.

Lorsque la fonction de x et de 7 ne se présente pas sous la forme
indéterminée —, quand on substitue a fa place de i la valeur quwon
veut lui donner, il est toujours aisé de voir lequel de ces différens cas
a lieu; mais lorsque cela arrive, on est obligé, pour le savoir, davoir
recours & la considération des propriétés particulidres a Ia fonction dont
on s'occupe.
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dans laquelle Texpression précédente devient —; il résultera nécessai-

rement de cette démonstration, que
Slx+ i) —[f(x)
i

se réduit, quand i == o, & une fonction de x. Cette fonction, qui
dépend évidemment de f{x), et que M. Lagrange a nommée en consé-
quence sa fonction dérivée , est, comme on-sait, de {a plus grande
importance dans les mathématiques, et sur-tout dans leur application
a la géométrie et & la mécanique ; nous la représenterons, comme cet
illustre mathématicien , par f” (x), et notre premier but sera d'en
démontrer Pexistence. .,
Cette démonstration est d'autant plus nécessaire, que
Slx + i) — flx)

i
est la seule des fonctions quion trouve, en donnant diverses valeurs
constantes & m dans

S(x + i) —ft)

e o
qui ne devienne ni nulle ni infinie forsque i = o, si ce nest pour
des valeurs particuli¢res de x , quoique toutes ces fonctions se présentent
alors sous la méme forme indéterminée =

Il est évident, en effet, que

f(x i) — f(x)
o

est égal &

I i) —
Je me propose diabord de démontrer que la fonction de x et de i L o f6)

SOx i) — f(x) =
i = et devient par conséquent nul ou infini, suivant que m est plus petit
qui exprime le rapport de la différence de deux valeurs x et x — 7

ou plus grand que 1, quand i s'évanouit, toutes les fois que
. d'une variable, et de la différence des deux valeurs correspondantes

Flx + 1) —f(x)
dune quelconque de ses fonctions f('x), ne peut devenir ni nulle ni i ’

infinie pour toutes les valeurs de v, lorsquon fait i = o, supposition reste fini; ce qui arxive toujours, comme nous allons le démontrer,

& lexception de certaines valeurs particuliéres et isolées de x.

The beginning of the memoir of André-Marie Ampére [Amp06].

This lasted a certain time, until the 1860’s to be exact ; let us quote the french mathemati-
cian Jean Gaston Darboux |[Dar75|:

“Until the appearance of Riemann’s memoir on trigonometric series, no doubt had been raised
about the existence of the derivative of continuous functions. Excellent, illustrious geometers, among
whom Ampére, had tried to give rigorous proofs of the existence of the derivative. These attempts
were, no doubt, far from being satisfactory ; but, I repeat, no doubt had been expressed about the
very existence of a derivative for continuous functions.”

Gaston Darboux of course refers to the mention, in 1861, by Bernhard Riemann, then Professor
at the University of Gottingen, of the existence of a continuous function that would not be nowhere
differentiable:

+o0 2

sinn®zx
n=1
It is not clear wether Riemann gave a proof. If he did so, there is no mention of it in the literature of

the time. And no one, at that time too, knew how to obtain it.

About two years later, during the winter 1863-1864, the former high school teacher (1842-1855)
Karl Weierstrass, who had been appointed in 1856 Professor at what would then become the Friedrich-
Wilhelm University of Berlin (the Konigliches Gewerbeinstitut), gave a course on the theory of analytic
functions. In this peculiar course took place the first evocation of a new function, continuous every-
where, and nowhere differentiable, which would then be called after him “Weierstrass function”. How
did this function come to Weierstrass’s mind ? Some, like J.-P. Kahane [Kah64|, suggest that it could
be attributed to the Riemann function, for which he did not know how to prove the non-differentiable
feature. Without taking sides, it may simply come from the fact that these questions, that were in
the air, aroused interest in the mathematical community of the time. To use terminology currently in
vogue, it is what historians today call “circulation of ideas”.



It is interesting to note that the appointment of Karl Weierstrass as Professor coincides with the
global upgrade, material, moral and conceptual, initiated by Prussia. Prussia wanted the German
science to dominate the world. So, when whe Austrian Minister of Education, Leopold Graf von Thun
und Hohenstein, proposed to Karl Weierstrass the creation of a chair, in the university of his choice,
with an annual salary of 2000 gulden [KH16|, Berlin immediately made a counter offer. This is the
culmination of the regeneration Prussian process, launched in 1806, after the defeat of Iena against
Napoleon.

In 1864, therefore, the Friedrich-Wilhelm University attributed a chair to Karl Weierstrass, at the
exact moment when Bismarck began the German unification (War of Duchies). Everything was then
connected: science, industry, prosperity, military and political power.

Beyond this configuration, what is of main interest to us is the specific story of the function, and,
if one can say, its emergence in the mathematical communauty of the time. This of course leads one to
consider the oldest known evidence, which can be found in a fac-similé of manuscript notes taken by
Hermann Amandus Schwarz, then 20 years old, who attended the course (ABBAW, Nachlass Schwarz,
Nr. 29, Archivs der Berlin-Brandenburgischen Akademie der Wissenschaften, [KH16]:

“It is not proved that such functions have derivatives. Proofs are erroneous if I show that there
are such functions which are continuous in the above sense, but do not possess a derivative in any point.”

But one had to wait until 1872, July 18", for the first official (oral) presentation of the aforemen-
tioned Weierstrass function, at the Berlin Academy of Sciences, by Karl Weierstrass himself.

As regards the first written reference, it occured in a letter written by Karl Weierstrass to Paul-
Gustave du Bois-Reymond, in 1873 [Wei73]:

BRIEFE VON K. WEIERSTRASS AN PAUL DU BOIS-REYMOND.

Berlin, 23. November 1873.
Potsdamer Str. No. 40.
Verehrter Herr Kollege!

In Ihrer neuesten, mir von Borchardt mitgeteilten Abhandlung' haben Sie
meinen Beweis, daf die Funktion

D
> a"cos (V" wx)
n=0

unter den angegebenen Bedingungen an keiner Stelle einen bestimmten Diffe-
rential-Koeffizienten besitze, aufgenommen, Damit bin ich véllig einverstanden,

Beginning of the letter written by Karl Weierstrass to P.-G. Du Bois-Reymond [Wei73].

The translation is the following;:
“Dear Colleague,

In your last paper, published by Borchardt, you expose my proof showing that the function
(...) was everywhere non-differentiable under the conditions I gave. I agree with everything.”

One may then wonder what was Weierstrass’s point of view, on the Riemann function ? He layed



the emphazis upon, of course, the lack of proof, but, also, on the lack of precision: was the R function
non-differentiable everywhere, or at certain points only:

Es wire zunéichst nach meiner Ansicht zweckmifig ausdriicklich zu er-
wihnen, daf Ripmany bereits im Jahre 1861 einigen seiner Zuhtrer die durch
die Reihe

&, sin (0’ z)
= w

dargestellte Funktion als eine solche, die keine Ableitung besitze, bezeichnet,
seinen Beweis dafiir aber niemandem mitgeteilt, sondern nur gelegentlich ge-
dufert habe, derselbe sei aus der Theorie der elliptischen Funktionen zu holen.
Auch sei nichts dariiber bekannt, ob Riemann behauptet habe, seine Funktion
besitze an keiner Stelle einen bestimmten Differentialquotienten, — im Kreise
von Riemanns Schiilern schien man wenigstens von der Existenz solcher Funktionen
nichts gewuBt zu haben, wie aus einer Auferung Haxksis (Untersuchungen iiber

Second extract of the letter written by Karl Weierstrass to P.-G. Du Bois-
Reymond [Wei73].

“It seems appropriate to recall that Riemann presented this function to his students in 1861. This
function is not differentiable, yet, the proof has not been communicated to anyone, it has been said
that this could be done with the theory of elliptic functions. It is also not known whether Riemann
claimed that his function was non-differentiable everywhere, or at certain points only.”

This remark is all the more interesting, since it was not until the 1970’s that the differentiable
character of the R function at specific rational multiples of 7, of the form:

2p+1
T )
2g+1

p, q integers

was proved, by Joseph Gerver [Ger70].

As concerns the first publication, it took place in 1875, in the Crelle Journal, through an article
written by P.-G. du Bois-Reymond [BR75]:



Journal

fir die
reine und angewandte Mathematik.

In zwanglosen Heften

Als Fortsetzung des von
AL L. Crelle
gegrindeten Journals
heransgegebon
unter Mitwirkung der Herren

Kummer,

C. W. Borchardt.

Mit thatiger Beforderung hoher Koniglich-Preussischer Behorden.

Neunundsiebzigster Band.
In vier Heften.

Mit einer Figurentafel.

Berlin, 1875.
Druck und Verlag von Georg Reimer.

Ganz etwas Anderes scheinen mir aber die Functionen zu bedeuten,
die Herr Weierstrass seinen Bekannten mittheilt, die in keirem Punkte einen
Differentialquotienten besitzen, was noch von keiner der vorher angefiihrten
Functionen nachgewiesen worden ist, und welche bei ihrer grossen Ein-
fachheit und scheinbaren Unverfiinglichkeit ahnen lassen, eine wie verbreitete
Eigenschaft die Nichtdifferentiirbarkeit der Functionen sein mag. Hier sind
nicht besondere Zahlenarten, die doch schliesslich immer isolirt auftreten,
mit gewissen Singularitiiten behaftet, sondern diese sind durch das ganze
Grossengebiet des Arguments gleichformig und gleichsam stetig vertheilt **).

Um meine Zweifel zu zerstreuen, hatte Herr Weierstrass die Giite,
mir ein Beispiel einer solchen Function mitzutheilen, und ich glaube mir
die Fachgenossen zu Dank zu verpflichten, wenn ich es hier, wo es als
Beispiel einer durchweg stetigen Function, die nicht zur folgenden Classe
gehort, an seinem Platze ist, wortlich nach der Aufzeichnung des Verfassers
abdrucken lasse: .

»E8 sei = eine reelle Veriinderliche, @ eine ungerade ganze Zahl,
b eine positive Constante, kleiner als Eins, und

fl®) = %i‘,(b“cos(a"w)n);
so ist f(x) eine -stetige Function, von der sich zeigen lisst, dass sie, sobald

der Werth des Products ab eine gewisse Grenze iibersteigt, an keiner Stelle
einen bestimmten Differentialquotienten hat.

Extract of the article of P.-G. du Bois-Reymond in the Crelle Journal [BR75].

“The functions exposed by Mr. Weierstrass to his usual audience appear to me as being far dif-
ferent, since they possess nowhere a derivative ; this has never before been proved ; and despite an
appearance of great simplicity, and as inconceivable as it may seem, they do not possess this expected
property of differentiability. This does not concern isolated points, which could present singularities,
but intervals evenly distributed throughout the field of study. To dissipate my doubts, Mr. Weierstrass
was kind enough to give me an example of such a function, and I am very grateful to him ; it is an
example of a function, continuous everywhere, which does not belong to the usual classes of functions.
Listen how the author exposes it: “Given a real number x, a an odd integer, and b a positive constant,

smaller than one (...) then f(x) is a function continuous everywhere which, as soon as the product a b
exceeds a known value, is nowhere differentiable.”
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The Weierstrass Curve, in the case Ny =3, A = ok
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The Weierstrass Curve, in the case N =3, A = 1
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. , 1
The Weierstrass Curve, in the case Ny =7, A = ok

The impulse given by Weierstrass has led, from the 1870’s, to the emergence of other functions of
that type. One may quote, for instance, the one proposed by Jean Gaston Darboux [Dar75]|, [Dar79| :

+oo .
H!
x — Darbouzx(z) = E —sm((n—i—' )!) .
n!
n=1

The Darbouzr Curve

Jean Gaston Darboux proves the non-differentiability of his function (see [Dar75], pages 107-108).
The (n+ 1)! instead of a n! may intrigue. One has to look at the (non completely explicit) proof to
understand that if a n! had been substituted to the original (n+1)!, a n+ 1 factor crucial in the



non-differentiable feature would have been reported missing.

More precisely: by introducing a strictly positive integer N, Darboux uses a decomposition of his
function of the form

Darbour = ¢n + YN

where, for any real number x:

N-1 4o .
o) = 3 Sl DIa) -y oy sl DY)

n! n!
n=1 n=N

Given two strictly positive numbers h and e such that:

NXxN!xh=2¢

and due to the second order Taylor expansion that the reader will have of course applied:

N :
on s+ B) — Z{ (n+1)! COS((n+1)!x)—h—2((n+l)!)2 sm((n+1)!x)}+o(h2)

n! 2 n!

one “easily ” (to use Darboux’s terms) gets:

2 _ T N1 cos ((n lx 2 sin ((n ‘T
o +h})l on(z) Z{h (1)1 ((7:1)')_’;«71“)!)2((:‘1)')}%@)
n=1 ’ .
N—1 i
_ {(n+1) COS((”;U'”U) Z((n+1)!)2W}+o(h)
n=1

2
=l

= {(n—i—l) cos((n+1)!a:)—g(n—i-l)(n—i-l)! sin((n+1)!az)}+o(h)

n

Il
—

N

— Z{ncos(n!x)—Znn!sin(n!w)}+0(h)

n=2

Something is not clear in the original proof, because, instead of our previous expression, Darboux
writes:

¢n(x +h) — ¢n(2)
h

= Z n cos(n!z) —e sin (N!z) +w(N,e)

n="777

(we have written 777 for the lower bound in the sum, since the original text is not readable, one can
hardly see if it is a “1”, a “r” | a “2” ), and where w denotes a function such that, for a given e:

lim w(N,e)=0
N—+o00

So, with our current terminology, w corresponds to a sum of “o(-)”, and details are reported missing.

The main point of the proof given by Darboux is in fact to point out that, for the values of the real
number x such that

lim sin(N!z)=0
N—+o00

the limit



N

lim n cos (n!x)
N—4o00
n="77?7

does not exist.
Very elegantly, Darboux quotes Riemann, Schwarz and some others, but not Weierstrass ...

One finds, after, another example given in 1877 by Ulisse Dini |[Din77|, [Din78|:

—+o00

x — Dini(z) = Z

n=1

a”cos(1x3xh5x...x(2n—1)x) >1+3i
Ix3x5x...x(2n—1) @ 2

1 >
! "”I 1

The Dini Curve, in the case o = g + 3%

As a result, the existence of these functions cast a chill on the mathematical community. Let us
recall what wrote Charles Hermite, in one of his numerous letters to Thomas Stieltjes, in 1893 (|Cor05],
letter 374):

“I turn away with fright and horror from this lamentable plague of continuous functions that have
no derivatives.”

As for Poincaré [Poi90], he stated that:

“Logic sometimes creates monsters. For half a century, one has seen the birth of strange functions,
functions that look as little as possible as the honest ones, the useful ones. No more continuity, or
continuity, but no derivatives, etc ... Even more, from the logical point of view, those strange functions
appear as the most general ones, while those one may fall on by chance are relegated as special cases.
They only have a tiny corner left.”

Yet, and it is very important, contrary to the erroneous interpretations found in the litera-
ture (|[JP15], page 4), Poincaré never described Weierstrass’s work as offensive to common sense [Poi98|:

10



“To begin with, I shall quote a note read at the Berlin Academy on July 18, 1872, and where
Weierstrass gave examples of continuous functions of a real argument which, for any value of this
argument, do not possess a finite derivative. A hundred years ago, such a function would have been
regarded as an outrage to common sense. A continuous function, one would have said, is in essence
susceptible of being represented by a curve, and a curve obviously always has a tangent.”

What Poincaré says about these functions was, nevertheless, rather hard [Poi99|:

“Formerly, when new functions arose, it was because they were devoted to some practical purpose ;
today, they are invented expressly to put in default the reasoning of our fathers, and we will never get
out of it.”

Since then, the Weierstrass function has kept arousing interest. If this interest was initially due to
its nowhere differentiability, its fractal properties, brought to light about ninety years later by B. Man-
delbrot [Man82|, pages 388-390, made the community consider it from a new angle. Mandelbrot was
looking for an approximation of the Brownian motion, which accounts for its interest in the function
introduced by Weierstrass.

By moving to a slightly more general frame, Mandelbrot thus chose to consider the related complex
function defined, for any real number x, by:

W.(z) = wneQMTba:
=0
where

1 Dyy—2

After an introductory comparison with the Brownian motion, B. Mandelbrot placed himself on
the point of view of physics, and, especially, to study the function’s spectra: for each frequency f of the
form f =", n € N* the spectral line of energy, i.e. the one that results from emission or absorption
of light in a narrow range of frequencies, given by:

1 2
1_w2w"

yields a cumulative energy in frequencies f > b" of:

*2’0 1 1 o 1 1 1 1
w = —F W = = .
P 1 — w? (1 _ w2)2 (1 _ w2)2 p2nH (1 _ w2)2 fQH

B. Mandelbrot recalls then that, since “a function’s derivative is obtained by multiplying its k*" Fourier

coefﬁcisnt by k”, for physicists looking at the formal derivative of the complex Weierstrass function,
t

the 8™ Fourier coefficient has an amplitude squared equal to:

1
1—w?
Thus, the cumulative energies for frequencies greater or equal than 0™ are infinite, which enable physi-
cists to obtain the non-differentiability of the W function as an “intuitively obvious” feature.

w2n an .

B. Mandelbrot then explains that, if “the total high frequency energy is infinite”, it is thus “catas-
trophic for the theory”, echoing the 1900’s theory of Rayleigh and Jeans of blackbody radiation. By

11



resuming his comparison with Brownian motion, and for the purpose of future applications, B. Man-
delbrot thus proposes to take into account a modified version of the function, a one that would soon
be called Weierstrass-Mandelbrot one, defined, for any real number x, by:

— 1 ~ n 2iTb"x
Wule) = =y 3 w" {e 1)

Better than the classical Weierstrass function, the Wy function, still continuous everywhere, while
nowhere differentiable, bears a scaling property and is self-affine:

Vm € Z,Vx € R:

Wam (™ z) = 2“”’”””’“"—1}

S
_ w" {e
1—w? —

1

= WWM(x)

= o™ H W (z)

To better stick real modelling, B. Mandelbrot then proposes to randomize the function, which
enables one to approximate fractional Brown functions.

And as it has often been the case, B. Mandelbrot’s intuition proved to be right: the Weierstrass-
Mandelbrot function has practical applications. It was for instance shown in the 1990’s that the
function could be used in the modelling of turbulence [HSR92].

As for the classical Weierstrass function, it still occupies mathematicians. At stake is particu-
larly the determination of the dimension of the Weierstrass Curve, whether one considers the box (or
Minkowski-Bouligand) one, or the Hausdorff one. The value of the box-dimension, and how to obtain
it, was first found in the works of J.-L. Kaplan et al. [KMPY84|, or in the book of K. Falconer [Fal86]
(example 11.3). Both box and Hausdorff dimensions are discussed in the paper of F. Przytycki and
M. Urbanki [PU89|. An intermediate discussion, by means of a new dimension index, is proposed in
the one by T-Y. Hu and K-S. Lau [HL93|. As for the Hausdorff dimension, a proof is given by B. Hunt
[Hun98| in 1998 in the case where arbitrary phases are included in each cosinusoidal term of the summa-
tion. Recently, K. Baransky, B. Barany and J. Romanowska [BBR14| proved that, for any value of the

1
real number b, there exists a threshold value A, belonging to the interval 7 1| such that the aforemen-

tioned dimension is equal to Dyy for every b in |\, 1[. In [Kell7], G. Keller proposes what appears as a
much simpler and very original proof. Results by W. Shen [Shel8] go further than the ones of [BBR14].

One may note that Weierstrass’s work is not self-evident. It hits hard a whole academic tradition,
mindful of order and classicism, resisting the challenge of what was considered obvious and acquired.
Nearly a century will be necessary for the mathematical community to take seriously and start ex-
ploiting the very rich potential offered by the nowhere differentiability of the Weierstrass function. It
is not a coincidence that the discovery of our Berlin professor meets a real and renewed interest when
it is associated to the work on Brownian motion, thanks to Mandelbrot. The random, the erratic, the
breaking of sense and direction definitely make their entry into the so-called “serious” science. This
goes hand in hand with the extension of the notion of dimension. One might go further, and extend
this constant to the whole of thought and knowledge, in the twentieth century, all disciplines combined,
including arts and letters. Now, this movement of deciphering the irrational goes on. In the same vein,
our contribution will now try to put forward the link between the non-differentiability and the value
of the box-dimension of the curve.
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2 Basic properties of the Weierstrass function - Towards the graph

In the sequel, we aim at describing some geometric properties of the Weierstrass Curve, properties
which will be useful especially as regards theorem 3.1.

We place ourselves in the euclidian plane of dimension 2, referred to a direct orthonormal frame.
The usual Cartesian coordinates are (z,y).

Notation. In the following, A and b are two real numbers such that:

O<A<l , b=Ny, € N and AN, >1.
We will consider the Weierstrass function W, defined, for any real number x, by:

—+00
Wi(x) =) A" cos (2 Nj' ) -

n=0

Definition 2.1. Weierstrass Curve

We will call Weierstrass Curve the restriction to [0, 1[xR, of the graph of the Weierstrass function,
and denote it by I'y.

Property 2.1. Periodic properties of the Weierstrass function
For any real number x:

+oo oo
W(x+1) = Z)\” cos 2T Nz + 27 N}') = Z)\” cos (2w Ni' z) = W(x).
n=0 n=0

The study of the Weierstrass function can be restricted to the interval [0, 1].

The restriction I'yy to [0, 1[xR, of the Weierstrass Curve, is approximated by prefractals (sequence of
graphs, built through an iterative process).

To this purpose, we introduce the iterated function system of the family of C> maps from R?
to R?:
{Tv,....,Tn,-1}

where, for any integer i belonging to {0, ..., N, — 1}, and any (x,y) of R%:

Ti(z,y) = <xN—:Z,)\y+cos <27T <$]\ZZ>>) .

Remark 2.1. For any i of {0,..., Ny — 1}, the map 7; is not a contraction.

13



The Gluing Lemma [BD85] does not apply, but:

Lemma 2.2. For any integer i belonging to {0, ..., Ny — 1}, the map T; is a bijection of the graph of
the Weierstrass function on R.

Proof. Let us consider i € {0,..., N, —1}.
Consider a point (y, W(y)) of I')y, and let us look for a real number z of [0, 1] such that:

T; (2, W(z)) = (y, W(y)) -

One has:
T+
=N,
Then:
x=Npy—i-
This enables one to obtain:
+00 +oo
W(z) =W(Npy —i) = Z)\” cos (2 Nty — 27 N i) = Z)\" cos (27ranJrl Y)
n=0 n=0

and:

T (z, W(z)) = (W’AW(‘”HCOS@W (%Z)))
/

[e.9]
= y,Z)\"H cos (27 Nt y) + cos (27 y)
n=0

+o0o
= (y,Z)\" cos (27 Ny y)>

n=0
= (¥, W(y)) -

There exists thus a unique real number x such that:

T; (2, W(z)) = (y, W(y)) -

O
Property 2.3.
Np—1
Ty = |J T@Tw).
i=0
Proof. This immediately comes from Lemma 2.2.
O

14



Definition 2.2. Word, on the graph I'yy,

Let m be a strictly positive integer. We will call number-letter any integer M; of {0,..., N, — 1},
and word of length | M| = m, on the graph I')y, any set of number-letters of the form:

M= My,...,.Mp).

We will write:

Tyvm=Tpm,0...0T0,,.

Definition 2.3. For any integer i belonging to {0, ..., N — 1}, let us denote by:

i (.Z'@,yz) (Nb—171—)\COS<Nb_1>>

the fixed point of the map T;.

We will denote by Vp the ordered set (according to increasing abscissa), of the points:

{Po, ...,PNb_l}
since, for any i of {0, ..., N, — 2}:

Ti € Tit1-

The set of points Vp, where, for any i of {0, ..., N, — 2}, the point F; is linked to the point P;11, con-
stitutes an oriented graph (according to increasing abscissa), that we will denote by I'y,. Vp is called
the set of vertices of the graph I'yy,.

For any natural integer m, we set:
Ny—1

Vo= {J T (Vin1).-
i=0
The set of points V,, where two consecutive points are linked, is an oriented graph (according to

increasing abscissa), which we will denote by 'y, . V,,, is called the set of vertices of the graph I'yy, .
We will denote, in the following, by NS the number of vertices of the graph Ty, , and we will write:

Vi = { S5 S s 1 |-

15



Py P2

Py

1
The fized points Py, P1, Py, and the graph I'yy,, in the case where \ = > and N = 3.

Py

-
T

To (P2) =Ty (Po) T1 (P2) =T, (Po)

N />~ : > x
~

To (P) T, (P1)

s

Py

1
The graph I'yy,, in the case where A = 5 and Ny = 3. To(P2) = Th(Po) et Th(Pa) = Ta(Py).

Property 2.4. For any natural integer m:

Vi C Vm+1.

Property 2.5. For any integer i belonging to {0, ..., Ny — 2}:
T; (Pny—1) = Tit1 (Po) -

Proof. Since:
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» =

-2t

1
The graphs Ty, (in green), Ty, (in red), 'y, (in orange), T'y (in cyan), in the case where \ = 2
and Ny = 3.

one has :
14+4 A 142
T: (P = - 2
z( Ny 1) Nb,1_>\+COS ™ N,
1+ 1 A 141
Ty (P)) = (L= 2 2
H—l( 0) N, 717}\%—cos s 3

Property 2.6. The sequence (Ng)meN is an arithmetico-geometric one, with NS = Ny, as first term:

Vm e N: NS, =NNS— (N, —2)

Proof. This results comes from the fact that each graph I'yy, , m € N*, is built from its predeces-
sor Iy, , by applying the N, maps T;, 0 <7 < N, — 1, to the vertices of I'yy,, ;. Since, for any ¢
of {0, ceey Nb — 2}:

T; (Pn,-1) = Tiv1 (Po)
the, N, — 2 points appear twice if one takes into account the images of the N;,_1 vertices of T'yy, |

by the whole set of maps T;, 0 < i < Ny — 1.
O
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Definition 2.4. Vertices of the graph I'yy,

Two points X and Y of I'yy will be called vertices of the graph I'yy if there exists a natural integer m
such that:

(X.Y) €V

Definition 2.5. Consecutive vertices on the graph I'y,

Two points X and Y of I'yy will be called consecutive vertices of the graph I'yy, if there exist a
natural integer m, and an integer j of {0, ..., N, — 2}, such that:

X=(T,0...0T;,)(P) and Y =(T,,0...0T, ) (Pis1)  {i1,.-rim} € {0,..., Ny — 1}™
or:

X=(TjoTyo...0T;,) (Pn—1) and Y = (Tj410T;,...0T;,) (Fo).

Remark 2.2. It is important to note that X and Y cannot be in the same time the images of P;
and Pji1, 0 < j < Np_o, by T, 0...0T;, ., (i1,...,%m) € {0,..., Ny — 2}, and of P, and Py, 0 <
k< Ny_o,

by Ty, 0...0Ty,., (P1,---,Pm) € {0,..., N, — 2}. This result can be proved by induction, since, for any
pair of integers (j, k) of {0,..., N, — 2}2 , for any i,, of {0, ..., N, — 2}, and any p,, of {0, ..., N, — 2}:

(im # pm and  j # k) = (T;,, (F}) # Tj,, (P) and  Ti, (Pj) # T, (Pr)) -

Each map T;, 0 < i < N, — 1 is indeed injective.
Since the vertices of the initial graph I'yy, are distinct, one gets the expected result.

Property 2.7. For any natural integer m, the ./\/'n‘% consecutive vertices of the graph 'y, are, also, the
vertices of Ni"* simple polygons P, j, 0 < j < N* — 1, with Ny, sides (see Figure 8). For any integer j
such that 0 < j < NJ™ — 1, one obtains each polygon Py, ; by linking the point number j to the point
number j+ 1 if j =imod Ny, 0 < i < Ny — 2, and the point number j to the point number j — Ny + 1
if j = —1mod Np.

In the same way, the N,ﬁ — 2 consecutive vertices of the graph T'yy,,, distinct of Py and Pn,—1, are
the vertices of NJ* — 1 simple polygons Qp, j, 1 < j < Ny* — 2, with Ny, sides. For any integer j such
that 1 < j < N — 2, one obtains each polygon Q,, ; by linking the point number j to the point num-
ber 7+ 1 if j=imod Ny, 1 <1< Np—1, and the point number j to the point number j — Ny + 1
if 1 = 0mod Ny.

These polygons generate a Borel set of R?.
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polygon 24

A

%gon Q,

1 -
polygon W

To (P4) T2 (P1)

s

P4

1
The polygons P10, P11, P1,2,91,1, Q1,2 in the case where A = 37 and Ny = 3.

Property 2.8. For any natural integer m, and any integer j € {0,...,N;* —1}, there exists a
word /\/lfm- of length m such that the set of consecutive vertices of each Ny-gon Py, j is of the form:

{IlAﬁJ(f%)}

0<k<Ny—1
In the same way, for any natural integer m, and any integer j € {1,...,N* —2}, there exists a
word ./\/an”- of lentgh m such that the set of consecutive vertices of each Ny-gon Q,, ; is of the form.:
Tye (Pen)}
{ M%j( 1) 0<k<Np—1

Proof. The above result is obtained by induction.
It is obvious that, for m = 1, the consecutive vertices of the Ny-gons P1o, P11, ..., Pi,n,—1 are the
respective images To (P(]), To (Pl), ceey T() (PNbfl), Ceey TNbfl (Po), TNb,1 (Pl), ceey TNb,1 (PNbfl).

Now, given a natural integer m, let us assume that, for any integer j € {1,..., NJ" — 2}, there exists
a word M% j of lentgh m such that the set of consecutive vertices of each Ny-gon Py, ; is of the form:

Tor (P } .
{ an,j( ) 0<k<Ny—1

Since:
Np—1

Vi1 = U T; (Vin)
i—0

the set of consecutive vertices of each Np-gon Pp,41,; is thus of the form:

{TyoTpp (Pi).o Ty1 0 The (P}

0<k<Ny—1
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which naturally yields the searched result at the step m + 1:

= TO (¢] TMP

m,0

P
M7n+1,0

P = Tn._10T, P
Mm+1,Nb71 Np—1 Mo

TP = TooT) P
Mm+1,Ngn+1—Nb Mo, w1
T = Tn,_10T
MP Np—1 MZ,Nb—l

m+1,N;n+1—1

The second part of the property can be proved similarly.

Notation. For any natural integer m, we will respectively denote by

‘ o)
’J}0<J’<N£"—1 ’ {Mm’j 0<j<Ny 1

the ordered sets of the words of length m related to the sets of Ny-gons P, j, 0<j <N —1
and Q, j, 1 < j < V] — 2 as given in Property 2.8.

{M2

Property 2.9. The set |J Vi, is dense in T'yy.
meN

Proof. Since the function W is continuous, it suffices to remark that the set of the abscissae of the
vertices is dense in [0, 1]. Given a natural integer i, let us denote by A; the set of the abscissae of V;.

The set A; is transformed into % by the map 7o, then, this set is shifted by 77, ..., T, —1, and this
produces a new set of points, the distance between two consecutive new points having been divided
by Nb~

Formally, as exposed in the above, for any natural integer m, and any integer j € {0,...,N;" — 1},

there exists a word MZ j of length m such that the set of consecutive vertices of each Nj-gon P, ; is
of the form:

Tor (P }
{ an,j( k) 0<k<Ny—1

Let us write T)\,» under the form:
m,J

7VLOEm710,,,OE1

where (il,...,im) S {O,...,Nb— 1}m.

One has then:

m . m .
_ Tk ip ( ) _ Tkt ip
o (T, (P1) Ny pzzl vr oo W\ Tp, (B ) = e 2 N?
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and thus:
1

z (TME,J- (Pk+1)> = (T (Pr)) = Ny N7

One deduces then:

(Np—1) (V" 1)

k k+1
[O, 1] = kLJO |:(Nb — 1) Ngﬂj (Nb — 1) Nl;n:| - O<j<Nm—L1JO<]g<Nb_1 |:J,‘ (TME] (Pk)> » L (TMZ?LJ (Pk:-&-l))}
SISy UNUAS

Let us now consider a point X = (x,W(z)) of T')y, and a strictly positive number €. Due to the
continuity of the Weierstrass function, there exists a natural integer mg such that, for any m > my:

1

Vo' € [0,1]: -2l —
N

= ‘W(:U) -W (x'))‘ <e

By using our preliminary results, one deduces the existence of a natural integer m; > mg such that,
for any m > mj, the real number x belongs to an interval of the form:

k k+1
0<EkES(Ny—1) (N =1

e e (Ny = 1) (N )

or, equivalently:
[g: (TM% (Pk)) @ (TMZJ (Pk+1))] L 0<j<N"—1,0<k<N,—1
Thus:
‘W(w) W (o (Tuer (Pk)))\ <e
m,j

which yields the expected density result. O

Definition 2.6. Polygonal domain delimited by the graph I')y, , m € N

For any natural integer m, well call polygonal domain delimited by the graph I'yy, , and denote
by D (I'y,,), the reunion of the N{™ polygons Py, j, 0 < j < NJ* —1and Qp,;, 1 <j < N —2.

Remark 2.3. The introduction of this polygonal domain arises naturally as one builds the Weier-
strass curve. In the literature, one can already find approximating polygons, for instance in the case
of the Peano curve, as introduced by W. Wunderlich [Wun73|. Such a notion was then adopted
by H. Sagan [Sag86|, [Sag94]. As showed by H. Sagan, among other advantages, such polygons enable
to obtain the exact coordinates of nodal points, which is of course also the case for the Weierstrass
curve. The term “approximating” is justified in so far as the polygons approximate the considered
curve uniformly. In our case, we have choosen a slightly different, whatever equivalent, definition of
convergence.

Definition 2.7. Convergence of the sequence of polygonal domains (D (I'w,,)),,cn

We will say that the sequence of polygonal domains (D (I'y,, )),,cn converges towards the graph T'yy if,
when the integer m tends towards infinity, the Lebesgue measure of all polygons Py, ;, 0 < j < N;" — 1
and 9, j, 1 < j < N — 2, tends towards zero.
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Property 2.10. For any natural integer m, the vertices of the Ny-gons Pp,;, 0 < j < Ny 1, are
not self-intersecting.

Proof. Let us prove, by induction, that the vertices of the Ny—gons Pp,;, 0 < j < N —1 are not
self-intersecting.
For any integer ¢ belonging to {0, ..., N, — 1}:

. (xzayz) (Nb_l’l—)\COS(Nb—1>)

Thus, for any integer i belonging to {0, ..., N — 2}:

S L [ (2mG+DY (27
Yi+1 — Y = TEY N, — 1 N, — 1
2 (27n(i+14d)\ . [(27(i+1—19)
= - sin sin | ————
1— IN, — 1 2N, — 1

B 2 <in T (204 1) o T
N 1—X Ny —1 Ny —1

For the values of the integer ¢ such that:

m(2i+1) Ny
ST 42 IS DU LA
N,—1 STTET P {O B(Nb—l)”

le.:

ig{NbQ_Qer(Nb—l)J pe{o’l""’{ﬂ;f—l)”

one gets:
Yir1 =4 <0
To this point, one may note that the compatibility condition:

Ny —2
2

+p(Npy—1) <Ny —1
leads to:

e M
PSom, - 1)

The sole entire admissible value for the integer p is thus: 0.

In the same way, one shows that, for the values of the integer ¢ such that:

m(2i+1)
<l K2
T N, 1 ™
ie.:
Ny —2 ) 2Ny —3
i< | 7=
2 2
one gets:

Yir1 — Y =0
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This proves that the set {Fp, Pi,..., Py,—1} belongs to a non-self-intersecting continuous closed loop
in the plane.

One may also note that since the sequences (y;) Nb—2J and (y;) LNb_2J<i<L2Nb_3 are respectively
2 =S 2

o<i<| %,
non-increasing and non-decreasing, the polygon Fy P ... Py,_1 is convex. One has then just to use the
self-similarity of the graph, and reason by induction; for any strictly positive integer m:

V= |J T (V)
0<i<Ny—1
By assuming that the points of V,,_1 belong to a non-self-intersecting continuous closed loop in the
plane, it is also the case of their images T; (V;;,—1) by each map T;, 0 < @ < N, — 1. For any integer i be-
longing to {1,..., Ny — 2}, T; (Vi—1) and Tj41 (Vin—1) have exactly one common vertex, which happens
to be the last point of T; (V;,,—1), and the first one of T541 (Vi,—1). Moreover, T; (Vi—1) and Ti11 (Vi—1)
are ordered sets, according to increasing abscissae.
The proof is done in a similar way for the vertices of the N,—gons Q,, j, 1 < j < NJ" — 2.

Definition 2.8. Edge relation, on the graph I'y,

Given a natural integer m, two points X and Y of I'yy,, will be called adjacent if and only if X and Y
are two consecutive vertices of I'yy, . We will write:

X~Y
m
This edge relation ensures the existence of a word M = (My,..., M,,) of length m, such that X
and Y both belong to the iterate:
TmVo= (Tamy 0. 0Tm,,) Vo

Given two points X and Y of the graph I'yy, we will say that X and Y are adjacent if and only if
there exists a natural integer m such that:
X~Y
m

Proposition 2.11. Adresses, on the Weierstrass Curve

Given a strictly positive integer m, and a word M = (My,..., My,) of length m € N*, on the
graph Ty, , for any integer j of {1,..., Ny — 2}, any X = Tp(P;) of Vi \ Vo, i.e. distinct from one of
the Ny fized point P;, 0 <1< Ny — 1, has exactly two adjacent vertices, given by:

Tpm(Pjr1) and Ta(Pj-1)

where:

Tm=Tm,0...0T\,,

By convention, the adjacent vertices of Taq(Py) are Taq(Pr) and Ta(Pn,—1), those of Ta(Pny—1), Tam(Pr,—2)
and Ty (Fo) -
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3 From the box-counting dimension to the non-differentiability

Notation.
For any integer j belonging to {0,..., N, — 1}, any natural integer m, and any word M of length m,
we set:

Tm (Py) = (& (Tm (P)),y (Tm ()

1

L =2 (Tpm (Pj1)) — 2 (T (P)) = ™, — )N

hjm =y (Tm (Pit1)) — y (Taa (Fy)) -

Tu (Pp1)

3.1 Box-counting dimension

Notation. We will denote by:

In A
In Nb

the Hausdorff dimension of I'yy (see |[BBR14|, [Kell7]).

DW:2—|—

Definition 3.1 (Box-counting dimension). By definition of the box-counting dimension Dy (we
refer, for instance, to [Fal86]), one has:

. InN; (Tyy)
Dy =— lim —————=
W 65(1;r Iné

where Nj (I'yy) is any of the following:

i. the smallest number of sets of diameter at most ¢ that cover I'yy on [0,1] ;
ii. the smallest number of closed balls of radius ¢ that cover I'yy on [0,1] ;
iii. the smallest number of cubes of side § that cover I'yy on [0,1] ;

iv. the number of d-mesh cubes that intersect I'yy on [0, 1] ;

v. the largest number of disjoint balls of radius § with centers in ')y on [0, 1].

24



Theorem 3.1. An upper bound and a lower bound, for the box-dimension of the Weier-
strass Curve [Dav18]

For any integer j belonging to {0,1,..., Ny — 2}, each natural integer m, and each word M of
length m, let us consider the rectangle, whose sides are parallel to the horizontal and vertical azes, of

width:

1
(Np — 1) Nj”
and height |hj.m,|, such that the points Tag (P;) and Taq (Pj41) are two vertices of this rectangle.

L = 2 (Tpm (Pj11)) — 2 (Tm (P)) =

We set:
nw:%g{ (2N, — 1A (NZ—1) 2 N, }
(Ny—1)2(1—X) ()\sz - 1) ()\Nb2 -1) ()\Nb3 - 1)
_1)2-D 2 x . (@it ]| 2w 1 4 4
CL(Ny) = (o= {1% sin (1) i [sin (5527 Ny (Ny — 1) AN, — 1} ) R
- - 2 . N e ) 27 1 4 1—N, _ }
(Np — 1)>~PW max {m sin (ﬁ)og}?}&,_ﬁm( ij—_‘—ll )' NN ST N, =T ]\Tb? e —bl } if Ny is even
and:
Ca(Np) = nw (N — 1)>7Pw.
Then:

C1(No) L2 2% < |hjm| < Co(Ny) L3P

Proof. Sketch of proof (for the detailed proof, we refer to [Dav1§|

The proof is based on the fact that, given a strictly positive integer m, and two points X and Y of V,,
such that:
X~Y
m

there exists a word M of length | M| = m, on the graph I'yy, and an integer j of {0, ..., N, — 2}?, such
that:

X=Tu(P) , ¥=Tu(P).
By writing T'A¢ under the form:

Tm =1, oT; o...oT;

m—1

where (i1,...,im) € {0,..., Ny — 1}, one gets:

m .
x; n Tt
x(TM(Pj)):Nizn‘FZW o (T (Pj)) = ]m+ZNTfC
k=1

and:

m k.
m m— X Zm—ﬁ
y(Tm (Py) = A"y + E A"k cos (277 (N} + E Nk£>>
k=1 b

m k.
m m— Tj+1 tm—2
Y(Tam (Piv1)) = A yj+1+z>‘ ® cos <2W <]i;2s +Z ke))
b

k=1
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Notation. Given a natural integer m, we set:

Nb(DW—Q)m
(N — 1)2=Pw

hy = L27PW =

’hjm| 5 hom,

Remark 3.1. Comparison with previous results: explicit lower and upper bounds

It is worth noting that our result gives explicit lower and upper bounds for the quantity |h; |,
which enables one to obtain then the value of the box-counting dimension of the graph I'yy. Especially
concerning the lower bound, such a result does not appear in the existing literature on the subject.
Even if the result of G. Hardy [Har11], [Har16], at first destined to show the non-differentiability of the
Weierstrass function, is not referenced among the ones related to the calculation of the box-dimension,
one may note that he is the first to give a (non-explicit) upper bound and prove that, for any value of
the real number x, and n — 07:

W(z +n) = W(z) = O (In|*~"»)
(see cite [Har11], Theorem 1.3.2 page 303).
Later, in [KMPY84|, the authors rely on non-explicit lower-bound estimates. In [Hun98|, as
concerns the lower bound, the author calls for strictly positive constants K and K’ which, again,
are not given explicitely (see section 3., page 798). In [Shel8], also on the Hausdorff dimension of

the graph, the estimates are so scattered that it is extremely difficult to reconstruct explicit ones.
In [Kell7], again, there isn’t any explicit lower bound, but general constants K; and K (K7).

Corollary 3.2. The box-counting dimension of the graph Uy is exactly Dyy.

Proof. i. Given a strictly positive integer m, let us first consider the subdivision of the interval [0, 1]
into:

1
Np = — = (N, — 1) Nj™
Ly,
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sub-intervals of length L,,. One has to determine a natural integer N, such that the graph of I'yy
on [0, 1] can be covered by N, x Ny, squares of side length L,,.

The difficulty is indeed to cover not only the approached m!*-order graph T'yy,,, but any (m+ p)th—

order graph 'y, p, p € N, and, thus, I'yy.
This is achieved thanks to the Holder condition satisfied by the Weierstrass function |Zyg02|:

V(zy) € 0,170 W) =Wyl S |z -y~

Thus, given two adjacent vertices X and Y of the m*-order graph I'yy,,,, all the points of the Weierstrass
Curve that are between X and Y belong to a rectangle of height equal to h,, = L27P", and of
width L,,. A convenient cover of the Weierstrass Curve between X and Y requires at most:

h

™ squares of side length L,,

Ly,
To cover the Weierstrass Curve on the semi-opened interval [0, 1[ thus requires at most:
hon 1 b he Gy LW
Ly Ly L, L2~ L2

Let us now consider a strictly positive real number ¢ such that:

N, =Cy LD

Lm <6< mel

then, a d-cover of I'yy on [0, 1] is at most constituted of:

Oy L;lDW

squares of side L,,.

N p=gon Pmji2

>
3
e <

N p=gon Ppm.1k

Given three consecutive vertices of I'yy,, , Xk, Xi+1, Xit2, where k denotes a generic nat-
ural integer, Yii1, ..., Yiin,—1 are the points of V41 \ Vi, such that: Y1, ..., Yiin,—1
are between X and Xjy1, and by Yiin,+1, ..., Yiion,—1, the points of Vi1 \ Vi, such
that: YiinN,+1, ---» Yit2nN,—1 are between X1 and Xj,o. In magenta, one can see the §-
cover of squares of side L,,, in green, the d-cover of squares of side §.
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Hence:

-D
< CQ(Nb) Lm W

Ns (T'w) < Nbl_ Dy
which yields:
In CQ(Nb) L;lDW
, In Nj (Tyy) , N}TPw , In L;;Pw
—limsup ———————= < —limsup = —limsup ———— = Dyy

i1. Conversely, given a strictly positive real number § such that:

Lm+1§(5<Lm s m € N*

any square of side  intersects at most Ny, polygons Pp,41,5, 0 < j < Ng”Jrl — 1 that occur at step m+1
in the construction of I'yy on [0, 1[. Due, again, to the Holder condition satisfied by the Weierstrass
function |Zyg02|, a Ny-gon Prui1,, 0 < j < Ng”“ — 1, can be inscribed in a rectangle of heigth at
most equal to hp,+1, and of width L,,+1, which contains all the points of the curve that are between
the extreme vertices of Pp,41 ;.

N p-gon 2p ; N b=gon Pm,j+2

., N ,-gon Prm,j+1 \

hm

td
Yk+y,(1'

-
1

e

N p-gon Zm.1,
In green, a square of side 6 € [Lp,11, L[ intersecting polygons P11, 0 < j < Ng”“ —1.
There are Ng”“ such polygons. One has to consider the vertical amplitude, taking account that

the NZ”H polygons Pp, 415,00 < j < Ng”“ — 1, with NV, sides, are related to the elementary height h,11.
This brings in a required number (related to the vertical amplitude) at least of:

hm—l—l
N,
b
Thus:
1 hms1 _ Nphmsa
N5 (Tw) > = x N, >
s (T'w) 5 b5 Iz
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ie.:

Nohmia  No C1(IVs) Lz o

N5 (FW) P =
L7, L7,
ie.:
Nb Cl (Nb) L%;DW
N5 (Tyw) > 72 NbQ*DW
ie.:
C1(Np) L,
Ns (Tw) = W
So, at least
C1(No) Ly
1-D
Ny~
squares of side § are required to cover I'yy on [0, 1].
Hence:
C1(Ny) L,,Pw
b

which yields:

1 (Nb) L;LDW
n e —

In N (T NI=Pw In L Pw
— liminf w > — liminf b = — liminf B
5—0+ Iné m—+00 InL,, m—+oo  In Ly,

1

Corollary 3.3. The sequence of polygonal domains (D (I'yw,,)),,en converges towards I'yy.

Proof. For any natural integer m,, the aforementioned squares, the side length of which is at most
equal to L, that can cover the graph I'yy,, on [0, 1[, also cover the polygonal domain D ('), ). Since

lim L,, =0
m——+00

the convergence is obvious.
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3.2 Non-differentiability of the Weierstrass function

The original proof of the non-differentiability of the Weierstrass function was given by K. Weierstrass
3
in the case where AN, > 1 + 771’, Ny being an odd positive integer (see |Tit39|, pages 351-354). It is

rather technical (two pages), and consists in proving that the W function has no finite derivative for
any value of x € R, since the quantity:

W(z+h) — W (z)
h

takes arbitrary large values when h — 0T.

A slight improvement was given by T. J. Bromwich [Bro08§], in the case where

)\Nb>1+377r(1—)\)

T. J. Bromwich seemed very proud of his result, and did not hesitate to qualify the seminal con-
dition of Weierstrass of “unnecessarily narrow” ...

In [Harl6], G. H. Hardy showed that all those conditions were artificial ones, which “arised in
consequence of the methods employed”, and, as it could have been expected, did not correspond to
“any essential feature of the function”. G. H. Hardy proved that in the general case, i.e. not depending
on the fact that b was or was not an integer, and under the condition:

Ab>1

the W function is not differentiable. Again, it is very technical, the aim being to obtain estimates that
enable to get the expected result. Following the above remark of Hardy himself, one may say that, at
the times, one did not have enough appropriate tools.

To get the expected limit, one simply requires a lower bound for the absolute value of the average
rate of change

W (z+h)— W (x)
h

where h denotes a positive real number that tends to 0, which happens to be given by Theorem 3.1.

Corollary 3.4. (of Theorem 3.1)
In the case where

O0<A<l , b=N, €N and AN, >1
the W function is non-differentiable.

Proof. Given a point X = (z,W(x)) of I'yy , and a natural integer m, one may note that, for:

ko = sup {k € {O,...,ng—l},a:(TMm’j (Pk)) <x}

where M, j, 0 < j < NJ® — 1 denotes a word of length m, one has:

x (TMm,j (Pk0)> Sr<svw (TMm,j (Pk0+1>)
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In the same time:

|2 (T s (Pro)) = 2 (Taty; (Pros1))| = W =Lm =20
Thus:
W (o (Tat, (B) = W (& (T, (Prgs))| > €\ () L2 P

CLNY) |2 (T, (Pro)) — & (Tan,,, (Pro))[*~
which leads to:

w (w (TMm,j (Pko))) -Ww (a: (TMm,j (Pko-i-l)))
x (TMm,j (Pko)) -z (TMm,j (Pko-l—l))

~~

Lm

\%

1 (Nb) ‘x (TMm,j (Pko)) - (TMm,j (P]f0+1)) ‘liDW

= C1(Ny) L Pw

where

~ImA - In(AN)
InN, In V,,

By passing to the limit when the integer m tends towards infinity, one gets the non-differentiability
expected result:

1—Dy =-1 <0

S—_ (= (Tay,; (Pro))) =W (2 (T, (Prot1))) | .
m——+00 Lm N

The key point of this proof is that the points of the m!* order prefractal graph approximation,

in particular, T'v,, ; (Pry) and Ta,, ; (Pro+1), are also on the Weierstrass Curve. One thus naturally
falls on the limit position of the secant.

O]

Thanks

The author would like to thank JPG, FD, AK, for their very pertinent suggestions and advices,
which helped a lot improving the original work.

References

[Amp06]  A.-M. Ampére. Recherches sur quelques points de la théorie des fonctions dérivées qui
conduisent a une nouvelle démonstration de la série de Taylor, et a 'expression finie des

termes qu’on néglige lorsqu’on arréte cette série a un terme quelconque. J. Ecole Polytech.,
6:148-181, 1806.

31



[BBR14]

[BDS5)

[BR75]

[Bro0g]

[BU37]

[Cor05]
[Dar75]

[Dar79]

[Dav1g]

[Din77]

[Din78§|

|Fals6]
[Ger70|

[Harl1]

[Har16]

[HLO3]

[HSR92]

[Hun9s|

[JP15]

K. Baranisky, B. Barany, and J. Romanowska. On the dimension of the graph of the classical
Weierstrass function. Advances in Math., 265:791-800, 2014.

M. F. Barnsley and S. Demko. Iterated function systems and the global construction of
fractals. The Proceedings of the Royal Society of London, A(399):243-275, 1985.

P.-G. Du Bois-Reymond. Versuch eine Classification der willkiirlichen Funktionen reeller
Argumente nach ihren Aenderungen in den kleinsten Intervallen. Journal fir die reine und
angewandte Mathematik, 79:21-37, 1875.

T. J. I. Bromwich. An Introduction To The Theory Of Infinite Series. MacMillan and Co.,
1908.

A. S. Besicovitch and H. D. Ursell. Sets of Fractional dimensions (v): on dimensional
numbers of some continuous curves. J. London Math. Soc., 12(1):18-25, 1937.

Correspondance d’Hermite et de Stieltjes - Tome II. Paris: Gauthier-Villars, 1905.

G. Darboux. Mémoire sur les fonctions discontinues. Ann. Sci. Ecole Norm. Sup. Sér. 2,
4:57-112, 1875.

G. Darboux. Addition au mémoire sur les fonctions discontinues. Ann. Sci. Ecole Norm.
Sup. Sér. 2, 8:195-202, 1879.

Cl. David. Bypassing dynamical systems : A simple way to get the box-counting dimension
of the graph of the Weierstrass function. Proceedings of the International Geometry Center,
11(2):1-16, 2018.

U. Dini. Su alcune funzioni che in tutto un intervallo non hanno mai derivata. Annali d¢
Matematica, 8:122—-137, 1877.

U. Dini. Fondamenti per la teorica delle funzioni di variabili reali. Pisa: Tipografia T. Nistri
e C., 1878.

K. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1986.

J. Gerver. The differentiability of the Riemann function at certain rational multiples of .
American Journal Math., 82:33-55, 1970.

G. Hardy. Theorems connected with Maclaurin’s test for the convergence of series. The
Proceedings of the Royal Society of London, s2-9(1):126-144, 1911.

G. H. Hardy. Weierstrass’s Non-Differentiable Function. Transactions of the American
Mathematical Society, 17(3):301-325, 1916.

T.-Y. Hu and K.-S. Lau. Fractal dimensions and singularities of the Weierstrass type
functions. Transactions of the American Mathematical Society, 335(2):649-665, 1993.

J. A. C. Humphrey, C. A. Schuler, and B. Rubinsky. On the use of the Weierstrass- Man-
delbrot function to describe the fractal component of turbulent velocity. Fluid Dynamics
Researc, 9:81-95, 1992.

B. Hunt. The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math.
Soc., 12(1):791-800, 1998.

M. Jarnicki and P. Pflug. Continuous Nowhere Differentiable Functions, The Monsters of
Analysis. Sringer, 2015.

32



[Kah64]

[Kel17]

[KH16|

[KMPY84]

[Man77|

[Man82|

[Poi9g]

[Poi99)

[Poi90]

[PUS9

[Sag86]

[Sag94]
[Shel8|

[Tit39]
[Wei54]

[Wei56|
[Wei73|

[Wei75]

[Wun73|

[Zyg02]

J.-P. Kahane. Lacunary Taylor and Fourier series. Bull. Amer. Math. Soc., 70(2):169-181,
1964.

G. Keller. A simpler proof for the dimension of the graph of the classical Weierstrass
function. Ann. Inst. Poincaré, 53(1):169-181, 2017.

Wolfgang Konig and Jiirgen Sprekels Hrsg. Karl Weierstrass (1815-1897) Aspekte seines
Lebens und Werkes. Wiesbaden: Springer, 2016.

J. Kaplan, J. Mallet-Paret, and J. Yorke. The Lyapunov dimension of a nowhere differen-
tiable attracting torus. Ergodic Theory Dynam. Systems, 4:261-281, 1984.

B. B. Mandelbrot. Fractals: form, chance, and dimension. San Francisco: Freeman, 1977.

B. B. Mandelbrot. The Fractal Geometry of Nature. San Francisco: W. H. Freeman & Co
Ltd, 1982.

H. Poincaré. L’ccuvre mathématique de Weierstrass. Acta mathematica, 22, 1898.

H. Poincaré. La logique et I'intuition dans la science mathématique et dans ’enseignement.
Enseign. Math., 12(1):157-162, 1899.

H. Poincaré. Science et méthode. Paris: E. Flammarion, 1907

F. Przytycki and M. Urbariski. On the Hausdorff dimension of some fractal sets. Studia
Math., 93(2):155-186, 1989.

H. Sagan. Approximating Polygons for Lebesgue’s and Schoenberg’s Space Filling Curves.
The American Mathematical Monthly, 93(5):361-368, 1986.

H. Sagan. Space Filling Curves. Springer, New York, NY, 1994.

W. Shen. Hausdorff dimension of the graphs of the classical Weierstrass functions. Math.
Z., 289:223-266, 2018.

E. C. Titschmarsh. The theory of functions, Second edition. Oxford University Press, 1939.

K. Weierstrass. Zur Theorie der Abelschen Functionen. J. Reine Angew. Math., 47:289—
306, 1854.

K. Weierstrass. Theorie der Abel’schen Functionen. J. Reine Angew. Math., 52:285-380,
1856.

K. Weierstrass. Briefe von K. Weierstrass an Paul du Bois-Reymond, 1873.

K. Weierstrass. Uber continuirliche Funktionen eines reellen Arguments, die fiir keinen
Werth des letzteren einen bestimmten Differential quotienten besitzen. Journal fiir die
reine und angewandte Mathematik, 79:29-31, 1875.

W. Wunderlich. Elemente Der Mathematik. 28/1:1-10, 1973.

A. Zygmund. Trigonometric series, Third edition. With a foreword by Robert A. Fefferman,
volume I,II. Cambridge University Press, 2002.

33



