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Introduction

The Weierstrass function, introduced in the the second part of the nineteenth century by Karl Weierstrass [START_REF] König | Aspekte seines Lebens und Werkes[END_REF], [START_REF] Weierstrass | Über continuirliche Funktionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differential quotienten besitzen[END_REF], is known as one of these so-called pathological mathematical objects, continuous everywhere, while nowhere differentiable; given λ ∈ ]0, 1[, and b such that λ b > 1 + 3 π 2 , it is the sum of the uniformly convergent trigonometric series

x ∈ R → +∞ n=0 λ n cos (π b n x) .
The story of this function, and its introduction, by Karl Weierstrass, is of interest. It has to be placed in both a mathematical and a historical context. On the mathematical point of view, of course, much better than done by Bernhard Riemann in 1861 [START_REF] Darboux | Mémoire sur les fonctions discontinues[END_REF], because the proof of the nondifferentiability was given to the whole community, it challenged all the existing theories that went back to André-Marie Ampère at the beginning of the century, and led a new impulse that aroused, in the community, the emergence of new functions bearing the same type of properties.

In the historical point of view, it coincides with the global upgrade, material, moral and conceptual, initiated by Prussia in the XIX th century, within the framework of German unity, upgrade which is certainly behind the appointment of Karl Weierstrass, a former high-school teacher, as Professor at the Friedrich-Wilhelms University of Berlin. Karl Weierstrass had distinguished himself by his results on Abelian functions [START_REF] Weierstrass | Zur Theorie der Abelschen Functionen[END_REF], [START_REF] Weierstrass | Theorie der Abel'schen Functionen[END_REF]: the German University could not miss such a talent. This choice proved more than just right. The introduction of the Weierstrass function has made history. Its impact lasts since, even if it took a while before new properties came to light.

Actually, in addition to its nowhere differentiability, an interesting feature of the function is its self similarity properties. After the works of A. S. Besicovitch and H. D. Ursell [START_REF] Besicovitch | Sets of Fractional dimensions (v): on dimensional numbers of some continuous curves[END_REF], it is Benoît Mandelbrot [START_REF] Mandelbrot | Fractals: form, chance, and dimension[END_REF] who particularly highlighted the fractal properties of the Weierstrass Curve. He also conjectured that the Hausdorff dimension of the graph is D W = 2 + ln λ ln b .

In the view of all that we have evoked, it seemed important to us to consider the Weierstrass function under the prism of an historical perspective, as we expose it in section 1, all the more as interesting discussions still occupy the mathematician community, and us in particular.

For instance, in [START_REF] Cl | Bypassing dynamical systems : A simple way to get the box-counting dimension of the graph of the Weierstrass function[END_REF], we have showed that, in the case where b = N b is an integer, and contrarily to existing work on the subject, the box-counting dimension (or Minkowski dimension) of the Weierstrass curve, which happens to be equal to its Hausdorff dimension [START_REF] Kaplan | The Lyapunov dimension of a nowhere differentiable attracting torus[END_REF], [START_REF] Barańsky | On the dimension of the graph of the classical Weierstrass function[END_REF], can be obtained in a simple way, without calling for theoretical background in dynamic systems theory, as it is usually the case. At stake are prefractals, by means of a sequence of graphs, that converge towards the Weierstrass Curve. This sequence of graphs enables one to show nice geometric properties, since, for any natural integer m, the consecutive vertices of the m th -order graph Γ Wm are the vertices of simple not self-intersecting polygons with N b sides, as it is exposed in section 2, polygons which play a part in the determination of the box-counting dimension of the curve. Also, we improve or retrieve more classical results, and rather simply, as exposed in the sequel: in section 3, we put the light on the fact that our result concerning the box-dimension of the graph also gives an explicit lower bound, which is not given in existing works. Furthermore, we give a new proof of the non-differentiability of the Weierstrass function in the aforementioned case.

1 An historical overview: From Ampère and well-established beliefs, to the so-called pathological objects

The beginning of the memoir of André-Marie Ampère [START_REF] Ampère | Recherches sur quelques points de la théorie des fonctions dérivées qui conduisent à une nouvelle démonstration de la série de Taylor, et à l'expression finie des termes qu'on néglige lorsqu'on arrête cette série à un terme quelconque[END_REF].

This lasted a certain time, until the 1860's to be exact ; let us quote the french mathematician Jean Gaston Darboux [START_REF] Darboux | Mémoire sur les fonctions discontinues[END_REF]:

"Until the appearance of Riemann's memoir on trigonometric series, no doubt had been raised about the existence of the derivative of continuous functions. Excellent, illustrious geometers, among whom Ampère, had tried to give rigorous proofs of the existence of the derivative. These attempts were, no doubt, far from being satisfactory ; but, I repeat, no doubt had been expressed about the very existence of a derivative for continuous functions." Gaston Darboux of course refers to the mention, in 1861, by Bernhard Riemann, then Professor at the University of Göttingen, of the existence of a continuous function that would not be nowhere differentiable:

x → R(x) = +∞ n=1 sin n 2 x n 2
It is not clear wether Riemann gave a proof. If he did so, there is no mention of it in the literature of the time. And no one, at that time too, knew how to obtain it.

About two years later, during the winter 1863-1864, the former high school teacher (1842-1855) Karl Weierstrass, who had been appointed in 1856 Professor at what would then become the Friedrich-Wilhelm University of Berlin (the Königliches Gewerbeinstitut), gave a course on the theory of analytic functions. In this peculiar course took place the first evocation of a new function, continuous everywhere, and nowhere differentiable, which would then be called after him "Weierstrass function". How did this function come to Weierstrass's mind ? Some, like J.-P. Kahane [START_REF] Kahane | Lacunary Taylor and Fourier series[END_REF], suggest that it could be attributed to the Riemann function, for which he did not know how to prove the non-differentiable feature. Without taking sides, it may simply come from the fact that these questions, that were in the air, aroused interest in the mathematical community of the time. To use terminology currently in vogue, it is what historians today call "circulation of ideas".

It is interesting to note that the appointment of Karl Weierstrass as Professor coincides with the global upgrade, material, moral and conceptual, initiated by Prussia. Prussia wanted the German science to dominate the world. So, when whe Austrian Minister of Education, Leopold Graf von Thun und Hohenstein, proposed to Karl Weierstrass the creation of a chair, in the university of his choice, with an annual salary of 2000 gulden [START_REF] König | Aspekte seines Lebens und Werkes[END_REF], Berlin immediately made a counter offer. This is the culmination of the regeneration Prussian process, launched in 1806, after the defeat of Iena against Napoleon.

In 1864, therefore, the Friedrich-Wilhelm University attributed a chair to Karl Weierstrass, at the exact moment when Bismarck began the German unification (War of Duchies). Everything was then connected: science, industry, prosperity, military and political power.

Beyond this configuration, what is of main interest to us is the specific story of the function, and, if one can say, its emergence in the mathematical communauty of the time. This of course leads one to consider the oldest known evidence, which can be found in a fac-similé of manuscript notes taken by Hermann Amandus Schwarz, then 20 years old, who attended the course (ABBAW, Nachlass Schwarz, Nr. 29, Archivs der Berlin-Brandenburgischen Akademie der Wissenschaften, [START_REF] König | Aspekte seines Lebens und Werkes[END_REF]: "It seems appropriate to recall that Riemann presented this function to his students in 1861. This function is not differentiable, yet, the proof has not been communicated to anyone, it has been said that this could be done with the theory of elliptic functions. It is also not known whether Riemann claimed that his function was non-differentiable everywhere, or at certain points only."

"
This remark is all the more interesting, since it was not until the 1970's that the differentiable character of the R function at specific rational multiples of π, of the form: 2 p + 1 2 q + 1 π , p, q integers was proved, by Joseph Gerver [START_REF] Gerver | The differentiability of the Riemann function at certain rational multiples of π[END_REF].

As concerns the first publication, it took place in 1875, in the Crelle Journal, through an article written by P.-G. du Bois-Reymond [START_REF] Bois-Reymond | Versuch eine Classification der willkürlichen Funktionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen[END_REF]: Extract of the article of P.-G. du Bois-Reymond in the Crelle Journal [START_REF] Bois-Reymond | Versuch eine Classification der willkürlichen Funktionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen[END_REF].

"The functions exposed by Mr. Weierstrass to his usual audience appear to me as being far different, since they possess nowhere a derivative ; this has never before been proved ; and despite an appearance of great simplicity, and as inconceivable as it may seem, they do not possess this expected property of differentiability. This does not concern isolated points, which could present singularities, but intervals evenly distributed throughout the field of study. To dissipate my doubts, Mr. Weierstrass was kind enough to give me an example of such a function, and I am very grateful to him ; it is an example of a function, continuous everywhere, which does not belong to the usual classes of functions. Listen how the author exposes it: "Given a real number x, a an odd integer, and b a positive constant, smaller than one (...) then f (x) is a function continuous everywhere which, as soon as the product a b exceeds a known value, is nowhere differentiable."
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The impulse given by Weierstrass has led, from the 1870's, to the emergence of other functions of that type. One may quote, for instance, the one proposed by Jean Gaston Darboux [START_REF] Darboux | Mémoire sur les fonctions discontinues[END_REF], [START_REF] Darboux | Addition au mémoire sur les fonctions discontinues[END_REF] :

x → Darboux(x) = +∞ n=1 sin ((n + 1) ! x) n ! • 1 x 1 The Darboux Curve
Jean Gaston Darboux proves the non-differentiability of his function (see [START_REF] Darboux | Mémoire sur les fonctions discontinues[END_REF], pages 107-108). The (n + 1) ! instead of a n ! may intrigue. One has to look at the (non completely explicit) proof to understand that if a n ! had been substituted to the original (n + 1) !, a n + 1 factor crucial in the non-differentiable feature would have been reported missing.

More precisely: by introducing a strictly positive integer N , Darboux uses a decomposition of his function of the form

Darboux = φ N + ψ N
where, for any real number x:

φ N (x) = N -1 n=1 sin ((n + 1) ! x) n ! , ψ N (x) = +∞ n=N sin ((n + 1) ! x) n ! •
Given two strictly positive numbers h and ε such that:

N × N ! × h = 2 ε
and due to the second order Taylor expansion that the reader will have of course applied:

φ N (x + h) -φ N (x) = N -1 n=1 h (n + 1) ! cos ((n + 1) ! x) n ! - h 2 2 ((n + 1) !) 2 sin ((n + 1) ! x) n ! + o h 2
one "easily " (to use Darboux's terms) gets:

φ N (x + h) -φ N (x) h = N -1 n=1 h (n + 1) ! cos ((n + 1) ! x) n ! - h 2 2 ((n + 1) !) 2 sin ((n + 1) ! x) n ! + o (h) = N -1 n=1 (n + 1) ! cos ((n + 1) ! x) n ! - h 2 ((n + 1) !) 2 sin ((n + 1) ! x) n ! + o (h) = N -1 n=1 (n + 1) cos ((n + 1) ! x) - h 2 (n + 1) (n + 1) ! sin ((n + 1) ! x) + o (h) = N n=2 n cos (n ! x) - h 2 n n ! sin (n ! x) + o (h)
Something is not clear in the original proof, because, instead of our previous expression, Darboux writes:

φ N (x + h) -φ N (x) h = N n=??? n cos (n ! x) -ε sin (N ! x) + ω (N, ε)
(we have written ??? for the lower bound in the sum, since the original text is not readable, one can hardly see if it is a "1", a "r" , a "x" ), and where ω denotes a function such that, for a given ε:

lim N →+∞ ω (N, ε) = 0
So, with our current terminology, ω corresponds to a sum of "o (•)", and details are reported missing.

The main point of the proof given by Darboux is in fact to point out that, for the values of the real number x such that

lim N →+∞ sin (N ! x) = 0 the limit lim N →+∞ N n=??? n cos (n ! x)
does not exist.

Very elegantly, Darboux quotes Riemann, Schwarz and some others, but not Weierstrass ... One finds, after, another example given in 1877 by Ulisse Dini [START_REF] Dini | Su alcune funzioni che in tutto un intervallo non hanno mai derivata[END_REF], [START_REF] Dini | Fondamenti per la teorica delle funzioni di variabili reali[END_REF]:

x → Dini(x) = +∞ n=1 α n cos (1 × 3 × 5 × . . . × (2 n -1) x) 1 × 3 × 5 × . . . × (2 n -1) , α > 1 + 3 π 2 • 1 x 1 The Dini Curve, in the case α = 3 2 + 3 π 2
As a result, the existence of these functions cast a chill on the mathematical community. Let us recall what wrote Charles Hermite, in one of his numerous letters to Thomas Stieltjes, in 1893 ([Cor05], letter 374): "I turn away with fright and horror from this lamentable plague of continuous functions that have no derivatives." As for Poincaré [START_REF] Poincaré | Science et méthode[END_REF], he stated that: "Logic sometimes creates monsters. For half a century, one has seen the birth of strange functions, functions that look as little as possible as the honest ones, the useful ones. No more continuity, or continuity, but no derivatives, etc ... Even more, from the logical point of view, those strange functions appear as the most general ones, while those one may fall on by chance are relegated as special cases. They only have a tiny corner left." Yet, and it is very important, contrary to the erroneous interpretations found in the literature ([JP15], page 4), Poincaré never described Weierstrass's work as offensive to common sense [START_REF] Poincaré | L'oeuvre mathématique de Weierstrass[END_REF]: "To begin with, I shall quote a note read at the Berlin Academy on July 18, 1872, and where Weierstrass gave examples of continuous functions of a real argument which, for any value of this argument, do not possess a finite derivative. A hundred years ago, such a function would have been regarded as an outrage to common sense. A continuous function, one would have said, is in essence susceptible of being represented by a curve, and a curve obviously always has a tangent."

What Poincaré says about these functions was, nevertheless, rather hard [START_REF] Poincaré | La logique et l'intuition dans la science mathématique et dans l'enseignement[END_REF]: "Formerly, when new functions arose, it was because they were devoted to some practical purpose ; today, they are invented expressly to put in default the reasoning of our fathers, and we will never get out of it."

Since then, the Weierstrass function has kept arousing interest. If this interest was initially due to its nowhere differentiability, its fractal properties, brought to light about ninety years later by B. Mandelbrot [START_REF] Mandelbrot | The Fractal Geometry of Nature[END_REF], pages 388-390, made the community consider it from a new angle. Mandelbrot was looking for an approximation of the Brownian motion, which accounts for its interest in the function introduced by Weierstrass.

By moving to a slightly more general frame, Mandelbrot thus chose to consider the related complex function defined, for any real number x, by:

W c (x) = 1 √ 1 -w 2 +∞ n=0 w n e 2 i π b n x where b > 1 , w = 1 b H = b D W -2 , 1 < 2 -H = D W < 2
After an introductory comparison with the Brownian motion, B. Mandelbrot placed himself on the point of view of physics, and, especially, to study the function's spectra: for each frequency f of the form f = b n , n ∈ N the spectral line of energy, i.e. the one that results from emission or absorption of light in a narrow range of frequencies, given by:

1 1 -w 2 w 2 n yields a cumulative energy in frequencies f b n of: +∞ k=n 1 1 -w 2 w 2 k = 1 (1 -w 2 ) 2 w 2 n = 1 (1 -w 2 ) 2 1 b 2 n H = 1 (1 -w 2 ) 2 1 f 2 H • B.
Mandelbrot recalls then that, since "a function's derivative is obtained by multiplying its k th Fourier coefficient by k", for physicists looking at the formal derivative of the complex Weierstrass function, the b n th Fourier coefficient has an amplitude squared equal to:

1 1 -w 2 w 2 n b 2 n •
Thus, the cumulative energies for frequencies greater or equal than b n are infinite, which enable physicists to obtain the non-differentiability of the W function as an "intuitively obvious" feature. B. Mandelbrot then explains that, if "the total high frequency energy is infinite", it is thus "catastrophic for the theory", echoing the 1900's theory of Rayleigh and Jeans of blackbody radiation. By resuming his comparison with Brownian motion, and for the purpose of future applications, B. Mandelbrot thus proposes to take into account a modified version of the function, a one that would soon be called Weierstrass-Mandelbrot one, defined, for any real number x, by:

W M (x) = 1 √ 1 -w 2 +∞ n=-∞
w n e 2 i π b n x -1

Better than the classical Weierstrass function, the W M function, still continuous everywhere, while nowhere differentiable, bears a scaling property and is self-affine:

∀ m ∈ Z, ∀ x ∈ R : W M (b m x) = 1 √ 1 -w 2 +∞ n=-∞ w n e 2 i π b m+n x -1 = 1 w m W M (x) = b m H W M (x)
To better stick real modelling, B. Mandelbrot then proposes to randomize the function, which enables one to approximate fractional Brown functions.

And as it has often been the case, B. Mandelbrot's intuition proved to be right: the Weierstrass-Mandelbrot function has practical applications. It was for instance shown in the 1990's that the function could be used in the modelling of turbulence [START_REF] Humphrey | On the use of the Weierstrass-Mandelbrot function to describe the fractal component of turbulent velocity[END_REF].

As for the classical Weierstrass function, it still occupies mathematicians. At stake is particularly the determination of the dimension of the Weierstrass Curve, whether one considers the box (or Minkowski-Bouligand) one, or the Hausdorff one. The value of the box-dimension, and how to obtain it, was first found in the works of J.-L. Kaplan et al. [START_REF] Kaplan | The Lyapunov dimension of a nowhere differentiable attracting torus[END_REF], or in the book of K. Falconer [START_REF] Falconer | The Geometry of Fractal Sets[END_REF] (example 11.3). Both box and Hausdorff dimensions are discussed in the paper of F. Przytycki and M. Urbańki [START_REF] Przytycki | On the Hausdorff dimension of some fractal sets[END_REF]. An intermediate discussion, by means of a new dimension index, is proposed in the one by T-Y. Hu and K-S. Lau [START_REF] Hu | Fractal dimensions and singularities of the Weierstrass type functions[END_REF]. As for the Hausdorff dimension, a proof is given by B. Hunt [START_REF] Hunt | The Hausdorff dimension of graphs of Weierstrass functions[END_REF] in 1998 in the case where arbitrary phases are included in each cosinusoidal term of the summation. Recently, K. Barańsky, B. Bárány and J. Romanowska [START_REF] Barańsky | On the dimension of the graph of the classical Weierstrass function[END_REF] proved that, for any value of the real number b, there exists a threshold value λ b belonging to the interval 1 b , 1 such that the aforementioned dimension is equal to D W for every b in ]λ b , 1[. In [START_REF] Keller | A simpler proof for the dimension of the graph of the classical Weierstrass function[END_REF], G. Keller proposes what appears as a much simpler and very original proof. Results by W. Shen [START_REF] Shen | Hausdorff dimension of the graphs of the classical Weierstrass functions[END_REF] go further than the ones of [START_REF] Barańsky | On the dimension of the graph of the classical Weierstrass function[END_REF].

One may note that Weierstrass's work is not self-evident. It hits hard a whole academic tradition, mindful of order and classicism, resisting the challenge of what was considered obvious and acquired. Nearly a century will be necessary for the mathematical community to take seriously and start exploiting the very rich potential offered by the nowhere differentiability of the Weierstrass function. It is not a coincidence that the discovery of our Berlin professor meets a real and renewed interest when it is associated to the work on Brownian motion, thanks to Mandelbrot. The random, the erratic, the breaking of sense and direction definitely make their entry into the so-called "serious" science. This goes hand in hand with the extension of the notion of dimension. One might go further, and extend this constant to the whole of thought and knowledge, in the twentieth century, all disciplines combined, including arts and letters. Now, this movement of deciphering the irrational goes on. In the same vein, our contribution will now try to put forward the link between the non-differentiability and the value of the box-dimension of the curve.

Basic properties of the Weierstrass function -Towards the graph

In the sequel, we aim at describing some geometric properties of the Weierstrass Curve, properties which will be useful especially as regards theorem 3.1.

We place ourselves in the euclidian plane of dimension 2, referred to a direct orthonormal frame. The usual Cartesian coordinates are (x, y).

Notation. In the following, λ and b are two real numbers such that:

0 < λ < 1 , b = N b ∈ N and λ N b > 1.
We will consider the Weierstrass function W, defined, for any real number x, by:

W(x) = +∞ n=0 λ n cos (2 π N n b x) • Definition 2.1. Weierstrass Curve
We will call Weierstrass Curve the restriction to [0, 1[×R, of the graph of the Weierstrass function, and denote it by Γ W .

Property 2.1. Periodic properties of the Weierstrass function For any real number x:

W(x + 1) = +∞ n=0 λ n cos (2 π N n b x + 2 π N n b ) = +∞ n=0 λ n cos (2 π N n b x) = W(x).
The study of the Weierstrass function can be restricted to the interval [0, 1[.

The restriction Γ W to [0, 1[×R, of the Weierstrass Curve, is approximated by prefractals (sequence of graphs, built through an iterative process).

To this purpose, we introduce the iterated function system of the family of

C ∞ maps from R 2 to R 2 : {T 0 , . . . , T N b -1 }
where, for any integer i belonging to {0, . . . , N b -1}, and any (x, y) of R 2 :

T i (x, y) = x + i N b , λ y + cos 2 π x + i N b .
Remark 2.1. For any i of {0, . . . , N b -1}, the map T i is not a contraction.

The Gluing Lemma [START_REF] Barnsley | Iterated function systems and the global construction of fractals[END_REF] does not apply, but:

Lemma 2.2. For any integer i belonging to {0, . . . , N b -1}, the map T i is a bijection of the graph of the Weierstrass function on R.

Proof. Let us consider i ∈ {0, . . . , N b -1}.

Consider a point (y, W(y)) of Γ W , and let us look for a real number x of [0, 1] such that:

T i (x, W(x)) = (y, W(y)) .
One has:

y = x + i N b .
Then:

x = N b y -i •
This enables one to obtain:

W(x) = W(N b y -i) = +∞ n=0 λ n cos 2 π N n+1 b y -2 π N n b i = +∞ n=0
λ n cos 2 π N n+1 b y and:

T i (x, W(x)) = x + i N b , λ W(x) + cos 2 π x + i N b = y, +∞ n=0 λ n+1 cos 2 π N n+1 b y + cos (2 π y) = y, +∞ n=0 λ n cos (2 π N n b y) = (y, W(y)) .
There exists thus a unique real number x such that:

T i (x, W(x)) = (y, W(y)) .
Property 2.3.

Γ W = N b -1 i=0 T i (Γ W ).
Proof. This immediately comes from Lemma 2.2.

Definition 2.2. Word, on the graph Γ W Let m be a strictly positive integer. We will call number-letter any integer M i of {0, . . . , N b -1}, and word of length |M| = m, on the graph Γ W , any set of number-letters of the form:

M = (M 1 , . . . , M m ) .
We will write:

T M = T M 1 • . . . • T Mm .
Definition 2.3. For any integer i belonging to {0, ..., N b -1}, let us denote by:

P i = (x i , y i ) = i N b -1 , 1 1 -λ cos 2 π i N b -1
the fixed point of the map T i .

We will denote by V 0 the ordered set (according to increasing abscissa), of the points:

{P 0 , ..., P N b -1 }
since, for any i of {0, ..., N b -2}:

x i x i+1 .
The set of points V 0 , where, for any i of {0, ..., N b -2}, the point P i is linked to the point P i+1 , constitutes an oriented graph (according to increasing abscissa), that we will denote by Γ W 0 . V 0 is called the set of vertices of the graph Γ W 0 .

For any natural integer m, we set:

V m = N b -1 i=0 T i (V m-1 ) .
The set of points V m , where two consecutive points are linked, is an oriented graph (according to increasing abscissa), which we will denote by Γ Wm . V m is called the set of vertices of the graph Γ Wm . We will denote, in the following, by N S m the number of vertices of the graph Γ Wm , and we will write:

V m = S m 0 , S m 1 , . . . , S m N S m -1 .
The fixed points P 0 , P 1 , P 2 , and the graph Γ W 0 , in the case where λ = 1 2 , and N b = 3.

The graph Γ W 1 , in the case where λ = 1 2 , and N b = 3. T 0 (P 2 ) = T 1 (P 0 ) et T 1 (P 2 ) = T 2 (P 1 ).

Property 2.4. For any natural integer m:

V m ⊂ V m+1 .
Property 2.5. For any integer i belonging to {0, ..., N b -2}:

T i (P N b -1 ) = T i+1 (P 0 ) .

Proof. Since:

The graphs Γ W 0 (in green), Γ W 1 (in red), Γ W 2 (in orange), Γ W (in cyan), in the case where λ = 1 2 , and N b = 3.

P 0 = 0, 1 1 -λ , P N b -1 = N b -1 N b -1 , 1 1 -λ cos 2 π (N b -1) N b -1 = 1, 1 1 -λ one has :        T i (P N b -1 ) = 1 + i N b , λ 1 -λ + cos 2 π 1 + i N b T i+1 (P 0 ) = i + 1 N b , λ 1 -λ + cos 2 π i + 1 N b
Property 2.6. The sequence N S m m∈N is an arithmetico-geometric one, with N S 0 = N b as first term:

∀ m ∈ N : N S m+1 = N b N S m -(N b -2)
Proof. This results comes from the fact that each graph Γ Wm , m ∈ N , is built from its predecessor Γ W m-1 by applying the N b maps T i , 0 i N b -1, to the vertices of Γ W m-1 . Since, for any i of {0, ..., N b -2}:

T i (P N b -1 ) = T i+1 (P 0 )
the, N b -2 points appear twice if one takes into account the images of the N m-1 vertices of Γ W m-1 by the whole set of maps T i , 0 i N b -1.

Definition 2.4. Vertices of the graph Γ W Two points X and Y of Γ W will be called vertices of the graph Γ W if there exists a natural integer m such that:

(X, Y ) ∈ V 2 m
Definition 2.5. Consecutive vertices on the graph Γ W

Two points X and Y of Γ W will be called consecutive vertices of the graph Γ W if there exist a natural integer m, and an integer j of {0, ..., N b -2}, such that:

X = (T i 1 • . . . • T im ) (P j ) and Y = (T i 1 • . . . • T im ) (P j+1 ) {i 1 , . . . , i m } ∈ {0, ..., N b -1} m
or:

X = (T i 1 • T i 2 • . . . • T im ) (P N b -1 ) and Y = (T i 1 +1 • T i 2 . . . • T im ) (P 0 ).
Remark 2.2. It is important to note that X and Y cannot be in the same time the images of P j and P j+1 , 0 (i m = p m and j = k) =⇒ (T im (P j ) = T jm (P k ) and T im (P j ) = T jm (P k )) .

j N b-2 , by T i 1 • . . . • T im , (i 1 , . . . , i m ) ∈ {0, ..., N b -2},
Each map T i , 0 i N b -1 is indeed injective. Since the vertices of the initial graph Γ W 0 are distinct, one gets the expected result.

Property 2.7. For any natural integer m, the N S m consecutive vertices of the graph Γ Wm are, also, the vertices of N m b simple polygons P m,j , 0 j N m b -1, with N b sides (see Figure 3). For any integer j such that 0 j N m b -1, one obtains each polygon P m,j by linking the point number j to the point number j + 1 if j = i mod N b , 0 i N b -2, and the point number j to the point number j

-N b + 1 if j = -1 mod N b .
In the same way, the N S m -2 consecutive vertices of the graph Γ Wm , distinct of P 0 and

P N b -1 , are the vertices of N m b -1 simple polygons Q m,j , 1 j N m b -2, with N b sides.
For any integer j such that 1 j N m b -2, one obtains each polygon Q m,j by linking the point number j to the point number j 

+ 1 if j = i mod N b , 1 i N b -1,
P I ¡ 1,2 1,1 1 x -1 1 y The polygons P 1,0 , P 1,1 , P 1,2 ,Q 1,1 , Q 1,2 in the case where λ = 1 2
, and N b = 3.

Property 2.8. For any natural integer m, and any integer j ∈ {0, . . . , N m b -1}, there exists a word M P m,j of length m such that the set of consecutive vertices of each N b -gon P m,j is of the form:

T M P m,j (P k ) 0 k N b -1
In the same way, for any natural integer m, and any integer j ∈ {1, . . . , N m b -2}, there exists a word M Q m,j of lentgh m such that the set of consecutive vertices of each N b -gon Q m,j is of the form:

T M Q m,j (P k+1 ) 0 k N b -1
Proof. The above result is obtained by induction. It is obvious that, for m = 1, the consecutive vertices of the N b -gons P 1,0 , P 1,1 , . . ., P 1,N b -1 are the respective images T 0 (P 0 ), T 0 (P 1 ), . . ., T 0 (P

N b -1 ), . . ., T N b -1 (P 0 ), T N b -1 (P 1 ), . . ., T N b -1 (P N b -1 ).
Now, given a natural integer m, let us assume that, for any integer j ∈ {1, . . . , N m b -2}, there exists a word M Q m,j of lentgh m such that the set of consecutive vertices of each N b -gon P m,j is of the form:

T M P m,j (P k ) 0 k N b -1
.

Since:

V m+1 = N b -1 i=0 T i (V m )
the set of consecutive vertices of each N b -gon P m+1,j is thus of the form:

T 0 • T M P m,j (P k ) , . . . , T N b -1 • T M P m,j (P k ) 0 k N b -1
which naturally yields the searched result at the step m + 1:

T M P m+1,0 = T 0 • T M P m,0
. . .

T M P m+1,N b -1 = T N b -1 • T M P m,0
. . .

T M P m+1,N m+1 b -N b = T 0 • T M P m,N b -1
. . .

T M P m+1,N m+1 b -1 = T N b -1 • T M P m,N b -1
.

The second part of the property can be proved similarly.

Notation. For any natural integer m, we will respectively denote by

M P m,j 0 j N m b -1 , M Q m,j 0 j N m b -1
the ordered sets of the words of length m related to the sets of N b -gons P m,j , 0 j N m b -1 and Q m,j , 1 j N m b -2 as given in Property 2.8.

Property 2.9. The set

m∈N V m is dense in Γ W .
Proof. Since the function W is continuous, it suffices to remark that the set of the abscissae of the vertices is dense in [0, 1]. Given a natural integer i, let us denote by A i the set of the abscissae of V i .

The set A i is transformed into A i N b by the map T 0 , then, this set is shifted by T 1 , . . ., T N b -1 , and this produces a new set of points, the distance between two consecutive new points having been divided by N b . Formally, as exposed in the above, for any natural integer m, and any integer j ∈ {0, . . . , N m b -1}, there exists a word M P m,j of length m such that the set of consecutive vertices of each N b -gon P m,j is of the form:

T M P m,j (P k ) 0 k N b -1 Let us write T M P m,j
under the form:

T M P m,j = T im • T i m-1 • . . . • T i 1 where (i 1 , . . . , i m ) ∈ {0, . . . , N b -1} m .
One has then:

x T M P m,j

(P k ) = x k N m b + m p=1 i p N p b , x T M P m,j (P k+1 ) = x k+1 N m b + m p=1 i p N p b
and thus:

x T M P m,j

(P k+1 ) -x (T M (P k )) = 1 (N b -1) N m b
One deduces then:

[0, 1] = (N b -1) (N m b -1) k=0 k (N b -1) N m b , k + 1 (N b -1) N m b = 0 j N m b -1, 0 k N b -1 x T M P m,j (P k ) , x T M P m,j (P k+1 )
Let us now consider a point X = (x, W(x)) of Γ W , and a strictly positive number ε. Due to the continuity of the Weierstrass function, there exists a natural integer m 0 such that, for any m m 0 :

∀ x ∈ [0, 1] : |x -x | 1 (N b -1) N m b =⇒ W(x) -W x ) ε
By using our preliminary results, one deduces the existence of a natural integer m 1 m 0 such that, for any m m 1 , the real number x belongs to an interval of the form:

k (N b -1) N m b , k + 1 (N b -1) N m b , 0 k (N b -1) (N m b -1)
or, equivalently:

x T M P m,j

(P k ) , x T M P m,j (P k+1 ) , 0 j N m b -1, 0 k N b -1 Thus: W(x) -W x T M P m,j (P k ) ε
which yields the expected density result. Remark 2.3. The introduction of this polygonal domain arises naturally as one builds the Weierstrass curve. In the literature, one can already find approximating polygons, for instance in the case of the Peano curve, as introduced by W. Wunderlich [Wun73]. Such a notion was then adopted by H. Sagan [START_REF] Sagan | Approximating Polygons for Lebesgue's and Schoenberg's Space Filling Curves[END_REF], [START_REF] Sagan | Space Filling Curves[END_REF]. As showed by H. Sagan, among other advantages, such polygons enable to obtain the exact coordinates of nodal points, which is of course also the case for the Weierstrass curve. The term "approximating" is justified in so far as the polygons approximate the considered curve uniformly. In our case, we have choosen a slightly different, whatever equivalent, definition of convergence.

Definition 2.7. Convergence of the sequence of polygonal domains (D (Γ Wm )) m∈N

We will say that the sequence of polygonal domains (D (Γ Wm )) m∈N converges towards the graph Γ W if, when the integer m tends towards infinity, the Lebesgue measure of all polygons P m,j , 0 j N m b -1 and Q m,j , 1 j N m b -2, tends towards zero.

Property 2.10. For any natural integer m, the vertices of the N b -gons P m,j , 0 j N m b -1, are not self-intersecting.

Proof. Let us prove, by induction, that the vertices of the N b -gons P m,j , 0 j N m b -1 are not self-intersecting. For any integer i belonging to {0, ..., N b -1}:

P i = (x i , y i ) = i N b -1 , 1 1 -λ cos 2 π i N b -1
Thus, for any integer i belonging to {0, ..., N b -2}:

y i+1 -y i = 1 1 -λ cos 2 π (i + 1) N b -1 -cos 2 π i N b -1 = - 2 1 -λ sin 2 π (i + 1 + i) 2 N b -1 sin 2 π (i + 1 -i) 2 N b -1 = - 2 1 -λ sin π (2 i + 1) N b -1 sin π N b -1
For the values of the integer i such that:

π (2 i + 1) N b -1 π + 2 p π p ∈ 0, 1, . . . , N b 2 (N b -1) i.e.: i N b -2 2 + p (N b -1) p ∈ 0, 1, . . . , N b 2 (N b -1)
one gets:

y i+1 -y i 0
To this point, one may note that the compatibility condition:

N b -2 2 + p (N b -1) N b -1 leads to: p N b 2 (N b -1)
The sole entire admissible value for the integer p is thus: 0.

In the same way, one shows that, for the values of the integer i such that:

π π (2 i + 1) N b -1 2 π i.e.: N b -2 2 i 2 N b -3 2
one gets:

y i+1 -y i 0
This proves that the set {P 0 , P 1 , . . . , P N b -1 } belongs to a non-self-intersecting continuous closed loop in the plane. One may also note that since the sequences

(y i ) 0 i N b -2 2 and (y i ) N b -2 2 i 2 N b -3 2
are respectively non-increasing and non-decreasing, the polygon P 0 P 1 . . . P N b -1 is convex. One has then just to use the self-similarity of the graph, and reason by induction; for any strictly positive integer m:

V m = 0 i N b -1 T i (V m-1 )
By assuming that the points of V m-1 belong to a non-self-intersecting continuous closed loop in the plane, it is also the case of their images T i (V m-1 ) by each map T i , 0 i N b -1. For any integer i belonging to {1, . . . , N b -2}, T i (V m-1 ) and T i+1 (V m-1 ) have exactly one common vertex, which happens to be the last point of T i (V m-1 ), and the first one of T i+1 (V m-1 ). Moreover, T i (V m-1 ) and T i+1 (V m-1 ) are ordered sets, according to increasing abscissae. The proof is done in a similar way for the vertices of the N b -gons Q m,j , 1 j N m b -2.

Definition 2.8. Edge relation, on the graph Γ W Given a natural integer m, two points X and Y of Γ Wm will be called adjacent if and only if X and Y are two consecutive vertices of Γ Wm . We will write:

X ∼ m Y
This edge relation ensures the existence of a word M = (M 1 , . . . , M m ) of length m, such that X and Y both belong to the iterate:

T M V 0 = (T M 1 • . . . • T Mm ) V 0
Given two points X and Y of the graph Γ W , we will say that X and Y are adjacent if and only if there exists a natural integer m such that: X ∼ m Y Proposition 2.11. Adresses, on the Weierstrass Curve

Given a strictly positive integer m, and a word M = (M 1 , . . . , M m ) of length m ∈ N , on the graph Γ Wm , for any integer j of {1, ..., N b -2}, any X = T M (P j ) of V m \ V 0 , i.e. distinct from one of the N b fixed point P i , 0 i N b -1, has exactly two adjacent vertices, given by: T M (P j+1 ) and T M (P j-1 )

where:

T M = T M 1 • . . . • T Mm
By convention, the adjacent vertices of T M (P 0 ) are T M (P 1 ) and T M (P N b -1 ), those of T M (P N b -1 ), T M (P N b -2 ) and T M (P 0 ) .

3 From the box-counting dimension to the non-differentiability Notation.

For any integer j belonging to {0, . . . , N b -1}, any natural integer m, and any word M of length m, we set: T M (P j ) = (x (T M (P j )) , y (T M (P j )))

L m = x (T M (P j+1 )) -x (T M (P j )) = 1 (N b -1) N m b h j,m = y (T M (P j+1 )) -y (T M (P j )) . (Pj) (Pj+1)

Box-counting dimension

Notation. We will denote by:

D W = 2 + ln λ ln N b
the Hausdorff dimension of Γ W (see [START_REF] Barańsky | On the dimension of the graph of the classical Weierstrass function[END_REF], [START_REF] Keller | A simpler proof for the dimension of the graph of the classical Weierstrass function[END_REF]).

Definition 3.1 (Box-counting dimension). By definition of the box-counting dimension D W (we refer, for instance, to [START_REF] Falconer | The Geometry of Fractal Sets[END_REF]), one has: For any integer j belonging to {0, 1, . . . , N b -2}, each natural integer m, and each word M of length m, let us consider the rectangle, whose sides are parallel to the horizontal and vertical axes, of width:

D W = -lim δ→0 + ln N δ (Γ W ) ln δ where N δ (Γ W ) is
L m = x (T M (P j+1 )) -x (T M (P j )) = 1 (N b -1) N m b
and height |h j,m |, such that the points T M (P j ) and T M (P j+1 ) are two vertices of this rectangle.

We set:

η W = 2 π 2 (2 N b -1) λ (N 2 b -1) (N b -1) 2 (1 -λ) (λ N 2 b -1) + 2 N b (λ N 2 b -1) (λ N 3 b -1) . C1(N b ) =        (N b -1) 2-D W 2 1 -λ sin π N b -1 min 0 j N b -1 sin π (2 j+1) N b -1 - 2 π N b (N b -1) 1 λ N b -1 if N b is odd (N b -1) 2-D W max 2 1 -λ sin π N b -1 min 0 j N b -1 sin π (2 j+1) N b -1 - 2 π N b (N b -1) 1 λ N b -1 , 4 N 2 b 1 -N -2 b N 2 b -1 if N b is even
and:

C 2 (N b ) = η W (N b -1) 2-D W .
Then:

C 1 (N b ) L 2-D W m |h j,m | C 2 (N b ) L 2-D W m .
Proof. Sketch of proof (for the detailed proof, we refer to [START_REF] Cl | Bypassing dynamical systems : A simple way to get the box-counting dimension of the graph of the Weierstrass function[END_REF] The proof is based on the fact that, given a strictly positive integer m, and two points X and Y of V m such that: X ∼ m Y there exists a word M of length |M| = m, on the graph Γ W , and an integer j of {0, . . . , N b -2} 2 , such that:

X = T M (P j ) , Y = T M (P j+1 ) .
By writing T M under the form:

T M = T im • T i m-1 • . . . • T i 1 where (i 1 , . . . , i m ) ∈ {0, . . . , N b -1} m , one gets: x (T M (P j )) = x j N m b + m k=1 i k N k b , x (T M (P j+1 )) = x j+1 N m b + m k=1 i k N k b and:                y (T M (P j )) = λ m y j + m k=1 λ m-k cos 2 π x j N k b + k =0 i m- N k- b y (T M (P j+1 )) = λ m y j+1 + m k=1 λ m-k cos 2 π x j+1 N k b + k =0 i m- N k- b •
Notation. Given a natural integer m, we set:

h m = L 2-D W m = N (D W -2) m b (N b -1) 2-D W Y m X X ~ Y |h jm | h m Remark 3.1.

Comparison with previous results: explicit lower and upper bounds

It is worth noting that our result gives explicit lower and upper bounds for the quantity |h j,m |, which enables one to obtain then the value of the box-counting dimension of the graph Γ W . Especially concerning the lower bound, such a result does not appear in the existing literature on the subject. Even if the result of G. Hardy [START_REF] Hardy | Theorems connected with Maclaurin's test for the convergence of series[END_REF], [START_REF] Hardy | Weierstrass's Non-Differentiable Function[END_REF], at first destined to show the non-differentiability of the Weierstrass function, is not referenced among the ones related to the calculation of the box-dimension, one may note that he is the first to give a (non-explicit) upper bound and prove that, for any value of the real number x, and η → 0 + :

W(x + η) -W(x) = O |η| 2-D W (see cite [Har11], Theorem 1.3.2 page 303).
Later, in [START_REF] Kaplan | The Lyapunov dimension of a nowhere differentiable attracting torus[END_REF], the authors rely on non-explicit lower-bound estimates. In [START_REF] Hunt | The Hausdorff dimension of graphs of Weierstrass functions[END_REF], as concerns the lower bound, the author calls for strictly positive constants K and K which, again, are not given explicitely (see section 3., page 798). In [START_REF] Shen | Hausdorff dimension of the graphs of the classical Weierstrass functions[END_REF], also on the Hausdorff dimension of the graph, the estimates are so scattered that it is extremely difficult to reconstruct explicit ones. In [START_REF] Keller | A simpler proof for the dimension of the graph of the classical Weierstrass function[END_REF], again, there isn't any explicit lower bound, but general constants K 1 and K(K 1 ). To cover the Weierstrass Curve on the semi-opened interval [0, 1[ thus requires at most:

N m h m L m = 1 L m h m L m = h m L 2 m C 2 L 2-D W m L 2 m = C 2 L -D W m •
Let us now consider a strictly positive real number δ such that: -1, can be inscribed in a rectangle of heigth at most equal to h m+1 , and of width L m+1 , which contains all the points of the curve that are between the extreme vertices of P m+1,j . By passing to the limit when the integer m tends towards infinity, one gets the non-differentiability expected result:

L m < δ L m-1 then, a δ-cover of Γ W on [0, 1[ is at most constituted of: C 2 L -D W m squares of side L m . X k = Y X ¡+1 = Y ¢+x X £+2 = Y ¤+2 ¥¦ Y §+1 Y ¨+©-1 Y ++1 Y +2 -1 L m δ ⩽ L-1 - P , j - P , +1 - P !, "+2 - P #+1,$ h 
lim m→+∞ W x T M m,j (P k 0 ) -W x T M m,j (P k 0 +1 ) L m = +∞ •
The key point of this proof is that the points of the m th order prefractal graph approximation, in particular, T M m,j (P k 0 ) and T M m,j (P k 0 +1 ), are also on the Weierstrass Curve. One thus naturally falls on the limit position of the secant.
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  It is not proved that such functions have derivatives. Proofs are erroneous if I show that there are such functions which are continuous in the above sense, but do not possess a derivative in any point." But one had to wait until 1872, July 18 th , for the first official (oral) presentation of the aforementioned Weierstrass function, at the Berlin Academy of Sciences, by Karl Weierstrass himself. As regards the first written reference, it occured in a letter written by Karl Weierstrass to Paul-Gustave du Bois-Reymond, in 1873 [Wei73]: Beginning of the letter written by Karl Weierstrass to P.-G. Du Bois-Reymond [Wei73]. The translation is the following: "Dear Colleague, In your last paper, published by Borchardt, you expose my proof showing that the function (...) was everywhere non-differentiable under the conditions I gave. I agree with everything." One may then wonder what was Weierstrass's point of view, on the Riemann function ? He layed the emphazis upon, of course, the lack of proof, but, also, on the lack of precision: was the R function non-differentiable everywhere, or at certain points only: Second extract of the letter written by Karl Weierstrass to P.-G. Du Bois-Reymond [Wei73].

  and of P k and P k+1 , 0 k N b-2 , by T p 1 • . . . • T pm , (p 1 , . . . , p m ) ∈ {0, ..., N b -2}. This result can be proved by induction, since, for any pair of integers (j, k) of {0, ..., N b -2} 2 , for any i m of {0, ..., N b -2}, and any p m of {0, ..., N b -2}:

  and the point number j to the point number j-N b + 1 if j = 0 mod N b .These polygons generate a Borel set of R 2 .

Definition 2. 6 .

 6 Polygonal domain delimited by the graph Γ Wm , m ∈ N For any natural integer m, well call polygonal domain delimited by the graph Γ Wm , and denote by D (Γ Wm ), the reunion of the N m b polygons P m,j , 0 j N m b -1 and Q m,j , 1 j N m b -2.

Corollary 3. 2 .

 2 The box-counting dimension of the graph Γ W is exactly D W . Proof. i. Given a strictly positive integer m, let us first consider the subdivision of the interval [0, 1[ into: N m = 1 L m = (N b -1) N m b sub-intervals of length L m . One has to determine a natural integer Ñm such that the graph of Γ W on [0, 1[ can be covered by N m × Ñm squares of side length L m .The difficulty is indeed to cover not only the approached m th -order graph Γ W m , but any (m + p) thorder graph Γ W m+p , p ∈ N, and, thus, Γ W . This is achieved thanks to the Hölder condition satisfied by the Weierstrass function[START_REF] Zygmund | Trigonometric series[END_REF]:∀ (x, y) ∈ [0, 1] 2 : |W(x) -W(y)| |x -y| 2-D WThus, given two adjacent vertices X and Y of the m th -order graph Γ W m , all the points of the Weierstrass Curve that are between X and Y belong to a rectangle of height equal toh m = L 2-D W m, and of width L m . A convenient cover of the Weierstrass Curve between X and Y requires at most:h m L msquares of side length L m

%

  Given three consecutive vertices of Γ Wm , X k , X k+1 , X k+2 , where k denotes a generic natural integer, Y k+1 , . . ., Y k+N b -1 are the points of V m+1 \ V m such that: Y k+1 , . . ., Y k+N b -1 are between X k and X k+1 , and byY k+N b +1 , . . ., Y k+2 N b -1 , the points of V m+1 \ V m such that: Y k+N b +1 , . . ., Y k+2 N b -1are between X k+1 and X k+2 . In magenta, one can see the δcover of squares of side L m , in green, the δ-cover of squares of side δ.Hence:N δ (Γ W ) C 2 (N b ) L -D W mii. Conversely, given a strictly positive real number δ such that:L m+1 δ < L m , m∈ N any square of side δ intersects at most N b polygons P m+1,j , 0 j N m+1 b -1 that occur at step m + 1 in the construction of Γ W on [0, 1[. Due, again, to the Hölder condition satisfied by the Weierstrass function [Zyg02], a N b -gon P m+1,j , 0 j N m+1 b

1 .

 1 LmIn green, a square of side δ ∈ [L m+1 , L m [ intersecting polygons P m+1,j , 0 j N m+1 b -There are N m+1 b such polygons. One has to consider the vertical amplitude, taking account that the N m+1 b polygons P m+1,j , 0 j N m+1 b -1, with N b sides, are related to the elementary height h m+1 . This brings in a required number (related to the vertical amplitude) at least of:N b h m+1 δ Thus: N δ (Γ W ) 1 δ × N b h m+1 δ N b h m+1 L 2 m i.e.: N δ (Γ W ) N b h m+1 L 2 m N b C 1 (N b ) L 2-D W m+1 L 2 m i.e.: N δ (Γ W ) N b C 1 (N b ) L 2-D W m L 2 m N 2-D W b i.e.: N δ (Γ W ) C 1 (N b ) L -D W m N 1-D W b So, at least C 1 (N b ) L -D W m N 1-D W bsquares of side δ are required to cover Γ W on [0, 1[. Hence:N δ (Γ W ) C 1 (N b ) L -D W mCorollary 3.3. The sequence of polygonal domains (D (Γ Wm )) m∈N converges towards Γ W .Proof. For any natural integer m,, the aforementioned squares, the side length of which is at most equal to L m , that can cover the graph Γ W m on [0, 1[, also cover the polygonal domain D (Γ Wm ). Sincelim m→+∞ L m = 0the convergence is obvious.In the same time:x T M m,j (P k 0 ) -x T M m,j (P k 0 +1 ) = 1 (N b -1) N m b = L m -→ m→+∞ 0 Thus: W x T M m,j (P k 0 ) -W x T M m,j (P k 0 +1 ) C 1 (N b ) L 2-D W m = C 1 (N b ) x T M m,j (P k 0 ) -x T M m,j (P k 0 +1 ) 2-D Wwhich leads to:W x T M m,j (P k 0 ) -W x T M m,j (P k 0 +1 ) x T M m,j (P k 0 ) -x T M m,j (P k 0 +1 ) Lm C 1 (N b ) x T M m,j (P k 0 ) -x T M m,j (P k 0 +1 ) 1-D W = C 1 (N b ) L 1-D W mwhere1 -D W = -1 -ln λ ln N b = -ln (λ N b ) ln N b < 0

  

  

  

  

  any of the following: i. the smallest number of sets of diameter at most δ that cover Γ W on [0, 1[ ; ii. the smallest number of closed balls of radius δ that cover Γ W on [0, 1[ ; iii. the smallest number of cubes of side δ that cover Γ W on [0, 1[ ; iv. the number of δ-mesh cubes that intersect Γ W on [0, 1[ ; v. the largest number of disjoint balls of radius δ with centers in Γ W on [0, 1[. Theorem 3.1. An upper bound and a lower bound, for the box-dimension of the Weierstrass Curve [Dav18]

Non-differentiability of the Weierstrass function

The original proof of the non-differentiability of the Weierstrass function was given by K. Weierstrass in the case where λ N b > 1 + 3 π 2 , N b being an odd positive integer (see [START_REF] Titschmarsh | The theory of functions[END_REF], pages 351-354). It is rather technical (two pages), and consists in proving that the W function has no finite derivative for any value of x ∈ R, since the quantity:

takes arbitrary large values when h → 0 + .

A slight improvement was given by T. J. Bromwich [START_REF] Bromwich | An Introduction To The Theory Of Infinite Series[END_REF], in the case where

T. J. Bromwich seemed very proud of his result, and did not hesitate to qualify the seminal condition of Weierstrass of "unnecessarily narrow" ... In [START_REF] Hardy | Weierstrass's Non-Differentiable Function[END_REF], G. H. Hardy showed that all those conditions were artificial ones, which "arised in consequence of the methods employed", and, as it could have been expected, did not correspond to "any essential feature of the function". G. H. Hardy proved that in the general case, i.e. not depending on the fact that b was or was not an integer, and under the condition: λ b > 1 the W function is not differentiable. Again, it is very technical, the aim being to obtain estimates that enable to get the expected result. Following the above remark of Hardy himself, one may say that, at the times, one did not have enough appropriate tools.

To get the expected limit, one simply requires a lower bound for the absolute value of the average rate of change

where h denotes a positive real number that tends to 0, which happens to be given by Theorem 3.1.

Corollary 3.4. (of Theorem 3.1)

In the case where

Proof. Given a point X = (x, W(x)) of Γ W , and a natural integer m, one may note that, for:

where M m,j , 0 j N m b -1 denotes a word of length m, one has:

x T M m,j (P k 0 ) x x T M m,j (P k 0 +1 )