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Abstract

The Weierstrass function is known as one of these so-called pathological mathematical objects,
continuous everywhere, while nowhere differentiable. In the sequel, we have chosen, first, to con-
centrate on the unconventional history of this function, a function breaking with the mathematical
canons of classical analysis of the XIXth century. We recall that it then took nearly a century for
new mathematical properties of this function to be brought to light. It has since been the object of
a renewed interest, mainly as regards the box-dimension of the related curve. We place ourselves
in this vein, and, thanks to our result of 2018, which shows that this value can be obtained in a
simple way, without calling for theoretical background in dynamic systems theory, we put forward
the link between the non-differentiability and the value of the box-dimension of the curve.

AMS Classification: 37F20-28A80-05C63.

Introduction

The Weierstrass function, introduced in the the second part of the nineteenth century by Karl Weier-
strass [KH16], [Wei75], is known as one of these so-called pathological mathematical objects, continuous

everywhere, while nowhere differentiable; given λ ∈ ]0, 1[, and b such that λ b > 1 +
3π

2
, it is the sum

of the uniformly convergent trigonometric series

x ∈ R 7→
+∞∑
n=0

λn cos (π bn x) .

The story of this function, and its introduction, by Karl Weierstrass, is of interest. It has to
be placed in both a mathematical and a historical context. On the mathematical point of view, of
course, much better than done by Bernhard Riemann in 1861 [Dar75], because the proof of the non-
differentiability was given to the whole community, it challenged all the existing theories that went
back to André-Marie Ampère at the beginning of the century, and led a new impulse that aroused, in
the community, the emergence of new functions bearing the same type of properties.
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In the historical point of view, it coincides with the global upgrade, material, moral and concep-
tual, initiated by Prussia in the XIXth century, within the framework of German unity, upgrade which
is certainly behind the appointment of Karl Weierstrass, a former high-school teacher, as Professor at
the Friedrich-Wilhelms University of Berlin.

Karl Weierstrass had distinguished himself by his results on Abelian functions [Wei54], [Wei56]:
the German University could not miss such a talent. This choice proved more than just right. The
introduction of the Weierstrass function has made history. Its impact lasts since, even if it took a while
before new properties came to light.

Actually, in addition to its nowhere differentiability, an interesting feature of the function is its self
similarity properties. After the works of A. S. Besicovitch and H. D. Ursell [BU37], it is Benoît Man-
delbrot [Man77] who particularly highlighted the fractal properties of the Weierstrass Curve. He also

conjectured that the Hausdorff dimension of the graph is DW = 2 +
lnλ

ln b
.

In the view of all that we have evoked, it seemed important to us to consider the Weierstrass
function under the prism of an historical perspective, as we expose it in section 1, all the more as
interesting discussions still occupy the mathematician community, and us in particular.

For instance, in [Dav18], we have showed that, in the case where b = Nb is an integer, and con-
trarily to existing work on the subject, the box-counting dimension (or Minkowski dimension) of the
Weierstrass curve, which happens to be equal to its Hausdorff dimension [KMPY84], [BBR14], can be
obtained in a simple way, without calling for theoretical background in dynamic systems theory, as it is
usually the case. At stake are prefractals, by means of a sequence of graphs, that converge towards the
Weierstrass Curve. This sequence of graphs enables one to show nice geometric properties, since, for
any natural integer m, the consecutive vertices of the mth-order graph ΓWm are the vertices of simple
not self-intersecting polygons with Nb sides, as it is exposed in section 2, polygons which play a part
in the determination of the box-counting dimension of the curve.

Also, we improve or retrieve more classical results, and rather simply, as exposed in the sequel:
in section 3, we put the light on the fact that our result concerning the box-dimension of the graph
also gives an explicit lower bound, which is not given in existing works. Furthermore, we give a new
proof of the non-differentiability of the Weierstrass function in the aforementioned case.

1 An historical overview: From Ampère and well-established beliefs,
to the so-called pathological objects

In 1806, André-Marie Ampère [Amp06] gave what he considered as a “proof”, according to which,
for a given curve, it is always possible, except in a finite number of points, to calculate the slope.
This “proof”, that one can find in the Mathematics books of the time, served as a reference until the
mid-nineteenth century.
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The beginning of the memoir of André-Marie Ampère [Amp06].

This lasted a certain time, until the 1860’s to be exact ; let us quote the french mathemati-
cian Jean Gaston Darboux [Dar75]:

“Until the appearance of Riemann’s memoir on trigonometric series, no doubt had been raised
about the existence of the derivative of continuous functions. Excellent, illustrious geometers, among
whom Ampère, had tried to give rigorous proofs of the existence of the derivative. These attempts
were, no doubt, far from being satisfactory ; but, I repeat, no doubt had been expressed about the
very existence of a derivative for continuous functions.”

Gaston Darboux of course refers to the mention, in 1861, by Bernhard Riemann, then Professor
at the University of Göttingen, of the existence of a continuous function that would not be nowhere
differentiable:

x 7→ R(x) =
+∞∑
n=1

sinn2 x

n2

It is not clear wether Riemann gave a proof. If he did so, there is no mention of it in the literature of
the time. And no one, at that time too, knew how to obtain it.

About two years later, during the winter 1863-1864, the former high school teacher (1842-1855)
Karl Weierstrass, who had been appointed in 1856 Professor at what would then become the Friedrich-
Wilhelm University of Berlin (the Königliches Gewerbeinstitut), gave a course on the theory of analytic
functions. In this peculiar course took place the first evocation of a new function, continuous every-
where, and nowhere differentiable, which would then be called after him “Weierstrass function”. How
did this function come to Weierstrass’s mind ? Some, like J.-P. Kahane [Kah64], suggest that it could
be attributed to the Riemann function, for which he did not know how to prove the non-differentiable
feature. Without taking sides, it may simply come from the fact that these questions, that were in
the air, aroused interest in the mathematical community of the time. To use terminology currently in
vogue, it is what historians today call “circulation of ideas”.
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It is interesting to note that the appointment of Karl Weierstrass as Professor coincides with the
global upgrade, material, moral and conceptual, initiated by Prussia. Prussia wanted the German
science to dominate the world. So, when whe Austrian Minister of Education, Leopold Graf von Thun
und Hohenstein, proposed to Karl Weierstrass the creation of a chair, in the university of his choice,
with an annual salary of 2000 gulden [KH16], Berlin immediately made a counter offer. This is the
culmination of the regeneration Prussian process, launched in 1806, after the defeat of Iena against
Napoleon.

In 1864, therefore, the Friedrich-Wilhelm University attributed a chair to Karl Weierstrass, at the
exact moment when Bismarck began the German unification (War of Duchies). Everything was then
connected: science, industry, prosperity, military and political power.

Beyond this configuration, what is of main interest to us is the specific story of the function, and,
if one can say, its emergence in the mathematical communauty of the time. This of course leads one to
consider the oldest known evidence, which can be found in a fac-similé of manuscript notes taken by
Hermann Amandus Schwarz, then 20 years old, who attended the course (ABBAW, Nachlass Schwarz,
Nr. 29, Archivs der Berlin-Brandenburgischen Akademie der Wissenschaften, [KH16]:

“It is not proved that such functions have derivatives. Proofs are erroneous if I show that there
are such functions which are continuous in the above sense, but do not possess a derivative in any point.”

But one had to wait until 1872, July 18th, for the first official (oral) presentation of the aforemen-
tioned Weierstrass function, at the Berlin Academy of Sciences, by Karl Weierstrass himself.

As regards the first written reference, it occured in a letter written by Karl Weierstrass to Paul-
Gustave du Bois-Reymond, in 1873 [Wei73]:

Beginning of the letter written by Karl Weierstrass to P.-G. Du Bois-Reymond [Wei73].

The translation is the following:

“Dear Colleague,

In your last paper, published by Borchardt, you expose my proof showing that the function
(...) was everywhere non-differentiable under the conditions I gave. I agree with everything.”

One may then wonder what was Weierstrass’s point of view, on the Riemann function ? He layed
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the emphazis upon, of course, the lack of proof, but, also, on the lack of precision: was the R function
non-differentiable everywhere, or at certain points only:

Second extract of the letter written by Karl Weierstrass to P.-G. Du Bois-
Reymond [Wei73].

“It seems appropriate to recall that Riemann presented this function to his students in 1861. This
function is not differentiable, yet, the proof has not been communicated to anyone, it has been said
that this could be done with the theory of elliptic functions. It is also not known whether Riemann
claimed that his function was non-differentiable everywhere, or at certain points only.”

This remark is all the more interesting, since it was not until the 1970’s that the differentiable
character of the R function at specific rational multiples of π, of the form:

2 p+ 1

2 q + 1
π , p, q integers

was proved, by Joseph Gerver [Ger70].

As concerns the first publication, it took place in 1875, in the Crelle Journal, through an article
written by P.-G. du Bois-Reymond [BR75]:
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Extract of the article of P.-G. du Bois-Reymond in the Crelle Journal [BR75].

“The functions exposed by Mr. Weierstrass to his usual audience appear to me as being far dif-
ferent, since they possess nowhere a derivative ; this has never before been proved ; and despite an
appearance of great simplicity, and as inconceivable as it may seem, they do not possess this expected
property of differentiability. This does not concern isolated points, which could present singularities,
but intervals evenly distributed throughout the field of study. To dissipate my doubts, Mr. Weierstrass
was kind enough to give me an example of such a function, and I am very grateful to him ; it is an
example of a function, continuous everywhere, which does not belong to the usual classes of functions.
Listen how the author exposes it: “Given a real number x, a an odd integer, and b a positive constant,
smaller than one (...) then f(x) is a function continuous everywhere which, as soon as the product a b
exceeds a known value, is nowhere differentiable.”
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The impulse given by Weierstrass has led, from the 1870’s, to the emergence of other functions of
that type. One may quote, for instance, the one proposed by Jean Gaston Darboux [Dar75], [Dar79] :

x 7→ Darboux(x) =

+∞∑
n=1

sin ((n+ 1) !x)

n !
·

1
x

1

The Darboux Curve

Jean Gaston Darboux proves the non-differentiability of his function (see [Dar75], pages 107-108).
The (n+ 1) ! instead of a n ! may intrigue. One has to look at the (non completely explicit) proof to
understand that if a n ! had been substituted to the original (n+ 1) !, a n+ 1 factor crucial in the
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non-differentiable feature would have been reported missing.

More precisely: by introducing a strictly positive integer N , Darboux uses a decomposition of his
function of the form

Darboux = φN + ψN

where, for any real number x:

φN (x) =
N−1∑
n=1

sin ((n+ 1) !x)

n !
, ψN (x) =

+∞∑
n=N

sin ((n+ 1) !x)

n !
·

Given two strictly positive numbers h and ε such that:

N ×N !× h = 2 ε

and due to the second order Taylor expansion that the reader will have of course applied:

φN (x+ h)− φN (x) =
N−1∑
n=1

{
h (n+ 1) !

cos ((n+ 1) !x)

n !
− h2

2
((n+ 1) !)2

sin ((n+ 1) !x)

n !

}
+ o

(
h2
)

one “easily ” (to use Darboux’s terms) gets:

φN (x+ h)− φN (x)

h
=

N−1∑
n=1

{
h (n+ 1) !

cos ((n+ 1) !x)

n !
− h2

2
((n+ 1) !)2

sin ((n+ 1) !x)

n !

}
+ o (h)

=

N−1∑
n=1

{
(n+ 1) !

cos ((n+ 1) !x)

n !
− h

2
((n+ 1) !)2

sin ((n+ 1) !x)

n !

}
+ o (h)

=

N−1∑
n=1

{
(n+ 1) cos ((n+ 1) !x)− h

2
(n+ 1) (n+ 1) ! sin ((n+ 1) !x)

}
+ o (h)

=

N∑
n=2

{
n cos (n !x)− h

2
nn ! sin (n !x)

}
+ o (h)

Something is not clear in the original proof, because, instead of our previous expression, Darboux
writes:

φN (x+ h)− φN (x)

h
=

N∑
n=???

n cos (n !x)− ε sin (N !x) + ω (N, ε)

(we have written ??? for the lower bound in the sum, since the original text is not readable, one can
hardly see if it is a “1”, a “r” , a “x” ), and where ω denotes a function such that, for a given ε:

lim
N→+∞

ω (N, ε) = 0

So, with our current terminology, ω corresponds to a sum of “o (·)”, and details are reported missing.

The main point of the proof given by Darboux is in fact to point out that, for the values of the real
number x such that

lim
N→+∞

sin (N !x) = 0

the limit
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lim
N→+∞

N∑
n=???

n cos (n !x)

does not exist.

Very elegantly, Darboux quotes Riemann, Schwarz and some others, but not Weierstrass ...

One finds, after, another example given in 1877 by Ulisse Dini [Din77], [Din78]:

x 7→ Dini(x) =
+∞∑
n=1

αn cos (1× 3× 5× . . .× (2n− 1)x)

1× 3× 5× . . .× (2n− 1)
, α > 1 +

3π

2
·

1
x

1

The Dini Curve, in the case α =
3

2
+

3π

2

As a result, the existence of these functions cast a chill on the mathematical community. Let us
recall what wrote Charles Hermite, in one of his numerous letters to Thomas Stieltjes, in 1893 ([Cor05],
letter 374):

“I turn away with fright and horror from this lamentable plague of continuous functions that have
no derivatives.”

As for Poincaré [Poi90], he stated that:

“Logic sometimes creates monsters. For half a century, one has seen the birth of strange functions,
functions that look as little as possible as the honest ones, the useful ones. No more continuity, or
continuity, but no derivatives, etc ... Even more, from the logical point of view, those strange functions
appear as the most general ones, while those one may fall on by chance are relegated as special cases.
They only have a tiny corner left.”

Yet, and it is very important, contrary to the erroneous interpretations found in the litera-
ture ([JP15], page 4), Poincaré never described Weierstrass’s work as offensive to common sense [Poi98]:
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“To begin with, I shall quote a note read at the Berlin Academy on July 18, 1872, and where
Weierstrass gave examples of continuous functions of a real argument which, for any value of this
argument, do not possess a finite derivative. A hundred years ago, such a function would have been
regarded as an outrage to common sense. A continuous function, one would have said, is in essence
susceptible of being represented by a curve, and a curve obviously always has a tangent.”

What Poincaré says about these functions was, nevertheless, rather hard [Poi99]:

“Formerly, when new functions arose, it was because they were devoted to some practical purpose ;
today, they are invented expressly to put in default the reasoning of our fathers, and we will never get
out of it.”

Since then, the Weierstrass function has kept arousing interest. If this interest was initially due to
its nowhere differentiability, its fractal properties, brought to light about ninety years later by B. Man-
delbrot [Man82], pages 388-390, made the community consider it from a new angle. Mandelbrot was
looking for an approximation of the Brownian motion, which accounts for its interest in the function
introduced by Weierstrass.

By moving to a slightly more general frame, Mandelbrot thus chose to consider the related complex
function defined, for any real number x, by:

Wc(x) =
1√

1− w2

+∞∑
n=0

wn e2 i π b
n x

where

b > 1 , w =
1

bH
= bDW−2 , 1 < 2−H = DW < 2

After an introductory comparison with the Brownian motion, B. Mandelbrot placed himself on
the point of view of physics, and, especially, to study the function’s spectra: for each frequency f of the
form f = bn, n ∈ N? the spectral line of energy, i.e. the one that results from emission or absorption
of light in a narrow range of frequencies, given by:

1

1− w2
w2n

yields a cumulative energy in frequencies f > bn of:

+∞∑
k=n

1

1− w2
w2 k =

1

(1− w2)2
w2n =

1

(1− w2)2
1

b2nH
=

1

(1− w2)2
1

f2H
·

B. Mandelbrot recalls then that, since “a function’s derivative is obtained by multiplying its kth Fourier
coefficient by k”, for physicists looking at the formal derivative of the complex Weierstrass function,
the bn

th
Fourier coefficient has an amplitude squared equal to:

1

1− w2
w2n b2n ·

Thus, the cumulative energies for frequencies greater or equal than bn are infinite, which enable physi-
cists to obtain the non-differentiability of the W function as an “intuitively obvious” feature.

B. Mandelbrot then explains that, if “the total high frequency energy is infinite”, it is thus “catas-
trophic for the theory”, echoing the 1900’s theory of Rayleigh and Jeans of blackbody radiation. By
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resuming his comparison with Brownian motion, and for the purpose of future applications, B. Man-
delbrot thus proposes to take into account a modified version of the function, a one that would soon
be called Weierstrass-Mandelbrot one, defined, for any real number x, by:

WM(x) =
1√

1− w2

+∞∑
n=−∞

wn
{
e2 i π b

n x − 1
}

Better than the classical Weierstrass function, the WM function, still continuous everywhere, while
nowhere differentiable, bears a scaling property and is self-affine:

∀m ∈ Z, ∀x ∈ R :

WM (bm x) =
1√

1− w2

+∞∑
n=−∞

wn
{
e2 i π b

m+n x − 1
}

=
1

wm
WM(x)

= bmHWM(x)

To better stick real modelling, B. Mandelbrot then proposes to randomize the function, which
enables one to approximate fractional Brown functions.

And as it has often been the case, B. Mandelbrot’s intuition proved to be right: the Weierstrass-
Mandelbrot function has practical applications. It was for instance shown in the 1990’s that the
function could be used in the modelling of turbulence [HSR92].

As for the classical Weierstrass function, it still occupies mathematicians. At stake is particu-
larly the determination of the dimension of the Weierstrass Curve, whether one considers the box (or
Minkowski-Bouligand) one, or the Hausdorff one. The value of the box-dimension, and how to obtain
it, was first found in the works of J.-L. Kaplan et al. [KMPY84], or in the book of K. Falconer [Fal86]
(example 11.3). Both box and Hausdorff dimensions are discussed in the paper of F. Przytycki and
M. Urbańki [PU89]. An intermediate discussion, by means of a new dimension index, is proposed in
the one by T-Y. Hu and K-S. Lau [HL93]. As for the Hausdorff dimension, a proof is given by B. Hunt
[Hun98] in 1998 in the case where arbitrary phases are included in each cosinusoidal term of the summa-
tion. Recently, K. Barańsky, B. Bárány and J. Romanowska [BBR14] proved that, for any value of the

real number b, there exists a threshold value λb belonging to the interval
]

1

b
, 1

[
such that the aforemen-

tioned dimension is equal to DW for every b in ]λb, 1[. In [Kel17], G. Keller proposes what appears as a
much simpler and very original proof. Results by W. Shen [She18] go further than the ones of [BBR14].

One may note that Weierstrass’s work is not self-evident. It hits hard a whole academic tradition,
mindful of order and classicism, resisting the challenge of what was considered obvious and acquired.
Nearly a century will be necessary for the mathematical community to take seriously and start ex-
ploiting the very rich potential offered by the nowhere differentiability of the Weierstrass function. It
is not a coincidence that the discovery of our Berlin professor meets a real and renewed interest when
it is associated to the work on Brownian motion, thanks to Mandelbrot. The random, the erratic, the
breaking of sense and direction definitely make their entry into the so-called “serious” science. This
goes hand in hand with the extension of the notion of dimension. One might go further, and extend
this constant to the whole of thought and knowledge, in the twentieth century, all disciplines combined,
including arts and letters. Now, this movement of deciphering the irrational goes on. In the same vein,
our contribution will now try to put forward the link between the non-differentiability and the value
of the box-dimension of the curve.
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2 Basic properties of the Weierstrass function - Towards the graph

In the sequel, we aim at describing some geometric properties of the Weierstrass Curve, properties
which will be useful especially as regards theorem 3.1.

We place ourselves in the euclidian plane of dimension 2, referred to a direct orthonormal frame.
The usual Cartesian coordinates are (x, y).

Notation. In the following, λ and b are two real numbers such that:

0 < λ < 1 , b = Nb ∈ N and λNb > 1.

We will consider the Weierstrass function W, defined, for any real number x, by:

W(x) =

+∞∑
n=0

λn cos (2πNn
b x) ·

Definition 2.1. Weierstrass Curve

We will call Weierstrass Curve the restriction to [0, 1[×R, of the graph of the Weierstrass function,
and denote it by ΓW .

Property 2.1. Periodic properties of the Weierstrass function
For any real number x:

W(x+ 1) =
+∞∑
n=0

λn cos (2πNn
b x+ 2πNn

b ) =
+∞∑
n=0

λn cos (2πNn
b x) =W(x).

The study of the Weierstrass function can be restricted to the interval [0, 1[.

The restriction ΓW to [0, 1[×R, of the Weierstrass Curve, is approximated by prefractals (sequence of
graphs, built through an iterative process).

To this purpose, we introduce the iterated function system of the family of C∞ maps from R2

to R2:
{T0, . . . , TNb−1}

where, for any integer i belonging to {0, . . . , Nb − 1}, and any (x, y) of R2:

Ti(x, y) =

(
x+ i

Nb
, λ y + cos

(
2π

(
x+ i

Nb

)))
.

Remark 2.1. For any i of {0, . . . , Nb − 1}, the map Ti is not a contraction.
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The Gluing Lemma [BD85] does not apply, but:

Lemma 2.2. For any integer i belonging to {0, . . . , Nb − 1}, the map Ti is a bijection of the graph of
the Weierstrass function on R.

Proof. Let us consider i ∈ {0, . . . , Nb − 1}.

Consider a point (y,W(y)) of ΓW , and let us look for a real number x of [0, 1] such that:

Ti (x,W(x)) = (y,W(y)) .

One has:

y =
x+ i

Nb
.

Then:

x = Nb y − i ·

This enables one to obtain:

W(x) =W(Nb y − i) =
+∞∑
n=0

λn cos
(
2πNn+1

b y − 2πNn
b i
)

=
+∞∑
n=0

λn cos
(
2πNn+1

b y
)

and:

Ti (x,W(x)) =

(
x+ i

Nb
, λW(x) + cos

(
2π

(
x+ i

Nb

)))
=

(
y,

+∞∑
n=0

λn+1 cos
(
2πNn+1

b y
)

+ cos (2π y)

)

=

(
y,

+∞∑
n=0

λn cos (2πNn
b y)

)
= (y,W(y)) .

There exists thus a unique real number x such that:

Ti (x,W(x)) = (y,W(y)) .

Property 2.3.

ΓW =

Nb−1⋃
i=0

Ti(ΓW).

Proof. This immediately comes from Lemma 2.2.
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Definition 2.2. Word, on the graph ΓW

Let m be a strictly positive integer. We will call number-letter any integer Mi of {0, . . . , Nb − 1},
and word of length |M| = m, on the graph ΓW , any set of number-letters of the form:

M = (M1, . . . ,Mm) .

We will write:

TM = TM1 ◦ . . . ◦ TMm .

Definition 2.3. For any integer i belonging to {0, ..., Nb − 1}, let us denote by:

Pi = (xi, yi) =

(
i

Nb − 1
,

1

1− λ
cos

(
2π i

Nb − 1

))
the fixed point of the map Ti.

We will denote by V0 the ordered set (according to increasing abscissa), of the points:

{P0, ..., PNb−1}

since, for any i of {0, ..., Nb − 2}:

xi 6 xi+1.

The set of points V0, where, for any i of {0, ..., Nb − 2}, the point Pi is linked to the point Pi+1, con-
stitutes an oriented graph (according to increasing abscissa), that we will denote by ΓW0 . V0 is called
the set of vertices of the graph ΓW0 .

For any natural integer m, we set:

Vm =

Nb−1⋃
i=0

Ti (Vm−1) .

The set of points Vm, where two consecutive points are linked, is an oriented graph (according to
increasing abscissa), which we will denote by ΓWm . Vm is called the set of vertices of the graph ΓWm .
We will denote, in the following, by N Sm the number of vertices of the graph ΓWm , and we will write:

Vm =
{
Sm0 ,Sm1 , . . . ,SmNSm−1

}
.
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The fixed points P0, P1, P2, and the graph ΓW0, in the case where λ =
1

2
, and Nb = 3.

The graph ΓW1, in the case where λ =
1

2
, and Nb = 3. T0(P2) = T1(P0) et T1(P2) = T2(P1).

Property 2.4. For any natural integer m:

Vm ⊂ Vm+1.

Property 2.5. For any integer i belonging to {0, ..., Nb − 2}:

Ti (PNb−1) = Ti+1 (P0) .

Proof. Since:

16



The graphs ΓW0 (in green), ΓW1 (in red), ΓW2 (in orange), ΓW (in cyan), in the case where λ =
1

2
,

and Nb = 3.

P0 =

(
0,

1

1− λ

)
, PNb−1 =

(
Nb − 1

Nb − 1
,

1

1− λ
cos

(
2π (Nb − 1)

Nb − 1

))
=

(
1,

1

1− λ

)
one has : 

Ti (PNb−1) =

(
1 + i

Nb
,

λ

1− λ
+ cos

(
2π

(
1 + i

Nb

)))
Ti+1 (P0) =

(
i+ 1

Nb
,

λ

1− λ
+ cos

(
2π

(
i+ 1

Nb

)))

Property 2.6. The sequence
(
N Sm
)
m∈N is an arithmetico-geometric one, with N S0 = Nb as first term:

∀m ∈ N : N Sm+1 = NbN Sm − (Nb − 2)

Proof. This results comes from the fact that each graph ΓWm , m ∈ N?, is built from its predeces-
sor ΓWm−1 by applying the Nb maps Ti, 0 6 i 6 Nb − 1, to the vertices of ΓWm−1 . Since, for any i
of {0, ..., Nb − 2}:

Ti (PNb−1) = Ti+1 (P0)

the, Nb − 2 points appear twice if one takes into account the images of the Nm−1 vertices of ΓWm−1

by the whole set of maps Ti, 0 6 i 6 Nb − 1.

17



Definition 2.4. Vertices of the graph ΓW

Two points X and Y of ΓW will be called vertices of the graph ΓW if there exists a natural integer m
such that:

(X,Y ) ∈ V 2
m

Definition 2.5. Consecutive vertices on the graph ΓW

Two points X and Y of ΓW will be called consecutive vertices of the graph ΓW if there exist a
natural integer m, and an integer j of {0, ..., Nb − 2}, such that:

X = (Ti1 ◦ . . . ◦ Tim) (Pj) and Y = (Ti1 ◦ . . . ◦ Tim) (Pj+1) {i1, . . . , im} ∈ {0, ..., Nb − 1}m

or:

X = (Ti1 ◦ Ti2 ◦ . . . ◦ Tim) (PNb−1) and Y = (Ti1+1 ◦ Ti2 . . . ◦ Tim) (P0).

Remark 2.2. It is important to note that X and Y cannot be in the same time the images of Pj
and Pj+1, 0 6 j 6 Nb−2, by Ti1 ◦ . . . ◦ Tim , (i1, . . . , im) ∈ {0, ..., Nb − 2}, and of Pk and Pk+1, 0 6
k 6 Nb−2 ,
by Tp1 ◦ . . . ◦ Tpm , (p1, . . . , pm) ∈ {0, ..., Nb − 2}. This result can be proved by induction, since, for any
pair of integers (j, k) of {0, ..., Nb − 2}2 , for any im of {0, ..., Nb − 2}, and any pm of {0, ..., Nb − 2}:

(im 6= pm and j 6= k) =⇒ (Tim (Pj) 6= Tjm (Pk) and Tim (Pj) 6= Tjm (Pk)) .

Each map Ti, 0 6 i 6 Nb − 1 is indeed injective.
Since the vertices of the initial graph ΓW0 are distinct, one gets the expected result.

Property 2.7. For any natural integer m, the N Sm consecutive vertices of the graph ΓWm are, also, the
vertices of Nm

b simple polygons Pm,j, 0 6 j 6 Nm
b − 1, with Nb sides (see Figure 3). For any integer j

such that 0 6 j 6 Nm
b − 1, one obtains each polygon Pm,j by linking the point number j to the point

number j + 1 if j = imod Nb, 0 6 i 6 Nb − 2, and the point number j to the point number j −Nb + 1
if j = −1mod Nb.
In the same way, the N Sm − 2 consecutive vertices of the graph ΓWm , distinct of P0 and PNb−1, are
the vertices of Nm

b − 1 simple polygons Qm,j, 1 6 j 6 Nm
b − 2, with Nb sides. For any integer j such

that 1 6 j 6 Nm
b − 2, one obtains each polygon Qm,j by linking the point number j to the point num-

ber j + 1 if j = imod Nb, 1 6 i 6 Nb − 1, and the point number j to the point number j − Nb + 1
if j = 0mod Nb.

These polygons generate a Borel set of R2.

18
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The polygons P1,0, P1,1, P1,2,Q1,1, Q1,2 in the case where λ =
1

2
, and Nb = 3.

Property 2.8. For any natural integer m, and any integer j ∈ {0, . . . , Nm
b − 1}, there exists a

wordMPm,j of length m such that the set of consecutive vertices of each Nb-gon Pm,j is of the form:{
TMPm,j

(Pk)
}
06k6Nb−1

In the same way, for any natural integer m, and any integer j ∈ {1, . . . , Nm
b − 2}, there exists a

wordMQm,j of lentgh m such that the set of consecutive vertices of each Nb-gon Qm,j is of the form:{
TMQm,j

(Pk+1)
}
06k6Nb−1

Proof. The above result is obtained by induction.
It is obvious that, for m = 1, the consecutive vertices of the Nb-gons P1,0, P1,1, . . ., P1,Nb−1 are the
respective images T0 (P0), T0 (P1), . . ., T0 (PNb−1), . . ., TNb−1 (P0), TNb−1 (P1), . . ., TNb−1 (PNb−1).

Now, given a natural integer m, let us assume that, for any integer j ∈ {1, . . . , Nm
b − 2}, there exists

a wordMQm,j of lentgh m such that the set of consecutive vertices of each Nb-gon Pm,j is of the form:{
TMPm,j

(Pk)
}
06k6Nb−1

.

Since:

Vm+1 =

Nb−1⋃
i=0

Ti (Vm)

the set of consecutive vertices of each Nb-gon Pm+1,j is thus of the form:{
T0 ◦ TMPm,j (Pk) , . . . , TNb−1 ◦ TMPm,j (Pk)

}
06k6Nb−1
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which naturally yields the searched result at the step m+ 1:

TMPm+1,0
= T0 ◦ TMPm,0
...

TMPm+1,Nb−1
= TNb−1 ◦ TMPm,0
...

TMP
m+1,Nm+1

b
−Nb

= T0 ◦ TMPm,Nb−1

...
TMP

m+1,Nm+1
b

−1

= TNb−1 ◦ TMPm,Nb−1
.

The second part of the property can be proved similarly.

Notation. For any natural integer m, we will respectively denote by{
MPm,j

}
06j6Nm

b −1
,
{
MQm,j

}
06j6Nm

b −1

the ordered sets of the words of length m related to the sets of Nb-gons Pm,j , 0 6 j 6 Nm
b − 1

and Qm,j , 1 6 j 6 Nm
b − 2 as given in Property 2.8.

Property 2.9. The set
⋃
m∈N

Vm is dense in ΓW .

Proof. Since the function W is continuous, it suffices to remark that the set of the abscissae of the
vertices is dense in [0, 1]. Given a natural integer i, let us denote by Ai the set of the abscissae of Vi.

The set Ai is transformed into
Ai
Nb

by the map T0, then, this set is shifted by T1, . . ., TNb−1, and this

produces a new set of points, the distance between two consecutive new points having been divided
by Nb.
Formally, as exposed in the above, for any natural integer m, and any integer j ∈ {0, . . . , Nm

b − 1},
there exists a wordMPm,j of length m such that the set of consecutive vertices of each Nb-gon Pm,j is
of the form: {

TMPm,j
(Pk)

}
06k6Nb−1

Let us write TMPm,j under the form:

TMPm,j
= Tim ◦ Tim−1 ◦ . . . ◦ Ti1

where (i1, . . . , im) ∈ {0, . . . , Nb − 1}m.

One has then:

x
(
TMPm,j

(Pk)
)

=
xk
Nm
b

+
m∑
p=1

ip
Np
b

, x
(
TMPm,j

(Pk+1)
)

=
xk+1

Nm
b

+
m∑
p=1

ip
Np
b
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and thus:
x
(
TMPm,j

(Pk+1)
)
− x (TM (Pk)) =

1

(Nb − 1)Nm
b

One deduces then:

[0, 1] =

(Nb−1) (Nm
b −1)⋃

k=0

[
k

(Nb − 1)Nm
b

,
k + 1

(Nb − 1)Nm
b

]
=

⋃
06j6Nm

b −1, 06k6Nb−1

[
x
(
TMPm,j

(Pk)
)
, x
(
TMPm,j

(Pk+1)
)]

Let us now consider a point X = (x,W(x)) of ΓW , and a strictly positive number ε. Due to the
continuity of the Weierstrass function, there exists a natural integer m0 such that, for any m > m0:

∀x′ ∈ [0, 1] : |x− x′| 6 1

(Nb − 1)Nm
b

=⇒
∣∣W(x)−W

(
x′)
)∣∣ 6 ε

By using our preliminary results, one deduces the existence of a natural integer m1 > m0 such that,
for any m > m1, the real number x belongs to an interval of the form:[

k

(Nb − 1)Nm
b

,
k + 1

(Nb − 1)Nm
b

]
, 0 6 k 6 (Nb − 1) (Nm

b − 1)

or, equivalently:[
x
(
TMPm,j

(Pk)
)
, x
(
TMPm,j

(Pk+1)
)]

, 0 6 j 6 Nm
b − 1, 0 6 k 6 Nb − 1

Thus: ∣∣∣W(x)−W
(
x
(
TMPm,j

(Pk)
))∣∣∣ 6 ε

which yields the expected density result.

Definition 2.6. Polygonal domain delimited by the graph ΓWm, m ∈ N

For any natural integer m, well call polygonal domain delimited by the graph ΓWm , and denote
by D (ΓWm), the reunion of the Nm

b polygons Pm,j , 0 6 j 6 Nm
b − 1 and Qm,j , 1 6 j 6 Nm

b − 2.

Remark 2.3. The introduction of this polygonal domain arises naturally as one builds the Weier-
strass curve. In the literature, one can already find approximating polygons, for instance in the case
of the Peano curve, as introduced by W. Wunderlich [Wun73]. Such a notion was then adopted
by H. Sagan [Sag86], [Sag94]. As showed by H. Sagan, among other advantages, such polygons enable
to obtain the exact coordinates of nodal points, which is of course also the case for the Weierstrass
curve. The term “approximating” is justified in so far as the polygons approximate the considered
curve uniformly. In our case, we have choosen a slightly different, whatever equivalent, definition of
convergence.

Definition 2.7. Convergence of the sequence of polygonal domains (D (ΓWm))m∈N

We will say that the sequence of polygonal domains (D (ΓWm))m∈N converges towards the graph ΓW if,
when the integer m tends towards infinity, the Lebesgue measure of all polygons Pm,j , 0 6 j 6 Nm

b − 1
and Qm,j , 1 6 j 6 Nm

b − 2, tends towards zero.
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Property 2.10. For any natural integer m, the vertices of the Nb-gons Pm,j, 0 6 j 6 Nm
b − 1, are

not self-intersecting.

Proof. Let us prove, by induction, that the vertices of the Nb−gons Pm,j , 0 6 j 6 Nm
b − 1 are not

self-intersecting.
For any integer i belonging to {0, ..., Nb − 1}:

Pi = (xi, yi) =

(
i

Nb − 1
,

1

1− λ
cos

(
2π i

Nb − 1

))
Thus, for any integer i belonging to {0, ..., Nb − 2}:

yi+1 − yi =
1

1− λ

{
cos

(
2π (i+ 1)

Nb − 1

)
− cos

(
2π i

Nb − 1

)}
= − 2

1− λ
sin

(
2π (i+ 1 + i)

2Nb − 1

)
sin

(
2π (i+ 1− i)

2Nb − 1

)
= − 2

1− λ
sin

(
π (2 i+ 1)

Nb − 1

)
sin

(
π

Nb − 1

)
For the values of the integer i such that:

π (2 i+ 1)

Nb − 1
6 π + 2 p π p ∈

{
0, 1, . . . ,

⌊
Nb

2 (Nb − 1)

⌋}
i.e.:

i 6

⌊
Nb − 2

2
+ p (Nb − 1)

⌋
p ∈

{
0, 1, . . . ,

⌊
Nb

2 (Nb − 1)

⌋}
one gets:

yi+1 − yi 6 0

To this point, one may note that the compatibility condition:

Nb − 2

2
+ p (Nb − 1) 6 Nb − 1

leads to:

p 6
Nb

2 (Nb − 1)

The sole entire admissible value for the integer p is thus: 0.

In the same way, one shows that, for the values of the integer i such that:

π 6
π (2 i+ 1)

Nb − 1
6 2π

i.e.: ⌊
Nb − 2

2

⌋
6 i 6

⌊
2Nb − 3

2

⌋
one gets:

yi+1 − yi > 0
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This proves that the set {P0, P1, . . . , PNb−1} belongs to a non-self-intersecting continuous closed loop
in the plane.
One may also note that since the sequences (yi)06i6

⌊
Nb−2

2

⌋ and (yi)⌊Nb−2

2

⌋
6i6

⌊
2Nb−3

2

⌋ are respectively

non-increasing and non-decreasing, the polygon P0P1 . . . PNb−1 is convex. One has then just to use the
self-similarity of the graph, and reason by induction; for any strictly positive integer m:

Vm =
⋃

06i6Nb−1
Ti (Vm−1)

By assuming that the points of Vm−1 belong to a non-self-intersecting continuous closed loop in the
plane, it is also the case of their images Ti (Vm−1) by each map Ti, 0 6 i 6 Nb−1. For any integer i be-
longing to {1, . . . , Nb − 2}, Ti (Vm−1) and Ti+1 (Vm−1) have exactly one common vertex, which happens
to be the last point of Ti (Vm−1), and the first one of Ti+1 (Vm−1). Moreover, Ti (Vm−1) and Ti+1 (Vm−1)
are ordered sets, according to increasing abscissae.

The proof is done in a similar way for the vertices of the Nb−gons Qm,j , 1 6 j 6 Nm
b − 2.

Definition 2.8. Edge relation, on the graph ΓW

Given a natural integer m, two points X and Y of ΓWm will be called adjacent if and only if X and Y
are two consecutive vertices of ΓWm . We will write:

X ∼
m
Y

This edge relation ensures the existence of a word M = (M1, . . . ,Mm) of length m, such that X
and Y both belong to the iterate:

TM V0 = (TM1 ◦ . . . ◦ TMm) V0

Given two points X and Y of the graph ΓW , we will say that X and Y are adjacent if and only if
there exists a natural integer m such that:

X ∼
m
Y

Proposition 2.11. Adresses, on the Weierstrass Curve

Given a strictly positive integer m, and a word M = (M1, . . . ,Mm) of length m ∈ N?, on the
graph ΓWm , for any integer j of {1, ..., Nb − 2}, any X = TM(Pj) of Vm \ V0, i.e. distinct from one of
the Nb fixed point Pi, 0 6 i 6 Nb − 1, has exactly two adjacent vertices, given by:

TM(Pj+1) and TM(Pj−1)

where:

TM = TM1 ◦ . . . ◦ TMm

By convention, the adjacent vertices of TM(P0) are TM(P1) and TM(PNb−1), those of TM(PNb−1), TM(PNb−2)
and TM(P0) .
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3 From the box-counting dimension to the non-differentiability

Notation.
For any integer j belonging to {0, . . . , Nb − 1}, any natural integer m, and any wordM of length m,
we set:

TM (Pj) = (x (TM (Pj)) , y (TM (Pj)))

Lm = x (TM (Pj+1))− x (TM (Pj)) =
1

(Nb − 1)Nm
b

hj,m = y (TM (Pj+1))− y (TM (Pj)) .

����

� �

�� (Pj)

�� (Pj+1)

3.1 Box-counting dimension

Notation. We will denote by:

DW = 2 +
lnλ

lnNb

the Hausdorff dimension of ΓW (see [BBR14], [Kel17]).

Definition 3.1 (Box-counting dimension). By definition of the box-counting dimension DW (we
refer, for instance, to [Fal86]), one has:

DW = − lim
δ→0+

lnNδ (ΓW)

ln δ

where Nδ (ΓW) is any of the following:

i. the smallest number of sets of diameter at most δ that cover ΓW on [0, 1[ ;

ii. the smallest number of closed balls of radius δ that cover ΓW on [0, 1[ ;

iii. the smallest number of cubes of side δ that cover ΓW on [0, 1[ ;

iv. the number of δ-mesh cubes that intersect ΓW on [0, 1[ ;

v. the largest number of disjoint balls of radius δ with centers in ΓW on [0, 1[.
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Theorem 3.1. An upper bound and a lower bound, for the box-dimension of the Weier-
strass Curve [Dav18]

For any integer j belonging to {0, 1, . . . , Nb − 2}, each natural integer m, and each word M of
length m, let us consider the rectangle, whose sides are parallel to the horizontal and vertical axes, of
width:

Lm = x (TM (Pj+1))− x (TM (Pj)) =
1

(Nb − 1)Nm
b

and height |hj,m|, such that the points TM (Pj) and TM (Pj+1) are two vertices of this rectangle.

We set:

ηW = 2π2
{

(2Nb − 1)λ (N2
b − 1)

(Nb − 1)2 (1− λ) (λN2
b − 1)

+
2Nb

(λN2
b − 1) (λN3

b − 1)

}
.

C1(Nb) =


(Nb − 1)2−DW

{
2

1− λ
sin
(

π
Nb−1

)
min

06j6Nb−1

∣∣∣sin(π (2 j+1)
Nb−1

)∣∣∣− 2π

Nb (Nb − 1)

1

λNb − 1

}
if Nb is odd

(Nb − 1)2−DW max

{
2

1− λ
sin
(

π
Nb−1

)
min

06j6Nb−1

∣∣∣sin(π (2 j+1)
Nb−1

)∣∣∣− 2π

Nb (Nb − 1)

1

λNb − 1
,

4

N2
b

1−N−2
b

N2
b − 1

}
if Nb is even

and:

C2(Nb) = ηW(Nb − 1)2−DW .

Then:
C1(Nb)L

2−DW
m 6 |hj,m| 6 C2(Nb)L

2−DW
m .

Proof. Sketch of proof (for the detailed proof, we refer to [Dav18]

The proof is based on the fact that, given a strictly positive integer m, and two points X and Y of Vm
such that:

X ∼
m
Y

there exists a wordM of length |M| = m, on the graph ΓW , and an integer j of {0, . . . , Nb − 2}2, such
that:

X = TM (Pj) , Y = TM (Pj+1) .

By writing TM under the form:

TM = Tim ◦ Tim−1 ◦ . . . ◦ Ti1
where (i1, . . . , im) ∈ {0, . . . , Nb − 1}m, one gets:

x (TM (Pj)) =
xj
Nm
b

+
m∑
k=1

ik

Nk
b

, x (TM (Pj+1)) =
xj+1

Nm
b

+
m∑
k=1

ik

Nk
b

and: 
y (TM (Pj)) = λm yj +

m∑
k=1

λm−k cos

(
2π

(
xj

Nk
b

+

k∑
`=0

im−`

Nk−`
b

))

y (TM (Pj+1)) = λm yj+1 +
m∑
k=1

λm−k cos

(
2π

(
xj+1

Nk
b

+
k∑
`=0

im−`

Nk−`
b

)) ·
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Notation. Given a natural integer m, we set:

hm = L2−DW
m =

N
(DW−2)m
b

(Nb − 1)2−DW

��

� �

Y ~
m

X

X ~
�

Y

|hjm| . hm

Remark 3.1. Comparison with previous results: explicit lower and upper bounds

It is worth noting that our result gives explicit lower and upper bounds for the quantity |hj,m|,
which enables one to obtain then the value of the box-counting dimension of the graph ΓW . Especially
concerning the lower bound, such a result does not appear in the existing literature on the subject.
Even if the result of G. Hardy [Har11], [Har16], at first destined to show the non-differentiability of the
Weierstrass function, is not referenced among the ones related to the calculation of the box-dimension,
one may note that he is the first to give a (non-explicit) upper bound and prove that, for any value of
the real number x, and η → 0+:

W(x+ η)−W(x) = O
(
|η|2−DW

)
(see cite [Har11], Theorem 1.3.2 page 303).

Later, in [KMPY84], the authors rely on non-explicit lower-bound estimates. In [Hun98], as
concerns the lower bound, the author calls for strictly positive constants K and K ′ which, again,
are not given explicitely (see section 3., page 798). In [She18], also on the Hausdorff dimension of
the graph, the estimates are so scattered that it is extremely difficult to reconstruct explicit ones.
In [Kel17], again, there isn’t any explicit lower bound, but general constants K1 and K(K1).

Corollary 3.2. The box-counting dimension of the graph ΓW is exactly DW .

Proof. i. Given a strictly positive integer m, let us first consider the subdivision of the interval [0, 1[
into:

Nm =
1

Lm
= (Nb − 1)Nm

b
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sub-intervals of length Lm. One has to determine a natural integer Ñm such that the graph of ΓW
on [0, 1[ can be covered by Nm × Ñm squares of side length Lm.

The difficulty is indeed to cover not only the approached mth-order graph ΓWm, but any (m+ p)th-
order graph ΓWm+p, p ∈ N, and, thus, ΓW .

This is achieved thanks to the Hölder condition satisfied by the Weierstrass function [Zyg02]:

∀ (x, y) ∈ [0, 1]2 : |W(x)−W(y)| . |x− y|2−DW

Thus, given two adjacent verticesX and Y of themth-order graph ΓWm, all the points of the Weierstrass
Curve that are between X and Y belong to a rectangle of height equal to hm = L2−DW

m , and of
width Lm. A convenient cover of the Weierstrass Curve between X and Y requires at most:

hm
Lm

squares of side length Lm

To cover the Weierstrass Curve on the semi-opened interval [0, 1[ thus requires at most:

Nm
hm
Lm

=
1

Lm

hm
Lm

=
hm
L2
m

6
C2 L

2−DW
m

L2
m

= C2 L
−DW
m ·

Let us now consider a strictly positive real number δ such that:

Lm < δ 6 Lm−1

then, a δ-cover of ΓW on [0, 1[ is at most constituted of:

C2 L
−DW
m

squares of side Lm.

Xk =Y�

X�+1 =Y�+Nb

X�+2 =Y�+2��

Y�+1

Y�+	
-1 Y�+�+1

Y�+2��-1

Lm

δ⩽L�-1

� �-���� P�, j

� �-���� P�, �+1

� �-���� P�, �+2

� �-���� P�+1,�

h�

Given three consecutive vertices of ΓWm, Xk, Xk+1, Xk+2, where k denotes a generic nat-
ural integer, Yk+1, . . ., Yk+Nb−1 are the points of Vm+1 \ Vm such that: Yk+1, . . ., Yk+Nb−1
are between Xk and Xk+1, and by Yk+Nb+1, . . ., Yk+2Nb−1, the points of Vm+1 \ Vm such
that: Yk+Nb+1, . . ., Yk+2Nb−1 are between Xk+1 and Xk+2. In magenta, one can see the δ-
cover of squares of side Lm, in green, the δ-cover of squares of side δ.
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Hence:

Nδ (ΓW) 6
C2(Nb)L

−DW
m

N1−DW
b

which yields:

− lim sup
δ→0+

lnNδ (ΓW)

ln δ
6 − lim sup

m→+∞

ln
C2(Nb)L

−DW
m

N1−DW
b

lnLm
= − lim sup

m→+∞

lnL−DWm

lnLm
= DW

ii. Conversely, given a strictly positive real number δ such that:

Lm+1 6 δ < Lm , m ∈ N?

any square of side δ intersects at most Nb polygons Pm+1,j , 0 6 j 6 Nm+1
b − 1 that occur at step m+1

in the construction of ΓW on [0, 1[. Due, again, to the Hölder condition satisfied by the Weierstrass
function [Zyg02], a Nb-gon Pm+1,j , 0 6 j 6 Nm+1

b − 1, can be inscribed in a rectangle of heigth at
most equal to hm+1, and of width Lm+1, which contains all the points of the curve that are between
the extreme vertices of Pm+1,j .

Xk =Y�

X�+1 =Y�+Nb

X�+2 =Y�+2��

Y�+1

Y�+	
-1 Y�+�+1

Y�+2��-1

Lm

� �-���� P�, j

� �-���� P�, �+1

� �-���� P�, �+2

� �-���� P�+1,�

h�

Lm+1 ⩽δ<Lm

In green, a square of side δ ∈ [Lm+1, Lm[ intersecting polygons Pm+1,j, 0 6 j 6 Nm+1
b − 1.

There are Nm+1
b such polygons. One has to consider the vertical amplitude, taking account that

theNm+1
b polygons Pm+1,j , 0 6 j 6 Nm+1

b − 1, withNb sides, are related to the elementary height hm+1.
This brings in a required number (related to the vertical amplitude) at least of:

Nb
hm+1

δ

Thus:

Nδ (ΓW) >
1

δ
×Nb

hm+1

δ
>
Nb hm+1

L2
m
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i.e.:

Nδ (ΓW) >
Nb hm+1

L2
m

>
NbC1(Nb)L

2−DW
m+1

L2
m

i.e.:

Nδ (ΓW) >
NbC1(Nb)L

2−DW
m

L2
mN

2−DW
b

i.e.:

Nδ (ΓW) >
C1(Nb)L

−DW
m

N1−DW
b

So, at least

C1(Nb)L
−DW
m

N1−DW
b

squares of side δ are required to cover ΓW on [0, 1[.
Hence:

Nδ (ΓW) >
C1(Nb)L

−DW
m

N1−DW
b

which yields:

− lim inf
δ→0+

lnNδ (ΓW)

ln δ
> − lim inf

m→+∞

ln
C1(Nb)L

−DW
m

N1−DW
b

lnLm
= − lim inf

m→+∞

lnL−DWm

lnLm
= DW

Corollary 3.3. The sequence of polygonal domains (D (ΓWm))m∈N converges towards ΓW .

Proof. For any natural integer m,, the aforementioned squares, the side length of which is at most
equal to Lm, that can cover the graph ΓWm on [0, 1[, also cover the polygonal domain D (ΓWm). Since

lim
m→+∞

Lm = 0

the convergence is obvious.
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3.2 Non-differentiability of the Weierstrass function

The original proof of the non-differentiability of the Weierstrass function was given by K. Weierstrass

in the case where λNb > 1 +
3π

2
, Nb being an odd positive integer (see [Tit39], pages 351-354). It is

rather technical (two pages), and consists in proving that the W function has no finite derivative for
any value of x ∈ R, since the quantity: ∣∣∣∣W (x+ h)−W (x)

h

∣∣∣∣
takes arbitrary large values when h→ 0+.

A slight improvement was given by T. J. Bromwich [Bro08], in the case where

λNb > 1 +
3π

2
(1− λ)

T. J. Bromwich seemed very proud of his result, and did not hesitate to qualify the seminal con-
dition of Weierstrass of “unnecessarily narrow” ...

In [Har16], G. H. Hardy showed that all those conditions were artificial ones, which “arised in
consequence of the methods employed”, and, as it could have been expected, did not correspond to
“any essential feature of the function”. G. H. Hardy proved that in the general case, i.e. not depending
on the fact that b was or was not an integer, and under the condition:

λ b > 1

theW function is not differentiable. Again, it is very technical, the aim being to obtain estimates that
enable to get the expected result. Following the above remark of Hardy himself, one may say that, at
the times, one did not have enough appropriate tools.

To get the expected limit, one simply requires a lower bound for the absolute value of the average
rate of change ∣∣∣∣W (x+ h)−W (x)

h

∣∣∣∣
where h denotes a positive real number that tends to 0, which happens to be given by Theorem 3.1.

Corollary 3.4. (of Theorem 3.1)

In the case where

0 < λ < 1 , b = Nb ∈ N and λNb > 1

the W function is non-differentiable.

Proof. Given a point X = (x,W(x)) of ΓW , and a natural integer m, one may note that, for:

k0 = sup
{
k ∈ {0, . . . ,6 Nb − 1} , x

(
TMm,j (Pk)

)
6 x

}
whereMm,j , 0 6 j 6 Nm

b − 1 denotes a word of length m, one has:

x
(
TMm,j (Pk0)

)
6 x 6 x

(
TMm,j (Pk0+1)

)
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In the same time:∣∣x (TMm,j (Pk0)
)
− x

(
TMm,j (Pk0+1)

)∣∣ =
1

(Nb − 1)Nm
b

= Lm −→
m→+∞

0

Thus:

∣∣W (x (TMm,j (Pk0)
))
−W

(
x
(
TMm,j (Pk0+1)

))∣∣ > C1(Nb)L
2−DW
m

= C1(Nb)
∣∣x (TMm,j (Pk0)

)
− x

(
TMm,j (Pk0+1)

)∣∣2−DW
which leads to:

∣∣∣∣∣∣∣∣∣
W
(
x
(
TMm,j (Pk0)

))
−W

(
x
(
TMm,j (Pk0+1)

))
x
(
TMm,j (Pk0)

)
− x

(
TMm,j (Pk0+1)

)︸ ︷︷ ︸
Lm

∣∣∣∣∣∣∣∣∣ > C1(Nb)
∣∣x (TMm,j (Pk0)

)
− x

(
TMm,j (Pk0+1)

)∣∣1−DW
= C1(Nb)L

1−DW
m

where

1−DW = −1− lnλ

lnNb
= − ln (λNb)

lnNb
< 0

By passing to the limit when the integer m tends towards infinity, one gets the non-differentiability
expected result:

lim
m→+∞

∣∣∣∣∣W
(
x
(
TMm,j (Pk0)

))
−W

(
x
(
TMm,j (Pk0+1)

))
Lm

∣∣∣∣∣ = +∞·

The key point of this proof is that the points of the mth order prefractal graph approximation,
in particular, TMm,j (Pk0) and TMm,j (Pk0+1), are also on the Weierstrass Curve. One thus naturally
falls on the limit position of the secant.

Thanks

The author would like to thank JPG, FD, AK, for their very pertinent suggestions and advices,
which helped a lot improving the original work.
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