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COMPARISON OF TWO EQUIVARIANT 7n-FORMS
BO LIU AND XTAONAN MA

ABSTRACT. In this paper, we first define the equivariant infinitesimal n-form, then we compare
it with the equivariant n-form, modulo exact forms, by a locally computable form. As a
consequence, we obtain the singular behavior of the equivariant n-form, modulo exact forms,
as a function on the acting Lie group. This result extends a result of Goette and it plays an
important role in our recent work on the localization of n-invariants and on the differential
K-theory.
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0. INTRODUCTION

In order to find a well-defined index for a first order elliptic differential operator over an even-
dimensional compact manifold with nonempty boundary, Atiyah-Patodi-Singer [1] introduced
a global boundary condition which is particularly significant for applications. In this final
index formula, the contribution from the boundary is given by the Atiyah-Patodi-Singer (APS)
n-invariant associated with the restriction of the operator on the boundary. Formally, the n-
invariant is equal to the number of positive eigenvalues of the self-adjoint operator minus the
number of its negative eigenvalues. If the manifold admits a compact Lie group action, in [31],
extending the APS index theorem [1], Donnelly proved a Lefschetz type formula for manifolds
with boundary. The contribution of the boundary is expressed as the equivariant n-invariant
Tg-

Note that the n-invariant and the equivariant n-invariant are well-defined for any compact
manifold. In [36, Theorem 0.5], Goette studied the singularity of 7, at g = e the identity
element, when the group action is locally free. He defined the equivariant infinitesimal 7-
invariant as a formal power series and express the singularity of 1, at ¢ = e as a locally
computable term through the comparison of the equivariant infinitesimal n-invariant and the
equivariant n-invariant.

In [19, 20], Bismut and Goette established the general comparison formulas for holomorphic
analytic torsions and de Rham torsions. They used the analytic localization techniques devel-
oped by Bismut and Lebeau in [21] and developed new techniques to overcome the difficulty
that the operators do not have lower bounds. In the holomorphic case [19, Theorem 0.1], besides
the predictable Bott-Chern current, in the final formula, there is an exotic additive character-
istic class of the normal bundle, which is closely related to the Gillet-Soulé R-genus [35] and
Bismut’s equivariant extension [10]. In the real case [20, Theorem 0.1], in the final formula,
besides the predictable Chern-Simons current, they discovered an exotic locally computable
diffeomorphism invariant of the fixed point set, the so-called V-invariant. The mysterious V-
invariant should be understood as a finite dimensional analogue of the real analytic (de Rham)
torsion.

On the other hand, extending the works of Bismut-Freed [17] and Cheeger [27] on the Witten’s
holonomy conjecture, Bismut and Cheeger [13] studied the adiabatic limit for a fibration of
compact spin manifolds and found that under the invertible assumption of the fiberwise Dirac
operator, the adiabatic limit of the n-invariant of the associated Dirac operators on the total
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space is expressible in terms of a canonically constructed differential form, 7, so-called Bismut-
Cheeger n-form, on the base space. Later, Dai [28] extended this result to the case when the
kernels of the fiberwise Dirac operators form a vector bundle over the base manifold. The
Bismut-Cheeger n-form, 7, is the families version of the n-invariant and its 0-degree part is
just the APS n-invariant. It appears naturally as the boundary contribution of the family
index theorem for manifolds with boundary (cf. [14, 15, 49, 50]). We cite also [57] for a nice
topological application of eta forms. As the holomorphic analytic torsion and its family version,
Bismut-Kohler holomorphic torsion form [22] are the analytic counterpart to the direct image
in Arakelov geometry [54], whose foundation was developed by Gillet-Soulé and Bismut in
the 1980s, the Bismut-Cheeger n-form is also the analytic counterpart to the direct image in
differential K-theory introduced by Freed-Hopkins [33] and developed further by [26], [34], [38],
[53], etc.

When the fibration admits a fiberwise compact Lie group action, the Bismut-Cheeger 7-
form could be naturally extended to the equivariant n-form 7,. Recently, the functoriality of
equivariant n-forms with respect to the composition of two submersions was established in [39],
which extends the previous work of Bunke-Ma [25] for usual n-forms for flat vector bundles
with duality, cf. [5, 6, 23, 29, 45, 46, 47, 51] for related works on 7n-forms and holomorphic
torsions.

In the same way as fixed-point formula has two equivariant versions, the Lefschetz fixed-point
formula and Kirillov-like formula of Berline-Vergne [4], the same is true for equivariant n-forms.
In this paper, we use the analytic techniques of Bismut-Goette in [19] to define the equivariant
infinitesimal Bismut-Cheeger n-form and prove a general comparison formula between the equi-
variant infinitesimal Bismut-Cheeger n-form and the equivariant Bismut-Cheeger n-form which
extend the work of Goette [36]. In particular, we express the singularity of 77, modulo exact
forms, at any g € G as a locally computable differential form.

Let G be a compact Lie group with Lie algebra g. We assume that G acts isometrically on an
odd-dimensional compact oriented Riemannian manifold X and the G-action lifts on a Clifford
module £ over X. In general, the equivariant APS n-invariant 7, is not a continuous function
on g € G. In [36], Goette studied the singularity of the equivariant n-invariant 7, at g = e.
He defined a formal power series nx € C|[g*]] for K € g, called the equivariant infinitesimal
n-invariant and showed that if the Killing vector field K induced by K has no zeroes on X,
forany N € N, as 0 #t — 0,

(0.1) ek )N — e = My + O(tY),

where [nx|n is the part of the formal power series 7 with degree < N and M,k could be
expressed precisely as a locally computable term. Moreover, there exist ¢;(K) € C such that
when ¢ — 0,

(dim X+1)/2
(0.2) Mix = Y (K7 +01").

J=1

It means that if the Killing vector field K is nowhere vanishing, the singular behavior of 1,:x
when ¢t — 0 could be computed as the integral of the local terms explicitly.
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In this paper, we show first that 7,x is an analytic function on ¢ for ¢ small enough and for
any 0 # K € g,

(0.3) Mk — Netx = Myg,  for t # 0 small enough.

In Theorem 0.2, we establish a general version of (0.3), in particular, its family version.

Let’s explain in detail our result here. Let m : W — B be a smooth submersion of smooth
compact manifolds with fiber X. Note that n = dim X can be even or odd. Let TX =TM/B
be the relative tangent bundle to the fiber X. We assume that T'X is oriented and that the
compact Lie group G acts fiberwise on W and as identity on B and preserves the orientation
of TX.

Let g7* be a G-invariant metric on TX. Let (€, hf) be a Clifford module of TX to the fiber
X and we assume that the G-action lifts on (£, h®) and is compatible with the Clifford action.
Let V¢ be a G-invariant Clifford connection on (&, h¢), i.e., V¢ is a G-invariant Hermitian
connection on (&£,h¢) and compatible with the Clifford action (see (1.19)). Let D be the
fiberwise Dirac operator associated with (g7%, V¥) (see (1.20)).

We assume that the kernels Ker(D) form a vector bundle over B. Then for any
g € G, the equivariant n-form 7, is well-defined (see Definition 1.4)'.

In the whole paper, if n = dim X is even, £ is naturally Zs-graded by the chirality operator I"
defined in (1.15) and the supertrace for A € End(€) is defined by Tr[A] := Tr[['A]; if dim X is
odd, &€ is ungraded. For 0 = a® A with a € A(T*B), A € End(E), we define Tr[o] := o - Tr[A4].
We denote by Tr°*[o] the odd degree part of Tr[o]. Set

~ 1 | TrJo] if n = dim X is even;
(04) Trlo] = { Tr*M[o] if n = dim X is odd.
For a € (R x B), the space of j-th differential forms on R x B, set
%m) "% - a if j is even;
(0.5) Yrxp(a) = ( ?) izl : j : )
T2 (2im) 7 -« if j is odd.

Let ¢ be the coordinate of R in R x B. If a = g + dt A oy, with o, 7 € A(T*B), set
(0.6) [a]® = ay.

Let L be the infinitesimal action on € (W, £) induced by K € g (see (2.3)).

For g € G, we denote by Z(g) C G the centralizer subgroup of g with Lie algebra 3(g).
Let W9 = {xz € W : gx = x} be the fixed point set of g. Then the restriction of 7 on W9,
Tlwe : W9 — B is a fibration with compact fiber X9.

Let B; be the rescaled Bismut superconnection defined in (1.23). Let d be the exterior
differential operator.

IFor even dimensional fiber, any family of Dirac operators could be deformed to another one which satisfies
this assumption and has the same family index in K°(B) (see e.g., [3, §9.5]). But for odd dimensional fiber,
some topological obstruction appears: if a family of Dirac operators D satisfies this assumption, the family index
of D vanishes in K'(B) (this fact is implicitly contained in [2], a proof of which is presented in [32, Theorem
4.1]). Recently, for odd dimensional fiber case, Wittmann [56] defined an 7n-form under the assumption that the
family of Dirac operators has one eigenvalue of multiplicity one crossing zero transversally. It is expected that
many properties of Bismut-Cheeger n-form could be extended to this case.
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Let Kg, k(+) and chy k(-) be equivariant infinitesimal versions of the A-form and the Chern
character form (cf. (2.15) and (2.16)). The following result extends the equivariant infinitesimal
n-invariant to the family case at any g € G (see Definition 2.3, (2.31), (2.32), (2.36) and (2.37)).

Theorem 0.1. For any g € G, there ezists § > 0 such that if K € 3(g) with |K| < B, the
integral

(0.7) Ng.K = —/0 N {waBﬁ lgexp (— (Bt + 6(4[\{/%) +dt A %) — ﬁK)]} dt

1s a well-defined differential form on B, and

( —~
/ R,k (TX, V™) ch, 1 (£/S,VE)
X9

(0.8) dng x = — chyex (Ker(D), VEP)) if n is even;

/ Ay (TX, V™) chy 1 (£/S,VF) if n is odd.
\ J X9
Moreover, for firted K € 3(g), 1,k 15 an analytic function of z € C for |zK| < 5.

In the sequel, 7, i is called the equivariant infinitesimal (Bismut-Cheeger) n-form.
Let ¥ € T*X be the 1-form which is dual to KX by the metric ¢g?*. Now we state the
main result of this paper.

Theorem 0.2. For g € G and Ky € 3(g), there exists f > 0 such that for any K = zK,,
K #0 and —fp < z < B, modulo exact forms on B, we have

(09) ﬁg,K = ﬁgeK =+ Mg,Kv
where Mgy k 1s a well-defined integral defined by

+oo 19[( (dﬁK—Qiﬂ'|KX|2)A dv
1 = — A, k(TX, V%) ch & —
010) My == [ [ e (T e (X, 97X chy (€8, 7).

and t1EmWIAD2INL e is real analytic on t € R, |t| < 1. Moreover, we have

(0.11) dM,x = / Ak (TX, V") chy x (£/S,VE)

X9

— / Aorc (TX,VTX) chyex (E/S,VE).
Xoek

By Theorem 0.1, 7,k is an analytic function of ¢ near ¢ = 0. Thus when ¢ — 0, modulo
exact forms, the singularity of 7j,.tx is the same as that of — M, k.

Note that the general comparison formula for the two versions of equivariant holomorphic
analytic torsions is established in [19, Theorem 5.1, which is the model of our paper. The
analytical tools in this paper are inspired by those of [19] with necessary modifications. For
this problem on de Rham torsion forms, a comparison formula is stated in [20, Theorem 5.13].

Remark 0.3. Let G act on an odd dimensional compact Riemannian manifold (X, ") and on
a Clifford module (€, hf, V¥) compatible with the Clifford action. Then for g = e the identity
element of G, (0.7) defines a complex number nx for any K € g, |K| < . As formal power
series on K, this ny is just the equivariant infinitesimal n-invariant 7y in [36, Definition 0.4].



6 BO LIU AND XIAONAN MA

Let P — B be a G-principal bundle with connection and associated curvature §2. Then we
get naturally a fibration P xg X — B with fiber X. Let 7 be the associated Bismut-Cheeger
n-form. For this fibration, by Bismut [8, §1d), §3b)], under the notation of (1.23), the term
c(T*™) in the Bismut superconnection is ¢(Q2), and (VE%)2 = Lq, thus we get [36, Lemma 1.14],
(0.12) =11

2T

Thus we can understand the formal power series of 1k as a universal n-form.

Remark 0.4. Assume temporarily that B = pt, dim X = n is odd, and X is the boundary of
a G-equivariant Riemannian manifold Z, which has product structure near X. We also assume
that €7 = £} ® &, is a G-equivariant Clifford module on Z such that Sg}x = & and £ near
X is the pull-back of £ as Hermitian vector bundles with connections.

Let Dz be the associated Dirac operator on £z over Z. Then the index of DJZr = DZ\%OO(%;)
with respect to the Atiyah-Patodi-Singer (APS) boundary condition is a virtual representation
of G. For g € G, its equivariant APS index Indsps,(D}) can be computed by Donnelly’s
theorem [31],

~ 1

(0.13) Indaps (D) = / Ay(TZ,V"?) chy(E2/Sz, V) - 9 (ng(D) + Tr [ker(p) [g]) :
79

By combining (0.9), (0.11) (more precisely the Stokes formula [24, p. 775], (3.30) and (3.33)),

and (0.13), for any K € g, there exists > 0 such that, for any —§ < t < 3, we have

- 1
(0.14) Indppgex (D)) = / Ak (TZ,NT7) chyg(E5/S7, V%) — 3 (e (D) + Tt [ker(py[™]) -
Z

Here KtK(-) = Ke,tK(') and chyg () :== che i (+).

The main result of this paper is announced in [41] and plays an important role in our recent
work [42].

This paper is organized as follows. In Section 1, we recall the definition of the equivariant
Bismut-Cheeger n-form. In Section 2, we state the family Kirillov formula and define the
equivariant infinitesimal n-form, in particular, we establish Theorem 0.1 modulo some technical
details. In Section 3, we prove that M,k in (0.10) is well-defined and state our main result,
Theorem 0.2. In Section 4, we state some intermediate results and prove Theorem 0.2. In
Section 5, we give an analytic proof of the family Kirillov formula and the technical details
to establish Theorem 0.1 following the lines of [19, §7]. For the convenience to compare the
arguments here with those in [19, §7], especially how the extra terms for the families version
appear, the structure of this section is formulated almost the same as in [19, §7]. In Section 6,
we prove the intermediate results in Section 4 using the analytical techniques in [19, §8, §9].

From Remark 1.3, to simplify the presentation, in Sections 5, 6, we will assume that T XY
is oriented.

Notation: we use the Einstein summation convention in this paper: when an index variable
appears twice in a single term and is not otherwise defined, it implies summation of that term
over all the values of the index.

We denote by |z] the maximal integer not larger than z.
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We denote by d the exterior differential operator and d? when we like to insist the base
manifold B. Let Q¢/°dd(B C) be the space of even/odd degree complex valued differential
forms on B. For a real vector bundle E, we denote by dim E the real rank of E.

If Ais a Zy-graded algebra, and if a,b € A, then we will note [a,b] := ab — (—1)dceadeebpy
as the supercommutator of a, b. In the whole paper, if A, A" are Z,-graded algebras we will
note ARA’ as the Zy-graded tensor product as in [3, §1.3]. If one of A, A’ is ungraded, we
understand it as Zs-graded by taking its odd part as zero.

For the fiber bundle 7 : W — B, we will often use the integration of the differential forms
along the oriented fibers X in this paper. Since the fibers may be odd dimensional, we must
make precisely our sign conventions: for a € Q*(B) and g € Q*(W), then

(0.15) /X(ﬂ*a)/\ﬁza/\/xﬁ.

Acknowledgments. B. L. is partially supported by Science and Technology Commission of
Shanghai Municipality (STCSM), grant No.18dz2271000, Natural Science Foundation of Shang-
hai, grant No.20ZR1416700 and NSFC No.11931007. X. M. is partially supported by NSFC
No.11528103, No.11829102, ANR-14-CE25-0012-01, and funded through the Institutional Strat-
egy of the University of Cologne within the German Excellence Initiative. Part of this work
was done while the authors were visiting University of Science and Technology in China and
Wuhan University.

1. EQUIVARIANT 7)-FORMS

In this section, we recall the definition of the equivariant n-form in the language of Clifford
modules. In Section 1.1, we recall the definition of the Clifford algebra. In Section 1.2, we
explain the Bismut superconnection. In Section 1.3, we define the equivariant n-form for Clifford
module.

1.1. Clifford algebras. Let (V,(,)) be a Euclidean space, such that dimV = n, with or-
thonormal basis {e;} ;. Let ¢(V') be the Clifford algebra of V' defined by the relations

(11) €€ + €€, = —2(51]

To avoid ambiguity, we denote by c(e;) the element of ¢(V') corresponding to e;.
If e € V, let e € V* correspond to e by the scalar product (,) of V. The exterior algebra
AV* is a module of ¢(V') defined by

(1.2) cle)a=e"Na—ia

for any a € AV*, where A is the exterior product and 7 is the contraction operator. The map
a c(a) -1, a € ¢(V), induces an isomorphism of vector spaces

(1.3) g:c(V)— AV™.
1.2. Bismut superconnection. Let 7 : W — B be a smooth submersion of smooth compact

manifolds with n-dimensional fibers X. Let TX = TW/B be the relative tangent bundle to
the fibers X.
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Let G be a compact Lie group acting on W along the fibers X, that is, if g € G, mo g = 7.
Then G acts on TW and on TX. Let THW C TW be a G-invariant horizontal subbundle, so
that

(1.4) TW =T'W @ TX.

Since G is compact, such THW always exists. Let PTX : TW — TX be the projection
associated with the splitting (1.4). Note that

(1.5) THEW = n*TB.

Let ¢7* be a G-invariant metric on TX. Let g7? be a Riemannian metric on TB. We equip
TW with the G-invariant metric via (1.4) and (1.5),

(1.6) g™V = 1+gTB @ ¢TX.

Let VIW:L (resp. VTB) be the Levi-Civita connection on (TW,g"™") (resp. (T'B,g"?)). Let
V¥ be the connection on T'X defined by

(17) vTX — PTXVTW’LPTX.

It is G-invariant. Let V" be the G-invariant connection on TW, via (1.4) and (1.5),

(1.8) VW = pvTE g v,
Put
(1.9) S = vk _ygtW,

Then S is a 1-form on W with values in antisymmetric elements of End(TW). Let T be the

torsion of VIW. By [8, (1.28)], if U,V, Z € TW,
S(OYW —-SWVYU+TU,V) =0,
(1.10) 208(N\V, Zy +(T(U, V), Z) +(T(Z,U),V) —(T(V, Z),U) = 0.

If U is a vector field on B, let U be its lift in T#W and let L£yu be the Lie derivative
operator associated with the vector field U¥. Then Ly# acts on the tensor algebra of TX. In
particular, if U € T'B, (gTX )_1 Liug"™ defines a self-adjoint endomorphism of TX. If U,V are
vector fields on B, from [11, Theorem 1.1],

(1.11) T, vH) = - pTX Ut v,
andif U € TB, Z,7' € TX,

(1.12) T(U", Z2) = % (™) Lyng™ 2z, T(Z,7") =0.
From (1.10) and (1.12), it U € TB, Z,Z' € T X, we have

We recall some properties in [11, §1.1].
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Proposition 1.1. 1) The connection VI¥ does not depend on g™ and on each fiber X, it
restricts to the Levi-Civita connection of (T X, g*%).
2) IfU € TB, then

1 .
(1.14) ik = Lun+ 5 (67) 7 Long™.

8) The tensors T and (S(-)-,-) do not depend on g'5.

Let ¢(T'X) be the Clifford algebra bundle of (T'X, g7*X), whose fiber at x € W is the Clifford
algebra ¢(T,X) of the Euclidean space (T, X, g’*X). Let £ be a Clifford module of ¢(TX). It
means that £ is a complex vector bundle and restricted on a fiber, £, is a representation of
c(T,X). We assume that the G-action lifts on £ and commutes with the Clifford action.

From now on, we assume that 7'X is G-equivariant oriented.

In the whole paper, if n is even, as in [3, Lemma 3.17], for a locally oriented orthonormal
frame eq,--- , e, of TX, we define the chirality operator by

(1.15) T =i"%c(er) - - - cley).
Then I" does not depend on the choice of the frame, commutes with the G-action and I'? = Id.

Thus € is naturally Z,-graded by the chirality operator I'. The supertrace for A € End(€) is
defined by

(1.16) Try[A] := Tr[['A].

If n is odd, £ is ungraded.

Let hf be a G-invariant Hermitian metric on €. For b € B, let E;, be the set of smooth sections
over X, = 7w (b) of €|x,. As in [8], we will regard E as an infinite dimensional vector bundle
over B. Let dvx(x) be the Riemannian volume element of X;. The bundle E, is naturally
endowed with the Hermitian product

(1.17) (s,8")0 = / (s,8")(x)dvx(x), fors,s €.
Xb

Then G acts on E, = (X, £|x,) as

(1.18) (g.5)(z) = g(s(g~'x)) for any g € G.

Let V¢ be a G-invariant Clifford connection on & (cf. [3, §10.2]), that is, V¢ is G-invariant,
preserves h® and for any U € TW, Z € €= (W,TX),

(1.19) (VE,e(2)] =c(Vi*Z).
The fiberwise Dirac operator is defined by
(1.20) D =Y c(e)VE,

i=1

which is independent of the choice of the orthonormal frame {e;}? .
Let k € (THW)* such that for any U € TB, Lyndvx(z)/dvx(x) = 2k(U")(z). The connec-
tion V& on E defined by (cf. [16, Definition 1.3])

(1.21) Vs == Vius + k(UT)s for s € €°(B,E) = €°(W,E),
is G-invariant and preserves the G-invariant L*-product (1.17) (see e.g., [16, Proposition 1.4]).
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Let {f,} be alocal frame of T'B and {f*} be its dual. Set
u 1
(1.22) VEC= fPAVEE o) = S e (T ID) £ A fA

Then ¢(T") is a section of 7*A?(T*B)® End(E).
By [8, (3.18)], the rescaled Bismut superconnection B,, u > 0, is defined by

(1.23) B, = VuD + V& — —¢(T") : (B, A(T*B)QE) — ¢>°(B, A(T*B)®E).

1
4\/u
Obviously, the Bismut superconnection B, commutes with the G-action. Furthermore, B? is a
2nd-order elliptic differential operator along the fiber X (cf. [8, (3.4)]) acting on A(T*B)QE.
Let exp(—B2) be the heat operators associated with the fiberwise elliptic operator B2.

1.3. Equivariant 7-forms. Take g € G fixed and set W9 = {x € W : gx = x}, the fixed point
set of g. Then W9 is a submanifold of W and 7|y : W9 — B is a fibration with compact fiber
X9. Let Nyo w denote the normal bundle of W9 in W, then

T™W TX
Wi = Ty~ 7~ e
Let {X9}qem be the connected components of X9 with

(1.25) dim X? = (,.

(1.24)

By an abuse of notation, we will often simply denote by all ¢, the same ¢.
Assumption 1.2. We assume that the kernels Ker(D) form a vector bundle over B.

For 0 = a®A with a € A(T*B), A € End(€), we define

(1.26) Tr[o] = a - Tr[4], Tr*Yo] = {a}° Tr[4], Tr"[o] = {a}™" - Tr[A4],
where {a}°d4/¢ven is the odd or even degree part of . Set

~ 1 | Tryo] == Tr[['A] if n = dim X is even;
(1.27) Trle] = { Trod o] if n = dim X is odd.

Let End.rx)(€) be the set of endomorphisms of £ supercommuting with the Clifford action.

It is a vector bundle over W. As in [3, Definition 3.28], we define the relative trace Tr¢/S :

End.rx)(€) = C by: for any A € Endrx)(€),

27"/2 Ty [T A] if n = dim X is even;
E/S — s )
(1.28) T1A] { 2-(n=D/2 Ty [ A] if n = dim X is odd.

Let RTX = (VTX)2, R¢ = (V‘S)2 be the curvatures of VIX, V¢. Then
1
4
is the twisting curvature of the Clifford module £ as in [3, Proposition 3.43].

Note that if TX has a GG-equivariant spin structure, then there exists a G-equivariant Her-
mitian vector bundle F such that & = Sy ® E, with Sy the spinor bundle of 7X, V¢ is induced
by VX and a G-invariant Hermitian connection V¥ on E and

(1.30) RE/S = RP = (VF)2,

(1.29) RE/S .= R® — —(R™e;, e5)c(ei)c(ef) € € (W, A*(T*W) ® End,rx)(E))
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We denote the differential of g by dg which gives a bundle isometry dg : Nxs/x — Nxo/x.
As (G is compact, we know that there is an orthonormal decomposition of real vector bundles
over W9,

(1.31) TX|ws =TX?& Nyoyx =TX'® H N(0),

0<6<m

where dg|n () = —Id and for each 0, 0 < § <, N(0) is the underlying real vector bundle of a
complex vector bundle Ny over W9 on which dg acts by multiplication by e?. Since g preserves
the metric and the orientation of T'X, thus det(dg|n(r)) = 1, this means dim N(7) is even. So
the normal bundle Ny,,x is even dimensional.

Since VI commutes with the group action, its restriction on W9, VI¥|y4, preserves the
decomposition (1.31). Let V7X* and V¥ be the corresponding induced connections on 7X9
and N(6), with curvatures R7*’ and RN,

Set

7 TX9
1.32) A (TX,VTX) = det? dn
( ) 9( 7V ) € (Sinh (ﬁRTXg)>

: —1
: H (iédim]\[((’)deté (1 — gexp (%RN((’O)) c Q*(W9,C).
T

0<O<m

6i9/2 % dlm N(G)
ei971> :

By [3, Lemma 6.10], along W9, the action of ¢ € G on £ may be identified with a section
g¢ of ¢(Nxs/x) @ Endyrx)(€). Under the isomorphism (1.3), o(¢%) € GO(W, ANy x) ®
End,rx)(£)). Let 0,_¢(¢%) € €= (W7, A"*Z(N;‘(Q/X) ® End.rx)(£)) be the highest degree part
of o(g°) in A(N%, sx)- Then we define the localized relative Chern character chy(€/S, Vé) as
in [3, Definition 6.13]:

The sign convention in (1.32) is that the degree 0 part in []j_y. . is given by (

2(nff)/2

RES s
1.33) ch,(£/S,VE) := TS o, o(g® L L
( ) C g( / ) det1/2(1 _g‘NXg/X> r o e(g )exp Sir

S Q° (Wg, det NX!?/X)-

Remark 1.3. In general, X9 is not necessary oriented. The orientation of T'X allows
us to identify det Nxs,x as the orientation line of X9, thus the integral fxg of a form in
Q° (Wg, det NXg/X) makes sense as in [3, Theorem 6.16]. Assume that T X9 is oriented, then
the orientations of T X9 and T'X induce canonically an orientation on Ny, x. By pairing with
the volume form of Nx¢,x, we obtain

(1.34) ch,(£/S,V¥¢) € Q*(W9,C).

If TX has a G-equivariant spin® structure, then 7'X9 is canonically oriented (cf. [3, Proposition
6.14], [44, Lemma 4.1]). If TX has a G-equivariant spin structure, ch,(€/S, V¢) under the above
convention is just the usual equivariant Chern character (cf. (1.30))

gexp | ——— .
20

(1.35) chy(E,VF) = Tr*
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Asin (0.5), for a € Q7 (B), set

24T : e if j is even;
(136) wB<Oé) = (_l) Lo _d=1 . j .
772 (2im) 2 -« if 7 is odd.

Then from the equivariant family local index theorem (see e.g., [8, Theorem 4.17|, [17, Theorem
2.10], [40, Theorem 2.2], [43, Theorem 1.3]), for any u > 0, the differential form 15 Tr[g exp(—B?)] €
Q°*(B, C) is closed, its cohomology class is independent of u > 0, and

(1.37) lim VpTr[gexp(—B2)] = / A (TX, VXY chy(E/S,VE).

X9
Let PXer(?) . E — Ker(D) be the orthogonal projection with respect to (1.17). Let

(138) VKer(D) — PKGT(D)VE,UPKer(D)

and RX"(P) be the curvature of the connection VX(P) on Ker(D).

e If n = dim X is even, from the natural equivariant extension of [3, Theorem 9.19], we have

RKer(D)

(1.39) EIE Vg Try[gexp(—B2)] = Tr, [g exp (— )] — chy(Ker(D), VEe(D)),

20m

Since B, is G-invariant, the equivariant version of [3, Theorem 9.17] shows that

0 0B,
(1.40) " Tr, [gexp(—B.)] = —d” Tr, [g% exp(—Bi)} :
Thus for 0 < e < T < 400,
2 2 s [ B, 2
(1.41) Tr, [gexp(—B2)] — Tr, [gexp(—B7)] =d Tr, 950, exp(—B;) | du.

The natural equivariant extension of [3, Theorems 9.23 and 10.32(1)] (cf. e.g., [39, (2.72) and
(2.77)]) shows that

B
Trs {g% exp(—IB%i)} = 0w ?) asu—0,

(1.42) -
Tr, {ga—u exp(—IB%i)} = Ow™>?) asu— +oo.
u

In this case, by (1.36) and (1.42), the equivariant n-form is defined by
(1.43) 7 /+Oo ! ¥p Tr B, (—B2)| du € °Y(B,C)

) = — s |g — exp(— ,C).

To= fy 2iEtP 9 g TP
By (1.37), (1.39), (1.41) and (1.43), we have
(1.44) dPi, = / A (TX,VTX) chy(E/8,VE) — chy(Ker(D), VKD,
X9

e If n is odd, since the equivariant extension of [3, Theorem 9.19] also holds, we have

(1.45) lim Tr°%[gexp(—B2)] = Tr°% [g exp (—RKer(D))} = 0.
uU——+00

As an analogue of (1.41), for 0 < e < T < +o00, we have

T
(1.46) Trodd [gexp(—B2)] — Trodd [gexp(—B7)] = dB/ Trever [9% exp(—Bi)} du.
. u
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Following the same arguments in the proof of (1.42), we have

Tyeven {g% eXp(_Bi)j| — O(u71/2) as u — O,
(1.47) N

0B,
Trever {g% exp(—Bi)} = O(u™?) asu— +oo.

In this case, by (1.36) and (1.47), the equivariant n-form is defined by

~ oo 1 even 8BU 2 even
(1.48) Mg = i W@DB Tr 95, exp(—B:)| du € Q°(B,C).

From (1.37), (1.45), (1.46) and (1.48), we get
(1.49) dPi, — /X R,(TX, V™) ch, (]S, V).

We write the definition of the equivariant n-form (1.43) and (1.48) in a uniform way using
the notation {-}% as in (0.6).

Definition 1.4. [39, Definition 2.3] For g € G fixed, under Assumption 1.2, the equivariant
Bismut-Cheeger n-form is defined by

(1.50) Mg 1= _/0+°° {wag Tr [gexp (— (Bu + du N\ %>2>] }du du € Q*(B,C).

If g = e the identity element of G, (1.50) is exactly the Bismut-Cheeger n-form defined in
[13]. If B is noncompact, (1.42) and (1.47) hold uniformly on any compact subset of B, thus
Definition 1.4, (1.44) and (1.49) still hold.

2. EQUIVARIANT INFINITESIMAL 7-FORMS

In this section, we state the family Kirillov formula and define the equivariant infinitesimal
n-form. In Section 2.1, we state the families version of the Kirillov formula. In Section 2.2, we
define the equivariant infinitesimal 7-form, and establish Theorem 0.1 modulo some technical
details.

In this section, we use the same notations and assumptions in Section 1. Especially, T X is
G-equivariant oriented and Assumption 1.2 holds in this section.

2.1. Moment maps and the family Kirillov formula. Let |- | be a G-invariant norm on
the Lie algebra g of G. For K € g, let

tK

:Q et x forxeW
Ot {,—g

be the induced vector field on W. Since G acts fiberwise on W, KX € (W, TX) and
(2.2) [K*, K] = —[K, K']* for any K, K’ € g.

(2.1) K*(x)

For K € g, let L be the corresponding Lie derivative given by

_ 9 (-
(2.3) Lks= 7l (e7".s),
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for s € €°(W,E) (cf. (1.18)). The associated moment maps m?*(-), m¢(-) are defined by [3,

Definition 7.5] (see also [19, Definition 2.1}),
(2 4) mTX(K) = Vf())(( — £K|TX € %OO(VV, End(TX)),
' mé(K) := Vix — Lkle € € (W,End(£)).

Since the vector field KX is Killing and V7, V¢ preserve the corresponding metrics, m?* (K)
and m¢ (K) are skew-adjoint actions of End(7'X) and End(€) respectively. By Proposition 1.1,
the connection V¥ is the Levi-Civita connection of (T'X, g7X) when it is restricted on a fiber.
Since the G-action is along the fiber, we have

(2.5) m™™(K) = VI* KX € €°(W,End(TX)).

Since the connection V7% is G-invariant, from (2.4) (cf. [3, (7.4)] or [19, (2.8)]),
(2.6) VIXmIX(K) 4+ igx RT* = 0.
We denote by m®(K) € End(€) by

(27) m () 1= Zm™ (K)es, e5)e(es)e(es).
If TX is spin, m®(K) is just the moment map of the spinor. Set
(2.8) mé/S(K) := mf(K) — mS(K).
From (1.29), we set (cf. [19, (2.30)])
(2.9) RIX = R™ _ 2ixm™(K), RY° = RS —2irmf/S(K).

Then RYX (resp. Rf(/s) is called the equivariant curvature of X (resp. equivariant twisted
curvature of &).

Let Z(g) C G be the centralizer of g € G with Lie algebra 3(g). Then in the sense of the
adjoint action,
(2.10) 3(g)={Keg:9.K=K}.

We fix g € G from now on. In the sequel, we always take K € 3(g). Put
(2.11) WE={zecW:K*x) =0}

Then WX, which is the fixed point set of the group generated by K, is a totally geodesic
submanifold along each fiber X. Set

(2.12) Wok = Wwonwk,

Then W9 is also a totally geodesic submanifold along each fiber X. Moreover, if K, € 3(g)

and z € R, for z small enough, we have
(2.13) Wosko = yyoe

zK(

Since the G-action is trivial on B, WX — B and W9 — B are fibrations with compact
fiber X% and X9%. As in (1.25), by an abuse of notation, we will often simply denote by

(2.14) dim X9 = ¢'.
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Observe that m”* (K)|xs acts on TX9 and Nys/x. Also it preserves the splitting (1.31). Let
mTX(K) and m™ ¥ (K) be the restrictions of m”™ (K)|xs to TX? and N(#). We define the
corresponding equivariant curvatures R%X‘q, Rg(e) as in (2.9).

For K € 3(g) with |K| small enough, comparing with (1.32), set

R LRTXQ
2.15) A, (TX,VIX) = det2 dn K
(2:15) Agl )= 4 | G (2R

. -1
: H (iédim]\[((’)deté (1 — gexp (%R%wv)) c Q*(W9,C).
k>0 T
Note that W compact and |K| small guarantee that the denominator in (2.15) is invertible.
Comparing with (1.33), set
2(n—0)/2

Rs/s|
e /s £ _ Itk We
210 €SV = o o [J“(g)exp( 2im )]

As in (1.35), if TX has a G-equivariant spin structure, ch, (£/S, V¥) is just the equivariant
infinitesimal Chern character in [19, Definition 2.7],
RE|we

20T

(2.17) chy x(E, V) = Tr"” {gexp (— )} c Q*(W9,C),

where m”(K) = VE — Lk, RE := R — 2imm”(K) as in (2.4) and (2.9).
Set

(2.18) dg =d — 2im igx.
Then by (2.6) (cf. [3, Theorem 7.7]),
(2.19) A A, (TX,VTX) =0, dychyg(E/S,VE) =0.
Recall that B, is the rescaled Bismut superconnection in (1.23). Set
c(K*X)
Wt

Then B%ﬂt is a 2nd-order elliptic differential operator along the fiber X acting on A(T*B )@E If

the base B is a point, then the operator By, is VD + C(Af;)
[7] in his heat kernel proof of the Kirillov formula for the equivariant index. As observed
by Bismut [8, §1d), §3b)] (cf. also [3, §10.7]), its square plus Lgx is the square of the Bismut

superconnection for a fibration with compact structure group, by replacing K~ by the curvature

(220) BK,t = Bt +

, and it was introduced by Bismut

of the fibration. Thus we can roughly interpret By ; as the Bismut superconnection by extending
our fibration by a fibration with compact structure group.

Now we state the families version of the Kirillov formula and delayed a heat kernel proof of
it to Section 5.

Theorem 2.1. For any K € 3(g) and | K| small,
e if n is even, fort > 0, the differential form

Vg Tr, [gexp (—B, — Lk)] € Q(B,C)
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is closed, the cohomology class defined by it is independent of t and
(2.21) 12% ¥ Try [gexp (—B%(,t —Lg)] = /Xg XQ,K(TX, V%) chy, x(£/S, V).
e ifn is odd, fort > 0, the differential form
Y Trodd [gexp (—]B;t —Lx)] € Q44 (B, C)

1s closed, the cohomology class defined by it is independent of t and
(2.22) lim 5 Tro' [gexp (=B, — Lx)] = /X g Ay (TX,VTY) chy (£/S, V).

If B is a point and g = e, this heat kernel proof of the Kirillov formula is given by Bismut in
[7] (see also [3, Theorem 8.2]). If B is a point, (2.21) is established in [19]. For g = e, (2.21) is
obtained in [55].

2.2. Equivariant infinitesimal n-forms: Theorem 0.1. For ¢ > 0, set

0
(223) BKJ — BKJ + dt N a

Then by (2.20),

OB, ( c(KX)>2 0 ( c(KX)>
2.24 B3, =B, +dt A " =(B dtN\ = (B :
224) K = Bhee ot ) T e BT

Theorem 2.2. There exist f >0, 6,0’ >0, C > 0, such that if K € 3(g), z € C, |zK| < j,
a) for any t > 1,

(2.25) ‘{:I‘vr[gexp(—BzK,t—zLK)}}dt . t%;
b) forany 0 <t <1,
(2.26) ’{ﬁ[gexp (= B2k — ZEK)} }dt <ot

We delay the proof of Theorem 2.2 to Section 5.
e If n =dim X is even, then for ¢ > 0, as Bx; commutes with g, Lk, by [3, Lemma 9.15],

(2.27) d® Tr, [g exp(—IB%%w - EK)} = Tr, [[BK,“ gexp(—B%w — EK)H = 0.

As in (1.39) (cf. [3, Proposition 8.11 and Theorem 9.19]), we have

(2.28) lim g Try [g exp (— By, — EK)} = chyx (Ker(D), V¥,
t—+o00 ’

As in (1.40),

0 0B
(2.29) e Tr, [g exp(—B%t — Lg)] = —d" Tr, [g a?’t exp(—IB%%w — EK)}

= d” {Tr, [gexp(—By, — Lk)] }dt.
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Thus from (2.29), for 0 < e < T < +o0,
(2.30) Tr, [gexp(—Bikp — Lk)] — Tr, [gexp(—Bk . — Lk )]
T
= dB/ {Tr, [gexp(—Bi, — Lk)] }dt dt.

In this case, for |K| < 3, by Theorem 2.2, the equivariant infinitesimal n-form is defined by

—+00
(2.31) fyx = —/
0

1 t
21'\/#/’3 {Tr, [gexp(—Bi, — Lk)] }d dt

oo ] 0B
= / ¥ ﬁwg Tr, [g aft exp(—B%, — Lx)| dt € Q°*Y(B,C).
0

By (2.21), (2.30) and (2.31), we have

(2.32) A%y i = / A,k (TX,VTX) chy x(£/S,VE) — chyer (Ker(D), VED)),
X9

e If n is odd, then for ¢ > 0, as Bk, commutes with g, L, again by the argument in [3,
Lemma 9.15],

(2.33) dP Tyodd [g exp(—B;t — EK)] = Treve" [[BK,t, QGXP(—B;t - ﬁK)H = 0.
As the same argument in (1.45),
(2.34) tiiinoo Tyodd [g exp (— B%(’t — LK)} =0.

Comparing with (1.40) and (2.29), we have

(2.35)

0 OB
D e B - 0] =0T o B2 e - )

=d” {Tr*" [g exp(—By, — Lk)] }dt .

From Theorem 2.2, in this case, for |K| < /3, the equivariant infinitesimal n-form is defined by

+o0 1
(2.36) fpx = — /O N [T [gexp(~B, — Lx)] }" dt

e 1 even 8BK¢ 2 even
= i ﬁz/}BTr o, exp(—By, — Lx)| dt € Q™" (B,C).

As in (1.49), by (2.22), (2.34), (2.35) and (2.36), we get

(2.37) dPi, x = / KQ,K(TX,VTX)chgvK(S/S,V‘S).
X9

Definition 2.3. For K € 3(g), |K| < 8, determined in Theorem 2.2, under Assumption 1.2,
the equivariant infinitesimal Bismut-Cheeger n-form is defined by

dt

(2.38) ok = — /0 m {waBﬁ[g exp (~B%, — L) }} dt.
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By (0.5) and (1.36), (2.38) is a reformulation of (2.31) and (2.36). From (2.32) and (2.37),
we establish the first part of Theorem 0.1.

Remark that the compactness of B guarantees the existence of the constant S > 0 in Defini-
tion 2.3.

From (2.31) and (2.36), it is obvious that if K =0, 1, x = 1), in (1.50).

From the Duhamel’s formula (cf. e.g., [3, Theorem 2.48]), we have

O(B2y, + 2L
g ( Kt@z x) exp ( — Bgm — ZEK) =0.

(2.39) %ﬁ [g exp (— By, — zLK)} = —Tr

Thus, T;[g exp (— B, — ZEK)] is €>° on t > 0 and holomorphic on 2z € C.
We fix K € 3(g). Thus for 0 < ¢ < T' < +00, the function

/T {@/)Rxgﬁ[gexp (_BzK,t — L) } }dt dt

is holomorphic on z. By Theorem 2.2 and the dominated convergence theorem, we have

(2.40) == [ (v gen (-5, - 220}

is holomorphic on z € C, |zK| < . Thus we get the last part of Theorem 0.1.
The proof of Theorem 0.1 is completed.

3. COMPARISON OF TWO EQUIVARIANT 7-FORMS

In this section, we state our main result. We use the same notations and assumptions in
Sections 1 and 2.
Let ¥ € T*X be the 1-form which is dual to K¥ by the metric g7%, i.e., for any U € TX,

(3.1) I (U) = (K*,U).

We identify ¥ to a vertical 1-form on W, i.e., to a 1-form which vanishes on T#W. Then by
(2.18) and (3.1), we have

(3.2) dgVx = di — 2im | KX

Let d¥ be the exterior differential operator along the fiber X. By (2.5) and (3.1) (cf. [3, Lemma
7.15 (1)]), for U, U’ € TX, we have

(3.3) AV (U, U) = 2V KX U = 2m™ (KU, U").
From (1.11) and (1.12), set

~ . 1
(3.4) T:2T(ff,ei)fp/\el/\+§T(ff,qu)fp/\fq/\.
From [3, Proposition 10.1] or [20, (3.61) and (3.94)],
(3.5) A = dX0k + (T, KX) = &0k + 9k (T).

For K € 3(g), | K| small, v > 0, set
ax = Ay (TX,VT¥) chy 1 (E/S,VE) € Q** (W9, det Nxa)x),

3.6
(36) 'evv:—/ Vi exp(dKl?K)aKEQ%B,C).
X

g SviT Suim
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Note that if W9 = W9, as 9 = 0 on WX, we get €, = 0.
Lemma 3.1. If WK ¢ W9. Then €, = O(v™!) as v — +oo0 and &, = O(v*/?) as v — 0.

Proof. By (3.2) and (3.6), we have

(3 () e (HHE) o
g \2im xo 4v 4v P 4o K-

Thus when v — +00, €, = O(v™1).

For v — 0, we follow the argument in the proof of [9, Theorem 1.3]. For x € W9, if KX # 0,
when v — 0, the integral term in (3.7) at x is of exponential decay. So the integral in (3.7)
could be localized on a neighbourhood of W9,

Let Nxq.x,xs be the normal bundle of WK in W9, and we identify it as the orthogonal
complement of TX9K = TX9| 06 NTXE|yox in TXyex. Recall that as K¥ is a Killing
vector field, for any b € B, X} K is totally geodesic in X 7, and as the same argument in Section
2.1, VIX? mTX(K) preserve the splitting

|dim W9/2)

(3.7) == >

J=0

(3.8) TX9=TX"" ® Nyorx,xs onWo¥
and m?*(K) = 0 on TX%E. In particular,

(3.9)  m Nxoxxo(K) = mTX(K)|y

<ok xs € End(Nxo.x/x9) is skew-adjoint and invertible.
Combining with (2.6), it implies that Nyq.x xs is orientable, and we fix an orientation. Then
the orientations on T'X, Ny« ,xs induce the identifications over Wk,

(3.10) det(Nxo/x) ~ det(TX?) ~ det(TX9™).

Given ¢ > 0, let U be the e-neighborhood of W9¥ in Nxo.x/xs. There exists gy such that
for 0 < ¢ < €p, the fiberwise exponential map (y,Z) € Ny xox/x0 — expi((Z) € X/ is a
diffeomorphism from 4" into the tubular neighborhood V” of W9K in W9. We denote V" the
fiber of the fibration V” — B. With this identification, let k(y, Z) be the function such that

(31]‘) d'UXg(yaZ) = l_{:(yaz)deg’K(y)va

x9.K/x9 (Z)
Here dvx, € A" (T*X9) @ det(T*XY), dvyex € A™(T*X9K) @ det(T*X9K) are the Rie-

mannian volume forms of X9, X9 and doy is the Euclidean volume form on Nyg.x ) x-

9, K /x9

Let e!,--- e’ be a locally orthonormal frame of T*X9. For 3 € Q° (Wg,det(NXg/X)), let

[3]m2x be the coefficient of e A -+~ Aef @ el A--- Ael of B, here el A--- A el means the local
frame of det(Nys,x) induced by e* A --- A e via (3.10). Consider the dilation d,, v > 0, of
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Nxox/x9 by 0(y, Z) = (y,/vZ). We have

12 — | — —
(312) /gg aw \aw ) P w )

9 v J KX(y, Z)|? o
:/ / [ KJl(va)< T(y’z)) exp (—#) OéK(@JaZ)]
X9,K ZENXg,K/ng‘Z|<€ % v v

. E(y, Z)dvxex(y)duy (2)
T e (dazﬁm,m)jexp (I8 52
X9,K ZENXg,K/Xg7|Z\<5/\/5 4v 4v 4ov

x9,K/x9

Let V"x9%/x9 he the connection on Nya.x /xs induced by VI as explained after (1.31). Let

N @ Nxox/xe — W9E be the obvious projection. With respect to VVx9K/x9 we have the
canonical splitting of bundles over Nxq.x/x,

(313) TNXg,K/Xg = THNXq,K/Xq @ ijNXq,K/Xq
By (1.4) and (3.13), we have
(3.14) T Nyox xo =2 Ty TWIR = o (TPW @ TXOR).

On Nyqg.x/x9, by (3.13) and (3.14), we have
(3.15) A(T*Nxox,/xs) = A(TH*NX%K/X!?)@WTVA(N)*(H’K/XH)
~ 1 (M W) BAN Yo x0)) -

For y € WK fixed, we take Yy,Y] € T,WoK YV YV ¢ Nxo.x/x0,, then Y = Y] + YV,
Y’ =Y/ +Y" are sections of TNxox/xs along Nxox /xq, under our identification (3.13), i.e.,

(3.16) Yo = Y0, 2)+YY, Yz =Y. 2)+Y".

Here Y7, Y/ € THNXg,K/Xg are the lifts of Y7, Y/.
Let 6y be the one form on total space N of Nyo.x/xs = Nyyox we given by

(3.17)  6o(Y)(yzy = (m"™(K)Z, YY), for Y =Y +YV € T" Nyosc ;xs ® (T3 Nxax jxa).
By [3, Lemma 7.15 (2)], we have

(3.18) %5:19;( = 6y + O(v'/?).

From (3.18), we get

(3.19) %ﬁdq‘};{ = %dé;ﬂ;( = dby + O(v'/?).

As in the argument before [3, p218, Lemma 7.16], by (3.8), we calculate that for (y,Z2) €
NngK/Xga

(3.20) doo(Y,Y") .2y = 2(m"“ (K)YV, YY), — (R™F (V" Y{")(m"™ (K) 2), Z),,.
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By (2.5) and (2.12), for y € WK,
1
(3.21) SIES (Y VoZ)? = imTH (K) 2] + O('?).

From (3.12), (3.18), (3.19) and (3.21), for any a € Q* (W9, det(Nxs,/x)), as v — 0,

22 — | — —
(3:22) /gé, a4y ) P w )°

J TX 2
X9.K ZeN

4
x9,.K /x9

From (3.20), df, is an even polynomial in Z. However from (3.17), 6, is linear in Z. Thus the
last integral in (3.22) is zero. Therefore, as v — 0, we have

I (dﬂK)j ( \KW) — O
(3.23) /XQE 2o ) &P 10 ag = O(v/?).

The proof of Lemma 3.1 is completed. O

Remark that when B is a point, for g = e, Lemma 3.1 is proved in [37, Proposition 2.2].
From Lemma 3.1 and (3.6), the following integral is well-defined,

+o00 d
(3.24) M, = / &,
0

v

Proposition 3.2. For any Ky € 3(g), there ezists § > 0 such that for K = 2Ky, = < z < 3,
we have

(3.25) d°M,x = / Ak (TX,VT¥) chy x(£/S,VE)

X9

_ / R, (TX, V7X) ey (€S, V).
XgeK

And there exist ¢;(K) € Q*(B,C) for1 <j < [(dim W94 1)/2] such that M,k is smooth on
[t| <1,t#0 and ast — 0, we have

| (dim W9+1)/2]
(3.26) M= Y. GEt7+0t).

=1
Moreover, t\mWAD2IAL 1 is real analytic in t for |t] < 1.

Proof. By (2.18), d% = —2irLy, and Jf is K-invariant. We know

(o0 (G)) = s (g o (i)
2 < _ g (= _
(3.27) ov exp 2uim v?2 di 24T exp 2T

N
We define the corresponding equivariant curvature R,~""/** as in (2.9) via (3.8). By the
proof of (3.23) and [9, Theorem 1.3], we know that there exists C' > 0, such that for any
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€ (0,1], « € Q*(W9,det(Nxq/x)) = Q* (W9, 0(TX9)),

/ P ( 2K K) a- / 1/2 Nyo.K 1 xg < C\/aHa”%”l(Wg)a
Xo vim xok dett/2 (R (2ir)

9 dgv
| g exp (52) of < Ovlallangrn
X

g 201T 2w
Let Qk be the current on W9 such that if o € Q*(W?9, det(Nxs/x)), then

Foo dK’l9K> dv
3.2 = )
(3:29) o Qra = / /Xg 21}27? 2uim “ v

From (3.7), the second equation of (3.28), we know (3.29) is well-defined. From (3.27)-(3.29),
the following equality of currents on W9 holds (cf. [12, Theorem 1.8]):

=025
N
det!/? (RKX”’K/XQ /(2m))

where dyyq.x is the current of integration on WX, From (3.6), (3.24) and (3.29), we get

(3.28)

(3.30) dxQx =1 —

)

(3.31) Myk = QK@K

+o0o
dKﬂK) TX evdv
/ /Xg 2m7r ; Ay r(TX, V") chy k(E/S,V )v

2uim
For x € W9, K € 3(g), we have K*(z) € T,X9. From [3, (1.7)], for o € Q*(W?Y,0(T X)),

using the sign convention in (0.15), we have

(3.32) dB/ 0—/ dcr—/ dyo.
X9 X9 X9

From (2.12), proceeding as the same calculation in the proof of [3, Theorem 8.2], we get, as
elements in Q*(W2* det(Nxq/x)),

A,k (TX,VTX) ch, x(£/8, VE)
i)/t 12 (RK“ K xo /(2z7r)>

As ag is dg-closed, by (2.13) and (3.29)-(3.33), we get (3.25).
For t # 0, by (3.31) and changing the variables v — vt?, we have

+oo
3.34 =
(3:34) My = / /Xq uimt

From the arguments in the proof of (3.23), we get (3.26). From (2.15), (2.16) and (3.6), we see
that ayg is real analytic on ¢ for |t| < 1. Following the proof of (3.23),

/+°°/ dﬁK ( \KX|2) dv
eXp |\ — Qg —
X9 v v

is uniformly absolutely integrable on v for |t| < 1. Thus ¢LdimWa+1)/ 2JM9¢K is real analytic on
t for |t| < 1.
The proof of Proposition 3.2 is completed. U

(3.33) = Ay (TX,VTX) chyex (E/8,VE).

[ (dim W

1)/2] ( (dﬁK)k ) ( |KX‘2) dv
" Jexp|( — e —.
:0 ( v v

2uimt)kk!
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From Proposition 3.2, we could state our main result, Theorem 0.2 as follows.

Theorem 3.3. For any g € G, Ky € 3(g), there exists § > 0 such that for K = zKj,
—B<z<p, K#0, we have

(3.35) Mg = Tgerc + My e € (B, C)/d¥(B, C).

Observe that by (2.40), 7,k is analytic on ¢ for ¢ small. By (3.35), when ¢ — 0, modulo
exact forms, the singularity of 7.« is the same as that of — M,k in (3.26).
Note that Theorem 3.3 is compatible with (1.44), (1.49), (2.32), (2.37) and (3.25).

Remark 3.4. For K € 3(g), M = |(dim W9 —1)/2], on W9\ {K* = 0}, we have

1\ (0 (dUg KX[*\ d

(3.36) Qx = 2 (_) / Uk (_K> exp (_| | ) av
2im 0 v v v

M 1 ( 1 >j+1 Vg (dﬁK)J +o0 vy

“ogi\en) weEmE ), o

J=
M

-y I(dix) U (1 iy )‘1
S (2im) KX 2im KX 2im|KX[2)

From (3.18)-(3.21), we know that there exists C' > 0 such that

(3.37) |KX(y, 2)|" > C| 2P,

and for Y, € T,W9K,

(3.38) iyl = O(|ZP), iyndikx = O(|Z]?).

From (3.36)-(3.38) and the rank ¢ — ¢’ of Nxg.x/xs is even, we know that near W9K
(3.36)-(3.38) /

(3.39) Q(y, Z) = 0(|2'").

Thus as a current over W9, Q is in fact locally integrable over W9 and given by (3.36). For
g = e, and B = pt, this is exactly [37, Proposition 2.2].

Assume now K* has no zeros, for ¢ # 0 small enough, by (3.6), (3.24), (3.35) and (3.36), we
have

- ~ s di 7 . .
(340) Ngtk = ngetK - /);g W (]_ - W) i € Q (B,C)/dQ (B,C)

In particular, for ¢ = e and B = pt, (3.40) as Taylor expansion at ¢t = 0 is [36, Theorem 0.5].

4. A PROOF OF THEOREM 3.3

In this section, we state some intermediate results and prove Theorem 3.3. The proofs of the
intermediate results are delayed to Section 6.
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4.1. Some intermediate results. For ¢t > 0, v > 0, set

Vie(K¥X) ( 1) 0

_ dt N — +dv N\ —
4 t v + ot v ov’

Then C,; is a superconnection associated with the fibration (R%)* x W — (R*)? x B. From
the argument in the proof of [3, Theorem 9.17], we have

(41) Cv,t - Bt —|— 8

(4.2) d***BTr[g exp(—Cy, — Lk)] =
For a € A(T*(R? x B)),
(4.3) a=oyt+dvANag+dtNag+dv ANdtANas, o, € AN(T*B),i=0,1,2,3,
as in (0.6), set
(4.4) @™ = a1, [a]*:=as, [a]®M =y

Definition 4.1. We define (3, x to be the part of szxBTr[g exp(—C;, — Li)] of degree one
with respect to the coordinates (v,t). We denote by

(4.5) Qg K = — {¢R2x3ﬁ[g eXp(—Cg,t — Lk)]

From comparing the coefficient of dv A dt part of (4.2), we have

} duAdt

0
(4.6) (dv/\a— + dt A >ﬁgK —dv AN dt AdPay k.
Take a, A, 0 <a <1< A< +oo. Let I' =TI', 4 be the oriented contour in R, x Ry ;:
A
A

0

The contour I' is made of three oriented pieces I'1, 'y, I's indicated in the above picture. For
1 <k<3,set IV = ka B,k Also I bounds an oriented triangular domain A.
By Stocks’ formula and (4.6),

(4.7) ka /@,K /dv/\angdt/\ )@,K —dB(/Aag,Kdmdt).

The proof of the following theorem is left to Section 5.11.

Theorem 4.2. For K € 3(g), |K| small enough, there exist 6 > 0, C' > 0 such that for any
t>1,v>t, we have

(4.8 B0, 1)%] < .
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For a € (B, C), we define

- o .
(4.9) d() == {Yrxp(dv A oz)}d” _J 7 (%Q o if 7 is even;
20m)" 2 -« if j is odd.

Comparing with (1.27), we set

(4.10)

fTv/ ) T if n is even;
P T i s odd.

For 0 <t <w, set

() Braa = (3.4 YU (1 1)) s

4 t v
Then by Definition 4.1, (4.1) and (4.11), we have

[Borc (v, )]

== {Q/JRMBT; [geXp (—BK,t,U —dt A % (Bt + @ (% ~ %)))] }

= T [gﬁ (Bt § VD) (1 %)) exp <—BK¢,U>] ,

(4.12) ot A ;
—~ X dv
[ﬁg,K@vt)]dv == {vangr [g exp (_BK,t,v — dv%)] }
— X
= ¢'Ir [g% exp (—BKJ’U)] )

Thus as Bx: = B? + Lk, by (4.12), on I'y, we have

(4.13) Byx(v,t) = dt AGTr {g% exp (—B} — LK)}

2 dt

In the remainder of this section, we use Theorem 4.2 and the following estimates to prove
Theorem 3.3. The proofs of these estimates are delayed to Section 6. Recall that e, is defined
in (3.6).

Theorem 4.3. For K, € 3(g), there exists f > 0 such that for K = 2Ky, —f <z < 3, K #0,
a) when t — 0,

(4.14) oTr [g%

exp(—BKvt,U)] — —€y;
b) there exist C' > 0, § € (0,1], such that fort € (0,1], v € [t,1],

(4.15) ﬂ%fx) <C (%)5;

ﬁ?/ [g

€xp <_BK,t,v>] + gv
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c) there exists C' > 0 such that fort € (0,1], v > 1,

~ te(K* C
(4.16) v [9% exp (—Br o) || < Pt
d) forv>1,
.~ [ oKX
(4.17) lim Tr [g éi\/fv) eXp(—BK,mU)} 0.

4.2. A proof of Theorem 3.3. We now finish the proof of Theorem 3.3 by using Theorems
4.2 and 4.3. By (4.7), we know that I? + I9 + IJ is an exact form on B. We take the limits
A — 400 and then a — 0 in the indicated order. We claim that the limit of the part IJQ(A, a)
as A — +oo exists, denoted by I} (a), and the limit of I} (a) as a — 0 exists, denoted by I7 for

j=1,2,3.

i) By (4.11) and (4.12), [By.x (v, t)]% is uniformly bounded for v > 1, ¢ € I, a compact interval

I C (0,+00), and

(4.18) lim_[By 1 (v, 1% = [y (+00, ]

V=400

From Theorem 4.2, (2.24), (4.12) and the dominated convergence theorem, we see that

A +00 N t
(4.19)  I{(a) = lim [Byxc (A, )] dt = —/ {wRXBTr [g exp (—Bfw — L) } }d dt.

A—+o00 a

Thus by Theorem 2.2 and Definition 2.3, we have

(4.20) I} =— /O+OO {@Z)Rxgﬁ [g exp (—Bfw — Lk) ] }dt dt =1, k.

ii) From Definition 1.4, (2.3) and (4.13), we have

oo N 912 dt
(4.21) 2= / {wag Tr [g exp (— (Bt +dt A a) - EK)] } dt = —1)gex.
0

iii) For the term I2(A, a), set

+oo ., X
(4.22) Jo = oTr {g% exp (—BK%U)} d_v’
1 v v
Ve i e(KX) _ 0\ dv
J3 —/1 <<Z5Tr {g N exp(—BK,wv)} _|_€av> —.

Clearly, by Theorem 4.3 ¢) and (4.12), we have

By (4.14), (4.16) and (4.22), from the dominated convergence theorem, we find that as a — 0,

+oo
(4.24) Jo— Jy = —/ EU@.
1

v
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By (4.15), there exist C' > 0, 6 € (0, 1] such that for a € (0,1], 1 < v < 1/a,
c(K*X) C
4v/av — 8

Using Lemma 3.1, (4.17), (4.22), (4.25), and the dominated convergence theorem, as a — 0,
(4.26) Js — J3 = 0.
By (3.24), (4.22)-(4.24) and (4.26), we have

(4.25) gbﬁ/ [g exp (—BKWM,)} + €4

400 d
(4.27) 2= / e, = — M, k.
0 v

By [30, §22, Theorem 17], dQ2*(B,C) is closed under the uniformly convergence. Thus, by
(A7),

3
(4.28) > I? = 0 mod d*(B,C).
j=1

By (4.20), (4.21), (4.27) and (4.28), the proof of Theorem 3.3 is completed.

5. CONSTRUCTION OF THE EQUIVARIANT INFINITESIMAL 7)-FORMS

In this section, we prove Theorems 2.2 and 4.2 following the lines of [19, §7] and give a
heat kernel proof of the family Kirillov formula, Theorem 2.1. For the convenience to compare
the arguments in this section with those in [19], especially how the extra terms for the family
version appear, the structure of this section is formulated almost the same as in [19, §7].

This section is organized as follows. In Section 5.1, we prove Theorem 2.2 a). In Sections
5.2-5.10, we give proofs of Theorems 2.1 and 2.2 b). In Section 5.11, we prove Theorem 4.2.

5.1. The behaviour of the trace as t — +00. Set

c(K*) 0
5.1 Cr,=DB t-dt N —.
(5.1) Kt ¢+ i + o1

For z € C, we denote by
(5.2) A.gy = Cley+ 2Lk
Then Theorem 2.2 a) is implied by the following estimate.

Theorem 5.1. For § > 0 fized, there exist C >0, 6 > 0 such that if K € g, z € C, |2K| < 3,
t>1,

—~ dt C
(5.3) {Trlgexp(— A} | <
Proof. This subsection is devoted to the proof of Theorem 5.1. O

In this subsection, we fix § > 0. The constants in this subsection may depend on f.

For b € B, recall that [E, is the vector space of the smooth sections of £ on X;. For u € R, let
EY be the Sobolev spaces of the order u of sections of £ on X;,. We equip EJ by the Hermitian
product ( , ) in (1.17). Let || - |[o be the corresponding norm of Ef. For p € Z, let || - ||, be
the Sobolev norm of E induced by V¥ and V.
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Recall that we assume that the kernels Ker(D) form a vector bundle over B. We denote by
P the orthogonal projection from E° to Ker(D) and let P+ =1 — P.

Recall that PT* : TW = THW @ TX — TX is the projection defined by (1.4). For s, s’ € E,
t>1, we set

(5.4) [sleo = = l1sll3,
' [sl21 2 = 1Ps[lg + L P=s]1g + ¢ Ve P55
Set
s, s
(5.5) |s|¢,—1 = sup I >0|.

0+#s'€E! |5'|t,1

Then (5.4) and (5.5) define Sobolev norms on E! and E~'. Since V4, P is an operator along
the fiber X with smooth kernel, we know that |- |;; (resp. |-|;_1) is equivalent to || - [|; (resp.
|- |l-1) on E! (resp. E71).

Let Aiol)w be the piece of A,k which has degree 0 in A(T*(R x B)).

Lemma 5.2. There exist ¢y, ca,c3,¢4 > 0, such that for anyt > 1, K € g, z € C, |zK| < 3,
s, s € E,

Re (Al is,5) > ailsly, = eolsl?,
(5.6) [t (A s.5), | < eslslualsluo.
’<A2Kts s’ ’ < ¢yl8)ea]s |-
Proof. From (1.23), (5.1) and (5.2), we have
X2

T AL

(5.7) A, =tD?* + Z (D, e(K*)] - 2|

So we have

<Aths S)o = <<1§D2 + Im(z): (i [D,C(KX)} + EK) — Re(zg)%) s,s>0,

<A2Kts S)o = <(—Re(z)i (i [D,c(K¥)] + £K> — Im(z?) |I§;|2> s, 3>0.

From (5.4), there exist ¢, ¢y, ¢5, ¢y > 0 such that for any ¢t > 1, |2K| < 3, € > 0,

tD2—R, 2 |KX|2 > / 2 2
e(z”) 161 §,8) =2 Cl|S|t,1 02‘5‘15,07
0

(5.9) ‘ <Im4(z) (D, e(K¥)] s, 5>

(5.8)

c
< hlslealsleo < chelsfzy + 3 Islzo,
0 €
/

C
(2l Lics, s)ol < chlslenlslo < chelsliy + 32 Islio-

By taking e = min{c|/(4c}), ¢\ /(4c))}, from (5.8), we get the first estimate of (5.6).
The other estimates in (5.6) follow directly from (5.4) and (5.8).
The proof of Lemma 5.2 is completed. U

By using Lemma 5.2 and exactly the same argument in [21, Theorem 11.27], we get
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Lemma 5.3. There exist ¢,C > 0, such that ift > 1, K €g, z€ C, |zK| <8,

Im(\)?
(5.10) ANeU, = {)\ € C:Re(N) < H;(CZ) — 02} :

the resolvent (\ — Ai%t)*l exists, and moreover for any s € E,
1) [0 = AZ )" sluo < Clsleo,
[0 = AZ )™ sler < O+ APl

The following lemma is the analogue of [11, Theorem 9.15].

Lemma 5.4. There exist C > 0,k € N, such that fort > 1, K €g, z€ C, |2zK| <3, A € U,,
with ¢ in Lemma 5.3, the resolvent (A — A, )" exists, extends to a continuous linear operator
from A(T*(R x B)) @ E™! into A(T*(R x B)) ® E', and moreover for s € E,

(5.12) [(A = Aurce) slea < C(L+ AD*]s],-1-
Proof. From (1.1), (1.23), (5.1) and (5.2),

(5.13) A, — A, = V2 ([D, V) + %dt A D) + (VE)* - i[D, o(TH)]

1 Eu Lo KX) — o(TH) — e KXY — o(TH
+ g (AT 2elKX) = o) = di A (ae(K) = (7))
+ %& (Qz(KX, ) + C(TH)2>-

By [8, Theorem 2.5], [D, V%*] and (VE’“)z are first order differential operators along the fiber.
From P[D,VE4P =0, we get

(5.14) (VLD V53, ')o| < Cllsluols'lua + Islials'luo).
By (5.13) and (5.14), there exists C’ > 0 such that for any ¢t > 1, we have
(5.15) (Arce — AL )sli—1 < C'sla.
Take A € U.. Then since A,k — Ai(})(,t has positive degree in A(T*(R x B)), we have

1+dim B m
(5.16) (A=A = 3 = AT (A — AR = AR )
m=0

Therefore, by (5.11), (5.15) and (5.16), we obtain (5.12).
The proof of Lemma 5.4 is completed. U

Proposition 5.5. There ezists C > 0, such that fort > 1, K €g, z€ C, |zK| <3, s €E,

(5.17) H (exp(—Ath) — exp(—IB%iKt — zﬁK))sHO < %”8”0.

Proof. From (5.4) and (5.5), we know for s € E,

Pi /
(5.18) Pl 1=  sup LSl ik Jo
0+#s'€EL, Ps'=0 |s |t,1

1 1
= %HPLSH—l < %HPlSHo-
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Note that from (2.20), (5.1) and (5.2), we have
1 1
(519) -AzK,t = Bth + ZﬁK -+ dt N (—\/ZD — —(ZC(KX) — C(TH))> .
! 2 8Vt
Thus B? k.t T 2L has the same spectrum as A,k ; and by omitting dt part, we know Lemma
5.4 holds for B?., + zLx. Thus from (5.12) and (5.18), for A € U, we have

(5.20) H O\ — A.xc,) WD ()\ (B2, + zEK)> T

0

< (A - (B2, + 2£)) s
\/_ 0
C -1
<~ 2
< 70 W (- B+ 2£0) s
’ 2k CQ 2k
< U ATsleor s 220+ D) s lo-
Note that
1
(521) eXp(—AzKﬂg) = — / €7>\<)\ — Az[(,t)ild)\,
207 U,

and (5.21) also holds for B2y, + zL. From (5.19),

(5.22) (A= Aug) ™ = (A — (B, + 2Lx))

1 1
= ()\_AzK’t)il' (dt/\ (5\/ED—8—\/Z(ZC<KX)—C<TH))>> ()\ (]BQKt+Z£K>)
Now from (5.20)-(5.22), we get (5.17). The proof of Proposition 5.5 is completed. O
Since B is compact, there exists a family of smooth sections of TX, Uy, ---,U,, such that

for any x € W, Uy (z), -, Upn(x) spans T, X.
Let D be a family of operators on E,

(5.23) D ={P-V{ P}

From (5.7) and (5.13), by the same argument as the proof of [21, Proposition 11.29] (see also
e.g., [11, Theorem 9.17], [39, Lemma 5.17]), we get the following lemma.

Lemma 5.6. For any k € N fized, there exists Cy > 0 such that fort > 1, K € g, z € C,
|2K| < B, Q1,---,Qr €D and s,s' € E, we have

(5.24) ([Q1, [Q2, -+ - [Qry Azic ], - -+ 115, "ol < Cilsleals]z1-
For k € N, let D* be the family of operators @ which can be written in the form
(5.25) Q=01 Qr Q€D.

If k € N, we define the Hilbert norm || - ||}, by

k
(5.26) Islié=>_ > losls.

=0 QeD*
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Since PV‘;;TX. and V‘]ZTX_P are operators along the fiber with smooth kernels, the Sobolev
norm || - ||} is equivalent to the Sobolev norm || - ||x. Thus, we also denote the Sobolev space
with respect to || - ||, by E*.

By using Lemma 5.6, as the proof of [21, Theorem 11.30], we get

Lemma 5.7. For any m € N, there exist p,, € N and C,, > 0 such that fort > 1, A € U,,
s €,

(5.27) I = Asket) 7 sllss < Con (14 AP (1511

Let exp(—A.x.)(x,2'), exp(=B2x, — 2Lk)(x,2’) be the smooth kernels of the operators
exp(—A.x;), exp(—B2x, — 2Lk ) associated with dvx(2’). By using Lemma 5.7, following the
same progress as in the proof of [21, Theorem 11.31], we get

Proposition 5.8. For m € N, there exists C > 0, such that for b € B, x,2' € X, t > 1,
Keg z€C, |z2K[< B,

|al+]o]
(5.28) sup 0

— ¢ _AZ .T,.T/ < C
al ol | 02202 xp(—Azrct) (,27)| <

By omitting dt part, we know Proposition 5.8 holds for exp(—BZ;, — 2Lk )(z,2’). From
Propositions 5.5, 5.8 and (5.19), by the arguments in [21, §11 p)], there exist C' > 0, 6 > 0,
such that for t > 1, K € g, |2K| < j,

(5.29) ‘exp (—A.ky) (z,2') — exp(—BgK’t — 2Lg)(x, x')} < t%_
From (5.19),
~ dt —~
(5.30) dt A {Tr [g exp (—AzKi)]} =Tr [g(exp (—A.xs) — eXp(_BzK,t _ Z,CK))} '

From (5.28) and (5.30), we get Theorem 5.1.

5.2. A proof of Theorems 2.1 and 2.2 b). Section 5.3 is devoted to the proof of the
following theorem.

Theorem 5.9. There exist 5> 0, C >0, 0 < <1 such that if K € 3(g), z € C, |2K| < j,
0<t<1,

(5.31) Vs T [goxp (— Aok )] — / R,k (TX, VXY oy . (£/8, V)| < .

X9

Since [, KWK(TX, VTX) chy .k (E/S, V) does not have the dt term, we get Theorem 2.2
b) from Theorem 5.9, which we reformulate as follows.

Theorem 5.10. There exist § >0, C > 0, 6 > 0, such that if K € 3(g), z € C, |2zK| < B,
0<t<1,

(5.32) '{/T\;[gexp(—AzKi)}}dt <P
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Proof of Theorem 2.1. If we omit the dt term in (5.31) and take z = 1, it follows that

)

- / A, x(TX,VTX) ch, x(£/S,VE)| < CF.
X9

(5.33)

From (5.33), we get (2.21) and (2.22).
From (2.27), (2.29), (2.33) and (2.35), we get other parts of Theorem 2.1.
The proof of Theorem 2.1 is completed. U

For simplicity, we will assume in the remainder of this section that n = dim X is even. The
functional analysis part is exactly the same for even and odd dimensional. We only explain in
Remark 5.22 how to use the argument in the proof of [17, Theorem 2.10] to compute the local
index in odd dimensional case.

5.3. Finite propagation speed and localization. The proof of the following lemma is the
same as Lemma 5.2.

Lemma 5.11. Given > 0, there exist Cy,Cy, C5(5), C5(5), C4(5), Cs, C5(B) > 0 such that if
Keg 2€C, |2K|<p,s,d€E 0<t<1,

Re(tAY), 5, s)o > Cit?||s]|? — (Cat® + C4(8)) 1512,
(5.34) m(tAS) s, s)ol < Cs(B)tlIslllsllo + Co(B) 1512,

(AT 5,50l < Cultllslly + Cs(B)]1s]lo) (sl + C5(8)18']lo)-
Moreover, as f — 0, C4(B), C3(B), CL(5), Cs(5) — 0.

In the sequel, we take § > 0 and always assume that K € g, |zK| < S.
For ¢ > 0, put

v, = {A € C:Re()\) > Im(A)* 02} ,
r.= {)\ € C:Re(N) = IH;<C)2\>2 - 02} :

Note that U, V., T'. are the images of {\ € C: |[Im(\)| > ¢}, {A € C: |Im(\)| < ¢}, { e C:
[Tm()\)| = ¢} by the map A — A%
The following lemma is an analogue of [19, Theorem 7.12].

(5.35)

Lemma 5.12. There ezists C > 0 such that given ¢ € (0,1], for > 0 and t € (0, 1] small
enough, if A € U., |zK| < 3, the resolvent (A — tAi%t)_l exists, extends to a continuous
operator from E=' into E', and moreover, for s € E,

2
0 —
I = tAL ) sllo < Slislo,

(5.36)

7 C
IO = AT sl < (L Dl
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Proof. From the same arguments in [19, (7.47)-(7.49)], by Lemma 5.11, if A € R, A < —(Cqt? +
C4(8)), the resolvent (X — tAi%t)’l exists.
Now we take A = a + ib, a,b € R. By (5.34),

(5:37) [((EASL, = Vs, 5}l = sup { i) — (Cat? + C4(8) + a) 31,

— C3(B)tlIslilIsllo + (b] — Cz’s(ﬁ))HSII%}-

Set
(638 OO0 = infsup {Citu)? — (Cof? + C8) + a).~Co(B)tu — C3(8) + [b]}.
Since ||s|lo < ||s||1, using (5.37), (5.38), we get
(5.39) ((EAS, = Vs, )] = CAD)sl5.
Now we fix ¢ € (0,1]. Suppose that A € U,, i.e.,
b2
(5.40) a < 12 .

Assume that v € R is such that
(5.41) b] — C3(B)tu — C4(B) < 2.
Then by (5.40) and (5.41),

2

(5.42) Cy(tu)® — (Cot® + CH(B) + a) > Cy(tu)® — o + & — Oyt? — Cy(B)

42
C3(B)? 2 (@4 C5(B)Cs(8) (@ +C5(8)? 2
12 (tu)* — 52 tu+ c” — e Cot® — C%().
The discriminant A of the polynomial in the variable tu in the right-hand side of (5.42) is given
by

> (Cl—

(5.43) A = —=3c2C, + 2C1(C4(B) + 2Cot* + 2C%(B)) + C3(B)?

]' / !
+ g(Cle(ﬁ)Q — CoC3(B)*t* — C5(B)C5(8)?).
Clearly, for g, t small enough,

02
(5.44) A< =22C,, C)— Zif) > 0.
From (5.42)-(5.44), we get
A c?

(5.45) Cy(tPu)? — (Cot* + C5(B) + a) > _4(01 — C2(B)/(4c2)) > bR

Ultimately, by (5.38)-(5.45), we find that for 8 > 0, ¢t € (0, 1] small enough, if A € U,,

CQ

(5.46) COA1) = 5

From (5.37), (5.38) and (5.46), we get the first equation of (5.36). Then combining with
(5.34) and the argument in [19, (7.64)-(7.68)], we get the other part of Lemma 5.12.
The proof of Lemma 5.12 is completed. U
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As in (5.15), from (5.13), there exists C' > 0, such that for any 0 < ¢ < 1, s € E!,
(5.47) 1t Ak — tAS sl < Clls|h.

From Lemma 5.12, following the same process as the proof of (5.12), we get the following
lemma.

Lemma 5.13. There exist k,m € N, C > 0, such that given ¢ € (0,1], for >0 and t € (0, 1]
small enough, if A\ € U., |2K| < 3, the resolvent (A — t A,k ;)" exists, extends to a continuous
operator from A(T*(R x B)) @ E~! into A(T*(R x B)) ® E!, and moreover, for s € E,

¢ -
g (L IAD™ sl

(5.48) A = tAis) Hsfh <
Definition 5.14. If H, H' are separable Hilbert spaces, if 1 < p < 400, set
(5.49) Z(H,H) = {Ac L(H H): Tr[(A*A)P?] < +oo}.

It Ae £,(H,H'), set

« 1/p
(5.50) 4l += (T(A"4)2])
Then by [52, Chapter IX Proposition 6], || - ||y is a norm on .%,(H, H’). Similarly, if A €
Z(H, H'), let ||A]] ., be the usual operator norm of A.
In the sequel, the norms || - ||, || - || (o) Will always be calculated with respect to the Sobolev
spaces E°.

From Lemma 5.13, we get the following lemma with the same proof as in [19, Theorem 7.13].

Lemma 5.15. Given ¢ > 2dim X + 1, there exist C > 0, k,m € N, such that given ¢ € (0, 1],
for 8> 0 and t € (0,1] small enough, if X € U,, |2K| < B,

1A = tAuk) Moy < +AD™,

k k<
(5.51) t

. ol .
[N = tA.k0) 1) < W(l + [A)™

Let ax be the inf of the injectivity radius of the fibers X. Let a € (0,ax/8|. The precise
value of o will be fixed later. The constants C' > 0, C’ > 0... may depend on the choice of a.
Let f: R — [0,1] be a smooth even function such that

1 for |u] < a/2;
(5.52) flu) = {0 for |u| > a.
Set
(5.53) g(u) =1 f(u).
Fort > 0, a € C, put
+o0 w2 U
:/ exp( \/_zua) exp( 5) f( tu)\(/i—Q_ﬂ"
(5.54) U2 du
/OO exp( \/_zua)exp( 3) q( tu)ﬁ



COMPARISON OF TWO EQUIVARIANT »n-FORMS 35
Then Fi(a), G¢(a) are even holomorphic functions of a such that
(5.55) exp(—a?) = Fy(a) + Gy(a).
Moreover when restricted on R, F; and Gy both lie in the Schwartz space S(R). Put
(5.56) I,(a) = Gy(a/V1).

Clearly, there exist uniquely defined holomorphic functions Fy(a), Gy(a), I,(a) such that

(5.57) Fya) = Fy(a®), Gi(a) =Gy(a®), I,(a)=I,(a?.
By (5.55) and (5.56), we have

(5.58) exp(—a) = Fy(a) + Gila), I,(a) = Gy(a/t).
From (5.58),

(5.59) exp(—Aurs) = Fi(Aucs) + Ti(tAukcy).

From Lemma 5.15, the proof of the following lemma is the same as that of [19, Theorem
7.15].

Lemma 5.16. There exist 5 >0, C >0, C' > 0 such that if t € (0,1], K € g, |zK| < 8,
(5.60) 1T (tA k)l o) < Cexp(—C'/1).

By (5.59) and (5.60), we find that to establish (5.31), we may as well replace exp(—A.x )
by Ft(“flsz,t)-

Let Fy(A.x.)(z,2'), (z,2" € Xp,b € B) be the smooth kernel associated with the operator
Fi(A. k) with respect to dvx (2'). Clearly the kernel of g F}(A. k) is given by gFy(A.x ) (g 'z, 2').
Then,

(5.61) Tr[gFy( Auxs)] = /X Try g Fu(Auka) (g1, 2)]dvx (2).

For e > 0, z € X3, b € B, let BX(x,¢) be the open ball in X}, with centre z and radius e.
Using finite propagation speed for solutions of hyperbolic equations (cf. [48, Appendix D.2]),
we find that given z € X, ﬁt(AzK,t)(x, -) vanishes on the complement of BX(x,«a) in X3, and
depends only on the restriction of the operator A, to the ball B*(z,a). Therefore, we have
shown that the proof of (5.31) can be made local on Xj. Therefore, we may and we will assume
that T'X} is spin and

(5.62) E=8Sx®E

over X, where Sx is the spinor of T'X and FE is a complex vector bundle, and the metric and
the connection on &£ are induced from those on TX and F.

By the above, it follows that ¢F,(A.x,)(g 2, x), x € X, vanishes if d¥*(g~'z, z) > o. Here
d* is the distance in (X3, g7%).

Now we explain our choice of . Recall that Ny, x is identified with the orthogonal bundle
to TX9 in TX|xs. Given ¢ > 0, let U, be the e-neighborhood of X/ in Nxg/x. There exists
g0 € (0,ax/32| such that if € € (0,16¢¢], the fiberwise exponential map (z,7) € Nxo/x —
expX (Z) is a diffeomorphism of U. on the tubular neighborhood V. of X9 in X. In the sequel,
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we identify U. and V.. This identification is g-equivariant. We will assume that a € (0,¢¢] is
small enough so that for any b € B, if x € X3, d**(¢7 2, 2) < «, then x € V..

By (5.60), (5.61) and the above considerations, it follows that for § > 0 small enough, the
problem is localized on the eyp-neighborhood V., of X9.

Asin (3.11), let k(z, Z) be the smooth function on U, such that

(5.63) dvx(z,Z) = k(z, Z)dvxe(2)dvn,,  (Z).

In particular, k|ys = 1.
For w € A(T*R)RA(T*WY), via (1.4) and (1.5), we will write

w= Z Wiy ooy NET A Ne, for wy, . € AT R)&r*A(T*B).

p
1<iy < <ip <L

We denote by
(5.64) W= ) € MT'R)QTA(T*B).

Note that if the fiber is odd dimensional, our sign convention here is compatible with that in
(0.15).

Theorem 5.17. There exist § > 0, 6 € (0,1] such that if K € 3(g9), z € C, |zK| <, t € (0,1],
r € X9,

(5.05) [ehamaven [ Vs TrlgF Aurc) (672, VEZ), (2, VA2))
ZENXg/XJZ\SEO/\/Z
(@, VEZ) A0y (7) = { Ry e (TX, VT chy (B, VE)} ™ | < O
Proof. Sections 5.4-5.10 are devoted to the proof of this theorem. O

Proof of Theorem 5.9. By (5.61) and the finite propagation speed argument above, we have

(5.66) /X Tra B (Aukd) (97, 2))dux () = / TrlgF (Aukr) (97", 7)) dvx (2)

Us,

B / t2 8 Nxox Ty (g F (Auic ) (97 (2, VEZ), (2, VEZ)))]
($,Z)EZ/{EO/\/Z

X k(z, ﬂZ)dUXg(l‘)d'UNXg/X(Z>.

By Lemma 5.16, Theorem 5.17 and (5.66), there exist 8 > 0, § € (0, 1] such that for K € 3(g),
|2K| < B, t € (0,1],

(5.67)

Ve Ty [g exp (—Aucs)] — / Ry ok (TX, VTY) chy x(£/8,VE)| < O,

X9

So we obtain Theorem 5.9. ]
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5.4. A Lichnerowicz formula. Let e, --- e, be alocally defined smooth orthonormal frame
of TX. Let (F,V¥) be a vector bundle with connection on X. We use the notation

n

(5.68) (VE)?=> (V) = V¥ 0 VTN

i=1
Let H be the scalar curvature of X. The following result is a combination of [7, Theorem
1.6], [19, Proposition 7.18] (for the term involved K~ and base B = pt), [8, Theorem 3.5] (for
Bismut’s Lichnerowicz formula for Bismut superconnection) and [18, Theorem 2.10] (for the
term involved dt).

Proposition 5.18. The following identity holds,

(569) AZK¢ = — (Vg + —< <€¢)€j, ff)c(ej)fp/\

2/t
1 P q Z<KX>€i> c(e) ?
+ (S AT /\_T_dt/\4—\/i_§)
n ZH + %R“"/‘%ei, ej)clei)cle;) + VIR (es, £ )ele:) fPA

1
+ 535/3( I A fTA —2mS (K.

Proof. From Bismut’s Lichnerowicz formula (cf. [8, Theorem 3.5)),

(5:10) B =~ (95 + o (S(ees, Seles)? A+ (ST A fo1)

2/t 4t
b EH LR (e e )clen)eles) + VIR (e T Nele f7 A RIS (I, F P A SO
From (1.19), (2.5) and (2.7),

1

1 1 1
(5.71) Z[D, (KX = Jeler)e (VIXKX) — 5<KX, e;) Ve =m®(K) — §V}€(X

Since the G-action preserves the splitting (1.4), (K, ], e;) = 0. Thus from (1.9), (1.19) and
(1.22),

fH
= (Viex"es Jy ) eleg) [P = (S(K ey, £ hele;) 7 A

(5.72) [V, o(K¥)] = f2 Ae (VIFKY) = =(VEPE K ej)e(e;) f2A

From (1.10)-(1.12), we get

(573 Steex = Sten)es, (S 1) = ST .65
Thus from (1.22),

(5.74) [e(T™), c(K™)] = (S(eg) fy", £ ) I A F2 N [e(ez), ()]
= —2ASE) LA N
Thus from (5.1), (5.2) and (5.70)-(5.74), we get (5.69) without dt term. By comparing directly

the coefficient of dt on both sides of (5.69) as in [18, Theorem 2.10], we get (5.69).
The proof of Proposition 5.18 is completed. U



38 BO LIU AND XIAONAN MA

5.5. A local coordinate system near X9. Take x € W9. Then the fiberwise exponential map
7 € T,X — exps(Z) € X identifies BT=X(0, 16¢¢) with BX(z, 16e,). With this identification,
there exists a smooth function k/(Z), Z € B™=*(0,ax/2) such that

(5.75) dvx(Z) = K.(Z)dvrx(Z), with K.(0) = 1.

We may and we will assume that e is small enough so that if Z € T, X, |Z| < 4e,
Lorx _ rx _ 3 rx
(5.76) 2% 5977 =359
Assume from now, K € 3(g). Recall that ¥ is the one form dual to K* defined in (3.1).

Definition 5.19. Let 'V be the connection on A(T*R)®@7*A(T*B)&E along the fibers,

(5.77) 'V =V £ L (S()es, £Vele)) 2 A (SCVE STV A fOA

2Vt At
O (- )
_ Ak ga )
4t 4Vt
In the sequel, we will trivialize A(T*R)@7*A(T* B)&E by parallel transport along u € [0, 1] —
uZ with respect to the connection 'V&*. Observe that the above connection is g-invariant.

From (1.10) and (1.13), we have S(e;)e; = S(ej)e;. Let L be a trivial line bundle over WW.
We equip a connection on L by

9
(5.78) vL:d—%f.
Thus
o
(5.79) RE = (Vi =2 o

From (1.30), (3.3), (3.5), (5.73), (5.78) and (5.79), we could calculate that

(5.80) (1V5’1)2 (€i,€5) = i(RTX(ek, er)ei, ej)cer)c(e) + %(RTX(ek, e, ej)cler) fPA

p

BT [ en ) PN FTA 4R (eve)) = S m" (K)er. ).

z
2
Note that when K = 0, (5.80) is [8, Theorem 4.14], [3, Theorem 10.11] or [11, Theorem 11.8].
Note that from (5.77), (1V5’t)2 could be obtained from (1V5’1)2 by replacing fPA, fiA and K
i f? K
by %/\, %/\ and e
Let A, A" be smooth sections of TX. By (5.77),

1
(5.81) WVie(A) = (VEYA) + (S(AAL LTIV A+ (A, At
Let ¢'(TX) ~ TX be the set of elements of length 1 in ¢(T'X). Tt follows from (5.81) that

parallel transport along the fiber X with respect to V! maps ¢!(TX) into ¢/(TX) @ T*B @
T*R, while leaving A(T*B)®A(T*R) invariant.
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5.6. Replacing X by 7, X. Let y(u) be a smooth even function from R into [0, 1] such that

1 if |ul < 1/2;
v(u) =

5.82
(5.82) 0 if Jul > 1.

It ZeT,X, put

IZI)
5.83 7)) = (— .
(5.83) p(Z) =~ 1oy
Then

1 if |Z] < 2ey;
(5.84) p = )

0 if |Z| Z 450.

For x € W9, let H, be the vector space of smooth sections of A(T*R)@7*(A(T*B))®E, over
T,X. Let ATX be the (negative) standard Laplacian on the fiber of TX.
Let L;tz i be the differential operator acting on H,,

(5.85) Lyt = (1= p*(2)(—tATY) + p*(Z) Augcse

Let E(L;’;K)(Z, Z") be the smooth kernel of E(L;ZK) with respect to durx(Z’). Using the
finite propagation speed for solutions of hyperbolic equations [48, Appendix D.2] and (5.75),
we find that if Z € Nxo¢/x 4, |Z| < €0, then

(5.86) Fi(Aux)(97' 2, 2)K(2) = F(L )97 2, 7).
Thus in our proof of Theorem 5.17, we can then replace A,k by Litz %

5.7. The Getzler rescaling. Let Op, be the set of scalar differential operators on 7, X acting
on H,. Then by (5.62),

(5.87) LY € (MT"R)@7 (A(T*B))®c(TX) ® End(E)), ® Op,.
For t > 0, let H; : H, — H, be the linear map
(5.88) HW(Z) = WZ] V).
Let Litz i be the differential operator acting on H, defined by
(5.89) L2 = H 'Ly Hy.
By (5.87),
(5.90) L2 € (MT*R)®7*(A(T"B))®c(TX) ® End(E)), ® Op,.
Recall that dim X9 = ¢ and dim Nx,/x =n —{. Let (e1,- -+ ,e¢) be an orthonormal oriented
basis of T, X7, let (es41,-- - , €,) be an orthonormal oriented basis of Nxo,x, so that (e1,-- ,€,)

is an orthonormal oriented basis of T, X. We denote with an superscript the corresponding dual
basis.
For 1 < j </, the operators e/ A and ic; act as odd operators on A(T*XY).

Definition 5.20. For ¢t > 0, put

(5.91) ciley) = —=¢d A —Vtie, 1<j<L.
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Let Litz ; be the differential operator acting on H, obtained from Litz x by replacing c(e;)
by ci(ej) for 1 < 5 < /.

For A € (MT*R)@7* (A(T*B))®c¢(TX)®End(E)),®Op,, we denote by [A]*) the differential
operator obtained from A by using the Getzler rescaling of the Clifford variables which is given
in Definition 5.20.

Let 7¢;(Z) be the parallel transport of e; along the curve t € [0,1] — ¢Z with respect to
the connection V7X. Let Oy(|Z|?) be any object in A(T*R)@7*(A(T*B))®c(TX) which is of
length at most 1 and is also O(]Z]?). By (5.81), in the trivialization associated with 1V,

(5.92) c(rej(Z)) = c(ej) + L(S(Z)ej, ff)fp A +L(Z, e;)dt A +(91(t_1/2|Z|2).

Vit 2Vt
From (5.92), for 1 < j </,

(5.93) [Vie(re,(vi2)]” = & A +O(Vi| 2]

ford+1<j<n,

(5.94) [e(re,(V22))],” = cley) + (S(Z)es, K7 A +§<Z, e;)dt A +O(VH Z]).
From [3, Proposition 1.18], (5.69), (5.80), (5.85), (5.89) and (5.91), we calculate that

(5.95) L3, = (1— p*(VIZ2))(-AT) + p*(VtZ) - {=g" (V1Z) (V. V., - TE(VIZ)VIV),)

Vo i 5 R (re, 7)) [e(red(VEZ))elre (viZ)]

VIR ey, 1) [elre,(VIZ))| ™ 19 N AL RE 2 TV A 7 A —mEy (K |

where (¢"(Z)) is the inverse matrix of (¢;;(Z) = (ei,e;)z), (VEYe;) , = T(Z)ex and

(5.96) Vi, = Vouin + < (B (ene) Z,e) + OWAIZP)) [elred Vi) e(re; (viZ))]”

t
LV
4

+ (BN G A 2,00 + OWAZE)) 2 A f9 A5 (RE(Z, ) + OV ZP)

(¢RI (e;, 1) Z,e0) + OVEI 7)) [c<rej<ﬂ2>>}f” o

_ i@nfx(zK)Z, es) + —=hi(2K, V1Z).

1
Vit
Here Vy is the ordinary differentiation operator on T'X in the direction U, h;(zK,Z) is a
function depending linearly on 2K and h;(z2K, Z) = O(| Z|? ) for |ZK| < B.

Let ﬁt(L?’t )(Z, Z') be the smooth kernel associated with F,(L>. ) with respect to dvrx (Z').

From the finite propagation speed argument explained before (5 62), we could also assume
that TXY and Ny, x are spin. Let Sy, and Sy be the spinors of T XY and Ny, x respectively.
Then Sy = Sxs®@Sy. Recall that g acts on (Sy ® E),.

We may write ﬁt(Li’fzK)(Z, Z') in the form

(5.97) F(LY (2. 2) = Fli7 (Z,2)e" A Nei, i, |
1<y <<, < 1< << jgg <Y,
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and F};7 (2,2') € A(T*R)@r*A(T*B) @ (c(Nxo/x) @End(E)) . As explained in Section 1.3,

£y i

¢ = dim X has the same parity as n = dim X. As in (5.64), put
(5.98) (F(LY (2, 2™ = Fy1.4(2, Z).
In other words, Fy1..,(Z, Z') is the coefficient of e! A --- A e in (5.97).
Proposition 5.21. If Z € T, X, |Z| < g0/ V1,
(5.99) 1" T [gF(Aw) g (VIZ), VIZ) K, (VEZ)
= (i) 2 TG F(L2 ) (97 2, 2

Proof. As K € 3(g), 'Vt is g-equivariant. Thus the trivialization A(T*R)&n*A(T*B)®E
is g-equivariant and the action of g on (A(T*R)@W*A(T*B)@S)g_1 p
(MT*R)@7*A(T*B)®E) , which is an element in (c(Nxs/x) ® End(E))_. Now we get Propo-
sition 5.21 by the same proof of [19, Proposition 7.25]. O

is the action of g on

Remark 5.22. Asin [17, (1.6) and (1.7)], if n = dim X is even,

Ted¥[e(es,) - cle;,)] =0, for p<n,1<iy < <i, <n,
Tei*[c(er) -~ clen)] = (—20)"/?

if n =dim X is odd,

(5.101) Trdx[1) = 20072 TeSx[e(ey) - - - c(ey,)] = (—i)mHD/2200=D/2,

(5.100)

and the trace of the other monomials is zero. N
If n = dim X is odd, since (5.101) holds and the total degree of Fi(A.k:) is even, we only
take the trace for the odd degree Clifford part. In this case, (5.65) is replaced by

(5.102)

(/2 / e eV Py (A ) (97 (5, VEZ), (2, VEZ))
ZeN,|Z|<%

xk(@, VEZ) vy (Z) — {Rgaic(TX, V) chy i (E, VE)}man < Ot
In particular, since n — £ is even,
(5.103)  Tr¥[c(ey) - - - c(en)]
= (—q)(HD/29=1)/24t/2 {TrfN [ci(er) - - - coleg)clepsy) - - .C(en)]}max ,
the analogue of (5.99) is
(5.104) 1002 T g By AL ) (g~ (VEZ) VEZ)K(VEZ)
= (i) 0 TSR B (L3 ) (g7 2, 2]}
Let y: W9 — W be the obvious embedding.
Definition 5.23. Let Li’gK be the operator in

(5.105) (7*(A(T*B))@A(T* X9)@¢(Nxs/x) @ End(E)), @ Op,,
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under the notation (5.68), given by
1 2
(5.106) LYk =- (v + 7 (R = m™ (2K).)Z, >) + 7 RE —m” (2K),.

In the sequel, we will write that a sequence of differential operators on T, X converges if its
coefficients converge together with their derivatives uniformly on the compact subsets in T, X.
Comparing with [19, Proposition 7.27], from (5.93)-(5.96), we have

Proposition 5.24. Ast — 0,
(5.107) LY = Lo

5.8. A family of norms. For x € WY let I, be the vector space of smooth sections of
(MT*R)®@7*A(T*B)RA(T* X928y ® E), on T, X, let I, ¢).» be the vector space of smooth
sections of

((T*R@W*Ar’l(T*B) & 7 A"(T*B))BAY(T" X)BSy & E)

T

on T, X. We denote by 1% = @r, . I?n O the corresponding vector space of square-integrable
sections. Put &k = dim B.

Definition 5.25. If s € I, 4, has compact support, put

(k+l+1—q—r)
Viz\\’
(5.108) \8\?,1,02/ s(Z)|? (1+\Z\p(7 dvrx(Z).
TeX

Recall that by (5.84), if p(v/tZ) > 0, then |VtZ| < 4ey. If Vt|Z| < 4eq, then p(v/tZ/2) = 1.
By the same arguments as in [21, Proposition 11.24], for ¢ € (0, 1], the following family of
operators acting on (I2,| - |;.0) are uniformly bounded:

1\\/EZ|§460\/ZCt(€j)7 1|\/iz\§4ao‘Z‘\/ECt<€j)a for 1 <j </,
1\\/EZ|§450|Z|fp/\a 1\\/EZ\§450|Z|dt/\-

Definition 5.26. If s € I, has compact support, put

(5.109)

(5.110) |s[7 o1 = |87 00 + Z V220,
i=1
and
/
(5111) |$|t,l‘,—1 = Sup M

otsel, |8 tan

Let (IL,] - |1z1) be the Hilbert closure of the above vector space with respect to | - |;.1. Let
(I;Y,| - |tz—1) be the antidual of (IL,| - |¢z1). Then (I.,] - |1z1) and (I2,] - |;z0) are densely
embedded in (IY, ] - |;.0) and (I;%, ] |;. 1) with norms smaller than 1 respectively.

Comparing with [19, Proposition 7.31], by (5.95) and (5.109), we get the following estimates.

Lemma 5.27. There exist constants C; > 0, i = 1,2,3,4, such that if t € (0,1], z € C,
|2K| <1, ifn € N, o € X9, if the support of s,s" € 1, is included in {Z € T, X :|Z| < n},
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then
Re(L2% s, 8) 00 = Chlslf oy — Co(1+ [nzK?)|sl7 0,

(5.112) (L3 s, S)amol < Cs (14 02K D) sloaalsloao + 2K P15k o).
(L2508 Yuwol < o1+ 2K )8l o

Proof. We only need to observe that the terms containing [nzK|? come from terms

<<p(ﬂ2) <_i<mTX<zK)Z, e;) + ihi(zK, \/ZZ)>>2 s, s>

(5.113) 7

Y

t,x,0

which can be dominated by C(1 + [nzK|?)|s|7,, o
The proof of Lemma 5.27 is completed. U

5.9. The kernel E(LitK) as an infinite sum. Let h be a smooth even function from R into
[0, 1] such that

5.114 h Ll <3
(5.114) (W)= 0 if |u| > 1.
For n € N, put

n n
(5.115) h (1) —h<u+§> +h<u—§).

Then h,, is a smooth even function whose support is included in [—% -1, -5+ 1} U [% - 1,5+ 1} .
Set

(5.116) H(u) = hn(u).

neN

The above sum is locally finite, and H(u) is a bounded smooth even function which takes
positive values and has a positive lower bound on R.
Put

(5.117) kn(u) = —(u).
Then the k, are bounded even smooth functions with bounded derivatives, and moreover
(5.118) » k=1

Note that here we use n as an index for the natural numbers, not the dim X in the previous
sections.

Definition 5.28. For ¢t € [0,1], n € N, a € C, put
(5.119) F.o(a) / e (V2iua) e ( “2) F(VEu)on (1) -2
. n o X X _— n —
t, . P P 5 o

By (5.54), (5.118) and (5.119),
(5.120) Fy(a) = Fin(a).
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Also, given m,m’ € N, there exist C' > 0, C' > 0, C” > 0 such that for any t € [0,1], n € N,
c >0,

(5.121) sup  |a|™

a€C,|Im(a)|<c

tn,)(a)’ < Cexp(—C'n* + C"c?).

Let F,,(a) be the unique holomorphic function such that
(5.122) Fyn(a) = Fyn(a®).

Recall that V., was defined in (5.35). By (5.121), given m,m’ € N, there exist C' > 0, C’ > 0,
C” > 0 such that for any t € [0,1],n € N, ¢ >0, A € V,

5.123 EM | < Cexp(=C'n*+ C"?).
t,n
By (5.120),
(5.124) Fya) =Y Fyu(a)
neN
Using (5.124), we get
(5.125) F(L3) =Y Funl(L3y).
neN

More precisely, by (5.123) and using standard elliptic estimates, given ¢ € (0, 1], we have the
identity
(5.126) F(LIL 2, 2) =y Foal L3 )2, Z)

neN

and the series in the right-hand side of (5.126) converges uniformly together with its derivatives
on the compact sets in T, X x T, X.

Definition 5.29. For « in (5.82), put

st _ (1 _ 2 12| )) X 2( Z| >3,t

Observe that if &, (u) # 0, then |u| < 2 +1. Using finite propagation speed and (5.76), we find
that if Z € T, X, the support of Em(Li’,tzK)(Z, -)isincluded in {Z' € T, X : |Z' — Z] < n+ 2}.
Therefore, given p € N, if Z € T, X, |Z| < p, the support of ﬁm(Li’fzK)(Z, -) is included in
{Z'e T, X :|Z'| <n+p+2}.

If |Z] <n+p+2, then v(|Z]|/2(n +p+2)) = 1. Using finite propagation speed again, we
see that by (5.127), for Z € T, X, |Z| < p,

(5.128) Fou( LY (2, 2") = Fou(LY!

z,zK,n+p

WZ,Z").

From Lemma 5.27, we have

R‘e<Li an ) >t,33,0 > Cl|8|?,:v,1 - 02(1 + ‘n2K|2>|S|?,:v,07
(5.129) (L3 5, S)taol < Ca (14 In2K sl slio + 2K sl )

|<L3t

z,zKn

8,8 Vw0l < Cy(l+ |nzK|2)|s|t7$71|s’|t7$71.
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Put
Z| Z|
5.130 L =— (1 — ~2 (|7>> ATX 4 ~2 <7> L.
By Proposition 5.24, as t — 0,

By (5.129), the functional analysis arguments in [19, §7.10—7.12] work perfectly here. We have
the following uniform estimates, which is formally the same as [19, Theorem 7.38]. In particular,
since the estimates in (5.112) and (5.129) are the analogue of [19, (7.131) and (7.148)], the proof
of the following theorem is exactly the same as that of [19, Theorem 7.38].

Theorem 5.30. There exist C' > 0, C" > 0, C" > 0 such that for n > 0 small enough, there is
€ (0,1] such that for any m € N, there are C' > 0, r € N such that for t € (0,1], |2K| < ¢,
neN,xe X9, 2,7 €T, X,

lal+o’| it /

5.132 g
(5132) ol ol o | 0202

< C(+12]+12) exp ( — C'n 4+ 20" sup(1 2%, | 2') — C"|Z ~ Z'1).

5.10. A proof of Theorem 5.17. Remark that as explained in the introduction of [19], Litz K
does not have a fixed lower bound. So it is not possible to define a priori a honest heat kernel
for exp(— L‘;’tz x)- So we cannot prove Theorem 5.17 following the arguments in [21, §11].
Since L’ K .nip COIncides with —A™ near infinity, the operator ﬁO,n<Li -k ntp) 18 Well-defined.
Also, by proceedlng as in (5.128), if |Z|,|Z'| < p, using finite propagation speed, we find that
the kernel FO,n(Li 2 Knip)(Z,Z') does not depend on p. Finally this kernel verifies estimates
similar to (5.132) for > 0 small enough and |2K| < ¢,. Therefore we may define the kernel

exp(—L2%x)(Z, Z") by

(5.133) exp(—L30 (2, 2)) =Y Fonl L3 N2, 2)), for |Z],|2'| < p.
neN
Note that the estimate in (5.132) also works for ¢ = 0. Thus the series in (5.133) converges
uniformly on compact subsets of T, X x T, X together with its derivatives.
From (5.95), (5.106), (5.127) and (5.130), there exists C' > 0 such that for ¢t € (0,1}, z € C,
|2K| <1,neN, z e X9 if s € I, has compact support, then
(5.134) (Lalcn = Lilica)s| < OVEL+ 0[50z

From Theorem 5.30, (5.133) and (5.134), the proof of the following theorem is exactly the same
as that of [19, Theorem 7.43].

Theorem 5.31. There exist C" > 0, C" > 0 such that for n > 0 small enough, there exist
€(0,1], reN, C >0, such that fort € (0,1], z € C, |2K| <¢,, x € X9, Z,Z' € T, X,

S Ct4(dim1X+1) (1 + |Z| + |Z/|)7"
cexp (20" sup(|Z|?,|Z')?) — C"'|Z — Z'|*/2).

(5:135) |(FUL3Le) —exp(~L3%)) (2,2
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Now there is C' > 0 such that if Z € Nxq¢/x, then
(5.136) g7 - 7| > C|Z|.
By (5.135) and (5.136), we find that there exists C"” > 0 such that if Z € Nx,/x,

(5.137) (ﬁt(LiiK) - GXP(—Li’gK))(g_lZ, Z)

< O 57T (14 |Z])" - exp (20”772\2\2 — C””\Z\Q) .
For n > 0 small enough,
(5.138) 20"y — " < —=C" 2.
So by (5.137), if Z € Nxo/x,

(5.139) )(E(L‘;”fd{) —exp(~L3%)) (972, Z)) < CtTEm s exp (—C"|Z|2/4) .
For K € 3(g), put
(5.140) H™ = 7 R™ — m™ (2K).
Clearly H™X splits under TX = T X9 @ Nxo/x as
(5.141) H™ = g™~ 4+ gV,
Using the Mehler’s formula (cf. e.g., [43, (1.34)]), by (5.106), for |zK| small enough,
. HTX /2
5.142 —L20 (9712, Z) = (4m)” S X2 et (—)
( ) eXp( J:,zK)(g ’ ) ( ﬂ-) € sinh(HTX/Z)
1 av/2 N N /oy 1
- exp (—5 <sinh(HN/2) (cosh(H" /2) — exp(H" /2)97") Z, Z>>

-exp(—7*RF + m” (zK)).

Observe that for z € C, |zK| small enough, the right-hand side of (5.142) is well-defined.
Using (5.142), comparing with [43, (1.37)], if |2K| is small enough,

HTX?/2 )
sinh(HTX?/2)

(5.143) / exp(—L‘;”gK)(gle, Z)duy(Z) = (4#)*Z/Qdet% (
Nxa/x
-1

. (det1/2(1 — g7 Y n)det?(1 - gexp(—HN))> -exp(—7*RF + m” (zK)).
Also compare with [43, (1.38)],
(5.144) TeS¥®F[gexp(—s* R + mP(2K))]

= (=) XO2det' (1 — g7 ) TeP[g exp(—y RE + mP (2K))].

Using (2.15), (2.16), (5.143) and (5.144), we get
(5.145) Ypup / (=) 222 { TP [gexp(~ L3297 2, 2)]} T duw(Z)

Nxg/x
= {Ayx (TX, V") chy (B, V) }
From (5.99), (5.139) and (5.145), we obtain Theorem 5.17 for dim X even.
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If dim X is odd, following the explanation in Remark 5.22; the proof is the same.
The proof of Theorem 5.17 is completed.

5.11. A proof of Theorem 4.2. Since v >t > 0, we have

(5.146) 0<tt—vlt<th
Set
Vie(KX) (1 1) 2\
14 A - S A S : 9 .
(5 7) K twv ( t + 4 1 v —+ t dt A at —+ LK

Let A’I((?I)f,v be the piece of Aj, , which has degree 0 in A(T*(R x B)). Then from (5.146), A;((?’U
satisfies the same estimate in Lemma 5.2 and the estimate (5.15) of A — Aﬁ??t also holds for

/Kmv — AII(<O,2,U uniformly on v >t > 1. Since v > t, as t — +00, we have

O (Vic(KX) (1 1 (TN A lap
(G- m)'—o“ "

Then the analogue of Propositions 5.5 and 5.8 holds for Aj, , uniformly for v > ¢ > 1. Thus
replacing A.x; by Al , in the proof of Theorem 5.1, we obtain Theorem 4.2,

(5.148)

6. A PROOF OF THEOREM 4.3

In this section, we prove Theorem 4.3. This section is organized as follows. In Section 6.1,
we establish a Lichnerowicz formula for Bk, in (4.11). In Section 6.2, we prove Theorem 4.3
a). In Sections 6.3 - 6.8, we prove Theorem 4.3 b). In Section 6.9, we prove Theorem 4.3 c).
In Section 6.10, we prove Theorem 4.3 d). In this section, we use the assumptions and the
notations in Section 4.

6.1. A Lichnerowicz formula. Let L be a trivial line bundle over W. We equip a connection
on L by

%

3 L—d——=.
(61) vi—d- ik
Thus

dd

.2 L _ (ghy2 o 2K

(62) RE= (Vi = -

Let VE®L be the connection on £® L induced by V¢ and VL. The corresponding Dirac operator
is

6.3 D, = ; 5®L:D—C<—.
(6.3) 2; c(€i) Ve o
Since

(6.4) vfj?;, = Vin,

from (6.3), the new Bismut superconnection associated with £ ® L is

(6.5) B — B, ﬂ%fx)
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Theorem 6.1. The following identity holds,

(66) Brean =~ (V2 + 5 =(Slees. fleles) 171

st e B (1)

+ iH + % (Rf/s(el, e;) — —(VTXKX »>> clen)ele;)
V(B ey 1) = oo (e, 1,5 e 21

1
—|KX‘2.
4u

b2 (RSO = G TG T KXY ) 1P 77 =S () 4

Proof. From (4.11), (5.1), (5.2), (5.69) and (6.5), we have

(g, BV I S
(67) Breaw = (B + S22 ) i = = (V5 + S (S(eder £ oles) o1
< X

41t< (&) fols F0 PN FON —KT’ei)> + £H+ %R‘S@L/s(ei,ej)c(ei)c(ej)

+ VERES (e, f1)e(eq) f7 A %R”’”ﬂf;’ A FEN —mEEHS (K,

Since G acts trivially on L, the corresponding m”(K) in the sense of (2.4) is given by

X x X
(6.9) mH(KX) = ~ KX 4 Ve = =12
Then (6.6) follows from (3.3)-(3.5), (6.2), (6.7) and (6.8).
The proof of Theorem 6.1 is completed. U

6.2. A proof of Theorem 4.3 a). Comparing with (5.77), we set

iSO gm0 (1 1)

1
(6.9) V=V o (S()es. filheles) 7 Ao 1t v

2Vt

We trivialize 7*A(T*B)®E by parallel transport along u € [0,1] — uZ with respect to the
connection 2V¢!. Observe that the above connection is g-equivariant as K € 3(g). Let A, A’
be smooth sections of TX. As in (5.81), from (6.9),

(6.10) 2V e(A) = c(VEXA) + (S(AA, FIY A

For z € W9, in this section, we denote by H, the vector space of smooth sections of 7*(A(T*B))®E,.
Let Li’,([?v) be the differential operator acting on H,,

(6.11) L% = (1= pX(2))(—tATX) + p2(Z) B .-

3
We define Li’%v) = H[lLi’%”)Ht and Li:(;?v) = [Li(;(v)}i " as in Section 5.7. By Proposition
5.24 for (€ ® L, VE®L) we have

1 2
612) 130 = (Vo4 (U E =N (K))Z e ) 4 REE - m K.,
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and as t — 0,
(6.13) Ligf)-+.Li£”X

By (6.10), as in (5.92) and (5.94),

3
(6.14) Vie(k)(Vi2)] " = ji + 012 +VA).
By (2.9), (2.17), (3.2), (6.2) and (6.8), we get

«pL «pL _ . L L wo X d "k
(6.15) IR =7R, —2imm"(K)=——(d" 0k — 2in|K*|*) = —————
’ 4v 4v
Then by (2.18),
dy’y )

Ly _ K YK

(6.16) chy k (L, V) = exp ( siv )

From (2.15), (2.16), (3.1), (3.2) and (3.6), set

Uk (dKﬁK
ex

Suim Suim

(6.17) Vi = — ) A,k (TX, VXY chy 1 (E/S, VES) € QWI, det(Nxo/x))-

By (4.9), (6.12) and (6.17), if dim X is even, as in (5.145), we get

(618) gb (_i)f/22€/2 {TrfN®E®L

Nxg/x

*,19 ) - max
0L ep(~ L) 2 2)| | dun(2)

== {'YK,v}rmnaX
By (3.6), (6.13)-(6.18), from the same argument of Section 5.7 and (5.139) for (€ @ L, VE®L),
we obtain Theorem 4.3 a) for dim X even.

If n is odd, following the explanation in Remark 5.22, the proof is the same.

The proof of Theorem 4.3 a) is completed.

6.3. Localization of the problem. The proof of Theorem 4.3 b) is devoted to Sections 6.3-
6.8.

Let BY be the piece of By, which has degree 0 in A(T*B). Then for ¢t € (0,1], v € [t, 1], by
(5.146), tB° satisfies the same estimates as Lemma 5.11 uniformly for v € [¢, 1].

Thus following the same arguments in the proof of Lemma 5.16, we have

Theorem 6.2. There exist 5 > 0, C > 0, C" > 0 such that if K € g, |K| < 3, t € (0,1],
v €t 1],

(6.19) 1T:(tBx1.0) | 0y < C exp(—C'/t).

So our proof of inequality (4.15) in Theorem 4.3 can be localized near X9. As in Section 5.3,
we may and we will assume that W = B x X, T X is spin and £ = Sx ® E.
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6.4. A rescaling of the normal coordinate to X9 in X9. In the sequel, we fix g € G,
0 # Ky € 3(¢g) and

(6.20) K = 2Ky, z€R".

Recall that X9 and X 9K are totally geodesic in X. Given ¢ > 0, let U be the e-neighbourhood
of X9K in Nxo.x/xs (cf. the notation in the proof of Lemma 3.1). By zooming out &y €
(0,ax/32] in Section 5.3, we can assume that the map (yo, Zo) € Nxo.x/xs — expy’(Zo) € X9
is a diffeomorphism from ¢/ into the tubular neighbourhood V” of X9 in X9 for any 0 < & <
16¢.

Since X9 is totally geodesic in X, the connection V7 induces the connection V¥x9/x on
Nxo/x (cf. (1.31) and (3.8)).

For (yo, Zo) € U, we identify Nxo/x (y0,20) With Nxs/x,, by parallel transport along the
geodesic u € [0,1] = uZ, with respect to VIX. If yg € X9, Zy € Nxax /x40, Z € Nxo)x o
| Zol,|Z| < 4eg, we identify (yo, Zo, Z) with expg(pyxog(zo)(Z) € X. Therefore, (yo, Zo, Z) defines

a coordinate system on X near X9%.
From (2.15), (2.16) and (6.17), for |z| small enough, vx, is a smooth form on W9. Recall
that the function k is defined in (5.63) and ¢ = dim X 9%,

Theorem 6.3. There ezist 5 € (0,1], 0 € (0, 1] such that for p € N, there is C > 0 such that
if z e R*, 2] < B, t e (0,1], veltl], yo € X9, Zy € Nxoxxay, |Zo| < eo/\/v, then for
K= ZK(],

1 4i ~ te(KX) ~
(6.21)  [v Moy (¢ / g [gwm (~Bies)
ZENX )X,y Z]<e0 4v
(971@07 \/II_JZ(]u Z)7 <y07 \/II_JZOu Z))] : k(y(]u \/II_JZOu Z)vaxg/x (Z)
(1+|Zo)" <t>5
; max ’ 7 )‘ <o = (2 )
o} "™ (o, Vv Zo) ) | < T 2z \
Proof. Sections 6.5-6.7 will be devoted to the proof of Theorem 6.3. U

6.5. A new trivialization and Getzler rescaling near X9%. Since g preserves geodesics
and the parallel transport, in the coordinate system in above subsection,

(6.22) 9(%, 2) = (%0, 92).

By an abuse of notation, we will often write Zy + Z instead of engipgfg(zo)(Z)'

Firstly, we fix Zy € Nxo.x/x04,, |Zo] < €0, and we take Z € T, X, |OZ| < 4eq. The curve
u € [0,1] = Zy+uZ lies in B,y (0,5e0). Moreover we identify TX 4z, 7*A(T*B) ® 7,4z with
TXz,, 7 A(T*B) ® £, by parallel transport with respect to the connections V¥, 2V&* along
the curve.

When Zy € Nxox/x0,, is allowed to vary, we identify T Xz, 7*A(T*B) ® &£z, with TX,,
™ A(T*B) ® &,, by parallel transport with respect to the connections VX, V¢ along the
curve u € [0,1] — uZy. Then Hy, is identified with H,, associated with this trivialization.
Furthermore the fiber of 7*A(T*B) ® £ at Zy + Z and y, are identified by parallel transport
along the broken curve u € [0,1] = 2uZy, for 0 <u < 3; Zo+ (2u—1)Z for 3 <u < 1.
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Note that here we use the trick in [11, Section 11.4] (cf. also [19, Section 9.5]) and the
trivialization here is different from that in the proof of Theorem 4.3 a) in Section 6.2. Under
this new trivialization, the identification between H,, and Hy, is an isometry with respect to
(1.17).

For Zy € Nxo.xx0,4,, |Zo| < €0, the considered trivializations depend explicitly on Z;. We
denote by (Bk )z, the action of Bk, centered at Zy. Thus the operator (Bk )z, acts on
H,,. As Hy, is identified with H,,, so that ultimately, (Bx,)z, acts on Hy,.

We may and we will assume that gy is small enough so that if |Zy| < g, |Z] < 4ey, then

1 3
(6.23) §gy0 <gptg < 2953(-

We define ki, ,,(Z) asin (5.75). Recall that p(Z) is defined in (5.84).

Definition 6.4. Let L/1 (“’ be the differential operator acting on H,,,

(6.24) Ly = (1 = (D) (—tA™) + 0*(2)(Brc 1) 7
By proceeding as in (5.86), and using Theorem 6.2 and (6.22), we find that if Zy € Nxox/xe ., Z €
Nxo/xy0, | 2], Z0] < €0,
(6.25) E(Brct) (9 (20, 2), (Z0, Z) Ky, 20)(2) = Fl L )9~ 2, 2).
We still define H; as in (5.88). Let
(6.26) L% = g ny W,
Let (e1, -+ ,en), (epi1, -+ ,€0), (€41, , €,) be orthonormal basis of T, X9 Nxo.5 /X0 405

Nxq/x .y, respectively.

Definition 6.5. Let le3 tKU) be the differential operator acting on H,,, obtained from L e (t V) by
replacing c(e;) by c(e;) (cf (5.91)) for 1 < j < ', by cpo(e;) for £/ +1 <5 </, Whlle leavmg
unchanged the c(e;)’s for £ +1 < j < n.

For A € (7*(A(T*B))®c(TX)®End(F)),®0p,, we denote by [A] (1.v) the differential operator
obtained from A by using the Getzler rescaling of the Clifford variables which is given in
Definition 6.5.

If Zy € Nxoxxayy | 20| < €0, Z € Ty X, |Z| < deo, if U € Ty X, let 77°U(Z) € TX 44
be the parallel transport of U along the curve u — 2uZy, 0 < u < %, u — eXp)Z(O((Qu - 1)2),
% < u < 1, with respect to VX,

By (6.10), under the identification of 7*A(T*B)®E 4,4z and 7*A(T*B) ® E,, at the beginning
of this subsection, in the trivialization

1

(6.27) c(t7e;(2)) = c(e;) + 7i

((S(Z)es, f1y 2, + O(Z|%)) f7 A



52 BO LIU AND XIAONAN MA

Then comparing with (5.95) and (5.96), from (6.6), we have
(6.28) Ly = —(1— p*(VIZ2))A™ + p*(VtZ) - {~g"(V1Z) (VL V! - TE(VIZ)VIV])
P (B ) = 5 (VI K™ ) i) [e (7eVEZ) ) e (+706,(Vi2)) |
V(RS e £ = (T ). K i) [e (7D 2 o

2v
1 £/8 1
b (BELS o G -

(t,v)

H rH X
(ZoV1EZ) %<T< p 7fq )7K >(Z0,\/EZ)> fp/\fq/\

t mE/S Xy, Loex 5
+ZH(ZO,\/EZ) (Z \[Z)(K )_'_ @‘K <207\/£Z)| )

where
(6.29)
V! =V t0e, iz é(<R§;§<ek, e)Z.) + OWAZP)) [e (Vi) e (Foa(vin)) (t0)

+%(<R§0< o 2,0 + OVIZP)) [e (oenViZ))] 1o
+ 3 (RGP 2.0 + OVHZE)) 17 A f1 0+ (RE, (2.0 + OWVLZP)
B i (1 " %) (mzy (K)Z, e5) + Vthi(K, VtZ) (% " %> '

Here h;(K, Z) is a function depending linearly on K and h;(K, Z) = O(|Z|?) for | K| bounded.
Let ¢, € End(A(T*X9)) be the morphism of exterior algebras such that

vo(e) =€, 1<j<?,
Uy(e?) = Vel, (4+1<5<L.
Recall that for x = (yo, Zo) € X9, A(T*X9)(y,,2,) has been identified with A(T*X9),,.

(6.30)

Definition 6.6. Let LI3 (0.0)

(6.31) = oLy 0y
By Definitions 6.5 and 6.6, (6.13) and (6.30), as t — 0,

be the operator

13,(t,v) 13,(0,v)
<6'32> LZO,K - L(yo,Zo)yK'

6.6. A family of norms. For 0 <p </, 0<¢q</{—/, put
(6.33) APD(T*XI),, = AT X)), @A (N x0 ) yo-

The various AP (T*X9),, are mutually orthogonal in A(T*X9),,. Let I, be the vector space
of smooth sections of (7*A(T*B) @ A(T*X9)@Sy ® E),, on T,,X, let L p.g) .y D€ the vector
space of smooth sections of (7*A™(T*B) @ AP)(T*X9) @Sy @ E), on T, X. Let IOO,I((]TM) "
be the corresponding vector spaces of square-integrable sections.

Now we imitate constructions in [21, §11]. Recall that dim B = k.
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Definition 6.7. Fort € [0,1], v € R%, yo € X9, Zy € Nxoxc/x045: [ Zo] < €0/vVV5 5 € Lirp.g)os

set
2(k+¢' —p—r)
s@)F (1 +(120] +121)p (@))

(6.39) |50 = /
2(0—4'—q)

Yo
Then (6.34) induces a Hermitian product (-, )¢ 2,0 on I(rpq - We equip Ij), @I(qu
with the direct sum of these Hermitian metrics.
Recall that by (5.84), if p(v/tZ) > 0, then |v/tZ| < 4ey. The proof of the following proposition
is almost the same as that of [19, Proposition 8.16] (cf. also [21, Proposition 11.24]).

Proposition 6.8. Fort € (0,1], v € [t,1], yo € X9, Zy € Nxaxxa,4,, | 20| < €0/+/v, the
following family of operators acting on (I) | - |1v,20,0) are uniformly bounded:

(6.35) 1|\/ZZ|§450\/ECt<ej)7 1|\/ZZ\§450‘Z‘\/ECt<€j)a 1|\/EZ|§450‘ZO‘\/ECt(€j)a for 1<j </,
1|\/EZ\§450‘ZO‘fp/\a 1|\/,;Z‘§4€0\Z\fp/\,

13 ‘
1|ﬂZ|§4eo\/;C%(ej)7 1|\/¥Z\§450|Z|\/EC%(6]‘)7 forl'+1<j5 <4

Definition 6.9. For t € [0,1], v € R%, yo € X9, Zy € Nxax/xa4, |Z0| < €0/, if s € I,
has compact support, set

t,w,Zp,0"

630) I = I+ VDK (V20 +VE2)S[, +st

Note that |s|;, 2,1 depends explicitly on K = zKj. In fact, |s|¢ . 2,1 depends on z € R*.

Theorem 6.10. There exist constants C; > 0, i = 1,2,3,4, such that if t € (0,1], v € [¢, 1],
neN, y € X9, Zy € Nxox/xoy, |Zo| < co//v, 2 € R, |2| < 1, and if the support of
s, s € L, is included in {Z € T, X : |Z| < n}, then
3,(t,v
Re(LEGY 5, 8)w200 = Calslfy 201 — Coll+ Inz)ls7, 24,00
3,(t,v
(6.37) (L5 5 $)ewznol < Co((1+ 2] 8l z0, |81 z00 + 2[5 20):

(L5 8 w200l < Call+ [n2%)[l10 20118 |t 201

Proof. Comparing with LitK in (5.95) and (5.112), there are four additional terms in (6.28)
which should be estimated'

(6.38) ) (VIZ)|2KX|(VoZo + ViZ)s|

thoO

(6:39) —p*(ViZ)1- << D tvesin Ko (V02 +V1Z), 7% (VEZ)))
[ (e e (RG] s
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(6.40)
_pQ(\/EZ)£<< (ez,f ) zKX>(\/_Zo+\/_Z)[ ( \/T)Zoei(\/gz))}?t’v) fp/\s’s>tvzoo’

and

641) (WD) (TGL T, K)o+ VIZ)f? A J7 A s, 5)

t,0,Z0,0

The first term is controlled by (6.36) and the second term was estimated in the proof of [19,
Theorem 8.18]. We only need to estimate (6.40) and (6.41), which are new terms in the family
case. _ _

By (3.4), T is G-invariant, thus [K*,T] = 0. Since m?*(K) is skew-adjoint, by (2.5),
(6.42) Z(T, KXYy = (VEXT, KXY + (T, VIXK*X) = (VIXT, KX) — (VIXAT, 7).

As yo € X% € X*, we know K, = 0. Thus from (6.42), we have

0
(643) Js <T KX>(y0 sZ)|s 0 — =0.
From (6.43), we have
(6.44) (T, KX)(y0,2) = O(1Z]).

Thus we have

(6.45) pwm% T(ei, 1), 2K5) (Vo Zo +V1Z) [e (Ve (Vi2))] fon

(tv)

= PWVEZW Vil [o (Ve (Vi) | 7 8O Zol + VEIZ)P),

and
(6.46) 62(VEZ) oo (T I 2 (Vi Zo + VRZ)P? A S
— P(VAD)|21 7 A £ A -O((1Zo] +4/1/0]2))?)

Using the fact that v < 1 and ¢/v < 1 and also Proposition 6.8, from (6.27), we find that the
operators in (6.45) and (6.46) remain uniformly bounded with respect to | - |14, 2, .0-
The proof of Theorem 6.10 is completed. U

Definition 6.11. Put

Z| |Z] ,(t
6.47 e (1 A2 ( | )) ATX 2 ( ) 1350
(6.47) Zo,K,n Y 2(n+2) +7 2n+2)) Pk

Let Et(L3 (% v))(Z Z'") and Ft(L‘(;ét’Ig)n)(Z Z") be the smooth kernels associated with ﬁt(L%t}))

and Ft(LZ(E K)n) with respect to dvrx(Z'). Using (6.23) and proceeding as in (5.128), i.e., using
finite propagation speed, we see that if Z € T, X, |Z| < p,

(6.48) Bl Ly W2, 2') = Fun(L 3 1,) (2, 2))
Clearly, when replacing L\/QZU) K, 1 (6.37) by L?\’/QZU) Ko Uhe estimates (6.37) still hold.
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6.7. A Proof of Theorem 6.3. Since W is a compact manifold, there exists a finite family
of smooth functions fi,---, f, : W — [—1, 1] which have the following properties:

o WK =ni_{zeW: fi(x) =0}
e On WX df,---,df, span Nxox)x.

Definition 6.12. Let Q,, 7, be the family of operators

o
Nol

For j € N, let Qi,u,zo be the set of operators Q; - -- @, with Q; € Q4. 7,, 1 <@ < 7.

(6.49) Quuzg = { Vel €1 < dim Xs = p(ViZ) (Vi + ViZ) 1 < j < v}

Following the arguments in [19, §8.8-8.10], we have the following uniform estimate, which is
formally the same as [19, (8.76)]. We only need to take care that in the proof of the analogue of
[19, Proposition 8.22 and Theorems 8.23, 8.24], there are two new terms like (6.40) and (6.41)
appear in our family case. However, they are easy to be controlled as in (6.45) and (6.46).

Theorem 6.13. There exist C > 0, C' > 0 such that given m > 0, there exists 1 > 0 such
that th € (071]; v € [tv ]-]; KARS R; |Z| < 61; Yo € Xg’K; ZO € NngK/X97y07|ZO| < 50/\/57
ZGNXH/X,y07 |Z| SEO/\/Z7

©50) |(Fe (1385 00) = o0 (<L38500e,)) (072, 2)

1 /
t\ A@mX+1) (1 + ‘ZODZ +1 )
(L) LA oy
=\ A 2o O (FC121/)

The kernel exp iy p G g YZ, Z) here is defined in the same way as in (5.133).
VvZo,2Ko

From (6.27), we get

(1 . t . 4 ,
75 +\/g(0(\/i) +o(zD),  i1<j<e;
(6.51) \/% e (7 e;(VED)] =S el A +\/%<9(1 +12)), i/ 1<j<b
\\/g(c(ej)+o(|z|)), if (+1<j<n.

Moreover as K~ vanishes on W9 we have

<K(?((\/EZO + \/EZ)7 TﬁZO€j<\/EZ>> = <Ké((\/EZO)7 Tﬁzoej>(y07\/5Zo) + O<\/Z|Z|)7
<K(?(<\/EZO>77ﬁZO€j>(yO,ﬁZO) = O(Vv|Z).

By (3.1), (6.30), (6.51) and (6.52), we get

658) Ve (K300, (W*ﬁ%l)ﬂ + Yotz + ViZ)O( + 12)

(6.52)

v (to) 1o

Note that we have (0:)z, = (Yporh, ) 5z, for any a € Q(W?) with 6, defined above (3.12).
Therefore, from (3.18), (6.50) and (6.53), we get Theorem 6.3.
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6.8. A Proof of Theorem 4.3 b). Theorem 4.3 b) follows directly from the following theorem.

Theorem 6.14. There exist f; >0, r € N, C >0, 6 € (0,1], such that if t € (0,1], v € [¢, 1],
if 2 € R\{0}, || < By, then
5
oo
v

Proof. Recall that U, U, U are e-neighborhoods of X9, X% X9K in Ny x, Nxo.x/x,
Nxq.x/xo Tespectively. Let k(yo, Zo) be the function defined on X9 NU” by the relation

(6.54) Ek Vie(KT)

gbﬁ/ [g exp(—BKvt,U)] + €,

(6.55) dvxs (Yo, Zo) = (Yo, Zo)dvxox (yo)dun,, ., (Z0)-
Then
(6.56) E|xox = 1.

Recall that F,(B.,)(g 2, z) vanishes on X\U.,. Using (5.75), (6.55), we get

657 o [ T [g%exp (~Bisn) <g1x,x>] doxa)+ [ o

InuL,

. —~ | Vte(KX
Yo X 9K [Zo|<eo/Vv |Z|<eo v

(97 (o, Vv 2o, Z), (yo, V0 Zo, Z))] kYo, VvZo, Z)don gy (Z)
{10} ™ (0, V0 20) | Flyo, VO Zo) v, (Zo) o (30)

Using Theorem 6.3 and (6.57), we find that there exist C' > 0 and f8; > 0 such that for
z € R*a |Z| < 617

—~ te(K*
of, T [g%exm—tsm,v) <g-1x,x>] ax@+ [
i v XonuL,

£\° t\°
<cr [ f ezl iz (5) < (5)
yo€X9K J ZoeN gK/X97|ZOI<€O (% v

Similar estimates can be obtained for

(6.58) |2

(6.59) ‘ / W %ew Brrs) (4™ xx)] dox(o)+ [ .

In fact, on X \U. , we observe that |K¥|?/2v has a positive lower bound. Then we adopt the

\/ic(KX)

i can be
v

above techniques to the case where X9% = (). The potentially annoying term
controlled by the term |K*X|?/2v.
The proof of Theorem 6.14 is completed. U
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6.9. A Proof of Theorem 4.3 c¢). When v € [1,+00), 1 remains bounded. By using the
methods of the last section and of the present section, one sees easily that for K, € 3(g),
K = zK,, there exist C' > 0, 8 > 0 such that for ¢t € (0,1], v € [1,4+00), |2K,| < (3, we have

(6.60) )’T? [gVte(KX) exp (~Brcso)] ) <,

which is equivalent to Theorem 4.3 c).
The proof of Theorem 4.3 ¢) is completed.

6.10. A Proof of Theorem 4.3 d). In this subsection, we will prove Theorem 4.3 d) by using
the method in [19, §9]. Since the singular term there does not appear here, our proof is in fact
much easier.

We fix g € G, 0 # Ky € 3(g9), and take K = zKj with z € R*.

From Theorem 6.1, we have

(661) BK,t,tv = (Vg + W( (62‘)6]‘, ff)c(ej)fp/\

gt gy e oS (1 1YY

4t< ( 4t

t 1 TX X
L L (R e) — o (VI RY ) ) elea)ele)
V(B (e £ = S (T e £, KX) ) efe) 7oA

L eis o oy L H H X>p 0 n €S XY L L ex)2
b3 (RTS8 = TG 8K ) 1A 7 A =m0 4 K P

As in sections 5.3 and 6.3, the proof of Theorem 4.3 d) can be localized near X9. In the
following, we will concentrate on the estimates near X%%. As in (6.59), the proof of the
estimates near X9 and far from X%% is much easier.

We may assume that for g taken in Section 6.4, if € € (0, 8], the map (yo, Z) € Nxo.x/x —
exp; (Z) € X induces a diffeomorphism from the e-neighborhood U! of X9* in Nx,x,x on
the tubular neighborhood V! of X9 in X as in the proof of Theorem 6.14.

As in (5.77) and (6.9), we put

(6.62) SVt = v5+§< (Jes. FHyele)) oA

) () 1
— Hy e fipn ——=£ (1 —).
bSO e g =TS (1
Take yo € W9 in (2.12). If Z € Nxox/x,,, |Z| < 4eo, we identify T A(T*B)®E, with
W*A(T*B)@gyo by parallel transport with respect to the connection 3V¢* along the curve
u€[0,1] - uZ.
Recall that p is the cut-off function in (5.84). Let

(6.63) Ly = (1 p2(2))(—tAT) + p*(2) (Bro)-
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We still define H; as in (5. 88) and define L (K) as in (5.89) from L1 (t v). Let Lz tlf) be the

operator obtained from L, ( ) by replacing c(e]) by c(e;) asin (5.91) for 1<j </l (cf (2.14)),
while leaving the c(e;)’s unchanged for 0/ +1<j<n.
As in (3.21), we have

(6.64) [ K™ (5o, Z)|* = Imy" (K)Z|” + O(|ZP).

Let j/ : W9K — W be the obvious embedding. Put

1 1 2
065 L5 = = (Ver g (R = (14 m™00)) 2,61
. 1
+ 7 Ry —mP(K)y, — y D (m"(K)ej, en)yocle;)cler)

G k>0+1

1. 1
bR 0T (K)Z), Z)g, + AT () 2P,

From (3.5), (3.19), (3.20), (6.44), (6.61) and (6.65), as Proposition 5.24, we have
3,(t,v 3,(0,v
(6.66) L3 — 12,

Now we take a new trivialization as in Section 6.5. Take Zy € Nxo.x/xo,,|Z0| < 0. If
7 € Ty, X, | Z| < 4eo, we identify 7*A(T*B)2Ez, z, with 7*A(T*B)®Ey, by parallel transport
along the curve u € [0,1] — expy (uZ) with respect to the connection 3V4*. Also we identify
T A(T*B)REz, with 7*A(T*B)®E,, by parallel transport along the curve u € [0,1] — uZ,
with respect to the connection V€. Using this trivialization, the analogues of [19, Theorems
9.19 and 9.22] hold here following the same arguments except for replacing the norm in [19,

(9.43)] by
\/_Z (k+£'—p—r)
667 Isbao= [ 207 (1+<|Z|+|zo|>p( : )) durx(2).

Yo

Here s is a square integrable section of (W*A”(T*B)@AP(T*XH’K)@SNX%K/X
and dim B = k.

As in [19, (9.52)-(9.57)], combining with (3.18), if n is even, there exists 5 > 0, if z € R*,
|z| < B, fort — 0,

® E) over Ty, X,

Yo

6.68 v [ SE D) & B o, Zo. Z
( ) ) XK (ZOyZ)eNXg,K/XgXNXg/X7 Is |9 4\/&] t( ZKO’t’tU>(g <y07 0s >’

|ZO|7|Z‘S€0
Xg

The heat kernel exp (—L?”(O’v) ) (97'Z, Z) could be calculated as in (5.142) by [19, Theorem

y0,2Ko

4.13], which is an even function on Z and can be controlled by Cexp(—C'|Z|?). So the right-
hand side of (6.68) is an integral of an odd function on Z over Ny« ,x, which is zero.

(y07 ZO? Z))] de(ym ZO) Z)
f’/?zf'/Z TI' [ c (mTX(K)Z)

Yo

3,(0,v) -1
™ exp (—L )(g Z,7Z)| duy

Y0,2Ko x9.K/x

(2).

Nyg, K/x
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If n is odd, by Remark 5.22, from the same argument above, as t — 0,

KX
(6.69) [, 1 |5y e B =0

After adopting the above technique to the case where X9 = (), for z € R*, |z| small enough,
as t — 0, we have

Av/tw

The proof of Theorem 4.3 d) is completed.

—_— KX
(6.70) / Tr {gc( )exp(—BKvt,tv)} — 0.
X\UL,
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