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Abstract

Until now, the correspondence between the Alexander-Kolmogorov Complex, and the De Rham
one, by means of a small scale parameter, has not gone that far as passing to the limit of the
resolvent of the associated Laplacian, when the small parameter tends towards zero. In this line, a
result proving a complete Hodge decomposition was missing. We bridge this gap by means of our
own rescaled h-cohomology, h being a very small parameter. Passing to the limit of the resolvent
enables us to consider the extension to singular spaces, in particular, our h-differential operators
also enable us to also make the connection with those of analysis on fractals, as introduced by Jun
Kigami, and taken up by Robert S. Strichartz.

MSC Classification: 28A80-35R02.
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1 Introduction

How could one define differentiation and integration on general topological sets? This is the prob-
lem that James Waddell Alexander and Andrëı Nikoläıevitch Kolmogorov tried to solve with chains
and cochains [Buc07].

The underlying idea was given by Kolmogorov himself [Buc07], [Kol37]:

“The author’s goal is to construct a particular difference calculus which, on the one hand, leads
to differential operators acting on antisymmetric tensors (multivectors) by a limit process, and on the
other hand is closely related to the concepts of combinatorial topology.

In particular, it is possible to define new invariants of complexes and closed sets using this differ-
ence calculus, and to prove some generalizations of the known duality theorems.”

One may see the underlying perspectives, especially, defining and handling differential on non-
smooth objects, by means of simplices and the associated cohomology groups.

This is only the first step. What happens when those objects are very small, either since their
measure tends towards zero, or when they belong to an everywhere singular set, of fractal type ?

Let us recall, first, the context and the existing works on connected subjects. It is often taken for
granted that de Rham differential forms are limits of suitably rescaled Alexander-Spanier cochains.
One has to be be much more precise as soon as one ventures to this terrain. In the work by Alain Connes
and Henri Moscovici [CM90] (mainly devoted to a proof of the Novikov conjecture for hyperbolic
groups), the authors review the Alexander-Spanier realization of the cohomology of a smooth man-
ifold M , as it can be found in the original work by Edwin H. Spanier [Spa95] (Chapter 6, General
Cohomology Theory and Duality). The main topic is the definition of an homomorphism of com-
plexes between the (quotient) Alexander-Spanier complex associated to the cohomology, C̄?(M), and
the De Rham one, Λ?(M) (recall that given a cochain complex C?(M) = {Cp(M), δ}, and the sub-
complex C?0 (M) = {Cp0 (M), δ} ⊂ C?(M), where Cp0 (M) denotes the set of functions from Mp+1 to R
which vanish on a neighborhood of the pth diagonal of M , C̄?(M) is simply the complex quotient
of C̄?(M) by C?0 (M) – a very natural way of doing, the fact that a function vanishes in a given region
necessary implying the same feature for the differential). To the aforementioned purpose, the manifold
is endowed with a Riemannian metric, while considering an open covering B which satisfies specific
properties. The rescaling is obtained by means of this covering. However, the isomorphism is not
explicited. The second work one might think of is the one by Laurent Bartholdi, Thomas Schick,
Stephen Smale, and Nathan Smale, on abstract and classical Hodge-de Rham theory in [BSSS12],
followed up by the results from the last two authors in [SS12], where, given a compact Riemannian
manifold M , the authors build cochain maps between the de Rham complex of M , Λ?(M), and the
Alexander-Spanier one C̄?(M) at a scale α > 0, for sufficiently small values of the parameter α. The
authors go as far as comparing the Hodge Laplacian on differential forms, and a suitably rescaled one
on the space of cochains at scale α. It is shown, in the case of functions, and when α tends towards
zero, that the rescaled Laplacian on cochains converges towards the Hodge operator.

Note that the techniques used in the aforementioned Connes and Moscovici paper are different
than the ones of our work. First, A. Connes and H. Moscovici integrate differential forms on sim-
plices. Then, they involve the exponential map, which result in numerous and heavy computations.
As for the work by Smale et al., it is, also, based on the use of integral operators. Given a metric d,
and the scale parameter α, they consider the α-neighborhood of the diagonal in the product mani-
fold Xp, denoted by Uα, and the associated spaces L2

alt (Upα) and C∞ (Upα) of alternating functions of
respectively L2 and C∞alt class on Upα. They prove, for any integer p, the isomorphism between the α-
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scale subspace Harmα
p(M) ⊂ L2

alt (Upα) of harmonic p-forms on the manifold, and the cohomology in
degree p of the respective complexes

0 −→ L2 (M)
δ1

−→ L2
alt

(
U2
α

) δ2

−→ . . .
δp−1

−→ L2
alt (Upα)

δp−→ Lp+1
alt

(
Up+1
α

) δp+1

−→ . . .

and

0 −→ C∞ (M)
δ1

−→ C∞alt
(
U2
α

) δ2

−→ . . .
δp−1

−→ C∞alt (Upα)
δp−→ C∞alt

(
Up+1
α

) δp+1

−→ . . .

where δ denotes the classical Alexander-Spanier coboundary operator. They also show the isomor-
phism with the De Rham cohomology. As is not the case in the Connes and Moscovici paper, the
isomorphism is given explicitely. However, the result only concerns the cohomology, i.e., the quo-
tiented kernels of the coboundary operator. Moreover, in so far as they solely deal with harmonic
forms, they do not have the associated Hodge theory, which can only be obtained by means of a suit-
able renormalization. Things are easier to handle, when only dealing with harmonic forms. In this line,
there is thus no result regarding the limit of the resolvent when the scale parameter tends towards zero.

As for a general theory of differential operators on fractals, the problem was tackled by Fabio Cipri-
ani and Jean-Luc Sauvageot in [CS09]. The authors place themselves in the line of noncommutative
geometry à la Connes, where, given a compact topological space K, a continuous function f on K is
represented by means of a bounded operator π(f), which acts on a Hilbert space H. If F denotes a self-
adjoint operator of square 1, acting on H, the (commutator) operator df = i [F, π(f)], where i2 = −1,
stands for a “substitute” of the differential of f . In the case of post critically finite (p.c.f) fractals 1,
the authors build Fredholm modules, in relation with the self-similar Dirichlet form E associated to the
self-similar fractal 2. A key result of the Cipriani and Sauvageot paper is their Proposition 3.1., where
they exhibit the existence of a “essentially unique derivation”, denoted by ∂, defined on the Dirichlet
algebra C(K) ∩ F , taking its values in a real Hilbert module H, and which is a differential square root
of the Dirichlet form E . In other words, this means that the algebra of continuous functions on K
acts in a continuous way, and that the classical Leibniz rule for the derivative of a product is true.
Then, by using the Fredholm modules, the authors are able to associate, to each harmonic structure,
a topological invariant of the considered compact topological space K, the “K-homology class of the
Fredholm module”.

In [IRT12], Marius Ionescu, Luke G. Rogers and Alexander Teplyaev go further, and give an ex-
plicit description of the elements of the aforementioned Hilbert module H. A very interesting feature
of this work is the authors are able to give “a direct sum decomposition of this module to piecewise
harmonic components that correspond to the cellular structure of the fractal”. They go as far as
giving an analog of the Hodge decomposition for H.

A completely different approach has been developped by Michel L. Lapidus and Machiel van
Frankenhuisjen in [LvF16], [LvF13] and [LvF00], where the authors suggest that there should ex-
ist a fractal cohomology having direct links with the theory of Complex Dimensions, introduced by
Michel L. Lapidus and his collaborators in [Lap91], [Lap92], [Lap93], [LP93], [LM95], [LvF00], [LP06],
[Lap08], [LPW11], [ELMR15], [LvF13], [LRŽ17], [LRŽ18], [Lap19], [HL21] and [Lap22]. Further results
have been obtained by Michel L. Lapidus and Tim Cobler in [CL17], where they study the properties

of the derivative operator D =
d

dz
on a particular family of weighted Bergman space constituted of

entire functions on C.

1For the reader who might not be familiar with those notions, we refer to the book of Jun Kigami [Kig01], Chapter 1,
Section 1.3., Definition 1.3.13, page 23.

2See the seminal works of Arne Beurling and Jacques Deny in [BD85b], along with the aforementioned book [Kig01],
Chapter 2.
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We hereafter place ourselves in the same kind of perspective. To begin with, we generalize the
algebraic notion of chains (instead of cochains), to what we call fermions. Then, we redefine the
concept of h-differentiation, where h denotes a very small real parameter. We go so far as connect-
ing the associated h-cohomology to the classical De Rham one, much more simpler than what can
be found in the existing work. If we rely on analogous tools that happen to be the same as the
ones that can be found in the Smale et al. work (for instance, the diagonal of the product man-
ifold, and the same explicit isomorphism), our approach takes a completely different turn: in fact,
we are the only ones to pass to the limit of the resolvent, when the scale parameter tends towards zero.

This very powerful result enables us to consider the special cases of singular spaces. In fact, the h-
differentiation, connected, as one could foresee, to the notion of boundary, leads to a local operator,
equivalent to the classical Riemanniann Laplacian, which may act on singular objects. When the
parameter h tends towards zero, one recovers the usual Laplacian.

A natural question that may be asked is wether this Laplacian the same as the one of fractal
analysis introduced by Jun Kigami [Kig01] and Robert S. Strichartz [Str06]? This question is all the
more interesting, as laplacians on fractals are defined by means of local differences – the starting point
being graph Laplacians. More precisely, one uses Dirichlet forms, built by induction on a sequence of
prefractals, i.e., a sequence of finite graphs which converge towards the considered fractal set. For a
continuous function on this set, and subject to existence, its Laplacian is obtained as the renormalized
limit of the sequence of graph Laplacians. At first sight, one cannot be sure that this operator is the
same as the usual Riemannian one – one understands that it is an operator of the same nature, but
further? Another concern comes from the fact that changing the measure also changes the Lapla-
cian! The problem is even less obvious as such an operator is not of order two: existing works on the
Sierpiński Gasket [Str03], or on the Weierstrass Curve [DL20], show that the order is greater than two.

Our differential is completely different from the one of Cipriani and Sauvageot, hence, also from
the differential of Ionescu, Rogers and Teplyaev. It relyes the use of paths across the consecutive
prefractal graphs. The detailed study of these differentials is the object of our following work [DL22].

The main results obtained in this paper can be found in the following places:

i. In Definition 5.7, where, for the small parameter h > 0, we define the h-Laplacian, ∆h, acting
on the space of p-forms, for p ∈ N.

ii. In Theorem 5.8, where we pass to the limit of the resolvent of the h-Laplacian, (z − |∆h|)−1,
when the scale parameter h tends towards zero. This results requires the introduction of a mod-
ified scalar product on the space of p-forms (see Proposition 5.5), a compulsory step in order
to otain the full rescaled Hodge decomposition, and not only the part associated to harmonic
forms as in [SS12].

iii. In Definition 6.1, where we extend the definition of the h-Laplacian to smooth functions.

iv. In Property 6.7, where we explicit the connection between the h-Laplacian, and the now classical
Laplacian of fractal analysis [Kig01].

Henceforth, in the light of h-cohomology, the link is obvious: the h-Laplacian can be either
obtained through De Rham differentiation, but also through local differences. So, modulo a
multiplicative constant, which value will also be discussed and questioned, this is the same op-
erator as the Laplacian on fractals.
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In doing so, one falls back on the results exposed by R. S. Strichartz et al. in [ACSY14], where
the authors build k-forms and de Rham differential operators d and δ on prefractals, k-forms
being considered as k-ones on graphs, a natural approach in the light that “a k-form is an object
that can be integrated over k-dimensional subjects”. Passing to the limit – which calls for ad
hoc renormalization – shows that their Laplacian on 0-forms – functions – is the same as the
one of J. Kigami.

The circle is thus complete, one is on a closed path. Strichartz et al. made the connection with
Hodge-De Rham Theory, the missing one with the Alexander-Kolmogorov Complex reinforces the
legitimacy of differential operators on fractals. And last but not least, one also falls on random walks,
which occur through the normalization process required to obtain the limit of the h-Laplacian.

2 Geometric Context

Notation. In the sequel, we will denote by A a ring of characteristics different from 2, and by X a
general space.

Definition 2.1 (p-Fermion).

By analogy with particle physics, given a positive integer p, we will call p-fermion on X, with
values in A, any antisymmetric map f from Xp+1 to A, i.e., such that, for any transposition τ , and
any (x0, . . . , xp) in Xp+1,

f (x0, . . . , xp) = −f
(
xτ(0), . . . , xτ(p)

)
·

A 0-fermion on X is simply a map f from X to A.

Remark 2.1. p-fermions are simply the generalization of p-chains.

Definition 2.2 (A-Module of p-Fermions on X).

Given a positive integer p, we will denote by Fp (X,A) the A-module of p-fermions on X with
values in A, which makes it an abelian group with respect to the addition, with an external law
from A×Fp (X,A) to Fp (X,A) where:

∀ (a, b) ∈ A2, ∀ (f, g) ∈ (Fp (X,A))2 :

{
a (f + g) = a f + a g
(a+ b) f = a f + b f

Notation (Constant).

In the sequel, given a positive integer p, we wil denote by cp ∈ A a constant, the value of which
will be defined when necessary.
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Definition 2.3 (p-Differential).

Given a positive integer p, we define the p-differential δp from Fp (X,A) to Fp+1 (X,A), for any f
in Fp (X,A) through:

∀ (x0, . . . , xp+1) ∈ Xp+2 : δp(f) (x0, . . . , xp+1) = cp

 p∑
q=0

(−1)q f (. . . , xq−1, xq+1, . . .)

 ·
As for the 0-differential δ0, from F0 (X,A) to F1 (X,A), it is defined, for any f in F0 (X,A)

through:

∀ (x0, x1) ∈ X2 : δ0(f) (x0, x1) = c0 (f (x1)− f(x0))

Remark 2.2. The kernel of the 0-differential δ0 is the subset F0
constant (X,A) ⊂ F0 (X,A) of constant 0-

fermions on X. For the sake of simplicity, we will from now on identify it to A:

ker δ0 ≡ A ·

Property 2.1.
∀ p ∈ N : δp+1 ◦ δp = 0 ·

Proof. i. For p = 0, given f in F0 (X,A), and (x0, x1) ∈ X2, we have that

δ0(f) (x0, x1) = c0 (f (x0))− f (x1))

which yields, for any (x0, x1, x2) ∈ X3,

δ1
(
δ0(f)

)
(x0, x1, x2) = c1

{
δ0(f) (x0, x1)− δ0(f) (x0, x2) + δ0(f) (x1, x2)

}
= c0 c1

{
f (x0)− f (x1)− f (x0) + f (x2) + f (x1)− f (x2)

}
= 0

ii. For p > 0, given f in Fp (X,A), and (x0, . . . , xp+2) ∈ Xp+3:

δp+1 (δp(f)) (x0, . . . , xp+2) = cp+1

{p+1∑
q=0

(−1)q δp(f) (. . . , xq−1, xq+1, . . .)

}

= cp cp+1

p+1∑
q=0

(−1)q
{ p∑
q′=0

(−1)q
′
f
(
. . . , xq−1, xq+1, . . . , xq′−1, xq′+1, . . .

)}
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To understand how things are going in this double sum: this amounts, in the (p+ 3)-uple (x0, . . . , xp+2),
to suppress two terms xq, and xq′ . So, the following configurations occur:

 Either q < q′, in which case, one first takes out xq′ , which occupies the place number q′. One
then takes out xq, which still occupies its original place number q.
The resulting term is thus:

(−1)q (−1)q
′
f
(
. . . , xq−1, xq+1, . . . , xq′−1, xq′+1, . . .

)
which can be illustrated as:

 Step 0

. . . xq−1 xq xq−1 . . . xq′−1 x′q xq′−1 . . .

↑ ↑
place number q place number q′

 Step 1

place number q′ − 1
↓

. . . xq−1 xq xq−1 . . . xq′−1 xq′+1 . . .

↑ ↑
place number q place number q′

 Either q > q′, in which case, one first takes out xq′ , which occupies the place number q′. One
then takes out xq, which this time occupies the place number q − 1, due to the shift induced by
suppressing xq′ .

The resulting term is thus exactly the opposite of the previous one:

(−1)q−1 (−1)q
′
f
(
. . . , xq−1, xq+1, . . . , xq′−1, xq′+1, . . .

)
which can be illustrated as:

 Step 0

. . . xq′−1 x′q xq′+1 . . . xq−1 xq xq−1 . . .

↑ ↑
place number q′ place number q
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 Step 1

place number q − 2
↓

. . . xq′−1 xq′+1 . . . xq−1 xq xq+1 . . .

↑ ↑
place number q′ − 1 place number q − 1

All quantities of the above double sum are thus simplified two by two.

Remark 2.3. The above definition can be understood in the following sense: p-fermions act on a col-
lection (x0, . . . , xp) of points in Xp+1, which are the vertices of n-simplices. Those simplices are
themselves n-faces of (n + 1)-simplices, the vertices (x0, . . . , xp+1) of which are then in Xp+2. Thus,
the p-differential stands out as a map acting on the co-boundary of the elements of Xp+1.

It could seem strange that the p-differential takes values to Fp+1 (X,A): in classical analysis, one
loses informations in the differentiation process. In our case, it is just a generalization, in order to
enable one to handle all (oriented) paths between given extremities, bearing in mind that differentiation
is deeply linked to the increasing rate. The definition makes all the more sense may one introduce a
metric, and consider very close points, as we will do it further.

Definition 2.4 (p-Cycle, Closed p-Fermion).

A p-fermion f will be called p-cycle, or closed p−fermion, if

δpf = 0 ·

Definition 2.5 (Exact p-Fermion).

A p-fermion f will be called exact if there exists a (p− 1)-fermion g such that

f = δpg ·

Definition 2.6 (p-Homology Group).

Given a positive integer p, the quotient group ker δp/Imδp+1 will be called p-homology group of X
over A. It thus corresponds to the equivalence classes of closed p-fermions, modulo exact p-fermions.

Definition 2.7 (p-Cohomology Group).

Given a positive integer p, the quotient group ker δp/Imδp−1 will be called p-cohomology group
of X over A.
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Since Im δ−1 = {0}, the zero cohomology quotient group ker δ0/Imδ−1 is simply ker δ0.

Definition 2.8 (Complex of Fermions).

The Complex (F• (X,A) , δ•) is

F0 δ0

−→ . . .Fp δp−→ Fp+1 δp+1

−→ . . .

where, for any natural integer p,

δp+1 ◦ δp = 0 ·

Notation. We set

F• (X,A) =
∞⊕
p=0

Fp (X,A) ·

The associated cohomology, i.e., the set constituted of ker δ0 and of the p-cohomology groups ker δp+1/Imδp,
p ∈ N, will be denoted by

H• (F• (X,A) , δ•) ·

Property 2.2 (Acyclic Complex of Fermions).

The Complex F• (X,A) is acyclic: its cohomology is constant, i.e.,

∀ p ∈ N : ker δp+1/Imδp = {0}

which amounts to

∀ p ∈ N : ker δp+1 = Im δp ·

We set

H0 (F• (X,A) , δ•) = ker δ0 ,

i.e.,
H0 (F• (X,A) , δ•) = A ·

This implies, for the associated general cohomology, that

H• (F• (X,A) , δ•) = H0 (F• (X,A) , δ•) = A ·

Remark 2.4. Since, for any p ∈ N?

δp ◦ δp−1 = 0

9



and

Im δp−1 ⊂ ker δp

this simply amounts to

ker δp = Im δp−1 ·

When p > 1, the p-cohomology group of X over A reduces to the trivial quotient group:

ker δp/Imδp−1 = {0}

Thus, for p > 1, the p-cohomology groups ker δp/Imδp−1 do not play any part in the Complex F• (X,A).
Hence:

H• (F• (X,A) , δ•) = H0 (F• (X,A) , δ•) = A ·

Proof. i. For p = 0:

Im δ0 is the set of 1-fermions f1 such that there exists a 0-fermion f0 such that:

∀ (x, y) ∈ X2 : f1 (x, y) = c1

{
f0(x)− f0(y)

}
Recalling now that the 1-differential δ, from F1 (X,A) to F2 (X,A), is defined, for any f1

in F1 (X,A) through

∀ (x, y, z) ∈ X3 : δ(f1) (x, y, z) = c2

{
f1(y, z)− f1(x, z) + f1(x, y)

}
,

its kernel is thus the set of 1-fermions f1 such that

∀ (x, y, z) ∈ X3 : f1(x, y) = f1(x, z)− f1(y, z)

which can also be written as

∀ (x, y) ∈ X2 : f1(x, y) = f1(x, z)− f1(y, z) ∀ z ∈ X ·

One can see that, given a pair (x, y) in X2, f1(x, y) does not depend on the third variable. Given z
in X, let us set

f̃(x) = f1(x, z) , f̃(y) = f1(y, z)

Then, f̃ is a 1-fermion, and

f1(x, y) = f̃(x)− f̃(y) ·

Thus, we have that

ker δ ⊂ Im δ0 ,

which yields

ker δ = Im δ0 ·
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ii. For a given integer p > 1:

Let us prove that

ker δp+1 = Im δp ·

Hence, Im δp is the set of (p+ 1)-fermions fp+1 such that there exists a p-fermion fp such that

∀ (x0, . . . , xp+1) ∈ Xp+2 : fp+1 (x0, . . . , xp+1) = cp+1

 p∑
q=0

(−1)q fp (. . . , xq−1, xq+1, . . .)

 ·
Recalling now that the (p + 1)-differential δp+1, from Fp+1 (X,A) to Fp+2 (X,A), is defined, for

any f in Fp+3 (X,A) through

∀ (x0, . . . , xp+2) ∈ Xp+3 : δp+1(f) (x0, . . . , xp+2) = cp

p+1∑
q=0

(−1)q f (. . . , xq−1, xq+1, . . .)

 ,

its kernel is thus the set of (p+ 2)-fermions fp+2 such that

∀ (x0, . . . , xp+2) ∈ Xp+3 :

p+1∑
q=0

(−1)q fp+2 (. . . , xq−1, xq+1, . . .) = 0

which can also be written as

∀ (x0, . . . , xp+1) ∈ Xp+2 : (−1)p+2 fp+2 (x0, . . . , xp+1) = −
p∑
q=0

(−1)q fp+2 (. . . , xq−1, xq+1, . . .) ·

One can see that, given a (p+ 2)-uple (x0, . . . , xp+1) in Xp+2, fp+2 (x0, . . . , xp+1) does not depend
on the variable xp+2. It can thus be written in the following form

fp+2 (x0, . . . , xp+1) = (−1)p+3

p∑
q=0

(−1)q fp+2 (. . . , xq−1, xq+1, . . .)

= c̃p+1

p∑
q=0

(−1)q f̃p+1 (. . . , xq−1, xq+1, . . .)

where f̃p+1 denotes a (p+ 1)-fermion.

Thus, we thave that

ker δp+1 ⊂ Im δp ,

which yields

ker δp+1 = Im δp ·
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3 De Rham Cohomology

For the benefit of the reader who may not be familiar with mathematical notions devoted to the
De Rham Cohomology, we shall first recall several definitions.

3.1 A Few Recalls

Notation. In the sequel, X denotes a smooth manifold, of dimension n ∈ N?. We will hereafter use
the classical ∧ notation for exterior derivatives.

Definition 3.1. Given a natural integer p, we will denote by Ωp(X) the space of p-forms on X.

Notation (Partial Derivative).

Given a strictly positive integer p, a smooth p-form f on X, and k in {0, . . . , p}, the partial deriva-
tive ∂kf is defined, for any

(x0, . . . , xp) =
(

(x0,i0)16i06n
, . . . ,

(
xp,ip

)
16ip6n

)
∈ Xp+1

through

∂k f (x0, . . . , xp) =
n∑

ik=1

∂f

∂xk,ik

(
(x0,i0)16i06n

, . . . ,
(
xp,ip

)
16ip6n

)
dxk,ik ·

Definition 3.2 (De Rham Differential).

Given a p-form ω ∈ Ωp(X), such that, for any x = (x1, . . . , xn) ∈ X,

ω(x) =
∑

16i1<...<ip6n

fi1,...,ip(x) dxi1 ∧ . . . dxip ,

and where, for any (i1, . . . , ip) ∈ {1, . . . , n}p, the fi1,...,ip denote smooth functions on X, the De Rham
differential dω is defined through

dω(x) =
n∑
k=1

∑
16i1<...<ip6n

∂fi1,...,ip
∂xk

(x) dxk ∧ dxi1 ∧ . . . dxip ·

Definition 3.3 (Diagonal).

Given a natural integer p, the diagonal of Xp+1 is defined as the following set,

∆X = {x = (x, . . . , x)} ⊂ Xp+1 ·

12



Definition 3.4 (De Rham Complex on X).

The De Rham Complex on X is the cochain complex of differential forms

0
d−→ Ω0(X)

d−→ Ω1(X)
d−→ Ω2(X) . . .

that we will denote by Ω•,d.

Property 3.1.
d2 = 0 ·

3.2 Natural Correspondence Between Fermions and Differential Forms

Definition 3.5 (p-Linear Forms on the Tangent Space T X).

Given a strictly positive integer p, a smooth p-fermion f on X, and x in X, we define a p-linear
form rp(f)(x) on TxX through

∀ (u1, . . . , up) ∈ (TxX)p : rp(f)(x) (u1, . . . , up) = ∂1 . . . ∂pf(x, . . . , x) (u1, . . . , up)

In the case where p = 0, we simply set

r0(f)(x) = f(x, . . . , x) ·

Proposition 3.2. Given a strictly positive integer p, a smooth p-fermion f on X, and x in X, we
have that

rp(f) ∈ Ωp(X)

and

(p+ 1) ∂0 . . . ∂pf |∆X
= d rp(f) ,

i.e.,

∀ (u0, u1, . . . , up) ∈ (TxX)p+1 : (p+1) ∂0 . . . ∂pf (x, . . . , x) (u0, u1, . . . , up) = d (rp(f)) (x) (u0, u1, . . . , up) ·

Proof. As introduced in Notation 3.1,for any

(x0, . . . , xp) =
(

(x0,i0)16i06n
, . . . ,

(
xp,ip

)
16ip6n

)
∈ Xp+1

we have that

∂0 . . . ∂p f (x0, . . . , xp) =

n∑
i0=1

. . .

n∑
ip=1

∂p+1f

∂x0,i0 . . . ∂xp,ip

(
(x0,i0)16i06n

, . . . ,
(
xp,ip

)
16ip6n

)
dx0,i0 ∧ . . . ∧ dxp,ip

13



which yields, on the diagonal,

∂0 . . . ∂p f (x, . . . , x) =
n∑

i0=1

. . .
n∑

ip=1

∂p+1f

∂xi0 . . . ∂xip

(
(xi)16i6n , . . . , (xi)16i6n

)
dxi0 ∧ . . . ∧ dxip ·

As previously, for any

(x0, . . . , xp) =
(

(x0,i0)16i06n
, . . . ,

(
xp,ip

)
16ip6n

)
∈ Xp+1

we have that

∂1 . . . ∂p f (x0, . . . , xp) =
n∑

i1=1

. . .
n∑

ip=1

∂pf

∂x1,i1 . . . ∂xp,ip

(
(x0,i0)16i06n

, . . . ,
(
xp,ip

)
16ip6n

)
dx1,i1 ∧ . . . ∧ dxp,ip ·

Thus,

d [∂1 . . . ∂p f (x0, . . . , xp)] =

p∑
k=0

n∑
ik=1

n∑
i1=1

. . .

n∑
ip=1

∂p+1f

∂xk,ik∂x1,i1 . . . ∂xp,ip

(
(x0,i0)16i06n , . . . ,

(
xp,ip

)
16ip6n

)
dxk,ik∧dx1,i1∧. . .∧dxp,ip ,

which yields, on the diagonal

d [∂1 . . . ∂p f (x, . . . , x)] =

p∑
k=0

n∑
ik=1

n∑
i1=1

. . .

n∑
ip=1

∂p+1f

∂xik∂xi1 . . . ∂xip

(
(xi0)16i06n , . . . ,

(
xip
)

16ip6n

)
dxik ∧ dxi1 ∧ . . . ∧ dxip ·

One may note that, given an integer k in {0, . . . , p}, the exterior product

dxik ∧ dxi1 ∧ . . . ∧ dxip

vanishes for ik = i1, . . . , ip. Thus, the nonzero terms depend on the values of i1, . . . , ip, and not on k,
which enables us to write

d [∂1 . . . ∂p f (x, . . . , x)] =

p∑
k=0

n∑
i0=1

n∑
i1=1

. . .

n∑
ip=1

∂p+1f

∂xi0∂xi1 . . . ∂xip

(
(xi0)16i06n , . . . ,

(
xip
)

16ip6n

)
dxi0 ∧ dxi1 ∧ . . . ∧ dxip

= (p+ 1)

n∑
i0=1

n∑
i1=1

. . .

n∑
ip=1

∂p+1f

∂xi0∂xi1 . . . ∂xip

(
(xi0)16i06n , . . . ,

(
xip
)

16ip6n

)
dxi0 ∧ dxi1 ∧ . . . ∧ dxip

= (p+ 1) ∂0 . . . ∂p f (x, . . . , x)

Corollary 3.3 (Correspondence Between Fermions and Differential Forms).

By choosing cp = p+ 1, we thus obtain that

d rp = rp+1 δ
p ·
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Proof.

Fp Fp+1

Ωp Ωp+1

δp

rp rp+1

d

Let us consider a p fermion f , which operates on a (x0, . . . , xp) of Xp+1. Indifferently, one may
handle the variables as (x0, . . . , xp), or as (x1, . . . , xp+1), thus, writing (∂0, . . . , ∂p) or (∂1, . . . , ∂p+1) is
equivalent.

Then, we trivially hve that

∂1 . . . ∂p ∂p+1 f = ∂0 ∂1 . . . ∂p f ·

Due to our previous result, we also have that

(d rp)(f) (x, . . . , x) = (p+ 1) ∂0 . . . ∂p f (x . . . , x) ·

At the same time, for any (x0, . . . , xp+1) ∈ Xp+2, we have that

(rp+1 δ
p)(f) (x0, . . . , xp+1) = ∂1 . . . ∂p ∂p+1 δ

p(f) (x0, . . . , xp+1)

= ∂1 . . . ∂p ∂p+1 cp

{
p∑

q=0

(−1)q f (. . . , xq−1, xq+1, . . .)

}

= cp

n∑
i1=1

. . .

n∑
ip+1=1

∂p+1

∂x1,i1 . . . ∂xp+1,ip+1

[
p∑

q=0

(−1)q f (. . . , xq−1, xq+1, . . .)

]
dx1,i1 ∧ . . . ∧ dxp+1,ip+1

= cp

p∑
q=0

(−1)q
n∑

i1=1

. . .

n∑
ip+1=1

∂p+1

∂x1,i1 . . . ∂xp+1,ip+1

[f (. . . , xq−1, xq+1, . . .)] dx
1,i1 ∧ . . . ∧ dxp+1,ip+1 ·

One may note that, given an integer q in {1, . . . , p}, the derivative

n∑
i1=1

. . .

n∑
ip+1=1

∂p+1

∂x1,i1 . . . ∂xp+1,ip+1

[f (. . . , xq−1, xq+1, . . .)]

takes the value zero, since there is no xq!

Thus,

(rp+1 δ
p)(f) (x0, . . . , xp+1) = cp (−1)0

n∑
i1=1

. . .

n∑
ip+1=1

∂p+1

∂x1,i1 . . . ∂xp+1,ip+1

[f (x1, . . . , xp+1)] dx1,i1 ∧ . . . ∧ dxp+1,ip+1 ,

which yields, on the diagonal,

(rp+1 δ
p)(f) (x, . . . , x) = cp

n∑
i1=1

. . .

n∑
ip+1=1

∂p+1f

∂xi1 . . . ∂xip+1

(x, . . . , x) dxi1 ∧ . . . ∧ dxip+1 ,

which, by means of a change of indices, can also be written as

(rp+1 δ
p)(f) (x, . . . , x) = cp

n∑
i0=1

. . .

n∑
ip+1=1

∂p+1f

∂xi0 . . . ∂xip
(x, . . . , x) dxi0 ∧ . . . ∧ dxip ,
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i.e.,

(rp+1 δ
p)(f) (x, . . . , x) = cp ∂0 . . . ∂p f

Remark 3.1. This result is all the more important, since it enables us to make a connection between
the Alexander-Kolmogorov cohomology, based upon differences, and the De Rham one, which is the
usual one.

Notation (Complex of Smooth Fermions on X).

We will denote by

(F• (X) , δ•) =
∞⊕
p=0

Fp (X)

the acyclic complex of smooth fermions on X, and by δ• the associated differential (which means that,
in practice, one deals with a δp, for a given value of the integer p).

4 (h, p)-Fermions

Notation. In the sequel, we will denote by (X, dist) a metric space.

Definition 4.1 ((h, p)-Fermions on X).

Given a strictly positive number h, and a natural integer p, we will denote by Fph (X,A) the set
of p-fermions on X, with values in A, defined on

Xp+1
h =

{
(x0, . . . , xp) ∈ Xp+1 , ∀ (i, j) ∈ {0, . . . , p}2 : dist (xi, xj) < h

}
and by

(F•h (X) , δ•) =
∞⊕
p=0

Fph (X)

the associated complex.

Definition 4.2 (h-Cohomology).

We will call H•h (X, dist,A) the h-cohomology of (X, dist) at scale h, with values in A.
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Definition 4.3 (Radius of Injectivity).

Given a Riemannian manifold (M, g), the injectivity radius on M is defined as

ρ(M, g) = inj (M, g) = inf
x∈M

injx∈M (M, g)

where, for any x ∈ M ,

injx∈M (M, g) = sup {r > 0 , expx is a diffeomorphism on the ball B (x, r) ⊂ TxM} ·

5 h-Hodge Theory

5.1 Geometric Context

Notation. In the sequel, we denote by:

i. (X, dist, µ) a metric space, of dimension dX , with a measure µ on Borel sets, such that:

∀x ∈ X,∀ ε > 0 : µ (B(x, ε)) > 0

ii. h > 0 a real parameter.

iii. µp+1 the product measure on Xp+1.

Definition 5.1 (Measure on Xp+1
h ).

We define a measure µp+1
h on Xp+1

h through:

µp+1
h = Cp (·, h) µp+1

where the normalization factor = Cp (·, h) stands as a parameter.

Definition 5.2.

We set

L2Fph = L2
(
Xp+1
h , µp+1

)
·

Theorem 5.1. Given a compact analytic Riemannian manifold (X, g), there exists a finite number of
real numbers

0 = h0 < h1 < . . . < hmax = diamX

such that the fibration

H•h
(
L2, X, g

)
7→ h ·

is constant on each interval ]hi, hi+1[.

17



Moreover,

i. For h > diamX:

H•h
(
L2, X, g

)
= C ·

ii. For h < h1:

H•h
(
L2, X, g

)
' H• ·

Property 5.2. The p-differential δp is a bounded operator from L2Fph to L2Fp+1
h , which norms obvi-

ously depends on h.

Proof. This immediately comes from the fact that the space X is compact, while δp is a difference
operator acting on continuous functions on X.

Notation (Normalized Differential).

From now on, given a strictly positive real number h, we will denote by δh the normalized differ-
ential

δh = h−1 δ ·

Remark 5.1. As explained in the above, the differential δ is bounded independantly of h. The inter-
esting point is that in the normalized one δh, the h−1 coefficient allows h to tend towards zero, which
enables one to recover the usual De Rham differential and infinitesimal calculus.

Definition 5.3 (Hodge Star Operator).

Let E be a finite-dimensional oriented euclidean space, endowed with a nondegenerate symmetric
bilinear form ∧. We set

dimE = n ∈ N?·
Given a natural integer p 6 n, ∧pE and ∧n−pE respectively denote the subspaces of p and n− p

vectors. One trivially has:

dim∧pE = dim∧n−pE =

(
n

p

)
(the choice of a basis amounts to choose p vectors among the n of any basis of E)

The Hodge star operator ? is simply the natural isomorphism between ∧pE and ∧n−pE. For any
orthonormal basis {e1, . . . , en}, we have that

? (e1 ∧ . . . ∧ ep) = ep+1 ∧ . . . ∧ en ·
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Property 5.3. Given a natural integer p 6 n, and a p-vector η ∈ ∧pE:

? ? η = (−1)k (n−p) η ·

Remark 5.2. We thus have that

Λp Λn−p

Λp−1 Λn−p+1

?

d

?

Definition 5.4 (Hodge Star Operator on the De Rham Complex).

The above definition of the Hodge star operator naturally extends to the De Rham Complex Ω•,d

on the smooth manifold X, as the natural isomorphism between Ωp and Ωn−p through

? (∂1 . . . ∂p) = ∂p+1 . . . ∂n ·

Definition 5.5 (d? Operator on the De Rham Complex).

Given a strictly positive integer p 6 n, we define the codifferential d? by

d? : Ωp −→ Ωp−1

through

d? = (−1)n (p−1)+1 ? d ? ·

Ωp Ωn−p

Ωp−1 Ωn−p+1

?

d? d

?

Definition 5.6 (Hodge Laplacian).

The Hodge Laplacian on Ω•(X) is given by

� = (d+ d?)2 = d d? + d? d ·

Notation (Space of Harmonic Forms).

For any positive integer p, we will denote by H|Ωp the space of harmonic forms on Ωp, i.e., the
forms f such that

� f = 0 ·
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Theorem 5.4 (Hodge Decomposition).

Given a compact analytic Riemannian manifold X, then, for any strictly positive integer p, we
have that

Ωp−1 Ωp Ωp+1d d

and

Ωp+1 Ωp Ωp−1d? d?

To facilitate understanding, the following diagram might be helpful:

Ωp−1 Ωp

Ωp Ωp+1

d

dd d?
d?

d?

Also, we have the following orthogonal, direct sum decompositions,
ker d|Ωp = Imd|Ωp−1 ⊕H|Ωp

ker d?|Ωp = Imd?|Ωp+1 ⊕H|Ωp

,

and 
Ωp(X) = Imd|Ωp−1 ⊕H|Ωp ⊕

(
ker d|Ωp

)⊥
Ωp(X) = Imd?|Ωp+1 ⊕H|Ωp ⊕

(
ker d?|Ωp

)⊥
which naturally yields

� =

 d d? 0 0
0 0 0
0 0 d? d

 ·
Moreover, d|Ωp induces an isomorphism jp from

(
ker d|Ωp

)⊥
onto Imd|Ωp:(

d|Ωp

)∣∣(ker d|Ωp)
⊥ = jp

At the same time, d?|Ωp induces an isomorphism j?p from Imd|Ωp ⊂ Ωp+1 onto Imd?|Ωp+1:(
d?|Ωp

)∣∣Imd|Ωp

= j?p

In the same way, d?|Ωp induces an isomorphism j?p−1 from Imd|Ωp−1 onto Imd?|Ωp:(
d?|Ωp

)∣∣Imd|Ωp

= j?p−1

while d|Ωp induces an isomorphism jp−1 from
(
ker d|Ωp−1

)⊥
= Imd?|Ωp ⊂ Ωp−1 onto Imd|Ωp−1:(

d|Ωp

)∣∣Imd?|Ωp
= jp−1

This yields the Hodge decomposition

� =

 jp−1 j
?
p−1 0 0

0 0 0
0 0 j?p jp

 ·
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5.2 Main Result: Limit of the Resolvent of the h-Laplacian

Proposition 5.5 (Modified Scalar Product on Ωp(X), p ∈ N).

In the sequel, given a natural integer p, we modify the usual scalar product (·, ·) on Ωp(X) by means
of a multiplicative strictly positive constant αp, setting, for any pair (u, v) of smooth p-fermions on X:

(̃u, v)p = αp (u, v)p ·

Since

d? : Ωp+1 −→ Ωp

we can naturally introduce the operator

d̃? =
αp+1

αp
d?

(the multiplicative constant αp+1 comes from the modified scalar product on Ωp+1(X), while the divi-
sion by αp stands as a normalization one.)

We then set

∆0 =
(
d+ d̃?

)2
= ⊕

p∈N


αp
αp−1

jp j
?
p 0 0

0 0 0

0 0
αp+1

αp
j?p jp

 ·

Definition 5.7 (h-Laplacian).

Let us recall that, in the above, given a strictly positive real number h, we have introduced the
normalized differential

δh = h−1 δ ·

The natural correspondence of Corollary 3.3, by means of p and (p+ 1)-linear forms:

∀ p ∈ N : d rp = rp+1 δ

naturally induces the existence of the operator δ?,

∀ p ∈ N : d? rp = rp+1 δ
? ,

and its normalized versionn

δ?h = h−1 δ? ·

We now define the h-Laplacian by

∆h = (δh + δ?h)2 ·
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Notation (Spectrum of a Laplacian Operator).

Given a Laplacian operator among the ones previously encountered,�, ∆0, ∆h, we denote by Spec (·)
its spectrum:

Spec (�) or Spec (∆0) or Spec (∆h) ·

Notation (Canonical projectors).

In the sequel, we will denote by:

i. ΠF•h ,Ω• the canonical projector from L2F•h on L2 (X,Ω•).

ii. ΠΩ•,F•h the canonical injection from L2 (X,Ω•) on L2F•h such that, on smooth functions,

ΠF•h ,Ω• ◦ΠΩ•,F•h = IdL2(X,Ω•) ,

and such that ΠΩ•,F•h ◦ΠF•h ,Ω• is an orthogonal projector, for the Hilbert structure of L2F•h –
which simply comes from the fact that

ΠΩ•,F•h ◦ΠF•h ,Ω• ◦ΠΩ•,F•h︸ ︷︷ ︸
IdL2(X,Ω•)

◦ΠF•h ,Ω• = ΠΩ•,F•h ◦ΠF•h ,Ω• ·

Proposition 5.6. Let us denote by rp,h the restriction to Fh of the p-linear form rp introduced in
Definition 3.5.
Since Fph ⊂ F

p, we can then use the diagram given in the proof of Corollary 3.3, which yields:

Fph Ωprp,h

This provides a further understanding of the aforementioned canonical operators:

i. the first one simply arises as
ΠF•h ,Ω• = rp,h ·

ii. As for the second one, it is uniquely determined by the following condition:

ΠF•h ,Ω• ◦ΠΩ•,F•h = IdL2(X,Ω•) ,

along with the fact that ΠΩ•,F•h ◦ΠF•h ,Ω• is self-adjoint.

It also happens that the restriction rp,h to Fph ⊂ F
p of course does not depend on h.

Property 5.7. Given a strictly positive real number h, |∆h| is bounded, self-adjoint, and non-negative
on L2F•h.
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Proof. This directly comes from the definition of ∆h:

∆h = (δh + δ?h)2

where the differential δh is bounded, as shown in Property 5.2.

Theorem 5.8 (Limit of the h-Laplacian).

Given a compact subset K ⊂ C \ Spec (∆0), there exists a strictly positive constant hK such that,
for any h in ]0, hK [, the resolvent (z − |∆h|)−1 exists, and

lim
h→0

(z − |∆h|)−1 = lim
h→0

ΠΩ•,F•h (z − |∆0|)−1 ΠF•h ,Ω• ·

Proof. In the case of smooth functions, a direct computation, by means of a Taylor expansion on the
diagonal of the involved matrices, show that the result is true.

Now, given a strictly positive real number h, we obviously have that (z − |∆h|)−1 is defined
for z ∈ C \ Spec (∆h).

We thus have to determine the spectrum of the h-Laplacian ∆h, which can be done by using the
definition, i.e.,

∆h = (δh + δ?h)2 ·

We can naturally write that

ΠF•h ,Ω• (δh + δ?h)2 = ⊕
p∈N


αp
αp−1

jp j
?
p 0 0

0 0 0

0 0
αp+1

αp
j?p jp

 ,

which resolvent exists. One then goes back to the one of the h-Laplacian by applying the projec-
tor ΠF•h ,Ω• .

A delicate point is to ensure the existence of the limit

lim
h→0

ΠΩ•,F•h (z − |∆0|)−1 ΠF•h ,Ω• ·

This directly comes from Proposition 5.6, since the canonical projectors involved do not depend
on h. Thus, the operator

ΠΩ•,F•h (z − |∆0|)−1 ΠF•h ,Ω• (?)

does not depend on h. In fact, since, on smooth functions,

ΠF•h ,Ω• ◦ΠΩ•,F•h = IdL2(X,Ω•) ,

we can observe that the operator defined in (?) above, is (uniformly in h), continuous on L2 (F•h).
Henceforth, we obtain the sought for result on L2 (F•h).
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Property 5.9 (h-Normalization Constant).

Given a natural integer p, the normalization constant Cp introduced in Definition 5.1 enables us

to connect the measure µp+1
h on Xp+1

h to the one on Xp+1. It is simply given by

Cp = h−p dX ·

Proof. This just comes from the definition of Xp+1
h . In fact, we have that

Xp+1
h =

{
(x0, . . . , xp) ∈ Xp+1 , ∀ (i, j) ∈ {0, . . . , p}2 : dist (xi, xj) < h

}
,

which can be interpretated as a change of variables.

6 h-Laplacian, Random walks, Singular Sets

6.1 h-Laplacian, and Random Walks

Notation.

In the sequel, we denote by (X, d, µ) a metric measured space.

Definition 6.1 (h-Laplacian).

Given a strictly positive real number h, we define the h-Laplacian as the operator

|∆h| = δ?h δh

which acts on smooth functions f on X through:

∀x ∈ X : |∆h| (f)(x) =
2 c2

0

h2

∫
B(x,h)

{f(y)− f(x)} C0 (x, y, h) dµX(y)

where C0 denotes a function defined on X2×]0,+∞[, and where c2
0 denotes a strictly positive constant.

Remark 6.1.

i. The
1

h2
term comes from the definition of δh =

1

h
δ.

ii. In Proposition 2.2, we showed that the Complex (F• (X,C) , δ•) is acyclic, and that

H0 (F• (X,C) , δ•) = C ·

Thus, in the Laplacian decomposition given in 5.5, the sole term that plays a part now is the one
that corresponds to p = 0, from which one gets the term C0.
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Remark 6.2. Following a comment in our introduction, we may note that the h-Laplacian depends
on the choice of the measure µX . Somewhere this is not surprising - at the very beginning, which
means, the cohomology, there were sums. Now, as we will see it in the sequel, the part played by the
normalization factor C0 will, in a certain sense, counterbalance this choice. So, finally, we perfectly
fall on our feet, with an operator that is just defined up to multiplicative constants.

Notation (Set of Smooth Functions on X).

We will from now on denote by C (X,C) the set of smooth functions on X, which take values in C.

The subset of smooth functions onX, which take values inR+ ×R+, will be denoted by C (X,R+ ×R+).

Definition 6.2 (h-Markov Operator).

Given a strictly positive real number h, we introduce the operator Mh, given by

Id−Mh

h2
=

1

2 c2
0

|∆h| ·

Property 6.1. Given a strictly positive real number h, we trivially have, for the constant function
on X which takes the value 1, that

Mh(1) = 1 ·

Given x ∈ X, let us denote by Mh (x, ·) dµX(·) the measure such that, for any continuous func-
tion f on X:

Mh(f)(x) =

∫
X
f(y)Mh (x, y) dµX(y) ·

For any (y, z) ∈ X2, we have that

Mh (x, y) dµX(y) =
{
1X − 1B(x,h)C0(x, y, h) dµX(y)

}
δx + 1B(x,h)C0(x, y, h) dµX(y) ·

Since the Mh operator is Markov if and only if, for any x ∈ X:

0 6
∫
X
Mh (x, y) dµ(y) = 1

a necessary condition is thus that, for any x ∈ X:∫
X
1B(x,h)C0(x, z, h) dµ(z) =

∫
B(x,h)

C0(x, z, h) dµ(z) 6 1 ·
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Property 6.2 (Metropolis-Hastings Algorithm [MRR+53], [Has70]).

We recall that the Metropolis-Hastings algorithm is a Markov chain Monte Carlo method (MCMC),
which enables one to generate a collection of sample states from a probability distribution P (x), by
means of a Markov process, which enables one to asymptotically reach a unique stationary distribu-
tion PM (x) = P(x).

The transition probabilities, from a given state x, to another y one, which are involved in the
Markov process, have to satisfy the following necessary conditions:

i. Existence of a stationary distribution PM (x), which requires the so-called detailed balance con-
dition, in terms of conditional probabilities:

P [y|x] P [x] = P [x|y] P [y]

which means that the process at stake is a reversible one.

ii. Uniqueness of stationary distribution, which directly comes from the ergodicity (aperiodic and
positive recurrent in time) of the Markov process. One easily sees that the aperiodicity garantees
that the system does not return to the same state at fixed intervals, while the positive recurrence
ensures that the expected number of steps for returning to the same state is finite.

Remark 6.3. We can note that since

P [y|x]

P [y]
=
P [x|y]

P [x]

the transition is thus separated to, first, the proposal of a transition state, second, its acceptance/or
rejection. The proposal distribution Prop [y|x] is thus the conditional probability of proposing a state y
given the original one x. It is naturally connected to the probability of acceptance of the new state y
with regard to x by

P [y|x] = Prop [y|x] A [y|x] ·

At the same time, since one deals with a reversible process, we can write that

P [x|y] = Prop [x|y] A [x|y] ·

Those two relations yield that

A [y|x]

A [x|y]
=
P [y|x]

P [x|y]

Prop [x|y]

Prop [y|x]
·

One of the probabilities of acceptance has to take the value 1 (either one stays in x, either one moves
to y). States x and y playing symmetric parts, we can concentrate on the probabilty of acceptance
of y:

A [y|x] = min

{
1,
P [y|x]

P [x|y]

Prop [x|y]

Prop [y|x]

}
·

One clearly sees a very useful advantage of such a method: bypassing the determination of nor-
malization constants.
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The algorithm itself is implemented according to the following steps:

i. At time t = 0, one chooses an initial state x0.

ii. At time t > 0, one generates a random candidat state y, and compute the acceptance probability:

min

{
1,
P [y|x]

P [x|y]

Prop [x|y]

Prop [y|x]

}
and accept, or reject.

Remark 6.4. Why MCM methods? As recalled in the generalization paper by W. K. Hastings [Has70],
such methods appear as more efficient than conventional ones once one deals with problems in “a large
number of dimensions”. Such a choice thus seems interesting for an upcoming potential application to
fractal based structures, especially, when they are approximated by means of prefractal graphs, where
iterations quickly yield very large number of points.

Property 6.3 (h-Metropolis Operator).

Given a strictly positive number h, a natural choice for the normalization factor C0 involved in
Definition 6.1 of the h-Laplacian is such that, for any (x, y) ∈ X2,

C0(x, y, h) = min

{
1

µ (B (x, h))
,

1

µ (B (y, h))

}
·

One thus recovers the Metropolis operator associated to the Markov kernel (Id−Mh).

The associated random walk is the following: if the walk is in x, one chooses y in B (x, h) for the
probability

1B(x,h)
1

µ (B (x, h))
dµX(y) ·

Then, depending wether µ (B (y, h)) > µ (B (x, h)) or not, one moves to y, or stay in x.

6.2 Singular Sets

We hereafter place ourselves in the euclidian plane of dimension 2, referred to a direct orthonormal
frame.

6.2.1 Frame of the Study - Prefractal Graph Approximation

Notation. In the sequel, we will denote by S a singular set, of fractal type. Examples of such sets
are the classical Sierpiński Gasket, the Koch Curve, the Weierstrass Curve.
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By following the method developed by J. Kigami [Kig03], we approximate S by a sequence (Sm)m∈N
of finite graphs, the so-called prefractals. In classical cases, those graphs can be built through an iter-
ative process, by means of an iterated function system (i.f.s) T = {T0, . . . , TN−1} of N maps, N ∈ N,
such that

S =

N−1⋃
i=0

Ti (S) ·

When the maps of the i.f.s. are contractive, this latter property is the so-called Collage The-
orem [BD85a]. When the maps are not contractive, one can, under specific conditions, have an
equivalent result (see [Dav19]).

The process is more or less complicated, depending on wether the maps of the i.f.s. are affine
(Sierpiński Gasket, the Koch Curve), or not (Weierstrass Curve).

Example 6.1.

i. In the case of Sierpiński Gasket, the iterated function system is constituted of three affine

contractive maps (similarities), all with the same contraction ratio
1

2
, and fixed points P0, P1, P2

located at the vertices of the initial equilateral triangle (see [Str06], and Figure 1 in the sequel):

∀ j ∈ {0, 1, 2} , ∀x ∈ R2 : Tj(x) =
1

2
(x− Pj) + Pj ·

ii. In the case of a non-affine fractal curve, as the Weierstrass one, the iterated function system is
constituted of Nb > 3 nonlinear maps, which, if they cannot be said contractive in the classical
sense, bear an equivalent property (see [Dav19]). The fixed points are located at the vertices of
the initial graph.

Definition 6.3 (Prefractal Graph Approximation).

Let us consider a sequence of finite discrete graphs (Sm)m∈N. For any natural integer m, we
denote by Vm the set of vertices of Sm. In agreement with definition ??, the initial set of points V0

stands as the boundary of any ∂Sm, m ∈ N.

We suppose that:

i. The sequence (Vm)m∈N is increasing, i.e.,

∀m ∈ N : Vm ⊂ Vm+1 ·

ii. For any natural integer m, the graph Sm is equipped with an edge relation ∼
m

: two vertices x

and y of Sm, i.e., two points belonging to Vm, will be said adjacent (or neighboring points)
(see Figure 2) if and only if the line segment [x, y] is an edge of Sm. Note that this edge relation
depends on m, which means that points connected in Vm might not stay connected in Vm+1.

iii. The euclidean distance between adjacent points tends towards zero when m goes to infinity, and
the union

⋃
m∈N

Vm is dense in S.
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The sequence (Sm)m∈N will then be called prefractal graph approximation to S (see Figure 1 for
an example, in the case of the Sierpiński Gasket).
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Figure 1: In the case of the Sierpiński Gasket, the graphs S0, S1, S2, with ∂S0 = V0 = {P0, P1, P2}.
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Figure 2: In the case of the Sierpiński Gasket, adjacent points, junction points, cells.

Notation (Adjacent Consecutive Vertices of the mth Level Prefractal Approximation, m ∈ N).

For the sake of clarity, given a natural integer m, two adjacent, consecutive vertices of the mth

level prefractal approximation Sm will be denoted in the following form

xm,k and xm,k+1 , 0 6 k 6 N − 1 ,

where N is the number of maps of the iterated function system.

The qualifier “consecutive” is to be understood in the sense that such points are obtained by means
of consecutive maps of the iterated function system. We refer to [Str06] or [Dav18] for further details
and examples.
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Definition 6.4 (m-Radius (m-Heigth)).

Given a natural integer m, we will call m-radius (or m-heigth) of Sm the maximal euclidean
distance between two connected vertices of Sm, which we will denote by

hm = max
(x,y)∈V 2

m, x∼my
deucl(x, y) ·

Property 6.4 (Polygonal Domain [DL20]).

For any natural integer m, the #m consecutive vertices of the graph Sm are, also, the vertices
of Nm simple polygons Pm,j, for 0 6 j 6 Nm − 1, with N sides (see Figure 3). For any integer j such
that 0 6 j 6 Nm − 1, one obtains each polygon Pm,j by connecting the point number j to the point
number j + 1 if j = imod N , for 0 6 i 6 N − 2, and the point number j to the point number j−N+1
if j = −1 mod N .

To go further, and as required in the specific case of a fractal Curve (in order to have a complete
polygonal neighborhood of the Curve), the #m − 1 consecutive vertices of the graph Sm, distinct of P0

and PN−1, are the vertices of Nm − 1 simple polygons Qm,j, 1 6 j 6 Nm − 2, with maximum N sides.
For any integer j such that 1 6 j 6 Nm − 2, one obtains each polygon Qm,j by linking the point num-
ber j to the point number j + 1 if j = imod N , for 1 6 i 6 N − 1, and the point number j to the point
number j −N + 1 if j = 0 mod N .

Of course, those latter polygons are not to be taken to account when the considered singular set is
not a fractal curve. If such is the case, we have that{

Qjm , 1 6 j 6 Nm − 2
}

= ∅ ·

The above polygons generate a Borel set of R2.

Example 6.2.

i. In the case of Sierpiński Gasket, the polygonal domain is constituted of equilateral triangles, as
it can be seen in Figure 1.

ii. In the case of the Weierstrass Curve, the polygonal domain is constituted of N -gons, as it can
be seen in Figure 3.

Definition 6.5 (m-Cell).

Given a natural integer m, we call m-cell, any simple polygon Pm,j , 0 6 j 6 Nm − 1, or, when
necessary, Qm,j , 1 6 j 6 Nm − 2.
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Figure 3: Pm,j and Q̃m,j polygons/cells, in the case of the Weierstrass Curve.

Notation. For the sake of simplicity, given a natural integer m, the set of cells of Sm will be denoted
by Cm.

Remark 6.5.

i. Except for intersection points (i.e., junction ones), m-cells are disjoint.

ii. Despite the sequence (Vm)m∈N is increasing, the set of cells of Sm+1, m ∈ N is not necessarily
contained in the one of Sm. For instance, one clearly see it is the case for the Sierpiński Gasket,
since a (m+ 1)-cell is obtained by dividing a m-one to three. In a different configuration, let us
say, the Weierstrass Curve (see Figure 4 - we refer to [Dav18], [DL20] for further details), this is
not the case.

Figure 4: (m+ 1)-cells and m-cells, in the case of the Weierstrass Curve, for N = 3.
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Definition 6.6. Power of a Vertex of the Prefractal Graph Sm, m ∈ N? with Regard to

the Polygonal Family
{
Cjm , 0 6 j 6 #Cjm − 1

}
Given a strictly positive integer m, a vertex x of the prefractal graph Sm will be said:

i. of power one with regard to the polygonal family
{
Cjm , 0 6 j 6 #Cjm

}
if x belongs to one and

only one m-cell Cm,j , 0 6 j 6 #Cjm − 1 ;

ii. of power
1

k
, k ∈ N?, with regard to the polygonal family

{
Cjm , 0 6 j 6 #Cjm − 1

}
if x is a

common vertex to k cells Cm,j , 0 6 j 6 #Cjm − 1;

Remark 6.6.

i. The above power is required when defining a measure (see [DL20], in the case of the Weierstrass
Curve, or [Str06], in the case of the Sierpiński Gasket. It acts as a kind of pound.

ii. In the case of the Sierpiński Gasket, except for boundary points (the fixed points of the affine maps
of the associated i.f.s., P0, P1, P2,), each vertex point at a given level m ∈ N? belongs to exactly

two m-cells, and thus has power
1

2
. As explained in [Str06], one can get rid of the part played by the

boundary points when computing a measure, since the sum at stake goes to zero when the integer m
tends towards infinity.

iii. In the case of the Weierstrass Curve, except again for boundary points, each vertex point at a

given level m ∈ N? belongs to at most two m-cells, in which case it has power
1

2
also.

iv. The associated power coefficient
1

2
thus plays the part of a multiplicative constant. For the

sake of simplicity, we will consider it as contained in the one at stake in the definition of our Lapla-
cians (r−m, 6.6, or cm, 6.4).

Definition 6.7 (m-Path).

Given two vertices in
⋃

m∈N
Vm, i.e., two vertices xm,k and xm,k+p, for m ∈ N, 0 6 k 6 #Vm and

0 6 p 6 #Vm − k, we call m-path between xm,k and xm,k+p the ordered set of vertices given by

Pm (xm,k, xm,k+p) = {xm,k+j , 0 6 k 6 p} ·

An example is given Figure 5.
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Xm,k ∈V�

X�,k+p ∈Vm

Xm,k+j ∈Vm

Figure 5: A m-path.

Definition 6.8 ((m,n)-Path).

i. Given a natural integer m, and two adjacent vertices xm,k and xm,k+1 ∼
m
xm,k of Vm,

for 0 6 k 6 #Vm − 1, we call (m,m)-path between xm,k and xm,k+1 the ordered set of vertices

Pm,n (xm,k, xm,k+1) =
{
xm+n,k+j , 0 6 j 6 Nn−m}

where

xm+n,k = xm,k and xm+n,k+n = xm,k+1 ·

(We recall that N denotes the number of maps of the iterated function system introduced at the
beginning of subsection 6.2.1. Nn−m simply means that Nn−m new points have been introduced be-
tween xm,k and xm,k+1)

An example is given Figure 6.

Xm,k =X�+n,k+1 Vm ⋂�m+n
Xm,k+1 =�m+n,k+Nn-m �m ⋂�m+n

�m+n,k+1 �m+n,k+Nn-m-1

Points in�m+n\�m

Figure 6: A (m,n)-path.

ii. Given a natural integerm, and two vertices xm,k and xm,k+p of Vm, for 0 6 p 6 #Vm and 0 6 k 6 #Vm − p,
we call (m,m)-path between xm,k and
xm,k+p the ordered set of vertices given by

Pm,n (xm,k, xm,k+p) =

p−1⋃
j=0

Pm,n (xm,k+j , xm,k+j+1) ·
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Remark 6.7. Given two vertices x and y in
⋃

m∈N
Vm, i.e., two vertices x and y in Vm, for a given value

of the integer m, there exists an infinity of (m,n)-paths between x and y. It is clear that the minimal
one - the simplest one, is the m-one.

Definition 6.9 (m-Edge Distance).

Given a natural integer m, and two vertices xm,k and xm,k+p in
⋃

m∈N
Vm, for 0 6 k 6 #Vm

and 0 6 p 6 #Vm−k, the m-edge distance between xm,k and xm,k+p is defined as the length of the
minimal path connecting xm,k and xm,k+p in Vm, i.e.,

dm,edge (xm,k, xm,k+p) =

p−1∑
k=0

deucl (xm,k+j , xm,k+j+1) ·

In the case of adjacent vertices xm,k and xm,k+1, we simply have that

dm,edge (xm,k, xm,k+1) = deucl (xm,k+j , xm,k+1) ·

Remark 6.8.

i. This edge distance between two vertices corresponds, in a sense, tothe distance at a given level m
of the prefractal graph approximation. Adjacent points at the same level are close, but become very
distant as far as the level increases.

ii. Defining (m,n)-paths enables one to switch, when necessary, from a level m to higher n > m. Such
a situation happens when handling our forthcoming m-balls.

The next problem that arises now is: how can one define balls in our context?
Of course, euclidean ones could do the job – namely, the important point is that given a radius r > 0,
and a point x, we still have that

∀ ε ∈ ]0, 1[ : B (x, ε r) ⊂ B (x, r) ,

i.e., bigger balls contain smaller ones.

An important thing is that we deal with discrete balls. This specific point has to be taken to ac-
count when defining balls – in so far as we will further consider random walks moving on a given state m
of the sequence of prefractal graphs, which ends by switching from Vm to Vm+1, in a lack of memory
process. The change of state – the mth to the (m+ 1)th state – comes from the fact that Vm ⊂ Vm+1

and that # (Vm+1 \ Vm) > #Vm – in a sense, the probability of reaching the new state m+ 1 is higher.

What we would like, thus, is that the definition of balls could account for this specificity. Bearing
in mind that when m increases, the edge distance between adjacent vertices become more and more
small, the solution is that balls could have more points near their origin, i.e., with a distribution of
points proportional to their position.
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Definition 6.10 (m-Ball).

Given a natural integer m, a strictly positive number r, and a vertex x of Vm, the m-ball of center x
and radius r is defined by

Bm (x, r) = {y ∈ Vm , dm,edge(x, y) < r } ·

The associated closed ball will be denoted B̄m (x, r).

Remark 6.9. The above definition 6.10 enable us to deal with the best suited ball, depending on the
considered structure:

i. In the case of Sierpiński Gasket, we will handle m-balls of radius
1

2m
, which coincide with m-cells.

ii. In the case of the Weierstrass Curve, we will handle m-balls of radius j × hm, for 1 6 j 6 N − 1
(see Definition 6.4). For a center of the ball located in a junction point xm (between m-cells), m-balls
of radius (N − 1)× hm enable us to encompass the m-cells with the same vertex xm. One can also
simply want to take to account the immediate (adjacent) neighbors of a vertex, in which case m-balls
of radius hm are enough.

Remark 6.10. Another interesting point that may be noted is that our definition of m-balls yields, for
any vertex x of Vm, inclusion relations of the form

Bm+1 (x, hm+1) ⊂ Bm+1 (x, hm) ·

Property 6.5. Since the sequence (Vm)m∈N is increasing, we of course have, for any strictly positive
number r, any natural integer m, and any vertex x of Vm, that

Bm (x, r) ⊂ Bm+1 (x, r) ·

This can be refined, for r′ < r, in:

Bm
(
x, r′

)
⊂ Bm+1 (x, r) ·

Definition 6.11 (Regular Probability Measure on S [Str06]).

A regular probability measure on S is a measure µ that assigns weights µ(Cjm) to any m-cell

of Sm, m ∈ N, for
{
Cjm , 0 6 j 6 #Cm − 1

}
, in an additive way:

i. ∀m ∈ N , ∀ j ∈ {0, . . . ,#Cm − 1} : µ
(
Cjm
)
> 0.

ii. Given two m-cells Cjm and Cj+1
m ,

{
Cjm , 0 6 j 6 #Cm − 2

}
which intersect only at junction points:

µ
(
Cjm ∪ Cj+1

m

)
= µ

(
Cjm
)

+ µ
(
Cj+1
m

)
·
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iii. lim
m→+∞

(
µ
(
Cjm
))

06j6#Cm−1
= 0.

iii. µ (S) = lim
m→+∞

#Cm−1∑
j=0

µ
(
Cjm
)

= 1.

Given a continuous function f on S, we set, from now,

∫
S
f dµ = lim

m→+∞

#Cm−1∑
j=0

∑
x vertex of Cjm

µ
(
Cjm
)

#vertices of Cjm
f (x) ·

Notation. From now on, we will denote by µ a measure on S.

6.2.2 hm-Laplacian

Definition 6.12 (hm-Laplacian, m ∈ N).

Following Definition 5.7, given a natural integer m, we define the hm-Laplacian as the operator

|∆hm | = δ?hm δhm ,

which acts on smooth functions f on Vm through:

∀x ∈ Vm : |∆hm | (f)(x) =
2 c2

0,m

h2
m

∫
B̄m(x,hm)

{f(y)− f(x)} C0 (x, y,m) dµ(y) ,

where

C0 (x, y,m) = min

{
1

µ
(
B̄m (x, hm)

) , 1

µ
(
B̄m (y, hm)

)} ,

and where c2
0,m denotes a strictly positive constant.

Remark 6.11. It is clear that, when m→∞,

1

µ
(
B̄m (x, hm)

) � 1 and
1

µ
(
B̄m (y, hm)

) � 1 ·

Definition 6.13. Topological Laplacian of Order m ∈ N?

For any strictly positive integer m, and any real-valued function f , defined on the set Vm of the
vertices of the graph Sm, we introduce the topological Laplacian of order m, ∆τ

m(f), by

∆τ
mf(x) =

∑
y∈Vm, y∼

m
x

(f(y)− f(x)) ∀x ∈ Vm \ ∂Vm ·
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Property 6.6 (Pointwise Formula - Kigami-Strichartz Laplacian [Str06]).

Given a strictly positive integer m, and a vertex x ∈ Vm \ V0, we introduce the piecewise harmonic
(with respect to the topological Laplacian ∆τ

m) spline function ψmX ∈ S (H0, Vk) such that

ψmx (y) =

{
δxy ∀ y ∈ Vm
0 ∀ y /∈ Vm

, where δxy =

{
1 if x = y
0 else

·

Provided the fractal S is self-similar, we the obtain a Laplacian, defined, for any continuous func-
tion f on S, which belongs to its domain dom ∆, through

∀x /∈ V0 : ∆f(x) = lim
m→∞

r−m∫
S
ψmx dµ

∆τ
mf(X) ,

where, for any strictly positive integer m, r−m is a normalization constant.

Property 6.7 (Back to the hm-Laplacian).

The definition of the measure on S yields, for any vertex x ∈ Vm \ V0:

|∆hm | (f)(x) =
2 c2

0,m

h2
m

∫
B̄m(x,hm)

{f(y)− f(x)} min

{
1

µ
(
B̄m (x, hm)

) , 1

µ
(
B̄m (y, hm)

)} dµ(y)

=
2 c2

0,m

h2
m

∑
y∈Cjm, y∼

m
x

µ
(
Cjm
)
{f(y)− f(x)}

#vertices of Cjm
min

{
1

µ
(
B̄m (x, hm)

) , 1

µ
(
B̄m (y, hm)

)} ·

Up to a multiplicative constant that depends on the geographic position of x, which impacts the
number of its neighbors and, thus, the measures of the (closed) balls B̄m (x, hm) and B̄m (y, hm), we
have that

µ
(
B̄m (x, hm)

)
= µ

(
B̄m (y, hm)

)
= µ

(
Cjm
)
,

which yields

|∆hm | (f)(x) =
2 c2

0,m

h2
m #vertices of Cjm

∑
y∈Cjm, y∼

m
x

{f(y)− f(x)}

=
2 c2

0,m

h2
m #vertices of Cjm

∆τ
m(f)(x) ·

Since lim
m→∞

hm = 0, we have that

lim
m→∞

|∆hm | (f)(x) = lim
h→0
|∆h| (f)(x)

= |∆0| (f)(x) ·

Henceforth, under the condition

r−m∫
S
ψmx dµ

=
2 c2

0,m

h2
m #vertices of Cjm

,
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it can also be written as

r−m

µ(Cjm)
#vertices of Cjm

=
2 c2

0,m

h2
m #vertices of Cjm

i.e.,

c2
0,m =

r−m h2
m

(
#vertices of Cjm

)2

2µ
(
Cjm
)

in order to recover the same Laplacian, i.e., the one of classical analysis.

Remark 6.12. The above condition makes sense, in so far as

µ
(
Cjm
)
.

1

h2
m

·

Then, one just has, up to a multiplicative constant, the equality of the normalization constants.

Remark 6.13. Henceforth, Laplacians on singular sets can be equivalently obtained, either through the
now classical analysis tools on fractals introduced by J. Kigami, either using our h-Laplacians. There
is here an interesting point to note, due to the fact that the sequence (Vm)m∈N is increasing. It thus
happens that the hm+1-Laplacian can be obtained may one consider the modified MCMC method
where, given a state x ∈ Vm ⊂ Vm+1, the transition probability towards a new state y ∈ Vm ⊂ Vm+1

depends on wether y ∼
m+1

x, or not (i.e., an edge relation between x and y can only exist at level m):

P [y|x] = P

[
y ∼
m+1

x|x
]

+P

[
y 6∼
m+1

x|x
]
·

The acceptance probability is then given by

min

{
1,

# (Vm+1 \ Vm)

#Vm+1

µ (Bm (y, hm))

µ (Bm (x, hm))
,

#Vm
#Vm+1

µ (Bm+1 (y, hm))

µ (Bm+1 (x, hm))

}
·

Since

# (Vm+1 \ Vm) > #Vm ,

and, more precisely, when m→∞,

# (Vm+1 \ Vm)� #Vm ,

when, at the same time, hm → 0, which means that the random walk will naturally end in switching
to the (m+ 1)th level of the prefractal graph approximation.

As seen previously (see Property 6.5), we cannot write a comparison-inclusion relation between
the balls Bm (x, hm) and Bm+1 (x, hm+1), as the one that exists for the euclidean ones, i.e.,

Beucl (x, hm+1) ⊂ Beucl (x, hm) ·

Yet, the switching is natural, since

Bm (x, hm) ⊂ Bm+1 (x, hm) and Bm+1 (x, hm+1) ⊂ Bm+1 (x, hm) ·
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In fact, the random walk is initially in Bm (x, hm), but already in Bm+1 (x, hm). It then naturally
switches to Bm+1 (x, hm+1).

Henceforth, the hm+1-Laplacian can be seen as an extension of the hm-one to Vm+1. We can
then draw a parallel with the decimation process of Fukushima and Shima [FS92], [Shi96], where,
given an eigenfunction um on Vm \ ∂Vm, for the eigenvalue Λm, one extends um on Vm+1 \ ∂Vm+1 in
a function um+1, which will itself be an eigenfunction of the (m+ 1)th graph Laplacian ∆m+1, for the
eigenvalue Λm.

In other words, this can be seen as a sort of “continuity” of the sequence of discrete Laplacians.

Definition 6.14 (Modified hm-Laplacian, m ∈ N).

Following Definition 6.12, given a natural integer m, we define the modified hm-Laplacian as the

operator
∣∣∣∆̃hm

∣∣∣, which acts on smooth functions f on Vm, through:

∀x ∈ Vm :
∣∣∣∆̃hm

∣∣∣ (f)(x) =
2 c̃2

0,m

h2
m

∫
B̄m(x,hm)

{f(y)− f(x)} C̃0 (x, y,m) dµ(y) ,

where

C̃0 (x, y,m) = min

{
# (Vm+1 \ Vm)

#Vm+1

1

µ (Bm (x, hm))
,

# (Vm+1 \ Vm)

#Vm+1

1

µ (Bm (y, hm))
,

#Vm

#Vm+1

1

µ (Bm+1 (x, hm))
,

#Vm

#Vm+1

1

µ (Bm+1 (y, hm))

}

and where c̃2
0,m denotes a strictly positive constant.

As for the correspondence of Property 6.7, it is obtained thanks to the following property:

Property 6.8 (Recovering the Modified hm-Laplacian, m ∈ N).

The definition of the measure on S yields, for any vertex x ∈ Vm \ V0, for m ∈ N, that

|∆hm | (f)(x) =
2 c̃2

0,m

h2
m

∫
B̄m(x,hm)

{f(y)− f(x)} C̃0 (x, y,m) dµ(y)

=
2 c̃2

0,m

h2
m

∑
y∈Cjm, y∼

m
x

µ
(
Cjm
)
{f(y)− f(x)}

#vertices of Cjm
C̃0 (x, y,m) ·

Under the condition

r−m =
2 c̃2

0,m

h2
m

∑
y ∈ Cjm, y ∼

m
x

or y ∈ Cj
′

m+1, y ∼m+1
x

 µ
(
Cjm
)

#vertices of Cjm

2

C̃0 (x, y,m) ,

we then obtain the new correspondence between the modified hm-Laplacian, and the Kigami-Strichartz
Laplacian (see [Kig01], [Str06]).

39



6.2.3 Prefractal Cohomology

At the beginning of our study (see Definition 2.3), given a natural integer p, we have intro-
duced the concept of p-differential δp, from the set of p-fermions Fp (X,A) to the set of (p+ 1)-
fermions Fp+1 (X,A), by means of differences.

In the case of prefractals, if differential operators – local ones, are also defined by means of differ-
ences, we have to be more subtle, in so far as it depends on edge relations. For instance, given m ∈ N?,
and a real-valued function f , defined on the set of vertices Vm, the topological Laplacian of order m
is defined through:

∆τ
mf(x) =

∑
y∈Vm, y∼

m
x

(f(y)− f(x)) ∀x ∈ Vm \ ∂Vm ·

Thus, local differences between adjacent points–vertices are concerned.

Now, since the sequence (Vm)m∈N is increasing, a local difference of the form

f(x)− f(y) for y ∼
m
x ,

can be more explicitely written as

f (xm,k)− f (xm,k+1) ,

or, thanks to an equivalent of a Chasles relation along the path Pm,N (x, y), as

f(x)− f(y) =
∑

(z,t)∈ (Pm,N (x,y)))2

(f(z)− f(t)) ·

It can then be explicited, in the case of the example displayed Figure 7:

x ϵ Vm ⋂V�+1 y ϵ V� ⋂V�+1

b ϵ V�+1\V� d ϵ V�+1\V�

e ϵ V�+1\V�

c ϵ V	+1\V


a ϵ V�+1\V�

Figure 7

f(x)− f(y) = {f(x)− f(a)}+ {f(a)− f(b)}+ {f(b)− f(c)}
+ {f(c)− f(d)}+ {f(d)− f(e)}+ {f(e)− f(y)}

Thus, p-differentials map the set of m-fermions to the set of N × p fermions:

Fp FN pδp
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It is then legitimate to question the real meaning of the associated cohomology.

As in [ACSY14], we consider that p-fermions act on p-dimensional structures. Given a natural inte-
ger m, the set of vertices Vm has #Vm points, and can be considered as #Vm-dimensional. In fact, the
kernel ker δ#Vm corresponds to the fermions that stay on the mth-level approximation to the prefractal
sequence (Sm)m∈N . The image Im δ#Vm−1 consists in the fermions coming from the (m− 1)th-level
approximation to the prefractal sequence. The cohomology is thus constituted of the quotient groups

ker δ#Vm/Imδ#Vm−1 , m ∈ N? ·

In a sense, this amounts to a kind of “hierarchy” in the structure.

To this point, we would like to concentrate upon the fact that, in [ACSY14], the authors mainly
deal with low dimensional forms (0-,1-,2-). We find it interesting to handle #Vm-fermions, acting on
the whole set of vertices of Vm, which appears as rather natural, in so far as the points belong to the
same mth-order prefractal graph.

This is of course a math paper. Yet, the following quote seems very appropriate to close this point:

“It is by no means obvious how to realize these intuitions in a precise theory, and there are perhaps
more than one way to do this.” [ACSY14]

Example 6.3 (The Specific Case of the Sierpiński Gasket).

In the case of the Sierpiński Gasket, given a natural integer m, we have that

hm =
1

2m
·

For the natural probability measure µ, which assigns the value 1 to the Gasket, the measure of
a m-cell of the prefractal graph Sm is given, for any integer j in {0, . . . , Nm − 1}, by

µ
(
Cjm
)

= Am =
1

3m
·

For any vertex x ∈ Vm, the number of points in the closed ball B̄m (x, hm) depends on the geo-
graphic location of x:

i. If x belongs to V0: x has exactly two neigbors, at distance hm. The ball Bm (x, hm) contains
exactly three points, x and its two neighbors.

The measure of the ball is then exactly the measure of a m-cell, i.e.,

µ (Bm (x, hm)) = Am ·

ii. If x does not belong to V0: x has exactly four neigbors, at distance hm. The ball Bm (x, hm)
contains exactly five points, x and its four neighbors, and, thus, three m-cells.

The measure of the ball is then

µ (Bm (x, hm)) = 3Am ·
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Meanwhile, for a mth-order triangular cell of the Gasket, with respective vertices x, y, z, we have
that ∫

S

{
ψmx + ψmy + ψmz

}
dµ = Am ·

Thus, ∫
S
ψmx dµ =

1

3
Am ·

Since (we refer to [Str06]),

r−m =

(
5

3

)m
,

we then obtain that

r−m

Am
=

2 c2
0,m

9h2
m

i.e.,

c2
0,m =

9× 3m r−m

2× 4m
=

9

2

5m

4m
·

As for the detailed Hodge-De Rham calculus, one may find it, in an explicit way, in [ACSY14].
Now, as for the modified hm-Laplacian, we have that

#Vm =
3m+1 + 3

2
, #Vm+1 =

3m+2 + 3

2
·

At the same time, for any integer j′ in
{

0, . . . , Nm+1 − 1
}

, we also have that

µ
(
Cj′m
)

= Am+1 =
1

3m+1
·

This yields

c̃0,m =
3m+2 + 3

3m+1 + 3

3m+1

2× 4m
r−m > c2

0,m ·

Example 6.4 (The Specific Case of the Weierstrass Curve).

This case is slightly different from the one of the preceeding Gasket, in so far as we deal with a
curve. The existing results [Dav18], [DL20] enable us to handle a specific two-dimensional measure,
in so far as the Curve is approached by means of a polygonal neighborhood.

We hereafter denote by N = Nb > 3 the number of maps of the involved iterated function system
(see 6.2.1), and by DW the box-dimension of the Curve.

Given a natural integer m, we have that

hm =
N

(DW−2)m
b

(Nb − 1)2−DW
·
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A m-cell has Nb vertices, while its measure is given by (we refer to [Dav19], [DL20])

µm . N
(DW−3)m
b ·

For a continuous function f on the Curve, belonging to the domain of the Laplacian, its Laplacian
is obtained, for any x /∈ V0, through

∆ f(x) = lim
m→∞

∆mf(x) = lim
m→∞

cm
h2
m

∆τ
mf(X) ,

where

cm = h
−2

(
DW−1

2−DW

)
m ·

So, in a sense, the definition of the Laplacian already resembles the one of the hm-Laplacian, which
is thus obtained when

cm =
2 c2

0,m

Nb
,

i.e.,

c2
0,m =

Nb

2
h
−2

(
DW−1

2−DW

)
m ·

Now, as for the modified hm-Laplacian, we have that

#Vm = Nm+1
b + 1−Nm

b , #Vm+1 = Nm+2
b + 1−Nm+1

b ·
At the same time, for any integer j′ in

{
0, . . . , Nm+1 − 1

}
,

µ
(
Cj′m
)

= Am+1 =
1

3m+1
·

This yields

cm = 2 c̃0,m
∑

y ∈ Cjm, y ∼
m
x

or y ∈ Cj
′

m+1, y ∼
m+1

x

µ
(
Cjm
)

#vertices of Cjm
min

# (Vm+1 \ Vm)

#Vm+1

1

µ
(
Cjm
) , #Vm

#Vm+1

1

µ
(
Cj′m+1

)
 ·

If we cannot presently have the exact value, we can nonetheless write

cm ∼
2 c̃0,mN

(DW−3)m
b

Nb
min

{
Nm+2

b + 1−Nm+1
b −Nm+1

b − 1 +Nm
b

Nm+2
b + 1−Nm+1

b

1

N
(DW−3)m
b

,
Nm+1

b + 1−Nm
b

Nm+2
b + 1−Nm+1

b

1

N
(DW−3) (m+1)
b

}
,

which yields

c̃2
0,m ∼

Nm+2
b + 1−Nm+1

b

2
(
Nm+1
b − 2Nm

b +Nm−1
b

) cm ,
and

c̃0,m > c0,m ·

Thanks

The authors would like to thank the anonymous referee to have brought to their attention articles
that have made it possible to better value their own original contributions.
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