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Bypassing dynamical systems : A simple
way to get the box-counting dimension of
the graph of the Weierstrass function

Claire David

Abstract. In the following, bypassing dynamical systems tools, we
propose a simple means of computing the box dimension of the graph
of the classical Weierstrass function defined, for any real number x,

by W (x) =

+∞∑
n=0

λn cos (2πNn
b x), where λ and Nb are two real numbers

such that 0 < λ < 1, Nb ∈ N and λNb > 1, using a sequence a graphs that
approximate the studied one.

Introduction

The determination of the box and Hausdorff dimension of the graph
of the Weierstrass function has, since long been, a topic of interest. In the
following, we show that the box-counting dimension (or Minskowski dimen-
sion) can be obtained directly, without using dynamical systems tools.

Let us recall that, given λ ∈ ]0, 1[, and b such that λ b > 1 +
3π

2
, the

Weierstrass function

x ∈ R 7→ W (x) =

+∞∑
n=0

λn cos (π bn x)

is continuous everywhere, while nowhere differentiable. The original proof,
by K. Weierstrass [18], can also be found in [17]. It has been completed by
the one, now a classical one, in the case where λ b > 1, by G. Hardy [5].
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After the works of A. S. Besicovitch and H. D. Ursell [2], it is Benôıt Man-
delbrot [12] who particularly highlighted the fractal properties of the graph
of the Weierstrass function. He also conjectured that the Hausdorff dimen-

sion of the graph is DW = 2 +
lnλ

ln b
. Interesting discussions in relation to

this question have been given in the book of K. Falconer [4]. A series of
results for the box dimension can be found in the works of J.-L. Kaplan
et al. [8] (where the authors show that it is equal to the Lyapunov dimen-
sion of the equivalent attracting torus), in the one of F. Przytycki and
M. Urbańki [14], and in those by T-Y. Hu and K-S. Lau [6]. As for the
Hausdorff dimension, a proof was given by B. Hunt [7] in 1998 in the case
where arbitrary phases are included in each cosinusoidal term of the sum-
mation. Recently, K. Barańsky, B. Bárány and J. Romanowska [1] proved
that, for any value of the real number b, there exists a threshold value λb
belonging to the interval

]
1

b
, 1

[
such that the aforementioned dimension is

equal to DW for every b in ]λb, 1[. Results by W. Shen [16] go further than
the ones of [1]. In [9], G. Keller proposes what appears as a much simpler
and very original proof.

May one wish to understand the proofs mentioned above, it requires the-
oretical background in dynamic systems theory. For instance, in the work
of J.-L. Kaplan et al. [8], the authors call for results that cannot be under-
stood without knowledge on the Lyapunov dimension. One may also note
that their proof, which enables one to obtain the box-counting dimension of
the aforementioned graph, involves sequences revolving around the Gamma
Function, Fourier coefficients, integration in the complex plane, definition of
a specific measure, the solving of several equations, thus, a lot of technical
manipulations (on eleven pages), to yield the result.

Following those results, F. Przytycki and M. Urbańki [14] give a general
method leading to the value of this box-counting dimension. It was ini-
tially devoted to the calculation of the Hausdorff dimension of the graph.
It appears simpler than the one by Kaplan et al., calling for Frostman’s
lemma [15], [13]. The authors deal with continuous functions f satisfying
conditions of the form:

∀ (x1, x2) ∈ [0, 1]2 :

sup {|f(a1)− f(a2)| ; x1 ≤ a1 ≤ a2 ≤ x2} ≥ C |x1 − x2|α (?)

where C and α < 1 denote strictly positive real constants.
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In order to apply the results by F. Przytycki and M. Urbańki, one thus
requires the estimate (?), which is not that easy to prove. The same kind
of estimate is required to obtain the Hausdorff dimension of the graph. As
evoked above, existing works in the literature all call for the theory of dy-
namical systems.

Until now, the simplest calculation is the one by G. Keller [9], where the
author bypasses the Ledrappier-Young theory on hyperbolic measures [11],
[10], embedding the graph into an attractor of a dynamical system. The
proof requires b-baker maps, acting on the unit square. It also requires re-
sults on stable and unstable manifolds, as well as results on related fibers.

In our work [3], where we build a Laplacian on the graph of the Weier-
strass function W , we came across a simpler means of computing the box
dimension of the graph, using a sequence a graphs that approximate the
studied one, bypassing all the aforementioned tools. The main computa-
tion, which, for any small interval [x1, x2] ⊂ [0, 1], leads to an estimate of
the form:

Cinf |x1 − x2|2−DW ≤ |W (x1)−W (x2)| ≤ Csup |x1 − x2|2−DW

where DW = 2 +
lnλ

ln b
, and where Cinf and Csup denote strictly positive

constants, is done in barely two pages, and does not require specific know-
ledge, putting the result at the disposal of a wider audience. The key results
are exposed in the sequel.

1. Framework of the study

In this section, we recall results that are developed in [3]. We consider
the case when the real number b is an integer, that we thus choose to denote
by Nb.

Notation

We will denote by N the set of natural integers.
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Notation

In the following, λ and Nb are two real numbers such that:

0 < λ < 1 , Nb ∈ N and λNb > 1.

We will consider the Weierstrass function W , defined, for any real number x,
by:

W (x) =

+∞∑
n=0

λn cos (2πNn
b x) .

Property 2.1. Periodic properties of the Weierstrass function
For any real number x:

W (x+1) =

+∞∑
n=0

λn cos (2πNn
b x+ 2πNn

b ) =

+∞∑
n=0

λn cos (2πNn
b x) = W (x).

The study of the Weierstrass function can be restricted to the interval [0, 1[.

In the sequel, we place ourselves in the Euclidean plane of dimension 2,
referred to a direct orthonormal frame. The usual Cartesian coordinates
are (x, y).

The restriction ΓW to [0, 1[×R, of the graph of the Weierstrass function,
is approximated by means of a sequence of graphs, built through an iterative
process. For this purpose, we introduce the iterated function system, i.e.
the family of C∞ contractions from R2 to R2:

{T0, . . . , TNb−1}

where, for any integer i belonging to {0, . . . , Nb − 1}, and any (x, y) in R2:

Ti(x, y) =

(
x+ i

Nb
, λ y + cos

(
2π

(
x+ i

Nb

)))
.
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Notation

We will denote by:

DW = 2 +
lnλ

lnNb

the Hausdorff dimension of ΓW (see [1], [9]).

Proposition 1.1.

ΓW =

Nb−1⋃
i=0

Ti(ΓW ).

Definition 1.2. For any integer i belonging to {0, . . . , Nb − 1}, let us de-
note by:

Pi = (xi, yi) =

(
i

Nb − 1
,

1

1− λ
cos

(
2π i

Nb − 1

))
the fixed point of the contraction Ti.

We will denote by V0 the ordered set (according to increasing abscissae),
of the points:

{P0, . . . , PNb−1} .
The set of points V0, where, for any i of {0, . . . , Nb − 2}, the point Pi is

linked to the point Pi+1, constitutes an oriented graph (according to increas-
ing abscissa)), that we will denote by ΓW0 . V0 is called the set of vertices of
the graph ΓW0 .

For any natural integer m, we set:

Vm =

Nb−1⋃
i=0

Ti (Vm−1) .

The set of points Vm, where two consecutive points are linked, is an
oriented graph (according to increasing abscissa), which we will denote
by ΓWm . Vm is called the set of vertices of the graph ΓWm . We will de-
note, in the sequel, by

N S
m = 2Nm

b +Nb − 2
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the number of vertices of the graph ΓWm , and we will write:

Vm =
{
Pm0 , P

m
1 , . . . , P

m
N S
m −1

}
.

Figure 1.1. The polygons P1,0, P1,1, P1,2, in the case

where λ =
1

2
, and Nb = 3.
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Figure 1.2. The graphs ΓW0 , ΓW1 (in red), ΓW2 , ΓW , in

the case where λ =
1

2
, and Nb = 3.

Definition 1.3. Consecutive vertices on the graph ΓW

Two points X and Y of ΓW will be called consecutive vertices of the
graph ΓW if there exists a natural integerm, and an integer j of {0, ..., Nb − 2},
such that:

{
X = (Ti1 ◦ . . . ◦ Tim) (Pj)
Y = (Ti1 ◦ . . . ◦ Tim) (Pj+1)

(i1, . . . , im) ∈ {0, . . . , Nb − 1}m

or: {
X = (Ti1 ◦ Ti2 ◦ . . . ◦ Tim) (PNb−1)
Y = (Ti1+1 ◦ Ti2 . . . ◦ Tim) (P0)

.

Definition 1.4. For any natural integer m, the N S
m consecutive vertices

of the graph ΓWm are, also, the vertices of Nm
b simple polygons Pm,j ,

0 ≤ j ≤ Nm
b − 1, withNb sides. For any integer j such that 0 ≤ j ≤ Nm

b − 1,
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one obtains each polygon by linking the point number j to the point num-
ber j + 1 if j = imod Nb, 0 ≤ i ≤ Nb − 2, and the point number j to the
point number j−Nb+1 if j = −1mod Nb. These polygons generate a Borel
set of R2.

Definition 1.5. Word, on the graph ΓW

Let m be a strictly positive integer. We will call number-letter any
integer Mi of {0, . . . , Nb − 1}, and word of length |M | = m, on the
graph ΓW , any set of number-letters of the form:

M = (M1, . . . ,Mm) .

We will write:

TM = TM1 ◦ . . . ◦ TMm .

Definition 1.6. Edge relation, on the graph ΓW

Given a natural integer m, two points X and Y of ΓWm will be called
adjacent if and only if X and Y are two consecutive vertices of ΓWm . We
will write:

X ∼
m
Y.

This edge relation ensures the existence of a word M = (M1, . . . ,Mm)
of length m, such that X and Y both belong to the iterate:

TM V0 = (TM1 ◦ . . . ◦ TMm) V0.

Given two points X and Y of the graph ΓW , we will say that X and Y
are adjacent if and only if there exists a natural integer m such that:

X ∼
m
Y.
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Proposition 1.7. Adresses, on the graph of the Weierstrass func-
tion

Given a strictly positive integer m, and a word M = (M1, . . . ,Mm) of
length m ∈ N?, on the graph ΓWm , for any integer j of {1, . . . , Nb − 2},
any X = TM (Pj) of Vm \V0, i.e. distinct from one of the Nb fixed point Pi,
0 ≤ i ≤ Nb − 1, has exactly two adjacent vertices, given by:

TM (Pj+1) and TM (Pj−1)

where:

TM = TM1 ◦ . . . ◦ TMm .

By convention, the adjacent vertices of TM (P0) are TM (P1) and TM (PNb−1),
those of TM (PNb−1), TM (PNb−2) and TM (P0) .

Notation

For any integer j belonging to {0, . . . , Nb − 1}, any natural integer m, and
any word M of length m, we set:

TM (Pj) = (x (TM (Pj)) , y (TM (Pj)))

TM (Pj+1) = (x (TM (Pj+1)) , y (TM (Pj+1)))

Lm = x (TM (Pj+1))− x (TM (Pj)) =
1

(Nb − 1)Nm
b

hj,m = y (TM (Pj+1))− y (TM (Pj)) .
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2. Main results

Theorem 2.1. An upper bound and a lower bound, for the box-
dimension of the graph ΓW

For any integer j belonging to {0, 1, . . . , Nb − 2}, each natural integer m,
and each word M of length m, let us consider the rectangle, whose sides are
parallel to the horizontal and vertical axes, of width:

Lm = x (TM (Pj+1))− x (TM (Pj)) =
1

(Nb − 1)Nm
b

and height |hj,m|, such that the points TM (Pj) and TM (Pj+1) are two ver-
tices of this rectangle.
Then:

i. When the integer Nb is odd:

L2−DW
m (Nb−1)2−DW

{
2

1− λ sin
(

π
Nb−1

)
min

0≤j≤Nb−1

∣∣∣sin(π (2 j+1)
Nb−1

)∣∣∣− 2π

Nb (Nb − 1)

1

λNb − 1

}
≤ |hj,m|

ii. When the integer Nb is even:

L
2−DW
m (Nb−1)2−DW max

{
2

1− λ
sin
(

π
Nb−1

)
min

0≤j≤Nb−1

∣∣∣sin(π (2 j+1)
Nb−1

)∣∣∣− 2π

Nb (Nb − 1)

1

λNb − 1
,

4

N2
b

1−N−2
b

N2
b − 1

}
≤|hj,m|

Also:

|hj,m| ≤ ηW L2−DW
m (Nb − 1)2−DW

where the real constant ηW is given by :

ηW = 2π2
{

(2Nb − 1)λ (N2
b − 1)

(Nb − 1)2 (1− λ) (λN2
b − 1)

+
2Nb

(λN2
b − 1) (λN3

b − 1)

}
.

Corollary 2.2. The box-dimension of the graph ΓW is exactly DW .

Proof. By definition of the box-counting dimension DW (we refer, for in-
stance, to [4]), the smallest number of squares, the side length of which is
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at most equal to Lm, that can cover the graph ΓW on [0, 1[, obeys, approx-
imately, a power law of the form:

cL−DW
m , c > 0.

Let us set:

C = max

{{
2

1−λ sin
(

π
Nb−1

)
min

0≤j≤Nb−1

∣∣∣sin(π (2 j+1)
Nb−1

)∣∣∣− 2π

Nb (Nb − 1)

1

λNb − 1

}
, 4
N2
b

1−N−2
b

N2
b
−1

, ηW

}
and consider the subdivision of the interval [0, 1[ into:

Nm =
1

Lm
= (Nb − 1)Nm

b

sub-intervals of length Lm. One has to determine a natural integer Ñm

such that the graph of ΓW on [0, 1[ can be covered by Nm × Ñm squares of
side Lm. By considering, the vertical amplitude of the graph, one gets:

Ñm =

⌊
C L2−DW

m

Lm

⌋
+ 1 i.e. Ñm =

⌊
C L1−DW

m

⌋
+ 1.

Thus:

Nm × Ñm =
Ñm

Lm
=

1

Lm

⌊
C L1−DW

m

⌋
+

1

Lm
.

The integer Nm × Ñm then obeys a power law of the form

Nm × Ñm ≈ cL−DW
m

where c denotes a strictly positive constant. �
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Proof of Theorem 2.1.

i. Preliminary computations.

For any pair of integers (im, j) of {0, . . . , Nb − 2}2:

Tim (Pj) =

(
xj + im
Nb

, λ yj + cos

(
2π

(
xj + im
Nb

)))
.

For any triple of integers (im, im−1, j) of {0, . . . , Nb − 2}3:

Tim−1 (Tim (Pj)) =

=

( xj+im
Nb

+ im−1

Nb
, λ2 yj + λ cos

(
2π

(
xj+im
Nb

))
+ cos

(
2π

(
xj+im
Nb

+im−1

Nb

)))

=

(
xj + im
N2
b

+
im−1

Nb
, λ2 yj + λ cos

(
2π

(
xj+im
Nb

))
+ cos

(
2π

(
xj+im

N2
b

+
im−1

Nb

)))
.

For any quadruple of integers (im, im−1, im−2, j) of {0, . . . , Nb − 2}4:

Tim−2

(
Tim−1 (Tim (Pj))

)
=

=

(
xj+im

N3
b

+
im−1

N2
b

+
im−2

Nb
,

λ3 yj+λ
2 cos

(
2π

(
xj+im
Nb

))
+λ cos

(
2π

(
xj+im

N2
b

+
im−1

Nb

))
+cos

(
2π

(
xj+im

N3
b

+
im−1

N2
b

+
im−2

Nb

)))
.

Given a strictly positive integer m, and two points X and Y of Vm such
that:

X ∼
m
Y

there exists a word M of length |M | = m, on the graph ΓW , and an integer j
of {0, . . . , Nb − 2}2, such that:

X = TM (Pj) , Y = TM (Pj+1) .

Let us write TM under the form:

TM = Tim ◦ Tim−1 ◦ . . . ◦ Ti1
where (i1, . . . , im) ∈ {0, . . . , Nb − 1}m.
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One has then:

x (TM (Pj)) =
xj
Nm
b

+
m∑
k=1

ik

Nk
b

, x (TM (Pj+1)) =
xj+1

Nm
b

+
m∑
k=1

ik

Nk
b

and:


y (TM (Pj)) = λm yj +

m∑
k=1

λm−k cos

(
2π

(
xj

Nk
b

+
k∑
`=0

im−`

Nk−`
b

))

y (TM (Pj+1)) = λm yj+1 +

m∑
k=1

λm−k cos

(
2π

(
xj+1

Nk
b

+

k∑
`=0

im−`

Nk−`
b

)) .

ii. Determination of a lower bound.

Let us note that:

hj,m − λm (yj+1 − yj) =

=

m∑
k=1

λm−k
{
cos

(
2π

(
xj+1

Nk
b

+

k∑
`=0

im−`

Nk−`
b

))
− cos

(
2π

(
xj

Nk
b

−
k∑
`=0

im−`

Nk−`
b

))}

= −2
m∑
k=1

λm−k sin
(
π
(
xj+1−xj
Nk
b

))
sin

(
2π

(
xj+1 + xj

2Nk
b

+

k∑
`=0

im−`

Nk−`
b

))
.

Taking into account:

λm (yj+1 − yj) =
λm

1− λ

(
cos
(

2π (j+1)
Nb−1

)
− cos

(
2π j
Nb−1

))
= −2 λm

1− λ sin
(

2π (j+1−j)
2 (Nb−1)

)
sin
(

2π (j+1+j)
2 (Nb−1)

)
= −2 λm

1− λ sin
(

π
Nb−1

)
sin
(
π (2 j+1)
Nb−1

)
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the triangular inequality leads then to:

|y (TM (Pj+1))− y (TM (Pj))| =

=

∣∣∣∣∣λm (yj+1 − yj)− 2

m∑
k=1

λm−k sin

(
π

Nk+1
b

(Nb−1)

)
sin

(
π (2 j+1)

Nk+1
b

(Nb−1)
+ 2π

k∑
`=0

im−`

Nk−`
b

)∣∣∣∣∣
≥

∣∣∣∣∣λm |(yj+1 − yj)| − 2

m∑
k=1

λm−k

∣∣∣∣∣sin
(

π

Nk+1
b

(Nb−1)

)
sin

(
π (2 j+1)

Nk+1
b

(Nb−1)
+ 2π

k∑
`=0

im−`

Nk−`
b

)∣∣∣∣∣
∣∣∣∣∣

= λm

∣∣∣∣∣ 2

1− λ sin
(

π
Nb−1

) ∣∣∣sin(π (2 j+1)
Nb−1

)∣∣∣
−2

m∑
k=1

λ−k sin

(
π

Nk+1
b

(Nb−1)

) ∣∣∣∣sin
(

π (2 j+1)

Nk+1
b

(Nb−1)
+ 2π

k∑
`=0

im−`

Nk−`
b

)∣∣∣∣
∣∣∣∣∣.

One also has:

2

m∑
k=1

λ−k sin

(
π

Nk+1
b

(Nb−1)

) ∣∣∣∣∣sin
(

π (2 j+1)

Nk+1
b

(Nb−1)
+ 2π

k∑
`=0

im−`

Nk−`
b

)∣∣∣∣∣ ≤
≤ 2

m∑
k=1

λ−k sin

(
π

Nk+1
b

(Nb−1)

)
≤ 2

m∑
k=1

λ−k
π

Nk+1
b (Nb − 1)

=
2π

Nb (Nb − 1)

m∑
k=1

1

λkNk
b

=
2π

Nb (Nb − 1)
λ−1N−1

b

1− λ−mN−mb
1− λ−1N−1

b

≤ 2π

Nb (Nb − 1)
λ−1N−1

b

1

1− λ−1N−1
b

=
2π

Nb (Nb − 1)

1

λNb − 1

which yields:

−2
m∑
k=1

λ−k sin

(
π

Nk+1
b

(Nb−1)

) ∣∣∣∣∣sin
(

π (2 j+1)

Nk+1
b

(Nb−1)
+ 2π

k∑
`=0

im−`

Nk−`
b

)∣∣∣∣∣ ≥ − 2π

Nb (Nb − 1)

1

λNb − 1
.
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Thus:

2

1− λ sin

(
π

Nb − 1

) ∣∣∣sin(π (2 j+1)
Nb−1

)∣∣∣
−2

m∑
k=1

λ−k sin

(
π

Nk+1
b

(Nb−1)

) ∣∣∣∣∣sin
(

π (2 j+1)

Nk+1
b

(Nb−1)
+ 2π

k∑
`=0

im−`

Nk−`
b

)∣∣∣∣∣ ≥
≥ 2

1− λ sin
(

π
Nb−1

) ∣∣∣sin(π (2 j+1)
Nb−1

)∣∣∣− 2π

Nb (Nb − 1)

1

λNb − 1
.

Lemma 2.3. The following results hold:

For 0 ≤ j ≤ Nb − 1:

sin

(
π (2 j + 1)

Nb − 1

)
= 0 if and only if Nb is even and j =

Nb

2
− 1.

Proof of Lemma 2.3.

Since 0 ≤ j ≤ Nb − 1, one has:

1 ≤ 2 j + 1 ≤ 2Nb − 1 and thus 0 <
2 j + 1

Nb − 1
≤ 2 +

1

Nb − 1
.

Then, sin
(
π (2 j+1)
Nb−1

)
= 0 if and only if:

2 j + 1

Nb − 1
= 1 or

2 j + 1

Nb − 1
= 2.

The second case has to be rejected, since it would lead to:

j = Nb −
3

2
/∈ N

The only possibility is thus when Nb is an even number:

j =
Nb

2
− 1.

The converse is obvious.

�
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First case: sin
(
π (2 j+1)
Nb−1

)
6= 0. One has then:

∣∣∣sin(π (2 j+1)
Nb−1

)∣∣∣ ≥ min
0≤j≤Nb−1

∣∣∣sin(π (2 j+1)
Nb−1

)∣∣∣ =
∣∣∣sin( π

Nb−1

)∣∣∣ ≥ 2

Nb − 1
.

This leads to:

2

1− λ sin
(

π
Nb−1

) ∣∣∣sin(π (2 j+1)
Nb−1

)∣∣∣
−2

m∑
k=1

λ−k sin

(
π

Nk+1
b

(Nb−1)

) ∣∣∣∣∣sin
(

π (2 j+1)

Nk+1
b

(Nb−1)
+ 2π

k∑
`=0

im−`

Nk−`
b

)∣∣∣∣∣ ≥
≥ 2

1− λ sin
(

π
Nb−1

)
sin
(

π
Nb−1

)
− 2π

Nb (Nb − 1)

1

λNb − 1

≥ 2

1− λ
4

(Nb − 1)2
− 2π

Nb (Nb − 1)

1

λNb − 1

=
2

Nb − 1

{
4

1− λ
1

Nb − 1
− π

Nb

1

λNb − 1

}

=
2

Nb (Nb − 1) (1− λ) (λNb − 1)
{4Nb (λNb − 1)− π (1− λ) (Nb − 1)} .

The function

λ 7→ 4Nb (λNb − 1)− π (1− λ) (Nb − 1)

is affine and strictly increasing in λ, and quadratic and strictly increasing
in Nb, for strictly positive values of Nb. This ensures the positivity of:

2

1− λ sin
(

π
Nb−1

) ∣∣∣sin(π (2 j+1)
Nb−1

)∣∣∣
−2

m∑
k=1

λ−k sin

(
π

Nk+1
b

(Nb−1)

) ∣∣∣∣∣sin
(

π (2 j+1)

Nk+1
b

(Nb−1)
+ 2π

k∑
`=0

im−`

Nk−`
b

)∣∣∣∣∣ .

Second case: sin
(
π (2 j+1)
Nb−1

)
= 0.

One has then:

|y (TM (Pj+1))− y (TM (Pj))| ≥ 2λm

∣∣∣∣∣
m∑
k=1

λ−k sin

(
π

Nk+1
b

) ∣∣∣∣∣sin
(

π

Nk+1
b

+ 2π

k∑
`=0

im−`

Nk−`
b

)∣∣∣∣∣
∣∣∣∣∣ .
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Thanks to the periodic properties of the sine function, one may only consider
the case when:

0 ≤ π

Nk+1
b

+ 2π

k∑
`=0

im−`

Nk−`
b

≤ π

2
.

Thus:

|y (TM (Pj+1))− y (TM (Pj))| ≥
m∑
k=1

λ−k
2

Nk+1
b

{
2

Nk+1
b

+ 2
k∑
`=0

im−`

Nk−`
b

}

≥
m∑
k=1

λ−k
2

Nk+1
b

{
2

Nk+1
b

}
=

4λ−1

N4
b

1− λ−mN−2mb

1− λ−1N−2b
=

4

N2
b (Nb − 1)2

1− λ−mN−mb
λNb − 1

=
4

N2
b

1−N−2b
N2
b − 1

.

General case: the above results enable us to obtain the predominant term
of the lower bound of |y (TM (Pj+1))− y (TM (Pj))|, which is thus:

λm = em (DW −2) lnNb = N
m (DW −2)
b = L2−DW

m (Nb − 1)2−DW .
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ii. Determination of an upper bound.

One has:

|hj,m| ≤ 2λm

1−λ
π2 (2 j+1)

(Nb−1)2
+ 2

m∑
k=1

λm−k π

{
2 j+1

(Nb−1)Nk
b

+ 2

k∑
`=0

im−`

Nk−`
b

}
π

(Nb−1)Nk
b

= 2λm

1−λ
π2 (2 j+1)

(Nb−1)2
+

2π2 λm

Nb − 1

m∑
k=1

{
(2 j+1)λ−k

(Nb−1)N2k
b

+ 2

k∑
`=0

im−` λ
−k

N2k−`
b

}

= 2λm

1−λ
π2 (2 j+1)

(Nb−1)2

+ 2π2 λm

Nb−1

{
λ−1 N−2

b
(2 j+1)

(Nb−1)

(1−λ−m N−2m
b

)

1−λ−1 N−2
b

+ 2

m∑
k=1

(Nb−1)λ−k

N2k
b

1−N−k−1
b

1−N−1
b

}

≤ 2λm

1−λ
π2 (2Nb−1)

(Nb−1)2
+ 2π2 λm

Nb−1
(2Nb−1)
(Nb−1)

(1−λ−m N−2m
b

)

λN2
b
−1

+ 2π2 λm

Nb−1
2
λ−1N−2

b (Nb − 1) (1− λ−mN−2m
b )

(1−N−1
b ) (1− λ−1N−2

b )

− 2π2 λm

Nb−1
2
λ−1 N−3

b
(Nb−1) (1−λ−m N−3m

b
)

(1−N−1
b

) (1−λ−1 N−3
b

)

≤ 2λm

1−λ
π2 (2Nb−1)

(Nb−1)2
+ 2π2 λm

Nb−1
(2Nb−1)
(Nb−1)

1
λN2

b
−1

+ 4π2 Nb λ
m

Nb−1

{
1

λN2
b
−1
− 1

λN3
b
−1

}
= 2π2 λm

{
(2Nb−1)λ (N2

b−1)

(Nb−1)2 (1−λ) (λN2
b
−1)

+ 2Nb
(λN2

b
−1) (λN3

b
−1)

}
.

Since:

x (TM (Pj+1))− x (TM (Pj)) =
1

(Nb − 1)Nm
b

and:

DW = 2 +
lnλ

lnNb
, λ = e(DW −2) lnNb = N

(DW −2)
b
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one has thus:

|hj,m| ≤ 2π2 L
2−DW
m (Nb − 1)2−DW

{
(2Nb−1)λ (N2

b−1)

(Nb−1)2 (1−λ) (λN2
b
−1)

+ 2Nb
(λN2

b
−1) (λN3

b
−1)

}
.

�

Remark 2.4. In [7], B. Hunt uses the fact that the Hausdorff dimension of a
fractal set F can be obtained by means of what is called the t-energy, t ∈ R,
of a Borel measure supported on F (one may refer to [4], for instance):

It(µ) =

∫∫
dµ(x) dµ(x′)

|x− x′|t

which enables one to obtain:

dim F = sup {t ∈ R, µ supported on F ; It(µ) < +∞}

A lower bound t0 of the Hausdorff dimension can thus be obtained by
building a measure µ supported on F such that:

It0(µ) < +∞.

B. Hunt proceeds as follows: he introduces the measure µW supported
on ΓW , induced by the Lebesgue measure µ on [0, 1]. Thus:

It (µW ) =

∫∫
dµW (x) dµW (x′)

{|x− x′|2 + |W (x)−W (x′)|2}
t
2

.

We could also have used a similar argument since, in our case:

|x− x′|2−DW . |W (x)−W (x′)| . |x− x′|2−DW .

Thanks

The author would like to thank the anonymous referee for his careful
reading, and his very pertinent suggestions and advices, which helped a lot
improving the original work.
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[1] K. Barańsky, B. Bárány, J. Romanowska. On the dimension of the graph of the
classical Weierstrass function. Advances in Math., 265:791–800, 2017.

[2] A. S. Besicovitch, H. D. Ursell. Sets of fractional dimensions. Notices of the AMS,
12(1):18–25, 1937.

[3] Claire David. Laplacian, on the graph of the Weierstrass function, arxiv:1703.03371,
2017.

[4] K. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1985.
[5] G. Hardy. Theorems connected with Maclaurin’s test for the convergence of series.

The Proceedings of the Royal Society of London, s2-9(1):126–144, 1911.
[6] T.-Y. Hu, K.-S. Lau. Fractal dimensions and singularities of the weierstrass type

functions. Transactions of the American Mathematical Society, 335(2):649–665,
1993.

[7] B. Hunt. The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer.
Math. Soc., 12(1):791–800, 1998.

[8] J. Kaplan, J. Mallet-Paret, J. Yorke. The Lyapunov dimension of a nowhere differ-
entiable attracting torus. Ergodic Theory Dynam. Systems, 4:261–281, 1984.

[9] G. Keller. A simpler proof for the dimension of the graph of the classical Weierstrass
function. Ann. Inst. Poincaré, 53(1):169–181, 2017.
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