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Summary

Comparing survival functions with the log-rank test in the presence of dependent
censoring can produce an invalid test result. We extend our previous work on the
estimation of the survival function using prognostic variables to adjust for dependent
censoring to the comparison of two survival distributions. In these estimators, the
weights of a censored individual is redistributed among either a subset of patients in
the risk set or all patients in the risk set but giving more weight to patients having
smallest distances from the censored subject. The distance is based on two risk scores
obtained from two working models, one for the failure time and one for the censoring
time. Based on the estimators, we suggest a weighted log-rank test to compare two
survival distributions. A simulation study compared performance of our method with
the analysis of the observed data without using auxiliary variables and with a recent
method based on multiple imputation (KMIBmethod). With appropriate parameters,
the weighted log-rank approach provides sizes of the test comparable to the nominal
value but higher powers than the two other methods. The method is illustrated with
data from a breast cancer study.
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1 INTRODUCTION

Most standard statistical methods for the analysis of right-censored survival data fail to be consistent unless the censoring is
independent of survival.1 However, it is likely that the censoring mechanism is not independent of survival in some applications
of survival analysis methods. Some mechanisms are very likely to yield dependent censoring, e.g., censoring due to subjects
selectively dropping out of the study. Dependent censoringwill lead to bias in survival estimate and then difficulties in performing
nonparametric comparisons between two groups.2,3 Then, log-rank test could be invalid. In this paper, we suggest a weighted log-
rank test in the presence of dependent censoring. Our approach is based on a previous work introducing weighted Kaplan-Meier
estimators for dependent censoring in the presence of continuous prognostic factors.4
In survival analysis, several approaches have been proposed to recover some of the loss of information due to censoring

using prognostic covariates. A few of these methods use information from the prognostic covariates directly without modelling
survival or censoring5,6,2 or use working models to summarize prognostic covariates2,3 to define homogeneous risk groups
to improve estimation of the marginal survival distribution. Another approach was to incorporate the probability of censoring
to improve the estimation of the marginal survival distribution.7,8 Recently, a proportional hazards model using copulas and
penalised likelihood has been introduced under dependent censoring.9 Malani suggests a modification of the redistribution to
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the right algorithm10 as a new approach to recover information for censored individuals, the weighted Kaplan-Meier (WKM)
approach.5 The modification generalizes the Kaplan-Meier method in the presence of auxiliary information available from a
disease marker. The method has been introduced when the disease marker is categorical. Recently, in the case of continuous
markers, WKM estimators have been also introduced based on a modification of the redistribution to the right algorithm.4 In
this approach, the weight of a censored individual is redistributed among either a subset of patients in the risk set or all patients
in the risk set but giving more weight to patients having smallest distances from the censored subject. The subset of patients
correspond to the q neighbours having the smallest distances from the censored subject. The distance is based on two risk scores
derived from two working proportional hazards (PH) models, one for the failure time and one for the censoring time.4
Hsu and colleagues introduced amultiple imputation procedure to impute event times for the censored observations, the KMIB

(Kaplan-Meier Imputation bootstrap) approach.2 They proposed using two risk scores, derived from two working proportional
hazards (PH) models as introduced above, to define a neighborhood to impute event times for each censored observation. They
showed that such a method can both reduce the bias due to dependent censoring and increase the efficiency compared with
standard estimates.2 They extended their work to propose a log-rank test from the multiple imputation method in the case of
the comparison of two survival distributions.11 Their work is described in details elsewhere2,11 and, to facilitate its use, an R
package, entitled InformativeCensoring, has been developed.
In the present study, based on our previous work4, we suggest a weighted log-rank tests to compare two survival functions.

This paper is organized as follows. In section 2, we briefly describe the WKM method and how to construct the weighted log-
rank statistic. In section 3, we investigate properties of our weighted log-rank approach, compared with the statistics based on
the KMIB procedure, in finite sample sizes though a simulation study. In section 4, we apply the methods to data from a breast
cancer study. Some elements for discussion are given in section 5.

2 METHODS

2.1 Notation
Let (Ti, �i, Xi,Zi), i = 1,… , N, denote an independent sample of right-censored survival data of two groups, where Ti is the
possibly right-censored event time, �i is the censoring indicator with �i = 0 if Ti is censored and �i = 1 if Ti corresponds to an
event; Xi is the group indicator for the two different groups (X = 0 and X = 1) and Zi is the covariate vector. We have two
treatment groups with n0 and n1 subjects in each group, withN = n0+n1. Let t(1), <… < t(p) denote the distinct ordered values
of Ti and �(i) the corresponding values of the �i’s. Also letwik(t) denote the weight associated with the ith individual in group k
after redistribution at time t andwik(t−) the weight associated with the ith individual in group k prior to redistribution at time t.

2.2 Weighted Kaplan-Meier for data with dependent censoring
The redistribution algorithm starts by assigning a weight of 1∕nk to all individuals in group k at time 0, i.e., wik(0) = 1∕nk for
all i in group k. Without any censoring the weight in each group remains unchanged until the end of the study and the survival
function in each group drops by 1∕nk at each failure time. In the case of censoring, this process is continued by moving through
the ordered failure times until the time of the first censored observation. At this time, in the case of independent censoring the
weight of the censored individual is re-allocated equally to all remaining individuals in the risk set belonging to the same group.
This is done as follows wik(t) = wik(t−) +

wik(t−)
nk(t)

, where nk(t) =
∑

i I(Ti > t)I(Xi = k). The weights are modified similarly
at each subsequent censoring10 and the KM estimator in group k is simply Ŝk(t) =

∑

i I(Ti > t)I(Xi = k)wik(t).
In the case of dependent censoring, a weighted Kaplan-Meier approach has been described which is briefly introduced here

for the two sample data.4 The new approach is based on the Malani estimator that has been introduced for a discrete disease
marker.5 Suppose that we have several continuous markers recorded at patient’s entry. First we have to reduce these markers
values into a single value. The procedure can be summarized into the following steps. Step 1: fit a working PH model to the
observed failure time and the observed censoring time (observed event times are treated as censored observations), respectively.
Step 2: compute the risk score for both working models (RSf for the failure model and RSc for the censoring model). Step 3:
perform principal component analysis (PCA) on the two standardized risk scores to generate two orthogonal components. Step
4: the first component (pca1) is used to calculate the neighbours closest to the component value of the censored individual. Step
5: perform the weighted Kaplan-Meier using the two approaches described below.
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(i) redistributing the weight among the q neighbours closest to the censored individual, or

(ii) redistributing the weight among all the individuals but according to a function giving more weight to individuals close to
the censored individual.

For the individual censored at time t(l), the first step consists of determining the genuine number of neighbours available. This
number is equal to q(l)k = min(q, nk(t(l))), where q is the desired number of neighbours. The criterion to select the q(l) neighbours
of the individual censored at time t(l) can be summarized by d(l)i = |

|

|

pca1ik − pca1(l)k
|

|

|

, i ∈ k(t(l)) where pca1(l)k denotes the
pca1 value of the censored individual at time t(l) in group k, and k(t(l)) denotes the set of the individuals at risk at time t(l) in
group k.
Defining (l)

k ⊂ k(t(l)) the set of the q
(l)
k individuals in group k with a minimum criterion d(l), the weight w(l)k(t(l)) of the

lth censored individual in group k is redistributed according to

∀i ∈ (l)
k , wik(t(l)) = wik(t−(l)) +w(l)k(t−(l)) ⋅ f (pca1ik, pca1(l)k)

∀i ∉ (l)
k , wik(t(l)) = wik(t−(l)) (2.1)

where f (pca1ik, pca1(l)k) is a weighted function. A previous work has shown that f (pca1ik, pca1(l)k) = 1∕q(l)k , ∀i ∈ (l)
k which

means that the weight is equally distributed among these q(l)k neighbours, provides reasonable estimates of the survival function.4
For example, suppose we have a sample size of 100 in group k thenwik(0)=1/100=0.01 for all i in group k. Suppose the desired
number of neighbours is 4.The weight of the first individual censored is still 0.01 and the four observations having the closest
pca1 value to the pca1 value of that censored individual will receive an additional weight of 0.0025 (0.01/4). Then the weight
for this 4 observations is now 0.0125.
The second suggestion was to consider that the weight of a censored individual be redistributed among all individuals at risk

but not equally, individuals having a pca1 value close to the value of the censored individual receiving more weight than the
others. We explored two procedures for that redistribution, one based on the normal distribution the other one on the inverse of
the distance d(l)i .
In the first procedure, the weight is then redistributed according to

∀i ∈ k(t(l)), wik(t(l)) = wik(t−(l)) +w(l)k(t−(l)) ⋅ f (pca1ik, pca1(l)k, �) (2.2)

where f (pca1ik, pca1(l)k, �) is based on a normal distribution centered on pca1ik

f (pca1ik, pca1(l)k, �) =
exp

{

− (pca1ik−pca1(l)k)2

2�2
}

∑

i∈k(t(l))
exp

{

− (pca1i′k−pca1(l)k)2

2�2
}

(2.3)

for the weight redistribution.
In the second procedure, the weight is then redistributed as above but with

f (pca1ik, pca1(l)k, p) =

[

1∕d(l)i )
]p

∑

i∈k(t(l))
[

1∕d(l)i )
]p (2.4)

where higher values of p redistribute more weights on observations having smaller distances.
All these estimators can be considered as weighted Kaplan-Meier estimates and estimating the survival function in group k

at time t is still done by summing the corresponding weights of the individuals still at risk in group k at time t. Redistribution
of the weights among the q neighbours, using a uniform distribution will be noted WKMU,x% with x = q∕N where q is the
desired number of neighbours. The estimator based on the redistribution using a normal distribution is noted WKM (�) and the
last estimator is noted WKM(1∕d)P .

2.3 Log-rank test for data with dependent censoring
2.3.1 Weighted log-rank test
The statistic of the test is derived in the similar way to the one proposed by Xie and Liu (2005).12 As we have seen above, the
weight of a censored individual is only redistributed among individuals at risk in the same group that the censored individual.
At time tj there are djk events out of Yjk individuals at risk in group k. Then we can write djk =

∑

i∶Ti=tj
�iI(Xi = k) and

Yjk =
∑

i∶Ti≥tj
I(Xi = k). Denote w̄k(tj) the mean of weights among individuals still at risk at time tj in group k. Then,
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w̄k(tj) =
(

1∕Yjk
)
∑

i∶Ti≥tj
wik(tj). Denote wr

ik(tj) the ratio between the individual weight and the mean weight for individuals
in group k with wr

ik(tj) = wik(tj)∕w̄k(tj). Then an individual receiving weights from previous censored observations will have
wr
ik(.) > 1 whereas an individual who did not received weights will have wr

ik(.) < 1. As in Xie and Liu (2005), the weighted
number of events is

dwjk =
∑

i∶Ti=tj

wr
ik(tj)�iI(Xi = k)

But in contrast to Xie and Liu (2005), in our statistic the weighted number at risk in group k is equal to the number at risk in
group k

Y wjk =
∑

i∶Ti≥tj

wr
ik(tj)I(Xi = k) =

∑

i∶Ti≥tj

wi0(tj)
(

1∕Yjk
)
∑

u∶Tu≥tj
wu0(tj)

I(Xi = k) = Yjk

Let dj = dj0 + dj1, dwj = dwj0 + d
w
j1, and Yj = Yj0 + Yj1 denote the number of events, the weighted number of events and the

number at risk in the combined sample at time tj . The test ofH0 is based on the statistic

Gw =
p
∑

j=1

(

dwj1 − Yj1

(dwj
Yj

)

)

which is a weighted form of the standard log-rank test statistic. The variance of Gw based on similar arguments in Xie and Liu
(2005)12 is given by

Var(Gw) =
p
∑

j=1

{

dj(Yj − dj)
Yj(Yj − 1)

Yj
∑

i=1

[(Yj0
Yj

)2

(wr
i )
2Xi +

(Yj1
Yj

)2

(wr
i )
2(1 −Xi)

]

}

The weighted log-rank test statistic is proposed as Z = Gw∕
√

Var(Gw). The test statistic has a standard normal distribution for
large samples under the null hypothesisH0.

2.3.2 Tests based on the Kaplan-Meier Imputation Bootstrap approach
The KMIB approach is based on M imputed data sets and also on two working PH models, one model for the event times and
one for the censoring times. The two scale-free risk scores are used to select an imputing risk set for each censored observation
by defining the distance between subjects. The distance, based on the original data, between subject j and k is defined as

d(j, k) =
√

wf [ ̂RSf (j) − ̂RSf (k)]2 +wc[ ̂RSc(j) − ̂RSc(k)]2

where wf and wc are nonnegative weights that sum to 1. The imputing risk set, R(j+,NN), for the censored subject j consists
of NN subjects who have longer survival time than the censoring time of subject j and the NN smallest distances from the
censored subject j . Given M imputed data sets, we can perform time to event statistical analyses on each data set. The results
can be combined to give a single p-value estimate in two distinct ways:

• meth1: Each data set produces a single point estimate for the null hypothesis (� = �0) and these can be combined to obtain
a single point estimate �̂ with associated variance V1 = U1 + (1 +M−1)B1 where B1 is the sample variance of the M
point estimates and U1 is the average of theM variance estimates. The test statistic D = (�̂ − �0)′V −1

1 (�̂ − �0) has a F1,v1
distribution with v1 degrees of freedom.

• meth2: Each data set produces a (normal) test statistic Z1, Z2,… , Zm and these can be averaged to give an overall test
statistic Z̄ with variance V2 = 1 + (1 +M−1)B2 where B2 is the sample variance of Zi. A t-test statistic with v2 degrees
of freedom can be used with the statistic s = Z̄∕

√

V2.

We refer the reader to2,11 for further details. As recommended by the authors we used NN=5, M=10, wf = 0.8 and wc = 0.2.

3 SIMULATION STUDY

3.1 Methods
We perform a simulation study to investigate the properties of our weighted log-rank test approach. We consider a situation
with multiple prognostic variables, binary and continuous. For each independent simulated data sets, five hypothetical auxiliary
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TABLE 1 Monte Carlo results: size (per cent) of log-rank tests with dependent censoring. Misspecification implies using Z1,
Z2 and Z3 instead of Z1, Z2, Z3, Z4 and Z5 in one of the working model. Results are based on 10,000 replications

N=200 N=400 N=800 N=1600
�0

Method -0.2 0.4 -0.2 0.4 -0.2 0.4 -0.2 0.4
FO 4.8 5.4 5.2 5.3 4.9 5.1 5.3 5.0
PO 4.8 5.1 5.0 5.2 4.8 5.1 5.2 5.1
Both working PH models correctly specified
KMIB meth1 4.6 4.8 4.6 4.4 4.3 4.7 4.8 4.3
KMIB meth2 4.6 4.9 4.7 4.5 4.4 4.9 4.9 4.5
WKMU,2% 5.3 5.5 5.6 5.6 5.7 5.8 5.7 5.7
WKMU,80% 5.2 5.6 5.4 5.6 5.3 5.4 5.4 5.4
KM (0.05) 5.1 5.6 5.2 5.0 5.4 5.2 5.6 4.8
KM (8) 4.9 5.3 5.1 5.4 5.0 5.2 5.3 5.1
WKM(1∕d)5 5.3 5.5 5.0 5.1 5.1 5.2 5.4 5.0
WKM(1∕d)7 5.1 5.3 4.8 4.9 5.0 4.9 5.4 4.7
Only working failure PH model misspecified
KMIB meth1 4.5 5.1 4.6 4.8 4.4 4.8 4.8 4.3
KMIB meth2 4.6 5.2 4.7 5.0 4.5 5.1 4.8 4.6
WKMU,2% 5.1 5.9 5.8 5.7 5.7 6.2 6.2 6.2
WKMU,80% 5.0 5.5 5.3 5.5 5.2 5.4 5.3 5.4
KM (0.05) 5.1 5.7 5.4 5.1 5.2 5.0 5.9 4.7
KM (8) 4.9 5.3 5.1 5.3 4.9 5.2 5.3 5.1
WKM(1∕d)5 5.1 5.5 5.2 5.1 5.0 5.5 5.4 4.9
WKM(1∕d)7 4.9 5.6 5.1 4.9 5.0 5.1 5.2 4.6
Only working censoring PH model misspecified
KMIB meth1 4.6 5.3 4.6 4.5 4.4 4.7 4.7 4.5
KMIB meth2 4.7 5.5 4.7 4.6 4.5 5.0 4.8 4.7
WKMU,2% 5.0 5.5 5.5 5.5 5.7 6.0 5.9 5.7
WKMU,80% 5.1 5.5 5.3 5.6 5.2 5.4 5.3 5.4
KM (0.05) 5.0 5.5 5.5 5.5 5.7 6.0 5.9 5.7
KM (8) 5.1 5.5 5.3 5.6 5.2 5.4 5.3 5.4
WKM(1∕d)5 5.1 5.6 5.1 5.3 4.8 5.1 5.1 4.3
WKM(1∕d)7 4.9 5.4 5.0 5.0 4.7 4.8 5.0 4.0
Censoring rate 32% 45% 32% 45% 32% 45% 32% 45%

variables are generated, three (Z1, Z3, Z5) from a Bernoulli(0.5) distribution and two (Z2, Z4) from a Uniform(0,1) distribution.
The event time is generated from the PH model �f (t) = t4 exp( Trt − 2.0Z1 + 0.5Z2 − 2.0Z3 + 2.0Z4 + 2.0Z5), where  
is set equal to 0 for the study of size and -0.75 and 0.75 for the study of power and Trt is the treatment indicator generated
from a Bernoulli(0.5) distribution. To induce dependent censoring, the censoring time is generated from the PH model �c(t) =
t3 exp(�0+�1 Trt+ Trt−3.0Z1+0.5Z2−2.0Z3+1.5Z4+2.0Z5). The censoring model leads to several levels of censoring
between groups 0 (Trt=0) and 1 (Trt=1). For example with �0 = 0.4 and �1 = 0.15, the censoring rate is 45% in group 0 and
39%, 45% and 52% in group 1 when  = −0.75, 0 and 0.75, respectively.
We also focus on model misspecification. As in Hsu and Taylor11, we consider situations where either both of the two working

PH models are correctly specified or one of them is misspecified. Specifically, for each treatment group the working failure time
model is either correctly specified or misspecified as �wf (t) = �0f (t) exp(�1Z1 + �2Z2 + �3Z3), and the censoring time model
is either correctly specified or misspecified as �wc(t) = �0c(t) exp(1Z1+ 2Z2+ 3Z3). For investigation of the size, the sample
sizes are 200/400/800/1600 subjects, with half of patients in each group (nk = 100, 200, 400 or 800) and 10,000 replications. To
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TABLE 2 Monte Carlo results: power (per cent) analysis with dependent censoring. Misspecification implies usingZ1,Z2 and
Z3 instead of Z1, Z2, Z3, Z4 and Z5 in one of the working model (N=200). Results are based on 1,000 replications

�1 = 0.15 �1 = 0.75
�0 = −0.2 �0 = 0.4 �0 = −0.2 �0 = 0.4

Treatment effect ( )
Method -0.75 0.75 -0.75 0.75 -0.75 0.75 -0.75 0.75
FO 63.5 61.5 59.8 59.7 62.6 64.3 63.6 60.4
PO 42.1 36.4 32.1 29.7 28.4 16.4 17.7 10.2
Both working PH models correctly specified
KMIB meth1 53.9 46.2 38.7 33.0 47.8 28.2 32.0 15.4
KMIB meth2 54.3 47.1 39.3 33.8 48.3 29.6 32.4 15.6
WKMU,2% 60.5 56.0 52.0 48.2 59.6 52.8 53.0 38.1
WKM (0.05) 59.9 55.7 49.4 46.6 59.8 51.4 51.4 36.9
WKM(1∕d)5 59.6 55.0 51.0 47.9 59.0 50.7 51.8 37.5
WKM(1∕d)7 59.5 54.4 50.7 47.2 58.7 51.0 51.6 37.2
Only working failure PH model misspecified
KMIB meth1 51.0 43.1 35.6 31.9 44.3 24.2 27.7 12.3
KMIB meth2 51.2 43.3 36.6 32.9 44.6 24.8 28.6 13.0
WKMU,2% 58.2 54.3 48.1 43.1 56.4 41.4 45.6 26.9
WKM (0.05) 56.4 53.9 47.4 42.4 55.8 40.8 45.1 26.7
WKM(1∕d)5 56.4 52.4 46.8 42.5 55.8 39.2 42.9 26.5
WKM(1∕d)7 56.2 52.1 46.1 42.5 55.9 39.4 42.8 26.7
Only working censoring PH model misspecified
KMIB meth1 54.0 45.4 37.8 35.4 47.9 28.2 30.5 14.1
KMIB meth2 54.4 45.8 38.4 36.3 48.2 29.1 31.1 15.5
WKMU,2% 58.2 52.8 46.9 42.3 56.0 42.6 45.2 27.3
WKM (0.05) 58.2 52.8 46.9 42.3 56.0 42.6 45.2 27.3
WKM(1∕d)5 57.7 52.0 45.7 41.8 53.6 41.4 43.0 26.3
WKM(1∕d)7 57.2 51.6 44.8 40.7 53.4 41.3 42.7 26.2
Censoring rate
Overall 29% 35% 42% 49% 26% 41% 37% 54%
group 0 32% 32% 45% 45% 32% 32% 45% 45%
group 1 26% 39% 39% 52% 19% 49% 29% 63%
case 1 2 3 4 5 6 7 8

investigate the power of the tests the sample size N = 1600 was not used and results are based on 1,000 replications. For each
of the independent data sets, we compute the log-rank tests for the ’Fully Observed’ (FO) analysis, treated as the gold standard,
(KM estimates are derived for each simulated data set before any censoring is applied), for the partially observed (PO) analysis
(with censoring), for the two approaches based on the KMIB method11 and for the weighted log-rank test approach. The R code
for the simulation study available upon request.

3.2 Results
Table 1 provides the sizes of the log-rank test in a situation with dependent censoring for few parameters of the WKM approach
(complete results are given in Table S1 supplemental material). The results indicate that for the PO analysis the sizes are com-
parable to the nominal level (5 per cent). The KMIB method, in a situation with both of the working models correctly specified,
produces also sizes comparable to the 5 per cent level. For the results of the WKM approach displayed in Table 1, sizes are
also comparable to the nominal level. However, globally sizes are slightly higher for WKMU,2%, WKMU,80%, WKM (0.05) and
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1 2 3 4 5 6 7 8

KMIB Meth1
KMIB Meth2
WKM 2%
WKM N(0.05)
WKM (1/d)^5
WKM (1/d)^7
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FIGURE 1 From Table 2 (N=200), gain in power when both working PH models are correctly specified for both KMIB and
WKM methods compared with the PO analysis. The cases 1-8 correspond to the cases introduced in bottom of Table 2.

WKM (8) than that for WKM(1∕d)5 and WKM(1∕d)7 . In a situation with only the working failure time model misspecified, the
sizes of the KMIB method in general are slightly greater than when both models are correctly specified. The sizes for our WKM
approach in general are almost similar than when both models are correctly specified with no clear trend. In a situation with
only the working censoring time model misspecified, as previously the sizes of the KMIB method in general are greater than
when both models are correctly specified. For WKM (�), in general the sizes are greater than when both models are correctly
specified and for WKMU,x% sizes are mostly similar. For WKM(1∕d)p the sizes are slightly either lower or greater than the sizes
when both models are correctly specified with no clear trend.
As expected, similar sizes to the conventional log rank test were found when x = 100% and � = 200 (Table S1). For

WKMU,x%, the sizes increase slightly from x=2 to 20% and then decrease from 20 to 100%, especially when the percent of
censoring is 45% (Figure S1 supplemental material). Similar findings were found for WKM (�) with increasing sizes from
� = 0.05 to 0.5 and then decreasing sizes from � = 0.5 to 200 (Figure S1). The sizes for WKM(1∕d)p with p=1 and 3 are higher
than for the FO analysis especially for p=1 with few values larger than 7% (Table S1).
Table 2 provides the powers of the log-rank tests in a situation with dependent censoring when N=200 (complete results

in Table S2 supplemental material). The results indicate clearly that the power based on the PO analysis is much lower than
that of the FO analysis. The loss in power is dependent of both the global rate of censoring and the difference in rates of
censoring between the two groups. For example, with a difference in rates of censoring around 6 per cent between the two
groups (�1 = 0.15), on the average the PO analysis provides a power about 26 per cent lower than the FO analysis (from 21%
for an overall censoring rate of 29% to 30% for an overall censoring rate of 49%). With a higher difference in rates of censoring
between the two groups, a difference of 16 per cent (�1=0.75), on the average the loss in power is 45 per cent (from 34 per cent
for an overall censoring rate of 26% to 50 per cent for an overall censoring rate of 54%).
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TABLE 3 Monte Carlo results: power (per cent) analysis with dependent censoring. Misspecification implies usingZ1,Z2 and
Z3 instead of Z1, Z2, Z3, Z4 and Z5 in one of the working model (N=400). Results are based on 1,000 replications

�1 = 0.15 �1 = 0.75
�0 = −0.2 �0 = 0.4 �0 = −0.2 �0 = 0.4

Treatment effect ( )
Method -0.75 0.75 -0.75 0.75 -0.75 0.75 -0.75 0.75
FO 90.9 91.5 90.9 90.3 91.5 89.3 89.8 89.5
PO 68.2 62.0 60.1 50.6 50.9 27.4 31.4 15.7
Both working PH models correctly specified
KMIB meth1 79.3 76.5 70.1 56.6 77.9 47.2 57.2 26.0
KMIB meth2 79.6 77.1 70.8 58.1 78.3 47.7 58.2 27.1
WKMU,2% 89.3 88.8 87.8 81.9 91.1 81.4 83.3 69.1
WKM (0.05) 88.6 86.8 86.2 78.4 90.5 78.1 80.6 65.3
WKM(1∕d)5 87.9 86.8 85.3 78.2 89.7 78.8 80.3 66.3
WKM(1∕d)7 87.7 86.4 84.9 77.7 89.8 77.9 79.6 65.2
Only working failure PH model misspecified
KMIB meth1 78.3 73.5 68.0 54.5 74.4 42.6 52.6 22.5
KMIB meth2 78.3 74.3 68.9 55.9 74.6 43.4 53.7 23.9
WKMU,2% 87.7 85.9 84.1 75.8 88.9 73.3 77.1 54.4
WKM (0.05) 86.7 85.1 80.6 71.3 88.3 68.4 76.1 49.5
WKM(1∕d)5 86.3 83.6 81.1 72.0 87.2 67.8 74.2 50.9
WKM(1∕d)7 85.9 83.1 80.8 71.4 87.2 67.2 74.1 50.8
Only working censoring PH model misspecified
KMIB meth1 80.3 75.8 71.4 57.3 78.2 47.0 57.1 26.3
KMIB meth2 80.7 76.1 71.9 58.0 78.6 48.0 57.7 27.4
WKMU,2% 87.1 86.1 83.9 75.1 87.5 71.8 77.0 55.3
WKM (0.05) 87.1 86.1 83.9 75.1 87.5 71.8 77.0 55.3
WKM(1∕d)5 85.2 82.5 80.2 71.4 85.9 67.7 73.4 50.1
WKM(1∕d)7 84.9 81.8 79.4 69.7 86.1 67.4 73.0 49.0
Censoring rate
Overall 29% 35% 42% 49% 26% 41% 37% 54%
group 0 32% 32% 45% 45% 32% 32% 45% 45%
group 1 26% 39% 39% 52% 19% 49% 29% 63%
case 1 2 3 4 5 6 7 8

When both working PHmodels are correctly specified, Figure 1 displays the gain in power for both KMIB andWKMmethods
compared with the PO analysis. The KMIB method produces powers between 4 and 20 per cent higher than the PO analysis.
In all situations the WKM method outperforms the KMIB approach. In particular, on the average WKM(1∕d)p , with p=5 and
7, produces a power about 18 per cent higher than the PO analysis with a 6 per cent difference in censoring rates between
the two groups (�1 = 0.15) and about 32 per cent with a 16 per cent difference rates (�1 = 0.75). On the average WKMU,2%
and WKM (0.05) produces a power at least 18 per cent higher than the PO analysis. For both the KMIB and WKM methods,
the gain in power is lower when one of the working PH model is misspecified (Table S2 and Figures S3-S4). Both methods,
however, outperform the PO analysis and the WKM approach still outperforms the KMIB approach. As previously, the power
for x = 100% and � = 200 is similar to the power of the conventional log rank test (Table S2). As expected, the gain in power
for WKMU,80% and WKM (8) compared with the PO analysis is close to zero. Overall, the power decreases markedly from 20
to 100% and from � = 0.5 to 200 (figures S2-S10).
Table 3 provides results when N=400 (complete results in Table S3 supplemental material). On the average the PO analysis

produces powers about 31 and 59 per cent lower than the FO analysis when the difference in rates of censoring between the
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FIGURE 2 From Table 3 (N=400), gain in power when both working PH models are correctly specified for both KMIB and
WKM methods compared with the PO analysis. The cases 1-8 correspond to the cases introduced in bottom of Table 3.

two groups is about 6 (�1=0.15) and 16 (�1=0.75) per cent, respectively. When both models are correctly specified, the gain
in power for both KMIB and WKM methods compared with the PO analysis is greater than with N=200 (Figure 2). With a
difference in rates of censoring between the two groups around 16 per cent, on the average the gain in power of the WKM
approach is 47 per cent. Again, in all situations the WKMmethod outperforms the KMIB approach. For both KMIB and WKM
methods, as previously, the gain in power is lower when one of the working PH model is misspecified (Table S3). Similar trends
are observed for N=800 (Table S4) though gain in power are greatly reduced when the difference in rates of censoring between
the two groups is about 6 per cent. Of note, in many situations the WKM method provides a power similar to the FO analysis
In summary, the PO analysis and the KMIB method produce sizes comparable to the nominal level even, for the KMIB

approach, when one of the working PH model is misspecified. For the WKM approach, WKM(1∕d)p with p = 5 and 7 produces
sizes comparable to the nominal level in all sampe sizes investigated providing, for our method, the best finite sample property.
The WKM method provides acceptable sizes for WKMU,2% and � = 0.05 and 0.15 for WKM (�) whereas slightly higher than
with WKM(1∕d)p , p = 5 and 7. As expected, the PO analysis provides a much lower power than the FO analysis. The KMIB
procedure consistently produces a power higher than the PO analysis but smaller than the FO analysis. WKM(1∕d)p with p = 5
and 7, provides a power much higher than the PO analysis and higher than the KMIBmethod. With a large sample size (N=800),
our method provides a power almost similar to that of the FO analysis. When one of the working PH model is misspecified, the
WKM method still outperforms both the PO analysis and KMIB approach.
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TABLE 4 . Data analysis of the GBSG data set (N=686) using grade (tumor grade) nodes (number of positive lymph nodes)
and pgr (progesterone receptors (fmol/l)) as covariates in both failure and censoring models

Failure time model Censoring time model

Covariates Estimate SE p-value Estimate SE p-value

grade 0.387 0.182 0.03 0.273 0.172 0.09
nodes 0.032 0.012 0.01 0.037 0.016 0.02
pgr -0.002 0.001 0.02 0.001 3.10−4 0.07

TABLE 5 Data analysis of the GBSG data set (N=686) using grade (tumor grade) nodes (number of positive lymph nodes) and
pgr (progesterone receptors (fmol/l)) as covariates in both working PH models for both KMIB and WKM methods.

Method p-value Method p-value Method p-value
PO analysis 0.091 KMIB meth1 0.104 WKM (0.05) 0.139

KMIB meth2 0.102 WKM (0.10) 0.026
WKMU,2% 0.040 WKM(1∕d)5 0.041
WKMU,5% 0.042 WKM(1∕d)7 0.040

4 ILLUSTRATION OF THE METHODS ON BREAST CANCER PATIENTS

Our illustrative example is based on German Breast Study Group (GBSG) data set. The GBSG data set contains patient records
from a 1984-1989 trial conducted by the German Breast Cancer Study Group (GBSG) of 720 patients with node positive
breast cancer; it retains the 686 patients with complete data for the prognostic variables. The study has previously been used in
methodological investigation13,14 and can be found in R survival package (data(gbsg, package="survival")). Overall, 246 (36%)
patients had received hormonal therapy. The outcome of interest is recurrence or death and was observed in 299 (44%) patients;
94 in the hormonal therapy group and 205 in the no treatment group. Considering the 686 patients, patients in the hormonal
therapy group shows a lower risk of recurrence or death (Hazard Ratio = 0.695; 95%CI 0.54 to 0.89) with a p-value for the
log-rank test of 0.0036.
We randomly select 191 patients from the GBSG data set. In this sample of 191 patients, the hazard ratio is similar than

previously but the log-rank test is not statistically significant (p=0.093). We then analyze this sample with the statistical methods
described in this work. Among the 7 potential prognostic factors we used the variables grade (tumor grade) nodes (number of
positive lymph nodes) and pgr (progesterone receptors (fmol/l)) as covariates in the two working PH models. It is well known
that the independence assumption between censoring and survival cannot be tested with right-censored data unless additional
data are collected or assumptions are made about an underlying statistical model.15 However, Hsu and Taylor suggest that the
presence of the same significant variables in two working models, one for the failure time and one for the censoring time, does
indicate the potential for dependent censoring.3 The results for estimation of those two working models are provided in Table
4. For both models the three variables are either significant or close to significance.
Table 5 displays the p-values of the different statistics of the methods used in this work. TheWKM approach provided smaller

p-values than the classical log-rang test based on the PO analysis except for WKM (0.05). The difference in the p-values between
� = 0.05 and � = 0.10 illustrates the large variability we have observed in few examples of using WKM (�) with � < 0.10.
For this reason, we recommend using WKM(1∕d)p with p=5 or 7. The KMIB approach provided slightly higher p-values then
the conventional log-rank test. Of note, the KMIB method uses a random number generator to impute data sets and then slightly
different p-values may be found. Survival estimates for the methods are given in Figure 3.
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FIGURE 3 Survival estimates of two hormonal therapy groups in GBSG data set, WKM corresponds to WKM(1∕d)5 .

5 DISCUSSION

This work introduces a weighted log-rank statistic to test for the difference between two survival curves in the presence of depen-
dent censoring. The non-parametric test is based on WKM estimators that have been recently proposed.4 The WKM approach
used information from prognostic variables via two working PH models. These models are used to identify a neighborhood of
similar observations that would received weights of censored individuals. The simulation study shows that, with appropriate
parameters, our approach leads to a valid log-rank test. In particular, WKM(1∕d)p with p = 5 and 7 provides sizes comparable to
the nominal value even if one of the working model is misspecified. In addition, it produces a power much higher than the power
produced by analyzing the observed data without using the auxiliary variables (PO analysis) and also higher than the KMIB
approach. We then recommend to use WKM(1∕d)p with p = 5 and 7 though WKMU,% WKM (�) with appropriate value of x
and � may produced promising results as well. As expected, our numerical results show that WKMU,100% provides similar sizes
and powers than the conventional log rank test (similar findings are found with � = 200 for WKM (�)). Our simulation results
show that the weight of censored observations should be redistributed among ’similar’ individuals as measured by the distance
defined in our approach. Increasing the number of neighbours, as well as increasing � or decreasing p, markedly decrease the
power the WKM test in redistributing the weight among observations having larger distances than censored observations.
In our previous work, we have shown that to estimate the survival function, the KMIB method outperformed both the PO

analysis and the Inverse of Probability Censoring Weighted (IPCW) method.4 In particular the IPCWmethod performed poorly
in terms of relative bias and coverage probability. In addition, Hsu and Taylor showed that the size of the log-rank test based on
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the IPCW method is well above the nominal level.11 For these reasons we did not include the IPCW method in our simulation
study.
In the simulation study we considered a situation with time-independent variables, which were known at baseline and are

directly incorporated into theworking failure PHmodel. As for the KMIB procedure, time-dependent variables can be considered
for both working PH models.11 Then the two working models needs to be fitted at every censored observation to the data of
those at risk at the censoring time using the currently available auxiliary variables as fixed covariates. An attractive feature of
our method is that the reliance on some specific parametric models is weak because the working failure PHmodel is only used to
identify the neighborhood of similar observations at the time of censored observations. Then, the performance of our approach
is not highly dependent on the assumptions of both working models. Such an attractive aspect is also share by the KMIB method
where the neighborhood is used to develop an imputation method.11
For both KMIB and WKM methods, other misspecification could be investigated. In particular misspecification of the link

function could be studied via a simulation study. Such a misspecification implies to modify the InformativeCensoring package
as no option allowed to modify the link function. It is difficult to provide empirical result of such misspecification but we suspect
that bothmethods would be disturbed in the samemagnitude. This point, however, needs further study. For bothmethods, one has
to choose the variables included in models used to derive the estimators. Both methods, however, have shown good performance
even when one working model is misspecified. In addition, for the KMIB method we have to choose weights for failure and
censoring risks as well as the number of imputed datasets and the size of the imputing risk set. Here we used the parameters
recommended by their authors, NN=5, M=10, wf = 0.8, and wc = 0.2.3,11 The choice of the number of neighbours, the value
of � and the value of p is a limitation of our method. Simulation results of our previous work show that this choice is important
to provide reasonable estimates of S(t) in the presence of dependent censoring.4 In this work, we propose a new procedure for
the redistribution of the weights WKM(1∕d)p given more weights on observations having smaller distances with larger value of
p. Our simulation study and the example show that the log-rank test based on WKM(1∕d)p with p = 5 and 7 provide the most
promising results and should be used in the situation of dependent censoring.
In our previous work, we have shown that using the distance based on the risk score for the failure time model provides, in

general, similar results than using a PCA step.4 Using the distance d(j, k) defined in section 2.3.2 provides similar results of
size and power than using a PCA step in the WKM approach (data not shown). Then the difference of power between the KMIB
and WKM approaches did not resulted from the addition of a PCA step in our method. In the KMIB approach, imputation of
the jtℎ censored observation is done in computing the KM estimator for the risk set R(j+, NN) as described in section 2.3.2
(see2 and11 for more details). They then sample U ∼ [0, 1] and take the time at which the KM estimator equals u as the imputed
event time. Thus, the procedure imputes observed failure times unless the longest time in the imputing risk set is censored, in
which case some imputed times may include this censored time. With NN=5 and a large rate of censoring, we suspect that many
imputed times will be censored times. In theWKM approach, the weight of a censored observation at time t is likely redistributed
among censored and uncensored observations at risk at t. But the weights of these censored observations receiving an extra
weight is redistributed beyond time t among again censored and uncensored observations and so on. We suspect that the reason
why the WKM approach outperforms the KMIB approach in term of power. Of note, a risk set imputation (RSI) procedure was
introduced that will frequently impute censored time but was not investigated further to compare two survival functions.2 11
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7 DATA AVAILABILITY STATEMENT

The data used in the illustration can be uploaded in R survival package (data(gbsg, package="survival")). We used a sample
(data358) of the original dataset that can be obtained as follow
N.total <- nrow(gbsg)
set.seed(358)
gbsguni < −runif (N.total, min = 0, max = 1)
data358 <- subset(gbsg.ana, uni<0.3)
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