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ARTICLE

An investigation of the cognitive and neural
correlates of semantic memory search related
to creative ability
Marcela Ovando-Tellez 1✉, Mathias Benedek 2, Yoed N. Kenett 3, Thomas Hills4, Sarah Bouanane1,

Matthieu Bernard 1, Joan Belo1, Theophile Bieth1,5 & Emmanuelle Volle 1✉

Creative ideas likely result from searching and combining semantic memory knowledge, yet

the mechanisms acting on memory to yield creative ideas remain unclear. Here, we identified

the neurocognitive correlates of semantic search components related to creative abilities. We

designed an associative fluency task based on polysemous words and distinguished two

search components related to clustering and switching between the different meanings of the

polysemous words. Clustering correlated with divergent thinking, while switching correlated

with the ability to combine remote associates. Furthermore, switching correlated with

semantic memory structure and executive abilities, and was predicted by connectivity

between the default, control, and salience neural networks. In contrast, clustering relied on

interactions between control, salience, and attentional neural networks. Our results suggest

that switching captures interactions between memory structure and control processes

guiding the search whereas clustering may capture attentional controlled processes for

persistent search, and that alternations between exploratory search and focused attention

support creativity.

https://doi.org/10.1038/s42003-022-03547-x OPEN

1 Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013 Paris, France. 2 Institute of Psychology, University of Graz, Graz, Austria.
3 Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology, Haifa 3200003, Israel. 4 Department of Psychology,
University of Warwick, University Road, Coventry CV4 7AL, UK. 5 Neurology Department, Pitié-Salpêtrière hospital, AP-HP, F-75013 Paris, France.
✉email: marcela.ovandot@gmail.com; emmavolle@gmail.com

COMMUNICATIONS BIOLOGY |           (2022) 5:604 | https://doi.org/10.1038/s42003-022-03547-x | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03547-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03547-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03547-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03547-x&domain=pdf
http://orcid.org/0000-0002-9521-4620
http://orcid.org/0000-0002-9521-4620
http://orcid.org/0000-0002-9521-4620
http://orcid.org/0000-0002-9521-4620
http://orcid.org/0000-0002-9521-4620
http://orcid.org/0000-0001-6258-4476
http://orcid.org/0000-0001-6258-4476
http://orcid.org/0000-0001-6258-4476
http://orcid.org/0000-0001-6258-4476
http://orcid.org/0000-0001-6258-4476
http://orcid.org/0000-0003-3872-7689
http://orcid.org/0000-0003-3872-7689
http://orcid.org/0000-0003-3872-7689
http://orcid.org/0000-0003-3872-7689
http://orcid.org/0000-0003-3872-7689
http://orcid.org/0000-0001-5002-3276
http://orcid.org/0000-0001-5002-3276
http://orcid.org/0000-0001-5002-3276
http://orcid.org/0000-0001-5002-3276
http://orcid.org/0000-0001-5002-3276
http://orcid.org/0000-0001-8420-4155
http://orcid.org/0000-0001-8420-4155
http://orcid.org/0000-0001-8420-4155
http://orcid.org/0000-0001-8420-4155
http://orcid.org/0000-0001-8420-4155
mailto:marcela.ovandot@gmail.com
mailto:emmavolle@gmail.com
www.nature.com/commsbio
www.nature.com/commsbio


How creative ideas arise in our mind and in our brain is a
key unresolved question. Ideas do not come from
nowhere: It is commonly assumed that they result from

searching, reorganizing, and combining the knowledge that is
stored in semantic memory1–9. But specific mechanisms acting on
memory to yield creative ideas are not well understood. There-
fore, this study aims to identify processes of semantic memory
search that support higher creative thinking, and explore the
brain mechanisms supporting these processes.

Semantic memory search depends on the organization of
semantic associations stored in memory that drives associative,
spontaneous retrieval, and on controlled processes that navigate
these retrieval processes based on the context and task demands.
The role of semantic memory in creativity has been intensively
examined across several lines of research2,3,7,10–13. The strength
of semantic associations stored in memory, which determines
their spontaneous activation by a given context, has been put
forward as a core component in the creative process as early as in
the 1960s9. Although associative thinking has proved challenging
to measure empirically, studies have linked it to creativity using
divergent thinking (generating different new and effective ideas)
but also convergent thinking (finding solutions to problems by
combining information in novel ways) tasks3,11,14–19.

The organization of semantic associations, or semantic mem-
ory structure, can be studied as semantic memory networks
(SemNets) via computational network science methods20–22.
Network science is based on mathematical graph theory, and
provides quantitative means to represent complex systems, such
as semantic memory, as networks. In a semantic memory net-
work, nodes represent concepts, and edges represent the rela-
tionship between these concepts based on similarity
measures22,23. SemNet studies have explored how creative abil-
ities are related to the semantic memory structure7. In this stream
of research, the SemNets of higher creative individuals have been
shown to be more connected, less spread out, and less segregated
than those of lower creative individuals6,7,24–27. Such a SemNet
structure has been linked to more creative search behavior28.
Moreover, the link between SemNet structure and verbal crea-
tivity seems mediated by associative abilities26.

Memory search is not only determined by the semantic
memory structure, but also involves controlled processes that
allow efficient retrieval and navigation within it23,29,30. Neuro-
cognitive research on semantic memory identified a semantic
control component supporting executive mechanisms that allows
individuals to selectively retrieve, manipulate, and select mean-
ingful information depending on context demands31–37. Con-
trolled retrieval processes have been consistently related to
creative abilities3,38–41, as have been diverse executive abilities
including working memory or inhibition of obvious and common
responses2,42–44.

Hence, both associative and controlled memory processes are
thought to be jointly involved in creativity2,10,14,45. Then, when
we search for ideas, what makes this search creative? What
memory search components are related to higher creativity and
how? Can we identify these components? One account arguing
for the separability of these components was proposed in ref. 46.
They used verbal fluency tasks that typically assess semantic
memory search47–57, and characterized two components that
interact during these tasks, so-called clustering and
switching46,51,58. For example, in the category-fluency task, par-
ticipants are asked to retrieve as many members of a category
(e.g., animals) as possible in a limited amount of time (typically 1
or 2 min). During clustering, individuals generate words that
belong to the same subcategory (e.g., birds). During switching,
individuals jump to a different subcategory (i.e., from birds to
amphibians). Troyer et al.46 suggested that clustering reflects

automatic semantic retrieval while switching involves executive
processes. Although this hypothesis is coherent with cognitive
models that discriminate two interacting types of cognitive pro-
cesses (automatic versus controlled)30,33,59–61, the alignment of
clustering—switching with associative—executive components,
respectively, is not established31,52,54,62,63.

Hills et al.49,50,64 further extended the separability of clustering
and switching in the context of an exploitation–exploration trade-
off, showing that memory search may involve a trade-off similar
to the one found in spatial optimal foraging: switching to a dif-
ferent cluster occurs when the retrieval rate within the current
cluster falls below a threshold50. By analogy, they proposed a
cross-domain alignment of clustering–switching trade-off with
local-global perception (e.g., perceiving the details vs. the global
picture) or focal-diffuse attention (e.g., focusing to a specific
information vs. widening the breadth of attention)49. Although
alternative views exist (e.g., refs. 47,65,66), the framework of
exploration and exploitation in semantic foraging offers a useful
quantitative method to characterize the responses in diverse
generation tasks relevant to creativity. For instance, a few studies
have separated exploitation/exploration processes operationalized
in a visuospatial creativity task67 or clustering and switching
behavior in a divergent thinking task68–70, suggesting that they
reflect separable processes supporting creative ideation.

The above accounts argue for separable semantic search pro-
cesses, but little is known about their individual contributions to
creative cognition71. Broad retrieval ability, the ability to fluently
retrieve semantic information from long-term memory, has been
reliably associated with creative performance2,39–41, suggesting
that semantic search plays an important role for creative thinking
in general. Switching during semantic memory search has been
shown to be related to executive processes72,73 and may capture
control processes which are particularly critical for the search of
creative ideas68,70. This is further suggested by correlations found
between creative thinking and diverse executive functions38–41,45.
In addition, creative people have been shown to be able to switch
between alternative meanings and consider things from different
perspectives, allowing them to re-structure their mental
representations74–79. Overall, the clustering and switching com-
ponents of memory search may both play a role in creativity.
Their contribution may vary according to the cognitive processes
presumably supporting each component, i.e., memory structure
or control processes, respectively. The role of clustering and
switching in creativity may also depend on the relative impor-
tance of controlled and spontaneous processes in the creativity
tasks that are used.

Assessing the neural correlates of clustering and switching
offers another perspective for understanding the role of semantic
structure and cognitive control in memory and creative search.
Functional neuroimaging studies80–82 and lesion studies83,84 have
shown that memory search during category-fluency tasks relies
on the coordinated activity of several brain areas including the left
inferior frontal gyrus, medial prefrontal areas and premotor
regions, cingulate cortex, insula, middle frontal gyrus, and ante-
rior and posterior temporal regions. The specific role of these
regions in memory search is not fully understood. Troyer et al.46

proposed that clustering depends on the temporal lobe memory
regions, while switching reflects executive frontal lobe processes.
However, empirical support for such dissociation is weak and
existing studies show a more complex picture46,54,85,86. Besides,
functional connectivity studies on creativity have shown that
processes of idea generation are supported by the interaction of
several large-scale brain networks15,87–89 including the default
mode network (DMN), executive control network (ECN), and
salience network, rather than individual regions. The DMN is
thought to support associative thinking and spontaneous retrieval
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allowing for the generation of candidate ideas while the ECN
participates in controlled retrieval, constraining the search, and
monitoring the responses for appropriateness. Yet, how these
networks relate to memory search processes is unclear18,19,90.
Assessing functional brain connectivity associated with individual
differences in clustering and switching may provide a useful
approach revealing the neural correlates that underlie distinct
memory search components.

To explore the neurocognitive components of semantic search
that relate to creative abilities, we designed an associative fluency
task in which a free association search is initiated from an
ambiguous polysemous word (PolyFT). Ambiguous, polysemous
words are characterized by having different meanings, thus more
than one concept may be activated in memory for the same word
(e.g., for the word bank, there are at least two meanings: river
bank and bank account74. The advantage of this task is that
ambiguous words are helpful in investigating the clustering and
switching framework, because they allow a clear separation of the
clusters based on the different meanings. Such a task enables us to
assess clustering and switching based on the number of responses
within and between the different meanings of the ambiguous cue
word. Cluster definition has indeed been a limitation in previous
methods using category-fluency tasks, as subcategories are diffi-
cult to define or have blurred borders (e.g., by context (zoo) or by
taxonomy (birds))54. Although a few computational approaches
have defined clusters based on semantic similarity measures, they
remain dependent on normative data or text corpora68,91,92. In
addition, ambiguous words are relevant to the exploration of
creativity for several reasons. First, creative people have been
shown to be better able to activate the representation of multiple
aspects of potentially incongruous information, including com-
petitive lexico-semantic meanings74 or figures75,79. Second,
ambiguous words have proven useful in isolating control
demands in previous studies on semantic memory86,93,94.

The PolyFT enabled us to assess individual differences in
clustering and switching behavior, which are theorized to be key
components of memory search related to creativity68–70. We
examined how these two components relate to creative abilities,
individual differences in semantic memory structure using
SemNets24–27, and executive abilities84. Finally, using
connectome-based predictive modeling (CPM) approach88, we
explored the functional connectivity patterns that predict clus-
tering- and switching-related components. This approach allowed
us to address four hypotheses: First, we expected that both
clustering- and switching-related components (as assessed with
PolyFT) would correlate with creativity task performance. Such a
finding would extend the seminal work from ref. 46 to creativity
and show that creative thinking involves similar cognitive pro-
cesses associated with semantic memory search. Second, we
hypothesized that switching-related measures would correlate
with executive abilities46,72,73. Third, because previous research
demonstrated that producing a chain of related words (associates)
involves a spontaneous and unconstrained mode of retrieval with
little executive demands16,18 we expected the clustering-related
component of the PolyFT would be related to semantic memory
structure as captured by SemNets and more limited executive
control. The findings arising from the second and third hypoth-
eses would clarify how the processes framed in different con-
structs (memory search components, semantic structure,
executive functions) relate or differ from each other, and how
they correlate with creative abilities. Fourth, we expect that
clustering and switching are associated with discriminable brain
activation in terms of connectivity patterns between the ECN,
DMN, and salience networks.

Our findings allowed us to characterize two semantic memory
search components related to clustering and switching in the

context of semantic memory structure, executive abilities, and
brain connectivity patterns. Both components correlated to
creative abilities, but differently. Based on the cognitive and
neural patterns of each component, we propose that the switching
component captures interactions between memory structure
and control processes guiding search that support the ability to
combine remote associates, whereas the clustering component
captures controlled processes related to the persistent search that
support divergent thinking. These results help to better under-
stand the role of semantic memory search in creative cognition.

Results
Principal component analysis of the ambiguous word-fluency
task (PolyFT) measures. In the PolyFT task, participants were
required to name all the words that they could think of as
associated with ambiguous, polysemous cue words (i.e., free word
associations) presented successively. We adapted the method in
ref. 46 to quantify five different measures related to clustering and
switching with respect to the different meanings of ambiguous
cue words (Supplementary Table 1): fluency, rank of the first
switch between meanings, number of different meanings, number
of switches between meanings, and bigger cluster size within the
same meaning (see “Methods”). To reduce the set of dimensions
of the PolyFT task and because several measured variables were
strongly correlated (see the correlation matrix between the five
measured variables in Supplementary Table 2), we conducted a
principal component analysis (PCA) of the five PolyFT measures.
We identified two factors with eigenvalues higher than one that
together explained 83% of the variance. Table 1 shows the
component's loadings after oblimin rotation. The first one cap-
tures fluency, biggest cluster size, and rank of the first switch.
Hence, this first component likely reflects clustering of responses
within semantic meanings. The second component captures the
number of different meanings and transitions between them (i.e.,
number of switches), thus likely reflecting switching-related
processes51. The correlation between the two components was
not significant (rs=−0.153, P= 0.160) supporting their dis-
criminant validity.

Overall, these results indicate that although nuanced aspects of
semantic search were separately assessed, they essentially reflect
two distinct factors that can be named clustering and switching.
We proceeded using these component scores for further analyses.

Relationship between PolyFT clustering and switching and
other behavioral measures. We used Spearman correlations to
explore the relationships between the identified principal

Table 1 Principal component analysis (PCA).

Components

PolyFT scores Clustering Switching

Fluency 0.983 0.339
Rank of the first switch 0.668 −0.409
Number of different
meanings

−0.093 0.827

Number of switches 0.085 0.937
Biggest cluster size 0.892 −0.197
Eigenvalues 2.599 1.549
% of variance 51.978 30.982
Cumulative % 51.978 82.960

The PCA analysis performed on the five PolyFT measures, showing the loadings of the variables
on the two principal components extracted from the data of the 86 participants. For each
component, we also report the percentage of variance explained. Absolute values of regression
coefficients higher than 0.5 were considered important (bold font) in defining the principal
components.
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components of the PolyFT task and other behavioral measures
(Table 2) of creative abilities, semantic memory structure via
SemNet metric computation, and executive abilities. The
descriptive statistics of creativity tasks, SemNet metrics and
executive tests are reported in Supplementary Table 3. The cor-
relations between PolyFT components, creativity tasks, SemNet
metrics, and executive tests are reported uncorrected and cor-
rected for multiple comparisons using the false discovery rate
(FDR) in Fig. 1 and Supplementary Table 4.

Relationship between PolyFT clustering and switching and
creativity. To assess creative abilities, we used two validated
creativity tasks. Divergent thinking was assessed with the Alter-
native Uses Task (AUT)95. Convergent thinking was assessed
with the combination of associates task (CAT)9,15,96 (see
“Methods”).

We examined correlations between clustering and switching
components of PolyFT and the two classic creativity tasks used
(see Table 2). Spearman correlations analyses revealed significant
correlations between the clustering component and AUT-fluency
(P < 0.001), AUT-uniqueness (P < 0.001), and AUT-commonness
(P= 0.013). The switching component was positively correlated
with the accuracy in CAT task CAT-CR (P= 0.032). The other
correlations between the PolyFT components and creativity
scores were not significant (P > 0.05). The correlations between
clustering and both AUT-fluency and AUT-uniqueness remained
significant after FDR correction for multiple comparisons. These
results indicate that individuals with higher clustering in the
PolyFT task generate a higher number and more unique and
infrequent ideas in the AUT, whereas individuals with higher
switching in the PolyFT task are better able to combine remote
elements in the CAT task (see Fig. 1 and Supplementary Table 4).
Overall, the clustering component was more related to divergent

thinking (AUT) while the switching component was more related
to convergent thinking (CAT).

Relationship between PolyFT clustering and switching and
individual semantic network metrics. We developed a related-
ness judgment task (RJT; see “Methods”) to estimate the indivi-
dual SemNets (Fig. 2a)24–26. Based on the RJT ratings, we built
two types of individual SemNets whose properties have been
related to creative abilities in previous studies (Fig. 2b)24–27. For
each individual, we built the weighted undirected network
(WUN) and the unweighted undirected network (UUN; see
Supplementary Note 1). For each type of graph, we computed
their network metrics97–100 selected based on previous studies
showing their relevance for creativity24–27. We estimated the
global efficiency (Eff), clustering coefficient (CC), and modularity
(Q) of the SemNets (see Table 2), representing how efficient is the
structure of the network to allow the transition of information
(Eff), the level of connectivity (CC) and segregation (Q) of the
network, respectively. A more flexible SemNet has been related to
higher Eff and CC, and lower Q6,7,24–27.

We tested whether clustering and switching in PolyFT related
to individual differences in the SemNet structure, using Spearman
correlations (Fig. 1 and Supplementary Table 4). The analysis
showed a significant correlation between the switching compo-
nent and Eff in both the WUN (P= 0.023) and UUN networks
(P= 0.007). In addition, the switching component correlated
negatively with Q (P= 0.023), and positively with CC (P= 0.019)
in the UUN network. The correlation between Eff in the UUN
network and the switching component remained significant after
FDR correction. These results suggest that individuals with higher
switching during the PolyFT task had a more efficient SemNet.

Relationship between PolyFT clustering and switching and
executive functions. We used validated neuropsychological tests

Table 2 Behavioral measurements.

Task Parameter Measurement

Creativity tasks
Alternative uses task (AUT) AUT-fluency Fluency—number of responses

AUT-
uniqueness

Uniqueness of responses

AUT ratings External ratings to the top-2 responses
AUT-
commonness

Overall frequency of responses

Combination of associates task (CAT) CAT-CR Accuracy in performance
CAT-index Performance in distant trials relative to close trials
CAT-eureka Insight report in correct trials

Semantic Network (SemNet) metrics
Weighted undirected networks (WUN) WUN Eff Global efficiency

WUN CC Clustering coefficient
WUN Q Modularity

Unweighted undirected networks (UUN) UUN Eff Global efficiency
UUN CC Clustering coefficient
UUN Q Modularity

Executive tests
Digit span test Forward-span Working memory verbal span in direct order

Backward-span Working memory verbal span in reversed order
Fluency tasks Category-

fluency
Broad retrieval abilities in a semantic category

Letter-fluency Broad retrieval abilities with a phonological constrain
Trail-making test (TMT) TMT-shifting Set-shifting assessed by the difference in the time taken to perform part B and part A
Stroop test Stroop-

interference
Cognitive inhibition assessed by the difference in time to complete the third and (ink
naming with interference) and second (color naming) part

A summary of the creativity tasks, SemNet metrics, and executive tests used in the analyses. We provide the acronym in parenthesis for each task when appropriate, the different parameters we
measured and what they measure.
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Fig. 1 Correlation matrix of search components with other behavioral measures. Spearman correlations between PolyFT clustering and switching
components and SemNet metrics, creativity scores (AUT and CAT tasks) and executive function tests (n= 86). Cold to hot colors code the Spearman
correlation coefficient (rs). *P < 0.05; **P < 0.01. All correlations signaled with **(P < 0.01) remained significant after FDR correction for multiple
comparisons.

Fig. 2 Building of individual semantic networks (SemNets) from the RJT. a In each RJT trial, participants judged the relatedness of 595 word pairs. During
the reflection period, participants thought about the relationships between the different pairs of words. In the response period, participants moved the
cursor (in magenta) using a visual scale ranging from 0 (unrelated words) to 100 (strongly related words) to indicate the relatedness of the two words. A
jittered inter-trial interval separated trials. b Using the ratings of all the RJT trials, we computed a 35 by 35 adjacency matrix for each participant with
rows and columns representing the words of the task. For the weighted undirected networks (WUN), cell values correspond to the relatedness
judgments given by the participant during the RJT. For the unweighted undirected network (UUN), cell values correspond to a binary value of 1 for
judgments above or equal to 50, and 0 for judgments below 50. From these adjacency matrices, we built the WUN and UUN graphs and estimated their
SemNet metrics24,27.
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to assess executive processes (Table 2; see Supplementary Table 3
for descriptive statistics). We explored Spearman correlations
between the PolyFT components and the executive function tests.
The clustering component correlated positively to category flu-
ency (P= 0.014). The switching component was positively cor-
related to backward-span (P= 0.032), category-fluency
(P= 0.001) and letter-fluency (P= 0.008), and negatively corre-
lated to TMT-shifting (P= 0.019) and Stroop-interference
(P= 0.017). After FDR correction, the correlation of the switch-
ing component with category-fluency and letter-fluency remained
significant (see Fig. 1 and Supplementary Table 4). While both
components of the PolyFT related to retrieval abilities in the
semantic fluency task, only switching related to executive abilities.

Brain correlates of PolyFT clustering and switching: predic-
tions from brain connectivity using CPM. To identify the brain
substrates of the clustering and switching components, we
explored the functional connectivity patterns predicting these
scores, using a CPM method with a leave-one-out cross-
validation27,88,101,102. Based on the Schaefer brain atlas103, we
defined 200 regions of interest (ROIs) distributed into 17 func-
tional subnetworks organized in eight main functional networks.
We performed Pearson pairwise correlations of the blood oxygen
level-dependent (BOLD) signal between all unique pairs of brain
regions (i.e., ROIs). As a result, we obtained a 200 × 200 matrix
for each participant corresponding to their functional con-
nectivity network in which ROIs are the nodes and correlation
coefficients the links. We followed the method described in
ref. 102 regressing a cognitive component (i.e., clustering and
switching components in separate CPM analyses) on brain net-
works with a leave-one-out cross-validation. First, we identified
the links that significantly correlated with each of the PolyFT
components (P < 0.01) either positively (the positive model net-
work) or negatively (the negative model network) across parti-
cipants (N− 1 participants). We then estimated the connectivity
strength in these model networks for each participant by sum-
ming the functional connectivity values of the selected ROI pairs.
We built a linear model with the resulting individual connectivity
strength in the positive and negative model networks as pre-
dictors and the PolyFT component as the outcome. Finally, we
applied the predictive linear model to the left-out participant and
obtained a predictive value of the PolyFT component for each
participant. We used Spearman correlations between the pre-
dicted and the observed values of the PolyFT components to test
the validity of the prediction. The predictive power of the pre-
dictions was evaluated using permutation testing.

The results (Fig. 3) revealed significant correlations between
the predicted and observed clustering component (r= 0.367,
P < 0.001) and between the predicted and observed switching
component (r= 0.400, P < 0.001). To test the robustness of the
prediction, we analyzed the relation between model-predicted and
observed components, using 1000 iteration permutation testing.
Both predictions remained significant after the permutation
testing (P= 0.009 for the clustering component; P= 0.007 for the
switching component). These findings suggest that patterns of
brain functional connectivity allow robust predictions of both
clustering and switching components.

Finally, we characterized the brain regions and functional
networks of the positive model networks (models in which higher
connectivity was associated with higher scores) that account for a
higher clustering and switching during the PolyFT task. (see
Supplementary Note 2 and Supplementary Figs. 1 and 2 for the
negative predictive networks).

The positive predictive network of clustering included 43 links
with a whole-brain distribution (Fig. 4). The majority of the links
(63% of all connections) connected brain regions belonging to the
executive control networks (ECN; in particular the intraparietal
sulcus) to diverse regions of other networks, including the
salience, visual, and somatomotor networks. The model network
also included links between regions of the dorsal attention
network (DAN; in particular the superior parietal lobule) and
regions of the visual and somatomotor networks, as well as
between the temporal pole (Supplementary Fig. 3a) and several
regions of the salience network (23% of all connections). No links
were observed within the ECN or within the salience network.
The nodes with the highest number of connections (node degree
k; a total of nodes with k > 0= 42) were localized in the left
intraparietal sulcus region of the ECN (k= 26) and right superior
parietal lobule in the DAN (k= 6). The intraparietal sulcus
(ECN) had the most links with salience, visual, and somatomotor
network regions.

The switching model network was composed of 259 links with
a whole-brain distribution (Fig. 5). A higher number of links
connected different brain regions belonging to the DMN to
regions of the salience (in particular the frontal operculum),
DAN, visual, and somatomotor networks, and to the lateral
prefrontal and temporal areas of the ECN (56% of all
connections). Links between the DMN and the temporal pole
(limbic network) were also observed (Supplementary Fig. 3b). No
links within DMN network were observed. The model network
also included several connections between ECN regions and
regions of the visual network as well as between the salience

Fig. 3 Predicted and observed PolyFT components. The plots show the Spearman correlations between the predicted values (y axis) and observed values
(x axis) of the clustering and switching components based on brain connectivity for the significant predictions (n= 86). The fitting regression line is shown
in red, and the 95% confidence interval for the line is shown in gray shading. For each plot, we present the rs and the P values. The reported P values are
based on permutation testing.
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network and the visual and somatomotor networks. We also
observed in particular intra-ECN links between its lateral
prefrontal and temporal regions. The brain regions with the
highest number of connections (node degree k; total of nodes
with k > 0= 122) were localized in the left orbital frontal cortex
of the limbic network (k= 31), bilateral inferior parietal lobule of
the DMN (left k= 28; right k= 12), the left retrosplenial region
of the DMN (k= 24), bilateral extra-striate inferior regions of the
visual network (left k= 20; right k= 17), left medial prefrontal
cortex of the DMN (k= 15) and the right precentral region of the
salience network (k= 12). The orbital frontal cortex of the limbic
network had most links with regions of the DAN,
salience, somatomotor, and visual networks. The retrosplenial
region of the DMN connected mostly to salience and DAN
regions. The extra-striate inferior regions of the visual network
connected mostly to the DMN, ECN, and salience network
regions. The medial prefrontal cortex in the DMN had main
connections with the DAN, salience, and visual network regions.
The prefrontal region of the salience network had several links
with the DMN.

In summary, the main patterns of functional connectivity
predicting clustering and switching components of PolyFT
differed considerably. Higher clustering was predicted by higher
connectivity between large-scale brain networks, in particular
between ECN, salience, DAN, and visual networks, but, notably,
the clustering model network hardly included any connectivity
within these networks. Higher switching was predicted by a
higher connectivity between the DMN, ECN, salience, DAN,

somatomotor, and visual networks; yet, contrary to the clustering
model network, links between the ECN and the DMN played a
more important role in the switching model network, and DMN
regions were generally much more involved. The salience network
is mostly related to the ECN in the clustering model but with the
DMN in the switching model network. The temporal pole, a key
memory region, connected to salience network regions in the
clustering model network but to DMN regions in the switching
model network (Supplementary Fig. 3). Only the switching model
network involved intra-ECN connectivity. Both model networks
involved the visual and salience networks.

Internal validation: prediction of PolyFT clustering and
switching from resting-state functional connectivity. As a final
step, we explored whether the predictive models we trained on
the task-based functional connectivity data generalize to resting-
state data. We performed an internal validation by predicting the
PolyFT components from the participant’s resting-state data. The
Spearman correlations between the predicted value from the
model applied to the resting-state data and the observed values
showed significant predictions for clustering (rs= 0.484,
P < 0.001) and switching (rs= 0.214, P= 0.048) components.
These significant predictions suggest that clustering and switch-
ing abilities in the PolyFT task are reflected in intrinsic con-
nectivity, and provide support to the CPM-based predictive
model’s robustness and its generalization to the functional con-
nectivity during resting-state data.

Fig. 4 Functional anatomy of the CPM model predicting the PolyFT clustering. The functional connectivity patterns of the positive model network
predicting clustering are described. a The circular graph represents the distribution of links within and between brain regions in the left (L) and right (R)
hemispheres. Brain regions are color-coded. The lines in red represent the links connecting the ROIs. b We examined the distribution of the links across
intrinsic functional networks based on Schaefer’s atlas103. The correlation matrix represents the number of links within the model network connecting
seven different brain lobes (total of links= 43). A table with the percentage of links connecting nodes that belong to these functional networks is shown.
This percentage considers all connections to the regions of a given functional network in relation to the total number of connections in the model network
(i.e., 43 links). c The nodes (total of nodes= 42) and links of the model network are superimposed on a volume rendering of the brain. From top to bottom,
a lateral, dorsal, and medial views of the left (L) and right (R) hemispheres are shown. The color of the nodes represents the functional network they belong
to, using a color code presented in b. The size of the nodes is proportional to their degree. Thicker links are connecting the highest degree nodes to the rest
of the brain. The color code arrows indicate the highest degree nodes and the brain region in which they are localized. For visualization purposes, nodes
with degree k= 0 are not displayed. ECN executive control network, DMN default mode network, DAN dorsal attention network.
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Discussion
This study investigated the neurocognitive correlates of memory
search related to creative cognition. We developed a free asso-
ciation task based on ambiguous words, which was shown to
capture two main components: a clustering component related to
fluency and cluster size of responses, and a switching component
related to the diversity and flexibility in these responses and their
meanings. We found that clustering and switching components
were differently related to divergent and convergent thinking and
that the switching component, but not clustering, was associated
with individual differences in semantic memory structure (mea-
sured by SemNet metrics) and executive control. The application
of network science methods at the neural level further allowed us
to identify differences in their respective predictive brain con-
nectivity patterns consistent with the behavioral results.

Both clustering and switching components correlated with
creativity performance. However, they differed in their relation-
ships with divergent and convergent creativity tasks. The clus-
tering component correlated with AUT measures of fluency and
originality (number of total and unique ideas), suggesting that it
captures processes involved in divergent thinking. This result
converges with previous studies that related performance in
various kinds of verbal fluency tasks to fluency and originality in
divergent thinking tasks2,3,14,18,24,40,41,68,104, showing that broad
retrieval ability is consistently associated with creative ability39,41.
It is important to mention that clustering did not correlate with a
measure of AUT originality that is not confounded by fluency in

AUT (AUT ratings of top-creative responses), which may suggest
that the observed correlations with AUT-uniqueness were driven
by the fluency105–107. Effective exploitation of semantic clusters
may thus drive fluent idea generation.

In contrast, we did not observe correlations between the
switching component and divergent thinking scores in the AUT
task, but with the ability to combine remote associates in the CAT
task, a convergent thinking measure of creativity that requires
converging on a single solution by considering unrelated semantic
concepts. The link between flexible retrieval abilities and CAT
suggests that combining unrelated semantic concepts in the CAT
is supported by flexible switching between semantic
clusters7,9,13,17. Importantly, the link between CAT performance
and the switching component is consistent with previous findings
showing that optimal search in the Remote Associates tests
involves continuous switching between clusters of associates108

(but see ref. 109) and involves controlled processes15,109–111.
Switching-related control processes may thus relate to an
exploration function involved in solving CAT problems.

The relationships of the PolyFT components with SemNets
metrics and executive function tests may help to better under-
stand the underlying processes. As expected, the clustering and
switching components differ in their relationships with semantic
memory structure and executive control measures, suggesting
that they may capture distinct semantic and/or executive pro-
cesses involved in memory search (see Fig. 1). While both com-
ponents correlated with category-fluency, only the switching

Fig. 5 Functional anatomy of the CPM model predicting the switching PolyFT component. The functional connectivity patterns of the positive model
network predicting switching are described. a The circular graph represents the distribution of links within and between brain regions in the left (L) and
right (R) hemispheres. Brain regions are color-coded. For visualization purposes, we used a nodal degree threshold of k > 10. The lines in red represent the
links connecting the ROIs. b We examined the distribution of the links across intrinsic functional networks based on Schaefer’s atlas103. The correlation
matrix represents the number of links within the model network connecting within and between eight intrinsic brain networks (total of links= 259). At the
upper right side, a table with the percentage of links connecting nodes that belong to these functional networks is shown. This percentage considers all
connections to the regions of a given functional network in relation to the total number of connections in the model network (i.e., 259 links). c The nodes
(total of nodes= 122) and links of the model network are superimposed on a volume rendering of the brain. From top to bottom, a lateral, dorsal, and
medial views for the left and right hemispheres are shown. The color of the nodes represents the functional network they belong to, using a color code
presented in b. The size of the nodes is proportional to their degree. Thicker links are connecting the highest degree nodes to the rest of the brain. The color
code arrows indicate the highest degree nodes and the brain region in which they are localized. For visualization purposes, nodes with degree k= 0 are not
displayed. ECN executive control network, DMN default mode network, DAN dorsal attention network.
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component related to executive abilities, including letter-fluency,
and (although uncorrected for multiple comparisons) inhibition
of automatic responses (Stroop-interference), cognitive flexibility
(TMT-shifting), and working memory (backward-span). This
finding is in line with previous research showing that switching
between subcategories in fluency tasks relies on cognitive
control as evidenced by correlations with frontal control
functions46,53,54,85. Similarly, the processing of ambiguous words
likely involves executive processes to retrieve multiple unrelated
meanings of the words86,93, manipulate and update the content of
working memory, inhibit previously visited meanings that would
not be profitable to revisit, and switch between semantic fields.

Based on previous work on associative fluency tasks18,26 and
on Troyer’s hypothesis51 we expected components of the PolyFT
task, a free association task, to capture individual differences in
the semantic memory organization explored via the SemNet
properties. The switching component indeed correlated with
SemNets efficiency (significant correlations with modularity and
CC did not survive the FDR corrections), in agreement with a
previous result112, indicating that more efficient information
spread in semantic memory is associated with more effective
switching. Hence, self-paced switching, allowing to alternate
between diverse meanings during the PolyFT task, is related to
individual differences in semantic memory structure. Overall,
switching in PolyFT seems to rely on both semantic memory
structure and executive control processes, which together may
support flexibility in memory search.

Contrary to our expectations, the clustering component did not
correlate with SemNets metrics. Because the participants were
asked to give unconstrained free associations during the PolyFT
task, and based on Troyer’s hypothesis, we expected clustering to
capture spontaneous semantic associations from the underlying
semantic memory network18,26. However, the absence of sig-
nificant correlations with SemNets and the evidence for activity in
the ECN predicting clustering questions this interpretation. One
potential explanation is that clustering may involve additional
control processes and is therefore not exclusively driven by dif-
ferences in the organization of semantic memory. Staying within
a cluster may require a focused, sustained, goal-directed attention
to suppress interference proactively. This interpretation con-
verges with the exploration-exploitation trade-off extended to
semantic search49,50, where switching to a different cluster occurs
when the retrieval rate within the current one falls below a
threshold. Hence, our clustering component may capture the
ability to maximally exploit a given meaning, or the tendency to
persist longer in a local/exploitation mode, as opposed to being a
global/exploration mode completely free of executive control.
Further studies directly testing the impact of a lack of executive
control on clustering and switching are needed to clarify this
point. We can also not exclude that clustering relates to a pro-
totypical semantic memory structure rather than to an individual
difference in SemNet structure.

Overall, the switching component relates to individual differ-
ences in the organization of semantic memory networks, execu-
tive function abilities, and the ability to combine remote
associates measured with the CAT task. These results suggest that
switching captures a self-paced flexible search behavior during the
PolyFT task that may relies on both semantic memory structure
and executive processes. This behavior may be particularly rele-
vant during convergent thinking tasks such as the CAT, where
exploration and switching between different types of relationships
between the cue words and the solution word facilitate
performance108,109. Conversely, the clustering component is
related to semantic retrieval and fluent idea generation and may
capture controlled processes to maximally exploit clusters and
maximize the number of responses. Hence, effective clustering

involves more cognitive control than may have been previously
expected.

This suggests that controlled processing is involved in both
clustering and switching but in different ways. These are exem-
plified by the correspondence between the two mechanisms
proposed for memory search (exploitation/exploration)50. That is,
the clustering and switching components may reflect an
exploitation–exploration trade-off where cognitive processes
involved in searching within or between clusters are distinct. In
addition, these search processes may also relate to the dual-
process model of creativity. The switching component may partly
align with the flexibility pathway of the dual-process model of
creativity that allows controlled access to broad exploration113,
whereas the clustering component may align with the effortful
persistence pathway that provides inhibitory focus necessary for
systematic thinking.

The cognitive mechanisms captured by our clustering and
switching components can be further discussed in light of the
brain's functional connectivity patterns predicting the compo-
nents. The CPM approach allowed us to identify specific brain
connectivity patterns robustly predicting individual differences in
each component. These predictions were also generalizable to the
individual’s resting-state functional connectivity suggesting the
robustness of our predictive models. The positive brain model
network predicting clustering and switching components
involved networks classically involved in creative thinking,
namely the ECN, DMN, and salience networks13,27,87,89, but
predictive patterns also clearly differed. The clustering predictive
model network predominantly relied on inter-network con-
nectivity between the ECN, DAN, salience, somatomotor and
visual networks. The involvement of the salience and ECN is
consistent with patient studies showing that these networks are
critical for category-fluency tasks83,84. Here, the ability to retrieve
multiple semantically related concepts seems to be supported by
interactions between control and attentional networks with visual
and motor regions. Importantly, the temporal pole, a region
considered as a hub region of semantic knowledge30,114 partici-
pated in the positive model network through its connection with
the salience network. The involvement of task-positive networks
and their interaction with a semantic memory region would be
consistent with the proposed role of goal-directed attention in the
clustering component allowing a sustained processing and a
focused search in semantic memory115.

Key nodes of the positive clustering model network were
related to the ECN. Although consistent with our interpretation
of the clustering component above, this result was not in line with
Troyer et al.46,51 who related clustering to temporal regions of
semantic memory and switching to frontal control processes
during a category-fluency task. It is possible that our findings
differ from Troyer et al.’s hypothesis46,51 because a fluency task
starting with an ambiguous word, even with an unconstrained
instruction, requires more control to stay efficient and focused116,
and indeed, processes that are captured by clustering and
switching measures vary depending on fluency task types46,54.
However, the alignment of clustering and switching in fluency
tasks on temporal and frontal functions has already been con-
tested. For instance, in ref. 46, patients with temporal lobe lesions
were impaired on category-fluency switching in comparison to
controls. Reverberi et al.85 showed that the performance of lateral
frontal patients had a disorganized search strategy but no
switching deficit. In addition, a brain stimulation study targeting
the dorsolateral prefrontal cortex showed an impact on clustering
(and not switching) during a category-fluency task117. These
findings suggest that the processes reflected in the clustering
measure are not purely associative and may involve additional
control processes that focus attention. Overall, it is likely that our
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clustering component captures not only semantic memory asso-
ciations but also top-down regulation of semantic search that may
inhibit more divergent exploration.

In contrast to the positive clustering model network, the pre-
dictive patterns of the switching mainly involve DMN-related
brain regions, in addition to regions of the salience and visual
networks. The most densely connected brain regions in the
switching model network included several regions of the DMN, in
particular in the inferior parietal lobule bilaterally, retrosplenial
cortex, and medial prefrontal cortex. The involvement of the
DMN in our task was expected since previous studies have shown
that the generation of spontaneous associations involves brain
regions of the DMN15,18,19,118. DMN-related brain regions are
thought to be essential for the spontaneous processes119 con-
tributing to creative abilities, especially the medial prefrontal
cortex89,118. In addition, the DMN has been associated with
several aspects of cognition involving heteromodal memory
retrieval120,121 and semantic goal maintenance122; its interaction
with the ECN correlates with a task similar to the CAT123.
Importantly, the connectivity predicting switching involves con-
nections of DMN regions with other networks, in particular with
ECN regions and the temporal pole, rather than within-DMN
connections, suggesting that switching requires interactions
between the DMN and other networks. The connectivity between
DMN and ECN uniquely predicted switching, not clustering in
PolyFT. This finding is consistent with the behavioral findings
suggesting that interactions between associative and control
processes support flexible search in memory. This interpretation
is also in line with previous neuroimaging findings showing that
DMN-ECN interactions reflect the top-down regulation of
spontaneous and self-generated forms of cognition, with ECN
guiding and constraining the DMN-related generative
processes15,89,124,125. Their link with the salience network may
allow them to trigger the switching between the engagement of
controlled and associative modes of thought, supported by ECN
and DMN, respectively13,89,125,126.

Also aligned with this hypothesis, the left inferior frontal gyrus,
a critical region of the semantic control system29,30,37,60,86,93,
plays a role in the positive switching predictive network, through
its connectivity with the DMN, salience and visual networks, and
with the temporal regions of the ECN. This result is further in
line with a series of studies demonstrating the critical role of the
left inferior frontal gyrus in fluency tasks84,127, in controlled
semantic retrieval and selection59,61,128,129, and in resolving
competition between incompatible representations127. How the
ECN regions based on the Schaeffer parcellation103 align with the
semantic control system remains to be directly addressed (see for
instance refs. 31,130). In addition, echoing the correlation between
the switching component and CAT, the predictive network
includes node regions of the ECN and DMN that have been
shown critical for CAT performance in patients15 in the rostral
inferior frontal gyrus and medial prefrontal cortex.

The involvement of the ECN in the prediction of switching
performance is also consistent with the correlation of the
switching component with executive tests that typically implicate
regions of the ECN84,131–133. Overall, these results are in line with
several studies showing that since ambiguous words activate
multiple meanings, the processing of these words involves
processing demands related to the executive semantic
system93,94,134–136.

In addition to regions of the DMN and ECN, a posterior region
of the left orbital frontal cortex (limbic network) is a high degree
node in the positive switching predictive model. This brain region
has been associated to inhibitory control84,137, and damage to this
region had been associated with difficulties in suppressing inap-
propriate behaviors and perseverative responses138,139, functions

that likely play a role in avoiding inappropriate or perseverative
responses during PolyFT performance.

The negative model networks predicting both clustering and
switching do not involve attentional or cognitive control regions
such as the DAN or the lateral frontal cortex. On the contrary,
higher connectivity in ECN and DAN related to higher clustering
and higher AUT performance. Hence, our results do not support
the hypothesis of a release of regulatory control leading to higher
creative abilities140(see also ref. 141).

Overall, switching in PolyFT may be supported by interactions
between DMN and ECN or semantic control system (as well as
with their interaction with the salience, visual and somatomotor
networks), highlighting the contribution of controlled processes
to explore diverse semantic fields and the importance of the
DMN for self-paced switching behavior. Interestingly, switching
related to salience-DMN connectivity whereas clustering was
related to salience-ECN connectivity, which may help to further
tease apart the involvement of Salience-DMN-ECN connectivity
patterns observed in more complex forms of creative cognition
(see refs. 87,89). Importantly, we find evidence of ECN activity in
PolyFT for both clustering and switching. For clustering, the
ECN-salience connectivity and activation of the dorsal attention
network may indicate a focused attention. For switching, ECN-
DMN connectivity (as well as with their interaction with the
salience, visual and somatomotor networks), may support con-
trolled processes to explore diverse semantic fields. Hence,
behavioral and brain correlations converge in suggesting that the
PolyFT task effectively captures the dual processes proposed for
semantic memory search64, and that both processes involve
controlled processing but in different ways. These findings lend
further support to semantic memory search being a two stages
process (see refs. 47,65,66).

Some limitations of this study should be mentioned. First, the
sample is relatively small, especially for conducting the CPM
approach. However, the results are robust to statistical procedures
based on permutation testing and cross-validation. The internal
validation using the resting-state data of the same participants
may be influenced by the similarity between task and rest-based
functional connectivity data142. Third, some correlations did not
survive multiple comparisons likely due to a lack of power. Future
studies should consider a higher number of participants and
external validations to further support the robustness of our
results. In addition, replication of these results with more cue
words for the PolyFT task would be useful to draw more general
conclusions on the underlying processes. Fourth, it is possible
that the RJT involves executive processes recruited for judging the
relatedness between word pairs, which may have influenced the
CPM models. However, SemNet metrics based on the RJT ratings
did not correlate with the executive tests we used, and they have
been previously validated in several studies as assessing the
structure of semantic memory24,26,27,112. Furthermore, Benedek
et al.24 have found that SemNet structure and executive processes
independently predicted individual differences in creative think-
ing. Fifth, when exploring the UUN graph metrics, the threshold
applied to the networks could yield binary graphs with different
densities, which may impact the graph metrics. Future work
should address this issue by developing novel approaches to
explore SemNet metrics independent of the network density.
Finally, it is important to note that our results reflect brain-
behavior relationships that do not address whether the individual
differences in brain network architecture are the cause or the
effect of individual differences in semantic search components
related to creative ability.

In conclusion, the current findings contribute to better
understand the cognitive processes of memory search that relate
to creativity and their neural correlates. Clustering and switching

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03547-x

10 COMMUNICATIONS BIOLOGY |           (2022) 5:604 | https://doi.org/10.1038/s42003-022-03547-x | www.nature.com/commsbio

www.nature.com/commsbio


measures were related to divergent and convergent creativity
tasks, respectively, and were predicted by distinct brain con-
nectivity patterns. The switching component correlated with
semantic memory structure and executive functions, and was
predicted by brain functional connectivity between and within the
DMN, ECN, and salience networks. This suggests that flexibility
in memory search relies on interactions between spontaneous and
controlled processes guiding the search. Contrary to our initial
expectations, the clustering component did not correlate with
semantic memory structure and its predictive connectivity pat-
terns relied on interactions between ECN, salience, and atten-
tional regions. Thus, clustering was not limited to associative
memory processes, but also likely captured attentional focus
allowing persistent memory search behavior, and thus may reflect
a distinct, controlled semantic search mechanism that comple-
ments switching in search of remote, yet relevant associations.
Together these findings shed light on the neurocognitive
mechanisms allowing efficient and flexible semantic memory
search in support of creative cognition, based on alternations
between focused attention and exploratory search.

Methods
Participants. Behavioral and MRI data from 93 healthy participants (43 women,
mean age= 25.6 years, SD= 3.83) were collected in total. Data from seven parti-
cipants were excluded due to a brain abnormality revealed by the MRI acquisition
(n= 6), and for falling asleep during the experiment (n= 1). The final sample
consisted of 86 participants (43 women, mean age= 25.5 years, SD= 3.48), who
took part in a larger MRI study on creative thinking27. All participants were French
native speakers, right-handed, with normal or corrected-to-normal vision and with
no neurological disorder, cognitive disability or medication affecting the central
nervous system. All gave informed written consent and received monetary com-
pensation for their participation. The study was approved by the approved French
ethics committee “CPP Sud Mediterranee IV” and we have complied with all
relevant ethical regulations.

General procedure. After being informed on the experiment and overall visit, the
participants first completed the relatedness judgment task (RJT) inside the MRI
scanner. Then, outside the scanner, they completed two creativity tasks (AUT and
CAT), neuropsychological tests assessing executive processes relevant to creativity,
and the PolyFT task. The tasks are detailed below.

Ambiguous word-fluency task (PolyFT). In the PolyFT task, participants are
required to name all the words that they could think of as associated with a given
cue word (i.e., single-word associations) within one minute. As cue words, we
selected three ambiguous, polysemous French words: somme (sum), glace (ice),
and rayon (ray; note that English translation does not convey all the meanings of
these words in French), that have high lexical frequency (> 20 occurrences per
million in a large corpus according to the French lexicon project, http://www.
lexique.org/) and at least five different meanings according to the French dictionary
(Supplementary Table 1). The list of the different meanings of each cue was
determined using a French linguistic resource for research (Centre National de
Ressources Textuelles et Lexicales; https://www.cnrtl.fr/). For each cue word, par-
ticipants generated words associated with the cue word, without being informed
that the words had different meanings. The cue words were read out by the
experimenter and also presented visually on a paper sheet. The participants gave
their responses orally, which were written down by the experimenter. Participants’
responses were cleaned (orthographic errors and typos) and coded by EV as
referring to one of these meanings (Supplementary Table 1).

For each participant, and for each cue word, several measures were computed:
(1) fluency (the total number of different words generated during the time
allowed); (2) the number of different meanings the responses refer to; (3) the
number of switches between meanings quantified as the number of time two
successive words refer to two different meanings; (4) the biggest cluster size, that
was the largest number of successive responses that refer to the same meaning
during the task; and (5) the rank of the first switch, that was the rank of the first
response when the participant referred to a new meaning. Because there is a debate
on how to best measure switching51,53,54 we measured both the total number of
different meanings and every transition from one meaning to another and used a
principal component analysis approach (see below). We also measured the rank of
the first switch in an attempt to capture how much participants stayed in the same
meaning before considering alternative ones. The measured variables were
calculated on each cue word separately and averaged across the three cue words for
each participant.

Principal component analysis of the ambiguous word-fluency task measures.
We ran the PCA on the five PolyFT measures averaged with oblique rotation
(direct oblimin) to rotate loadings and identify the variables contributing the most
to each component in the 86 participants. The PCA analysis was based on a
correlation matrix. Components with eigenvalues over Kaiser’s criterion of 1 were
kept with confirmation of their relevance using the scree plot. Sampling adequacy
for the analysis was assessed with the Kaiser–Meyer–Olkin measure (standard
threshold= 0.507).

Creativity assessment with the alternative uses task (AUT). In the AUT,
participants were given three minutes to continuously generate alternative uses for
each of three common objects (i.e., a tire, a bottle, and a knife). The name of the
object was pronounced by the examiner and displayed on the screen for 3 min. The
participants wrote down their responses on the computer using the keyboard and
could see all their responses during the task period. At the end of the three minutes,
participants were asked to select their two most creative ideas for each object (top-
2)105,106. All the generated responses were coded in order to homogenize similar
ideas that were differently formulated. Then, classical scores for divergent thinking
tasks were computed. The fluency quantified the total number of responses gen-
erated by the participants summed across the three objects (AUT-fluency). The
uniqueness score (AUT-uniqueness) was the sum of the number of ideas across the
three objects that were generated by less than 5% of the other participants. The
overall frequency of responses (AUT-commonness) quantified the frequency with
which each idea was generated within the group averaged across all responses and
objects for each participant. Finally, five independent judges who were lab mem-
bers familiar with creativity ratings were given written instructions to rate the
creativity of each of the top-2 responses (AUT ratings)105,106. They used a Likert
scale from 0 (not creative) to 4 (highly creative). The inter-rater reliability showed
an intraclass correlation coefficient equal to 0.74. The database to compute the
AUT-uniqueness and the AUT-commonness included eight additional subjects
who performed the set of creativity tasks but not the PolyFT.

Creativity assessment with the combination of associates task (CAT). The
CAT is an adaptation of the Remote Associates Test9, a classical task assessing
convergent thinking in creativity. In the CAT, participants completed 100 trials
composed of triplets of cue words that at first glance seem to be unrelated. On each
trial, they were asked to provide a solution word that relates to each of the cue
words. In developing the CAT, we varied the semantic distance between the cue
words and the solution, as described in previous articles15,96. In close trials
(n= 50), the solution had a semantically close relationship to the cue words,
whereas in distant trials, the solution is remotely related to the cue words (n= 50).
On each trial, participants were given 30 s to find a solution. They were asked to
press the space bar as soon as they thought of the solution, and to write it down on
the computer within 5 s using the keyboard. Next, they were asked to report
whether the solution came to their mind with a feeling of insight or Eureka, i.e.,
when the solution arose suddenly and effortlessly to mind8. They were given five
additional seconds to press the “v” key if they found the solution with an insight, or
the “n” key otherwise. We quantified the accuracy in CAT as the total percentage of
correct responses (CAT-CR). To differentiate the performance of the participants
in the close versus the distant trials, we calculated an index as the difference in
accuracy in the close and distance conditions, divided by the overall accuracy
(CAT-index). This index reflects the ability to solve the more distant trials when
controlling for performance in the closer trials: the lower the CAT-index, the
higher the creativity abilities. Finally, CAT-eureka score was the percentage of
reported Eureka among correct trials.

Relatedness judgment task (RJT). The RJT task was used to estimate the indi-
vidual SemNets24–26. This task consists in judging the semantic relationship
between all possible pairwise combinations of 35 words controlled for linguistic
properties and semantic distance between all word pair combinations. We selected
the 35 words of the RJT task based on their linguistic properties and the dis-
tribution of the theoretical distance (strength of association) between each pair of
words (see ref. 25 for details). In total, the participants performed 595 RJT trials
(Fig. 2a). For each trial, the word pair was presented on the screen along with a
visual scale below going from 0 to 100. Participants were instructed to rate the
relationship or semantic association between the two words using a slider. They
were encouraged to use all the values of the scale for their judgments going from 0
(totally unrelated words), to 100 (totally related words). Each trial was composed of
a 2-s thinking period and a 2-s response period. The thinking period started with
the display of the words and the visual scale. Participants were instructed to think
about the relatedness between the words. After this two-second thinking period,
the slider appeared in the middle of the scale. Participants could then freely move
the cursor on the scale using a mouse and validating their response by a left-click.
This response period ended with the validation or when the 2 s of the response
period had elapsed. The final position of the slider in the scale after validation was
considered as the semantic relatedness rating. When participants did not validate
the trials (3.5% of the trials across participants), the final position of the slider at
the end of the response time was considered as the semantic relatedness rating.
Note that in all trials (including unvalidated ones) the slider had been moved by
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the participants from its initial position. An inter-trial interval jittered from 0.3 to
0.7 seconds (mean 0.5; interval: 0.05) separated two successive trials. Trials were
grouped in 24 blocks of 25 trials each (except the last block that lasted 20 trials) and
organized into six runs of four blocks each. Blocks were separated by 20 seconds
rest periods, and runs by self-paced rest periods. Each run lasted around nine
minutes. Trials were pseudorandomly attributed to blocks with the constraint that
the distribution of the theoretical distances between word pairs was equivalent
between blocks (see refs. 25,27 for details).

Estimating individual semantic networks based on the RJT task. We used the
ratings given by the participants in the RJT task to build their individual SemNets.
For each participant, we built a 35 words × 35 words adjacency matrix which cells
corresponded to the rating between the node pairs. From the adjacency matrix, we
built the WUN and the UUN SemNets. The WUN was composed of 35 nodes (i.e.,
RJT words), and the edges connecting the nodes were weighted by the participants’
ratings. The UUN was composed of the same 35 nodes, and the edges were
thresholded so that only ratings higher than 50 (middle of the scale) were kept and
then binarized. For the UUN, we selected the threshold value of 50 (at the middle
of the visual scale, hence retaining associations between concepts only when rated
as moderately to highly related) based on previous studies24,25 that showed how
UUN metrics thresholded in this way predicted creativity. In this way, only
associations between concepts were kept when they had been rated as moderately
to highly related. The selection of this threshold was validated by an additional
analysis in which we computed each SemNet metric for a range of thresholds and
used the area under curve for subsequent correlations with behavior143 (see Sup-
plementary Note 1).

Computation of the individual semantic network metrics. We built the UUN
and the WUN graphs separately and computed the network metrics97–100. Eff is
calculated as the inverse value of the average of shortest path lengths. CC is
computed for each node as the proportion of neighbors that are neighbors to each
other. Within the SemNets, higher clustering represents more connected or related
concepts. Q is measured as the level of division of the network into smaller sub-
networks or communities. In SemNets, these communities can represent different
semantic categories. The computation of the SemNet metrics were performed in
Matlab, via the Brain Connectivity Toolbox100.

Executive control assessment with the digit span test. The digit span test of the
Wechsler Adult Intelligence Scale (WAIS)144 was used to assess working memory
ability. We used the criteria of performance of this task based on the WAIS manual.
This task consisted of two parts in which participants repeated a string of numbers
that increased in size. In the first part (forward-span), participants were instructed
to repeat 16 different strings of numbers going from 2 to 9 digits in the same order.
In the second part (backward-span), they were instructed to repeat 16 different
strings from 2 to 8 digits, but reversely. Participants were given with a pair of
strings as examples before the actual tasks. To quantify the total score, we gave 1
point for each correct recall. Both parts were quantified separately.

Executive control assessment with the trail-making test. The trail-making test
(TMT) assesses set-shifting145. This task is composed of two parts. In the first part
(A), participants were presented with numbers distributed randomly on a sheet of
paper. They were instructed to link the numbers (from 1 to 25) in increasing order
with a pen, as fast as possible. In the second part (B), participants were presented
with numbers (from 1 to 13) and letters (from A to L) distributed randomly within
the sheet. They were instructed to link the numbers and letters alternately in
increasing order, as fast as possible. The time to complete each part was measured.
We quantified the difference between the time to complete the second minus the
first part (TMT-shifting).

Executive control assessment with the category and letter-fluency tasks.
Participants performed two fluency tasks measuring broad retrieval abilities, a
category-fluency task (with the category animals)146, and a letter-fluency task (with
the letter ‘F’). For each task, participants were given two minutes to continuously
generate as many words as possible. We recorded and transcribed the responses of
each participant. Based on ref. 146, we quantified the total number of responses
generated by the participants for each task separately.

Executive control assessment with the Stroop test. The Stroop test147, mea-
suring inhibition, was based on the French version in ref. 148. In the first part,
participants were presented with 100 written names of different colors and were
instructed to read these names aloud. In the second part, participants were pre-
sented with 100 colored squares and were instructed to name the color of the ink.
In the third part, participants were presented with 100 written names of colors with
different color ink. Participants were instructed to say the color of the ink aloud.
Each part was timed and the total time to complete each part was recorded. Based
on ref. 148, we quantified the interference effect (Stroop-interference) as the dif-
ference in time to complete the third (ink naming with interference) and the
second part (color naming).

Statistics and reproducibility. We explored the Spearman correlations between
all behavioral measures and the PolyFT components of all participants (n= 86).
We ensured that the number of the unvalidated trials during the RJT task was not
correlated to any of the PolyFT components, and the measures of creative abilities,
SemNet metrics, and executive function abilities. We used an FDR approach to
correct for multiple comparisons. We reported the p-values for all significant
correlations both before and after the correction for all the comparisons that were
performed, as a compromise between overly conservative and liberal approaches.

MRI data acquisition and preprocessing. Whole-brain imaging was acquired on
a 3T MRI scanner (Siemens Prisma, Germany) with a 64-channel head coil. The
fMRI data was acquired during the RJT runs using multi-echo echo-planar imaging
(EPI) sequences. Each run consisted of 335 volumes acquired with repetition time
(TR)= 1600 ms, echo times (TE) for echo 1= 15.2 ms, echo 2= 37.17 ms and echo
3= 59.14 ms, flip angle= 73°, 54 slices, slice thickness= 2.50 mm, isotropic voxel
size 2.5 mm, Ipat acceleration factor= 2, multi-band= 3 and interleaved slice
ordering. In addition to functional imaging, a T1-weighted structural image was
acquired using TR= 2300 ms, TE= 2.76 ms, flip angle= 9°, 192 sagittal slices with
a 1 mm thickness, isotropic voxel size 1 mm, Ipat acceleration factor= 2 and
interleaved slice order. In the last part of the session, we acquired resting-state
fMRI data for 15 min. No volume was discarded from any of the fMRI data since
the recording did not contain dummy scans.

Functional volumes of each run and for resting-state data were first despiked,
slice timing corrected and realigned to the first volume (computed on the first
echo) using the afni_proc.py pipeline from the Analysis of Functional Neuroimages
software (AFNI; https://afni.nimh.nih.gov)149. In a second step, the data were
denoised using the TE-dependent analysis of multi-echo fMRI data (TEDANA;
https://tedana.readthedocs.io/en/stable/), version 0.0.9150,151. The TEDANA
pipeline consisted of an optimal combination of the echo time series followed by
the reduction of the data using PCA and independent component analysis (ICA) to
decompose the multi-echo BOLD data, and classify the BOLD components as
BOLD or non-BOLD. The removal of the latter eliminates the thermal and
physiological noise including the artifacts generated by the movements, respiration,
and cardiac activity. The advantage of acquiring multi-echo EPI sequences is the
possibility of assessing the BOLD and non-BOLD signal through the ICA-based
denoising method, improving the reliability of the functional connectivity-based
measurement152. In the last step of the preprocessing, the data were co-registered
on the T1-weighted structural image using the Statistical Parametric Mapping
(SPM) 12 package running in Matlab (Matlab R2017b, The MathWorks, Inc., USA)
and normalized to the Montreal Neurological Institute (MNI) template. To
spatially normalize the fMRI data, we used the transformation matrix computed
from the normalization of the T1-weighted structural image, using with the default
settings of the computational anatomy toolbox (CAT 12; http://dbm.neuro.uni-
jena.de/cat/)153 implemented in SPM 12.

No participant was removed due to excessive head motion within a single run,
defined a priori as >2 mm translation or >3° rotation, and no participant had mean
FD > 0.5 mm. To covary out the task-related signal from each run, the denoised
and normalized fMRI data were entered in a general linear model in SPM. We
regressed out of the BOLD signal 24 motion parameters (standard motion
parameters, first temporal derivatives, standard motion parameters squared, and
first temporal derivatives squared) and the onsets and durations of each task-
related events (reflection period, response period, inter-trial interval, cross-fixation
periods, and change of the cross-fixation color). We then standardized and
detrended the residuals of the GLM for each run, and concatenated the six runs,
removing the between runs rest periods. These preprocessed data were used in the
subsequent analyses.

Connectome-based predictive modeling (CPM) of PolyFT components. We
used the CPM approach to analyze how cognitive components of the PolyFT task
rely on whole-brain functional connectivity. We used CPM with a cross-validation
approach since it is a more conservative way to infer a brain-behavior relationship
than the typical correlation approach, allowing to increase the likelihood of
replication in future studies and preventing the overfitting of the data102. The
functional connectivity matrices for the task and resting-state data of each parti-
cipant were computed using Nilearn v0.3154 in Python 2.7155. We defined regions
of interest (ROIs) based on the Schaefer brain atlas103 which includes 200 ROIs of
2-mm dimensions distributed into 17 functional subnetworks distributed on eight
main functional networks. We extracted and averaged the BOLD signal for each
ROI and performed Pearson pairwise correlations. As a result, we obtained a
200 × 200 matrix for each participant that were Z-Fisher transformed and rescaled
by the maximal weight to be in the range of −1 to 1 for the subsequent analyses.
The CPM analysis102 consisted of five steps, and a validation process. Since we used
a leave-one-out validation, the first three steps were performed in N-1 participants,
and the fourth step was performed in the left-out individual.

In the first step, we selected the behaviorally relevant edges of the brain
connectivity individual networks. We selected the connections in the functional
connectivity matrix (z-scored connectivity values between ROIs) that significantly
correlated with each PolyFT component (threshold P < 0.01) either positively (the
positive model network) or negatively (the negative model network) across
participants. We used Spearman correlations to avoid the possible influence of
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outliers in the predictions. The ROI pairs (i.e., brain links) correlated with each
component formed the positive and the negative model network for the fluency
and flexibility components. In the second step, we estimated the connectivity
strength of the positive and the negative model brain network, separately. In the
third step, we built a linear model using the individual connectivity strength in the
positive and negative model networks as predictors and the PolyFT component as
the outcome. To further ensure that the results are not biased by movement during
fMRI, the mean FD (sum of the absolute values of the derivatives of the six
realignment parameters) was included in the predictive model. We also tested
whether the movements during fMRI impact the results by running the same
analysis without including mean FD in the model (see Supplementary Note 3). In
addition, the mean FD values had no correlated with any of the PolyFT
components (clustering: rs= 0.016, P= 0.89; switching: rs=−0.051 P= 0.64). The
fourth step was a leave-one-out validation. We applied iteratively the predictive
linear model built on N-1 participants to the left-out participant. This allowed us to
obtain a predictive value of the PolyFT component for each participant. The final
step tested the prediction of the linear model by running Spearman correlations
between the predicted and the observed values of the PolyFT component. Hence,
we ran a separate analysis for the PolyFT components. Since we used within-data
set cross-validation, when Spearman correlations were significant, it was necessary
to evaluate the predictive power of the predictions using permutation testing. To
this end, we randomly shuffled the observed values 1000 times, and we ran the
pipeline of our predictive model using the new random data. Thus, we generated an
empirical null distribution and estimated the distribution of the test statistic given
by the correlation between predicted and observed values. The CPM analyses were
performed using Matlab Statistical Toolbox (Matlab R2017b, The MathWorks,
Inc., USA).

We explored the functional anatomy of the positive and negative model
networks of each score by localizing and describing the main nodes and links of the
significant model networks. Since we employed a leave-one-out method, for each
iteration the number of links can be slightly different. For a better interpretation of
the results, we considered the links that were significant in all iterations. We
examined the distribution of the connections at the region level (between and
within brain lobes) and at the intrinsic network level (within and between the eight
main functional networks defined by the Schaefer atlas). Finally, we identified the
highest degree nodes (i.e., ROIs), which are the nodes with the highest number of
connections within the predictive networks. With the leave-one-out approach, the
model networks were estimated N times on N− 1 participants, and thus each
iteration likely resulted in slightly different model networks. To obtain a reliable
representation of the predictive model networks, we selected for this description
the connections in the model networks that were shared between all iterations. The
data visualization and plots were performed using BioImage Suite Web 1.0 (http://
bisweb.yale.edu/connviewer), BrainNet viewer156 (http://www.nitrc.org/projects/
bnv/) in Matlab, and custom scripts in RStudio version 1.3.1056.

Internal validation: prediction of PolyFT components from resting-state
functional connectivity. As an internal validation test, the predictive models built
based on the task-based functional connectivity were applied to the participant’s
resting-state data (i.e., the strength of functional connectivity within each partici-
pant’s positive and negative model networks during resting-state acquisition).
Similar as for the task-based analyses, the mean FD was included in the model, and
the Spearman correlations between the predicted and the observed PolyFT com-
ponents were computed to evaluate the prediction.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or
the Supplementary Information, or are available at https://osf.io/uktjm/?view_only=
3ab90072a7804e08ad80d2b8c45ced19.

Code availability
Analyses were conducted using open software and toolboxes available online as described
in “Methods” (SPM 12: https://www.fil.ion.ucl.ac.uk/spm/software/spm12/; AFNI:
https://afni.nimh.nih.gov); Nilearn: https://nilearn.github.io/stable/index.html;
TEDANA: https://tedana.readthedocs.io/en/stable/; CPM: https://www.nitrc.org/
projects/bioimagesuite/; Network metrics computation: https://sites.google.com/site/
bctnet/Home/functions). Any custom scripts written for this paper are available upon
request from the corresponding author.
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