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Chem. Phys. 73, 461 (1980)] is introduced in the non-primitive mean spherical approximation (MSA) framework for an arbitrary mixture of hard spherical ions and polar polarizable solvent molecules. The thermodynamic properties are derived for this more realistic representation of an aqueous electrolyte. The obtained explicit formulas constitute a thermodynamically consistent set.

Introduction

This article is dedicated to the memory of D. Henderson. It reports on a way of introducing the effect of solvent polarizability in the mean spherical approximation (MSA) model for a mixture of ions and dipoles [START_REF] Blum | Solution of the mean spherical approximation for hard ions and dipoles of arbitrary size[END_REF][START_REF] Blum | Analytical solution of the mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent[END_REF][START_REF] Wei | The mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent: Approximate solution, pair correlation functions, and thermodynamics[END_REF][START_REF] Simonin | On the solution of the mean-spherical approximation (MSA) for ions in a dipolar solvent in the general case[END_REF][START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF]. D. Henderson significantly contributed to the description of such mixtures, in the bulk [START_REF] Lo | Improved Monte Carlo simulations of the structure of ion-dipole mixtures[END_REF][START_REF] Trokhymchuk | A molecular theory of the hydration force in an electrolyte solution[END_REF], and near a charged wall [START_REF] Vericat | Generalized mean spherical approximation for a mixture of hard ions and hard dipoles against a charged hard wall[END_REF][START_REF] Boda | Monte Carlo simulation of an ion-dipole mixture as a model of an electrical double layer[END_REF][START_REF] Blum | Mixtures of hard ions and dipoles against a charged wall: The Ornstein-Zernike equation, some exact results, and the mean spherical approximation[END_REF][START_REF] Henderson | Application of density functional theory to study the double layer of an electrolyte with an explicit dimer model for the solvent[END_REF].

In the present work, an electrolyte solution is modeled as a collection of ions and dipolar polarizable solvent molecules (representing mostly water). The ions and the solvent particles are regarded as hard spheres, carrying a charge (positive or negative) and a central point dipole, respectively. The polarizability of the solvent is introduced by using a theory proposed by Høye and Stell [START_REF] Høye | Statistical mechanics of polar fluids in electric fields[END_REF][START_REF] Høye | Dielectric theory for polar molecules with fluctuating polarizability[END_REF]. Within this theory, every polarizable particle is regarded as a classical oscillator in which electric charges of opposite signs are displaced within the molecule. In the case of solvents like water, the dipole moment of a molecule oscillates around a mean value.

In Ref. [START_REF] Høye | Dielectric theory for polar molecules with fluctuating polarizability[END_REF] the model was employed to describe the polarization of a pure dipolar liquid. An expression was derived for the average magnitude of the dipole moment within the MSA, in terms of the component, c ∆ (0), of the direct correlation function in the notation of Wertheim [START_REF] Wertheim | Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments[END_REF] (for r = 0). However, the macroscopic thermodynamic properties of such a polarizable fluid were not given.

The effect of ion polarizabilities [START_REF] Caillol | Electrical properties of polarizable ionic solutions. I. Theoretical aspects[END_REF][START_REF] Caillol | Electrical properties of polarizable ionic solutions. II. Computer simulation results[END_REF] will not be addressed here. This problem would be formidably difficult to solve within the present framework because it would involve considering a mixture of at least three types of dipoles (for the solvent and two ions), all constituents having different sizes. Moreover, quantum effects would have to be taken into account [START_REF] Høye | Quantum statistical mechanical model for polarizable fluids[END_REF]. Besides, it may be noticed that the effect of ion polarizabilities is often expected to be low to moderate [START_REF] Warren | Comparison of the solvation structure of polarizable and nonpolarizable ions in bulk water and near the aqueous liquid-vapor interface[END_REF] because of the spherical symmetry around ions in the bulk of ionic solutions, which results in low induced dipoles in ions. However, the onset of asymmetries in a solution, such as those met in ion pairs [START_REF] Warren | Comparison of the solvation structure of polarizable and nonpolarizable ions in bulk water and near the aqueous liquid-vapor interface[END_REF], may trigger large induced dipoles in ions, especially in big, highly polarizable, anions.

In this study, in a continued effort to make the model more realistic, the polarizability of the solvent is included in the ion-dipole MSA model that was solved recently in the general case of particles of different diameters [START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF]. The classical (non-quantum) version of the fluctuating polarization model is employed to account for this property. The thermodynamic properties of the system are derived, and used to ensure that the solution to the problem is fully thermodynamically consistent. The Gibbs-Duhem relation is one of the relations to be satisfied.

The chemical potentials of all species are obtained, which allows one to calculate the activity coefficients of the ions and the osmotic coefficient of the solution.

Model for a pure fluid of dipolar particles

Solvent with permanent dipole moment

In this section, a pure solvent is considered to be comprised of hard spherical dipolar particles, of diameter σ and number density ρ. They bear a permanent central point dipole of moment s 0 . Its Helmholtz energy per particle will be denoted as f (ρ). It will be convenient to use the quantity I = -βρf , with β = 1/(k B T ) the usual inverse temperature parameter. For a reference system comprised of hard spheres of the same size, the Helmholtz energy per particle is f 0 (ρ), and I 0 = -βρf 0 . The reference system pressure P 0 and chemical potential µ 0 follow from

βP 0 = I 0 -ρ ∂I 0 ∂ρ , βµ 0 = - ∂I 0 ∂ρ . ( 1 
)
Now extend the hard sphere fluid to a simplified version of "polar" fluid with pair potential (±s 0 )(±s 0 )ψ(r). The purpose with this version is to establish general properties and results due to polarizability. Next they are used when polarizability is added to the more demanding ion-dipole fluid in following sections. The simplified model is a one-dimensional version with "dipole" moment ±s 0 whose average is ⟨s⟩ = ⟨±s 0 ⟩ = 0. Within the MSA this gives a perturbing contribution to the free energy, I 1 , (I = I 0 + I 1 ) [START_REF] Høye | Thermodynamics of the MSA for simple fluids[END_REF], with

I 1 = - 1 2 1 (2π) 3 [ln(1 -Rc(k)) + Rc(k)] dk = - 1 2 1 (2π) 3 ln(1 -Rc(k)) dk - 1 2 Rc(0), (2) 
with k the Fourier wave vector and R given by

R = ρ⟨s 2 ⟩ = ρ⟨(±s 0 ) 2 ⟩ = ρs 2 0 . ( 3 
)
Note that here the density ρ has been replaced by the quantity R. This rescales both the pair correlation function and the direct one. This rescaling will be convenient when the general MSA properties of polarizable particles are derived below.

With rescaled quantities the MSA direct correlation function is

c(r) =    c 0 (r), when r < σ, -βψ(r), when r > σ, (4) 
With ⟨s⟩ = 0 the condition on the dipolar part of the pair correlation function, that separates from the reference system, is

h(r) = 0, r < σ. ( 5 
)
The OZ (Ornstein-Zernike) equation for it is

h(k) = c(k) + c(k)R h(k). (6) 
Note that with this rescaling the influence of the "dipole" moment goes via R, and the core conditions ( 4) and ( 5) stay fixed. With use of proper three-dimensional dipole interaction and dipole moments the OZ equation would split into two parts. Here this is avoided by use of the simplified version.

By differentiation and use of the OZ equation and the conditions on c(r) and h(r) one finds

∂I 1 ∂ρ = 1 2 1 (2π) 3 Rc(k) 1 -Rc(k) ∂R ∂ρ c(k) + R ∂c(k) ∂ρ dk = 1 2 1 (2π) 3 c(k) 1 -Rc(k) -c(k) ∂R ∂ρ + Rc(k) 1 -Rc(k) R ∂c(k) ∂ρ dk = 1 2 (h(0) -c(0)) ∂R ∂ρ + Rh(r)R ∂c(r) ∂ρ dr = - 1 2 c(0) ∂R ∂ρ . ( 7 
)
Thus altogether with fixed dipole moment s 0

∂I 1 ∂ρ = - 1 2 ∂R ∂ρ c(0) = - 1 2 c(0)s 2 0 , ( 8 
)
and the contributions to the pressure and chemical potential become

βP 1 = I 1 -ρ ∂I 1 ∂ρ = - 1 2 1 (2π) 3 ln(1 -Rc(k)) dk βµ 1 = ∂I 1 ∂ρ = 1 2 c(0)s 2 0 . (9)

Solvent with fluctuating dipole moment

The principles of the model were presented by Høye and Stell [START_REF] Høye | Dielectric theory for polar molecules with fluctuating polarizability[END_REF]. The dipole moment of a solvent particle is assumed to fluctuate in a harmonic potential that turns out to read

φ(s) = 1 2α (s -s 0 ) 2 . ( 10 
)
where α is the polarizability of the particle, s is the dipole moment, and s 0 is the permanent dipole on a molecule (s and s 0 are vectors). We will consider in this work that, as it is approximately the case for water, the polarizability of the molecule is isotropic. Then α is a scalar, not a tensor (this approximation may be dropped without fundamental difficulty [START_REF] Høye | Dielectric theory for polar molecules with fluctuating polarizability[END_REF]).

For the simplified polarizable fluid with fluctuating dipole moment s the fluid may be regarded as a polar fluid mixture with density distribution ρ s and "dipolar" pair interaction s 1 s 2 ψ(r). Based on the simplified version of a "polar" fluid the OZ equation will be as before

except that R changes into R = ρ⟨s 2 ⟩ = s ρ s s 2 , ( 11 
) with ρ = s ρ s s 2 . ( 12 
)
Note that for the general treatment below it is not required for the potential φ(s) to be harmonic. The MSA contribution I 1 to I is still given by expression (2) (I 1 = -βρf 1 , with f 1 the Helmholtz energy per particle).

The dipole moment s fluctuates in the potential φ of Eq. (10) inside each particle. This adds an internal energy to each particle. Further the density ρ splits into a density distribution ρ s of hard spheres with equal diameters. This gives an additional entropy term that corresponds to an ideal mixture. Altogether, for this mixture of hard spheres, the free energy function I 0 changes into I r for this new reference system, which reads,

I r = I 0 + I m with I m = - s ρ s ln ρ s ρ - s ρ s βφ(s), s ρ s = ρ. ( 13 
)
With this one finds

∂I r ∂ρ = ∂I 0 ∂ρ -ln ρ s ρ -βφ(s). ( 14 
)
and the pressure for this mixture reference system becomes

βP r = I r - s ρ s ∂I r ∂ρ s = I 0 -ρ ∂I 0 ∂ρ s = βP 0 , ( 15 
)
since the additional terms cancel (with ∂I 0 /∂ρ s = ∂I 0 /∂ρ and I 0 = I 0 (ρ)). So one has, P r = P 0 .

With R modified from expression (3) to [START_REF] Henderson | Application of density functional theory to study the double layer of an electrolyte with an explicit dimer model for the solvent[END_REF] the MSA expression (2) for I 1 remains unchanged. Expression ( 8) is modified to

∂I 1 ∂ρ s = - 1 2 ∂R ∂ρ s c(0) = - 1 2 c(0)s 2 , ( 16 
)
which is the MSA contribution to the chemical potentials

βµ 1,s = 1 2 c(0) s 2 . ( 17 
)
The MSA contribution to the pressure, βP 1 = I 1s ρ s ∂I 1 /∂ρ s , will still be given by Eq. ( 9), but now with R given by Eq. [START_REF] Henderson | Application of density functional theory to study the double layer of an electrolyte with an explicit dimer model for the solvent[END_REF]. Altogether, by adding this to result (15) the resulting expression for the pressure remains unchanged.

This result can be given a physical interpretation as follows. The average dipole moment squared ⟨s 2 ⟩ for a given temperature and density may be regarded as a permanent dipole moment from which the pressure follows. Internal states and energies of the particles have no direct influence upon the pressure, only via the average ⟨s 2 ⟩.

Adding expressions [START_REF] Wertheim | Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments[END_REF] and ( 17) one finds the resulting chemical potentials (with βµ 0 = -∂I 0 /∂ρ),

βµ s = βµ 0 + ln ρ s ρ + βφ(s) + 1 2 c(0)s 2 . ( 18 
)
Here it can be mentioned that in Refs. [START_REF] Høye | Statistical mechanics of polar fluids in electric fields[END_REF][START_REF] Høye | Dielectric theory for polar molecules with fluctuating polarizability[END_REF] the chemical potentials were defined without the term φ(s). There this term was viewed mainly as an external potential by which the µ s and then the density ρ s at "position" s should decrease with increasing φ(s). By that, µ s was like a local chemical potential in an external field, like the gravity field. However, here we need the proper thermodynamic chemical potential by which they all should be equal since they all belong to the same basic particles, except for different values of the parameter s. Thus one has,

µ s = µ. ( 19 
)
Together with Eq. ( 18) this gives the density distribution

ρ s = C exp -βφ(s) - 1 2 c(0)s 2 , C = ρ exp (βµ -βµ 0 ). (20) 
This equation used for different values of s gives equations of chemical equilibria for particle

densities ln ρ s 1 ρ + βφ(s 1 ) + 1 2 c(0)s 2 1 = ln ρ s 2 ρ + βφ(s 2 ) + 1 2 c(0)s 2 2 , ( 21 
)
ρ s 1 ρ s 2 = K 12 , K 12 = exp -β(φ(s 1 ) -φ(s 2 )) - 1 2 c(0)(s 2 1 -s 2 2 ) . ( 22 
)
With Eqs. ( 18) and [START_REF] Høye | Thermodynamics of the MSA for simple fluids[END_REF] the "common" chemical potential µ or Gibbs free energy per particle becomes

ρβµ = ρβµ 0 + 1 2 Rc(0) + s ρ s ln ρ s ρ + s ρ s βφ(s). ( 23 
)
By summation on both sides the chemical potential can be determined explicitly from Eq. ( 20)

ρ = CZ, βµ = βµ 0 -ln Z, Z = s exp -βφ(s) - 1 2 c(0)s 2 . ( 24 
)
Here Z is the one-particle partition function for the internal fluctuations inside particles. Usually the density distribution will be continuous in s by which sums will be integrals. Then the question may be how to normalize or make small steps ds. But such normalization will only give a constant factor to Z and by that a constant added to the entropy. Otherwise it has no physical significance. Since entropy can be interpreted in terms of the logarithm of the number of micro-states, as established by Boltzmann, this constant of the entropy cannot be settled in classical physics. However, quantum mechanics with discrete eigenstates resolves this problem of entropy.

Some further relations are provided in Appendix A, and fulfillment of the Gibbs-Duhem relation is also examined formally in Appendix B.

The simplified model considered in this section forms a basis that easily extends itself to the much more demanding polarizable ion-dipole fluid and its MSA solution. An immediate extension is the polar/polarizable fluid of Ref. [START_REF] Høye | Dielectric theory for polar molecules with fluctuating polarizability[END_REF] where the OZ equation splits into two parts.

There the general form of the chemical potential remains the same with c(0) replaced by the quantity c ∆ (0)/m 2 e of the polar fluid, where m e is defined in Eq. ( 26). The extension to the ion-dipole case modifies c(0) further where the dipolar chemical potential splits into two parts, one with s 2 → m 2 dependence connected to the internal energy and another without this dependence. Apart from this, the ions do not interfere with the properties of the simplified model by which properties of this model can also be applied to the polarizable ion-dipole fluid considered below in this work.

Inclusion of polarizability effects for electrolytes

In the case of electrolytes, for commodity, we will employ a slightly different notation to distinguish the solvent from the ions. Quantities related to the dipolar solvent will be denoted with subscript n, and the dipole on a molecule by the symbol m.

Further relations

A few useful relations in the case of electrolytes are exposed now.

It was shown in Ref. [START_REF] Høye | Dielectric theory for polar molecules with fluctuating polarizability[END_REF] that the excess chemical potential of a dipole in pure solvent is given, within the MSA, by

µ E n (m) = m 2 ⟨m 2 ⟩ u n . ( 25 
)
where superscript E denotes an excess quantity, ⟨m 2 ⟩ is the mean square dipole moment of the solvent molecules, and u n is the mean configurational internal energy of the dipoles. In this equation, this energy is used in the case of electrolyte solutions, instead of c ∆ (0)/(2β), where c ∆ is the component of the direct correlation function in the notation of Wertheim [START_REF] Wertheim | Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments[END_REF],

equivalently, to express µ E n . Thus, Eq. ( 25) follows from Eq. ( 17) with c(0) = c ∆ (0)/⟨m 2 ⟩. It represents the mean internal energy per particle by considering that the dipoles bear a mean effective dipole moment, m e , given explicitly by the formula derived in Ref. [START_REF] Høye | Dielectric theory for polar molecules with fluctuating polarizability[END_REF],

m 2 e = ⟨m 2 ⟩ = 3 α β a + m 2 0 a 2 , ( 26 
)
with

a = 1 1 + 2 α u n /m e 2 . ( 27 
)
This is also result (C.4) from the evaluation of Z made in Appendix C.

Case of ions of equal diameters within the MSA

We now consider the problem of an electrolyte comprised of ions and polarizable dipolar particles. We first particularize to the semi-restricted (SR) case in which all ions have the same diameter. The general case is addressed below in a second stage.

With polarization the expression for the pressure will not change compared to the basic situation with permanent dipole moment, except that the permanent dipole moment is replaced by the effective one. This follows from Eq. ( 15) where the mixing term does not contribute and Eq. ( 9), which is the MSA term as before. This is mentioned below Eq. ( 17).

Let us consider a particular dipole of moment m that is present in the electrolyte. It is expected that the relations presented in the previous subsection still hold when ions are added to a pure dipolar solvent. Furthermore, it may be thought that the ions simply experience the effective solvent dipole moments, m e , of Eq. ( 26). This follows from the analysis of the MSA solution made in Ref. [START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF]. Then, the individual internal energy and chemical potential of the ions (which are equal in the SR case of the MSA) are expected to be expressed by the classic formulas derived in the non-polarizable case, that is,

βµ E i = βu i = L 0 σ i b 0 - L 0 σ n d 2 d 0 b 1 , (28) 
with L 0 = βe 2 /(4πε 0 ), ε 0 the permittivity of a vacuum, σ i the diameter of an ion, σ n that of a solvent molecule, and e the charge of a proton. Moreover, the dimensionless parameters d 0 and d 2 were defined by Blum et al. [START_REF] Blum | On the mean spherical approximation for hard ions and dipoles[END_REF] as, d 0 2 = 2ρ S σ i 2 βe 2 /ε 0 (with ρ S the number density of the salt S) and

d 2 2 = βρ n m e 2 /(3ε 0 ). ( 29 
)
in which the solvent dipole moment is identified with the effective dipole moment m e of Eq. ( 26), and b 0 , b 1 and b 2 are MSA parameters to be determined by solving a set of equations [START_REF] Blum | On the mean spherical approximation for hard ions and dipoles[END_REF][START_REF] Simonin | On the "Born" term used in thermodynamic models for electrolytes[END_REF].

In the SR case, the expression of u n is given by Eq. ( 23) of Ref. [START_REF] Simonin | On the "Born" term used in thermodynamic models for electrolytes[END_REF] (similarly to u i , u n is equal to the electrostatic contribution to the solvent chemical potential [START_REF] Simonin | On the solution of the mean-spherical approximation (MSA) for ions in a dipolar solvent in the general case[END_REF]), which yields

βu n = -d 2 2d 2 b 2 + d 0 σ n σ i 2 b 1 /(4πρ n σ n 3 ). ( 30 
)
Then by using Eqs. ( 29) and [START_REF] Blum | Dielectric behavior of polar-polarizable solvents in generic mean spherical approximations: The Kirkwood g k factor[END_REF], one gets for a [Eq. ( 27)] in the SR case,

a -1 = 1 - α 3πε 0 σ n 3 b 2 + 1 2 d 0 d 2 σ n σ i 2 b 1 , (31) 
In the case of pure solvent (absence of ions: d 0 = 0), this relation simplifies to give,

a 0 -1 = 1 - α 3πε 0 σ n 3 b 2 . ( 32 
)
As was seen in Eq. ( 20), the distribution law of dipole moments, ρ n (m), may be written,

ρ n (m) = C exp[-βφ(m) - m 2 m 2 e u n ], with C = ρ n exp(βµ E n ). ( 33 
)
The one-particle partition function is,

Z = m exp[-βφ(m) - m 2 m 2 e u n ] d 3 m, ( 34 
)
and the sum of the distribution function ρ n (m) over the dipole moments m must give ρ n , that is, by combining the latter two equations,

ρ n = m ρ n (m) d 3 m = C Z, ( 35 
)
By taking m 0 along the x axis one can explicitly perform the integration in Eq. (34) by using Eqs. [START_REF] Blum | Mixtures of hard ions and dipoles against a charged wall: The Ornstein-Zernike equation, some exact results, and the mean spherical approximation[END_REF] 

βµ E n = -ln Z), βµ E n = a m 0 2 m e 2 βu n - 3 2 ln a = 1 a + 3α/(βm 0 2 ) βu n - 3 2 ln a. ( 37 
)
after removing a term involving β and α which may be inserted in the chemical potential of the reference system of apolar particles. The last expression of βµ E n in Eq. (37) was obtained by using Eq. ( 26) for m e .

Eq. ( 37) represents the excess chemical potential of the solvent dipoles. As required, it vanishes for apolar molecules (m 0 = 0 and α = 0) because then u n = 0 in Eq. ( 27) and therefore a = 1. It also vanishes at infinite dilution of the dipoles and ions (in which case one also has a = 1). It is also noticed that the non-polarizable result (α = 0) for µ n is recovered, that is µ E n = u n [START_REF] Simonin | On the solution of the mean-spherical approximation (MSA) for ions in a dipolar solvent in the general case[END_REF] because then a = 1 by virtue of Eq. ( 27). By again taking m 0 along the x axis, one can likewise calculate the mean value of the dipole moment,

⟨m⟩ = m m ρ n (m) d 3 m, ( 38 
)
which yields

⟨m x ⟩ = a m 0 , ⟨m y ⟩ = ⟨m z ⟩ = 0. ( 39 
)
which means that the mean dipole moment is stretched by a factor of a in the direction of m 0 .

In contrast with the solvent, the chemical potential of the ions coincides with their individual internal energy per ion, u i , in which the solvent dipole moment is taken to be the effective dipole moment. Their expression may be found in Eq. ( 19) of Ref. [START_REF] Simonin | On the "Born" term used in thermodynamic models for electrolytes[END_REF].

General case of ions of arbitrary diameters within the MSA

In the general case where all species have different diameters, following the result of our previous work [START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF], the solvent chemical potential will be given by,

βµ E n = a m 0 2 m e 2 βu n - 3 2 ln a + βδµ n = 1 a + 3α/(βm 0 2 ) βu n - 3 2 ln a + βδµ n . ( 40 
)
the latter form resulting from Eq. (37), and in which δµ n is the additional contribution expressing the effect of ion size asymmetry.

Note here the different use of u n and δµ n . For the pure polarizable fluid the term m 2 u n /m 2 e is the excess chemical potential of the mixture problem as given by Eq. ( 25) in accordance with the s 2 term of Eq. [START_REF] Warren | Comparison of the solvation structure of polarizable and nonpolarizable ions in bulk water and near the aqueous liquid-vapor interface[END_REF]. For this situation 2βu n = c ∆ (0) as mentioned below Eq. ( 25). With ions present, u n will have additional contributions, but for polarizable particles they will keep their m 2 dependence. However, for the more general situation, dipolar particles will have a third contribution δµ n to their chemical potential. But δµ n does not have the m 2 dependence.

It is due to the ion asymmetry and does not depend upon m, only indirectly via ⟨m 2 ⟩ [START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF].

The formal expression for the excess chemical potential of the ions remains unchanged as compared to the non-polarizable case, that is [START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF],

µ E i = u i + δµ i . ( 41 
)
in which u i and δµ i are calculated for the effective solvent dipole moment. Again this follows from the analysis of the MSA in Ref. [START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF]. Dipole moments can be distributed in various ways on particles with the same hard core diameter while the solution remains the same. Polarization leads to such a distribution where the average ⟨m 2 ⟩ is equivalent to the m 2 0 of a permanent dipole moment.

The expressions of the chemical potentials of the solvent and the ions were established in Ref. [START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF]. They will not be reproduced here because they are quite involved.

Internal energy

We now want to calculate the excess internal energy U E of the electrolyte. The excess Helmholtz energy per volume unit is,

A E V = k=i,n ρ k µ E k -P E . ( 42 
)
in which V is the volume of solution and the sum runs on all ions i and on n. The energy U E per volume unit may be obtained from the relation,

U E V = ∂(βA E /V ) ∂β , ( 43 
)
It will be useful to write this relation alternatively as,

U E V = ∂(βA E /V ) ∂β me + ∂(βA E /V ) ∂m e β ∂m e ∂β , ( 44 
)
in which it turns out that,

∂(βA E /V ) ∂m e β = 0. ( 45 
)
This follows from the differentiations given by Eq. (A.6) in Appendix A. As commented below Eq. (A.9), partial differentiations of I 1m and then Helmholtz free energy with respect to changes in ⟨s 2 ⟩, i.e. m e , do not contribute.

It will be convenient to rewrite Eq. (42) as,

A E V = k=i,n ρ k (u k + δµ k ) -P E + ρ n µ E n -(u n + δµ n ) , ( 46 
)
in which Eqs. ( 40) and (41) were utilized. In this relation, the first term in brackets is the Helmholtz energy for the system of ions and permanent dipoles of moment m e . Therefore, one obtains from Eqs. ( 44), (45), and (46),

U E V = k=i,n ρ k u k + ρ n ∂{β µ E n -(u n + δµ n ) } ∂β me , (47) 
By setting

f = a m 0 2 m e 2 -1, (48) 
which is a function of m e , one has from Eq. (40),

β µ E n -(u n + δµ n ) = f βu n - 3 2 ln a, ( 49 
)
Insertion of this relation into Eq. ( 47) leads to,

U E V = k=i,n ρ k u k + ρ n f u n + ρ n β ∂(f u n ) ∂β me - 3 2 
∂(ln a) ∂β me , ( 50 
)
It is shown in Appendix D that the last term in curly braces turns out to be nought. Consequently one obtains the simple result for the internal energy,

U E V = k=i,n ρ k u k + ρ n f u n , (51) 
Equation (C.5) of Appendix C shows that this result is consistent with Eq. (A.8) which in the present context reads, u tot n = u n + ⟨φ(m)⟩, in which u tot n is the total internal energy per solvent particle. Then an extra term of 3/2 appears in it, i.e. in βu = βu tot n . It comes from the term 3/2 × ln β that was subtracted from -ln Z in Eq. ( 36), and inserted into the reference chemical potential, to yield the excess chemical potential of Eq. (37). Further, this corresponds to the potential energy of a classical three-dimensional harmonic oscillator where each degree of freedom has an energy k B T /2 = 1/(2β).

Consequently, the internal energy of the system is not only the sum of the individual electrostatic interaction energies of the ions and the solvent. It also comprises a contribution from the self-energy of the dipoles (the last term of Eq. ( 51)), which corresponds to the work needed to induce the dipoles in the solvent molecules. This energy is equal to f u n per solvent particle.

By virtue of Eqs. ( 26) or ( 37) and (48) one has,

f = a m 0 2 m e 2 -1 = 1 a + 3α/(βm 0 2 ) -1. ( 52 
)
It stems from this relation that f is negative because a ≥ 1, and so is u n . Consequently, this extra energy f u n is always positive as expected for this induced-dipole energy.

Thermodynamic consistency checks

As in Ref. [START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF], it was verified numerically by using the symbolic calculation program Maple (with 50 digit numbers), that the thermodynamic quantities obtained in this work fulfill some fundamental relations. The test was done in the case of a binary solution of a one molar 1-1 salt at 25 • C in a water-like solvent comprised of polarizable dipolar molecules. The diameters of the cation and the anion were identical to those employed in previous work [START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF], namely 2 Å and 4 Å, respectively, for which results for the case of permanent dipole were reported. The choice of the parameters for the solvent is described in the next section.

The thermodynamic relations are summarized in Table 1 together with the accuracy to which they are satisfied for values of a parameter ε that represents the relative increment by which the densities or the temperature are varied.

The accuracies reported in this Table are the absolute values of the relative differences between the two sides of the relations. Fulfilment of the Gibbs-Duhem relation was checked at constant temperature by verifying that the equality,

ρ S ∂µ S ∂ρ k + ρ n ∂µ n ∂ρ k = ∂P ∂ρ k . ( 53 
)
was satisfied for k = n and k = S, with subscript S designating the salt. The two corresponding relations are called GDn and GDs in Table 1.

Table 1: Accuracies observed in the thermodynamic consistency checks as a function of increment ε. As was shown in Ref. [START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF] the fact that an accuracy in Table 1 varies as ε 2 for a given relation, shows that this relation is accurately fulfilled, and that the analytic expressions of the quantities involved in this relation are consistent and valid.

Relation ε = 10 -2 ε = 10 -3 ε = 10 -4 GDn 1.52 × 10 -5 1.52 × 10 -7 1.52 × 10 -9 GDs 1.03 × 10 -6 1.03 × 10 -8 1.03 × 10 -10 µ E S = ∂(A E /V )/
U E /V = ∂(βA E /V )/∂β 4.29 × 10 -6 4.29 × 10 -8 4.29 × 10 -10 ∂(U E /V )/∂ρ S = ∂(βµ E S )/∂β 1.72 × 10 -6 1.72 × 10 -8 1.72 × 10 -10 ∂(U E /V )/∂ρ n = ∂(βµ E n )/

Illustration in the case of a binary 1-1 electrolyte with polarizable water-like solvent

Parameter values for the solvent

The model employed here to represent a water-like solvent is rather simple, because in particular it does not include hydrogen bonding. So it cannot be expected that the use of experimental values for the permanent dipole moment and the polarizability of water account accurately for the physical properties of water.

Therefore the values to be taken for these parameters first require some discussion.

The experimental values for the permanent dipole moment and the average polarizability of the water molecule in vacuum are m 0 = 1.855 Debye [22] and α/(4πε 0 ) ∼ 1.47 Å3 [START_REF] Murphy | The Rayleigh depolarization ratio and rotational Raman spectrum of water vapor and the polarizability components for the water molecule[END_REF]. If these values are used as inputs in the present model, and if it is required that the density of the pure solvent be that of water at a pressure of 1 atm and a temperature of 25 • C, then one gets a diameter σ n ∼ 4.8 Å and a dielectric constant ϵ n ∼ 55, respectively too large and too small as compared to expectations. It was found in previous work [START_REF] Simonin | On the "Born" term used in thermodynamic models for electrolytes[END_REF] that a fluid comprised of molecules of diameter σ n ≃ 2.4805 Å, and permanent dipole moment m ≃ 2.2203 Debye (incidentally close to the value of 2.27 Debye for the permanent dipole moment in SPC simulations [START_REF] Yu | Accounting for polarization in molecular simulation[END_REF]) has a dielectric constant and a density in agreement with experiment (ϵ n ∼ 78.4, d n = 0.997047 kg dm -3 ) in the MSA.

The m 0 and α values in the present framework must be such that they lead to an effective dipole moment that coincides with this value, that is m e = 2.2203 Debye. The diameter of the molecule must also be the same, σ n ∼ 2.4805 Å, for the pressure to be 1 atm.

The values of m 0 and α were determined as follows. The dielectric constant of the pure solvent obeys the equation [START_REF] Blum | On the mean spherical approximation for hard ions and dipoles[END_REF], [It may be noted that another common parametrization of the MSA solution is ε n = q(2ξ)/q(-ξ) with q(x) = (1 + 2x) 2 /(1 -x) 4 . Connections between ξ and λ are: In this study, it was chosen to employ the latter set, for which the polarizability is higher than in the first set. As for the ions, the following sizes were used: σ 1 = 2 Å for the cation and σ 2 = 4 Å for the anion as an example of asymmetric case.

ε n = λ(λ + 1) 2 4 2 . ( 54 
λ = (1 + 4ξ)/(1 -2ξ), λ + 1 = 2(1 + ξ)/(1 -2ξ),

Results

As in previous work [START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF], the following ion sizes were used: σ 1 = 2 Å for the cation and σ 2 = 4 Å for the anion. The formulas of this former report were utilized.

In what follows, it must be noticed that the total pressure (hard sphere [START_REF] Mansoori | Equilibrium thermodynamic properties of the mixture of hard spheres[END_REF] plus electrostatic) was kept constant, which introduced an additional equation to be solved. This condition about the pressure was ensured by employing a solvent density ρ n that varied with salt concentration. The unknowns of the problem for a binary solution (solvent + one salt) were:

b (1) 0 , b (2) 
0 , b

(n) 0 , b (1) 
1 , b

1 , b

(n)
1 , b 2 , a, and θ n = ρ n /ρ n,0 where ρ n,0 is the density of pure solvent at 1 atm, and b

(1) 0 , b (2) 0 , b (n) 0 , b (1) 1 , b (2) 1 , b (n)
1 , and b 2 are MSA parameters. This made a total number of parameters of 9 for this binary solution. As in Ref. [START_REF] Simonin | Full solution to the mean spherical approximation (MSA) for an arbitrary mixture of ions in a dipolar solvent[END_REF], there was one equation more than unknowns. After the solution for the 9 MSA parameters was determined, it was checked that this extra equation was indeed satisfied for this solution.

The set of MSA equations was solved numerically by employing Maple. The complexity of these equations imposed to first determine the solution at a low salt concentration of 0.02M (by using an initial guess found in the non-polarizable case), and then by slowly increasing the concentration by increments of 0.02M.

The variation of the parameter a is plotted in Figure 1. It starts from a 0 = 1.37 in pure solvent [Eq. ( 32)]. As expected its value increases with salt concentration. The relative change in a at 2M is of the order of 4%.

Its variation influences the value of the solvent dipole moment as shown in Figure 2, where the ratio m e /m e,0 is plotted as a function of concentration (where m e,0 ∼ 2.22 Debye is the effective dipole moment in pure solvent).

It is noticed that the relative change in m e is modest, of only ∼ 4% at 2M, similarly to the change in a in that range. This is because the value of m e is averaged over the dipoles, most of them not being in the close vicinity of an ion.

The mean salt activity and osmotic coefficients were computed (at constant pressure). The former was calculated on molality scale as indicated in Ref. [START_REF] Simonin | On the "Born" term used in thermodynamic models for electrolytes[END_REF] from the formula,

ln γ S = β∆µ E S + ln θ n , ( 56 
)
where ∆µ

E i = βµ E i -βµ E i (ρ S → 0), µ E i (ρ S → 0
) is the excess chemical potential of ion i at infinite dilution of the salt, µ S = µ 1 + µ 2 (1=cation, 2=anion), and θ n = ρ n /ρ n,0 .

The osmotic coefficient was determined from the classic formula,

Φ = - x n x S ln a n , (57) 
with x n and x S being the solvent and total solute mole fractions (x S = x 1 + x 2 ; x n /x S = ρ n /2ρ S for a 1-1 salt), and a n the solvent activity which is obtained from,

ln a n = µ n -µ n,0 = β∆µ E n + ln θ n . ( 58 
)
in which the second contribution comes from the ideal part of the total chemical potential µ n .

It was verified numerically that these expressions for ln γ S and Φ satisfy the Gibbs-Duhem relation (the pressure being held constant),

d[m S (1 -Φ)] + m S d(ln γ S ) = 0. ( 59 
)
The activity and osmotic coefficients are represented in Figures 3 and4 up to a molality of 1 mol kg -1 . The plots are limited to this molality value because, above it, γ S and Φ decrease monotonically to very low values. It is seen in these figures that the inclusion of solvent polarizability induces an appreciable drop of γ S and Φ as compared to the case where the dipole moment does not vary (α = 0). This effect may be explained by the increase in ion-dipole and dipole-dipole attraction caused by the rise of the solvent dipole moment.

Conclusion

In a continued effort to build a more realistic model, solvent polarizability effects have been introduced in the MSA for mixtures of ions and dipoles of arbitrary size. The classical fluctuating polarization model of Høye and Stell allows one to represent a water-like solvent in a tractable way.

In the future, it will be attempted to include other features in this model, such as hydrogen bonding and van der Waals forces. However it is clear that the former in particular will require significant efforts to be accounted for in the present framework. Some possible avenues might be found in previous studies in which the hydrogen bond was modeled in terms of directional sticky interactions [START_REF] Cummings | Analytic solution of the molecular Ornstein-Zernike equation for nonspherical molecules. spheres with anisotropic surface adhesion[END_REF][START_REF] Wei | Nonprimitive model of electrolytes: Analytical solution of the mean spherical approximation for an arbitrary mixture of sticky ions and dipoles[END_REF][START_REF] Blum | A general solution of the molecular Ornstein-Zernike equation for spheres with anisotropic adhesion and electric multipoles[END_REF][START_REF] Blum | Dielectric behavior of polar-polarizable solvents in generic mean spherical approximations: The Kirkwood g k factor[END_REF]. We now see that this relation is also fulfilled for the polarizable fluid. For the hard sphere part I 0 this is clearly so. For the contribution I 1 from the MSA solution the derivation of P 1 and µ 1 from I 1 is given by Eq. ( 2). This together with Eqs. ( 8) and ( 17 With fixed dipole moment one has R = ρs 2 0 . Then dR = s 2 0 dρ = (R/ρ) dρ. With polarizability R = ρ⟨s 2 ⟩ where ⟨s 2 ⟩ will vary.

For the mixing term I m given by Eq. ( 13) the contribution to the pressure was found to be zero by which dP m = 0.

(B.5)

The corresponding contributions to the chemical potentials are The quantity Z given by Eq. ( 24) is a useful one for the polarizable ion-dipole system. For Therefore one finds that Q = 0, which is used in Eq. ( 50).

β

  ) in which λ is a classic polarization parameter. With ϵ n = 78.4 this gives λ ∼ 2.653. The value of b 2 is obtained from the relation [20], b 2 = 6(λ -1)/(λ + 2). (55) which yields b 2 ∼ 2.132. By inserting Eq. (32) with this value of b 2 , and the diameter σ n ∼ 2.4805 Å in Eq. (26) where m e = 2.2203 Debye, one gets a quadratic equation relating m 0 and α.

and b 2 =

 2 12 ξ[START_REF] Høye | Dielectric theory for polar molecules with fluctuating polarizability[END_REF][START_REF] Wertheim | Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments[END_REF].] A choice for the value of m 0 imposes the value for α, and vice-versa. Taking m 0 = 1.855 Debye yields α/(4πε 0 ) ∼ 0.828 Å3 , which is much lower than the experimental value of 1.47 Å3 for water in vacuum. Conversely, taking the simulation result, α/(4πε 0 ) ∼ 1.45 Å3[START_REF] Salanne | Polarizabilities of individual molecules and ions in liquids from first principles[END_REF], imposes taking m 0 ∼ 1.58 Debye.
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 1 Figure 1: Plot of parameter a as a function of salt concentration (at constant pressure).

Figure 2 :

 2 Figure 2: Relative variation of the effective solvent dipole moment as a function of salt concentration (at constant pressure).

Figure 3 :

 3 Figure 3: Mean salt activity coefficient as a function of salt molality. Dashed line: result with permanent dipole moment of 2.22 D (=m e,0 ); Solid line: result with polarizability (varying dipole moment).

Figure 4 :

 4 Figure 4: Osmotic coefficient as a function of salt molality. Dashed line: result with permanent dipole moment of 2.22 D (=m e,0 ); Solid line: result with polarizability (varying dipole moment).

Appendix B .

 . Gibbs-Duhem relation for pure solventFor a mixture the pressure P isβP = I + s ρ s βµ s , βµ s = -∂I ∂ρ s . (B.1)Differentiation of it and use of dI =s βµ s dρ s givesβ dP = dI + s (βµ s dρ s + ρ s β dµ s ) = s ρ s β dµ s , (B.2)which is Gibbs-Duhem relation for a mixture. For polarizable particles, the µ s for different dipole moments of a particle are all equal to the common "thermodynamic" chemical potential µ for the particle [Eq. (19)]. Then the Gibbs-Duhem relation becomes the usual one for a one component system dP = ρ dµ. (B.3)

) gives β dP 1 = dI 1

 11 

6 )

 6 by which (µ m,s = µ m ) ρβµ m = s ρ s β dµ ms = s dρ s -dρ ρ s ρ s = 0, dP m = ρ dµ m = 0. (B.7) Appendix C. One-particle partition function Z.

2 ) 2 )

 22 the situation with (s → m, c(0)s 2 → (m 2 /me 2 )βu n ) one may set for commodityβφ(m) = 1 2 b (m -m 0 ) 2 , with b =By differentiations of the integrand of the integral Z with respect to b and c, one gets the averages⟨(m -m 0 ) 2 ⟩ = -2Since m e is kept constant in Q, the f and u n are functions of the lone a in the differentiations, so that one gets using Eqs. (48) and (D.2) in Eq. (D.1),

  , (33), and (35). More details are given in Appendix C. One gets, From this relation one obtains using the definition of C in Eqs. (33) and (35) (from which

	ln Z = -a	m 2 0 m 2 e	βu n +	3 2	ln	2παa β	,	(36)

  dµ ms = -

		s	∂ ∂ρ s 1	∂I m ∂ρ s	dρ s 1 =	s	∂ ∂ρ s 1	ln	ρ s ρ	+ βφ(s) dρ s 1
	=	s	δ s 1 s ρ s	-	1 ρ	dρ s =	dρ s ρ s	-	dρ ρ	,	(B.
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Appendix A. Some further relations in the case of pure solvent

By substitution of Eqs. ( 23) and [START_REF] Yu | Accounting for polarization in molecular simulation[END_REF] in Eq. ( 13) one finds

Adding this to the MSA contribution [START_REF] Blum | Analytical solution of the mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent[END_REF] gives

With changes δρ, δR, and δβ one first finds from Eq. ( 16) and its derivation

The δβ dependence follows from the same derivation since Rc(r) = -βRψ(r) for r > σ. The change in δZ follows from changes in β and c(0). With integral (24) one finds

by which

Adding together one finds

From this one finds the excess chemical potential

in agreement with Eq. [START_REF] Yu | Accounting for polarization in molecular simulation[END_REF]. For the internal energy per particle u one further finds

This is the MSA energy plus the average (classical) potential energy due to internal oscillations of each particle. Via the c(0) the latter is influenced by the dipolar interactions.

For the pressure one finds

which is the same as the MSA pressure P 1 alone, i.e. the mixing term does not contribute to the pressure. This was also concluded from Eq. ( 15).

It can be noted that the variation δR = ⟨s 2 ⟩ δρ + ρ δ⟨s 2 ⟩ does not appear in the resulting variations of Eq. (A.6). This implies that partial differentiation of I 1m with respect to changes in ⟨s 2 ⟩ is zero and thus does not contribute. Thus, in this respect, the effective dipole moment, for a given temperature and density, can be regarded as a fixed dipole moment.

Appendix D. Proof of Eq. (51)

Let us denote by Q the quantity appearing in Eq. (50),

∂(ln a) ∂β me , (D.1)