INTRODUCTION

In molecular dynamics simulations, coarse-graining methods consist in replacing an allatom system by a system with a smaller dimension, either by merging groups of atoms in single units or by describing the system through a relatively small set of collective variables.

Such models are then used either to get some physical understanding of the system or, from a numerical viewpoint, to reduce the cost of sampling long trajectories. In both cases, an important issue is to describe the dynamics of the coarse-grained variables: in theory, obtaining their exact trajectory requires the simulation of the initial all-atom system, which one wants to avoid. In practice, it is approximated by so-called eective dynamics, namely closed equations which do not involve explicitly the withdrawn atomistic degrees of freedom (whose inuence may be taken into account as a random noise) [START_REF] Lee | The multi-dimensional generalized Langevin equation for conformational motion of proteins[END_REF] .

A class of models frequently used to perform this task is given by the Generalized Langevin Equations (GLE) 612 , which usually take the following form:

ẍt = F e (x t ) - t 0 K(t -s) ẋs ds + ζ t (1)
where x t ∈ R d is the position at time t of the variables, F e : R d → R d is an eective force, K : R + → R d×d is a time-dependent linear friction kernel and ζ is a Gaussian noise. In many cases 6,7,1115 , F e = -∇W pmf where W pmf is the potential of mean force associated to the coarse variables. When K is a Dirac mass at 0 and ζ is a white noise this is the standard Langevin equation. The form [START_REF] Peter | Multiscale simulation of soft matter systems from the atomistic to the coarse-grained level and back[END_REF] is heuristically motivated by the so-called Mori-Zwanzig formalism 6,1618 , but there are few cases where a rigorous derivation has been established.

There is an important literature on linear (harmonic) cases 1721 . The non-harmonic case, with a non-linear eective force given by the potential of mean force, is discussed in Refs. [START_REF] Lange | Collective Langevin dynamics of conformational motions in proteins[END_REF], 23, but it is observed in Ref. [START_REF] Glatzel | The interplay between memory and potentials of mean force: A discussion on the structure of equations of motion for coarse grained observables[END_REF] that these derivations rely on some implicit and uncontrolled approximations, and it is argued that in general it is in fact not possible to get, within the Mori-Zwanzig formalism, an equation of the form (1) with a non-linear eective force but a friction term which is linear in the velocity. Our rst contribution is a nuance to the statement of 24 , namely: in general, it is possible to rigorously derive a GLE similar to [START_REF] Peter | Multiscale simulation of soft matter systems from the atomistic to the coarse-grained level and back[END_REF] in a general non-linear coupled case, with a non-linear force and a friction which is linear in the velocity, if the kernel K is allowed to depend on the position, i.e. a GLE of the form ẍt = F e (x t ) -t 0 K(ts, x s ) ẋs ds + ζ t .

(2) Moreover, in accordance with the standard assumption and in contrast to [START_REF] Glatzel | The interplay between memory and potentials of mean force: A discussion on the structure of equations of motion for coarse grained observables[END_REF] , in this case the memory kernel and the covariance of the noise are related by a form of uctuation-dissipation relation (see sec. II E below for the denition), adapted to the position-dependent framework.

To be clear, our framework is restricted to the case where the initial all-atom equation is an equilibrium Hamiltonian dynamics.

As we will see, along the formal derivation, the kernel K is proven to satisfy some integrodierential equations of Volterra type. As a natural continuation, our second contribution is the implementation of a numerical scheme based on these equations to estimate the kernel and parametrize GLE models from all-atom simulations, thus adaptating the inverse Volterra method [START_REF] Li | Computing the non-Markovian coarsegrained interactions derived from the MoriZwanzig formalism in molecular systems: Application to polymer melts[END_REF],2529 to the position-dependent kernel settings.

II. DERIVATION OF GENERALIZED LANGEVIN EQUATIONS

A.

Preliminary considerations

The purpose of the Mori-Zwanzig approach is to extract the evolution in time of an observable from the dynamics of a microscopic state. More explicitly, it relies on the following elements:

A rst order dierential equation for a microscopic state X(t), given by

∂ t φ (X(t)) = Lφ (X(t)) (3) 
for all functions φ where L denotes the evolution operator. For the sake of clarity, and since this is the main case of interest, we will only consider later the deterministic case where L is the Liouville operator for Hamiltonian dynamics, in particular X(t) = (q(t), p(t)) ∈ R 2D with D the position space dimension. Extensions to Markov operators for stochastic dynamics can be considered, following 9,30 (although, when working at the level of the Kolmogorov equations for stochastic processes, one should be careful whether the goal is to describe the evolution of φ(X(t)) or of its expectation with respect to the initial random noise).

A function O : R 2D → R d , so that we are interested in writing a closed eective equation for the observable O(X(t)). For instance, O can be a collective variable, or a collective variable and its velocity (in which case d = 2n where n is the dimension of the collective variable, see sec. II C).

A reference probability density ρ on R 2D . For processes at equilibrium, it is simply chosen as the equilibrium Gibbs measure, but other measures are possible 31,32 . Given

ρ, we consider on L 2 (ρ, R d ) = {φ : R 2D → R d , |φ| 2 dρ < ∞} the scalar product φ, ψ = R 2D φ(X) • ψ(X)ρ(X)dX. (4) 
A set E = {e k , k ∈ I} of linearly independent functions from R d to R d , for some index set I.

From the functions e k : R

d → R d , it is convenient to introduce the functions E k = e k • O from R 2D to R d , where • is the composition, i.e. (e k • O)(X) = e k (O(X)).
Given the observable O, the reference measure ρ and the family E, we introduce P E the orthogonal projection (in L 2 (ρ)) on the closure of the space spanned by the set {E k , k ∈ I}. For φ : R 2D → R d , this orthogonal projection is formally given by

P E φ = k∈I k ∈I G -1 k,k E k , φ E k (5) 
where G -1 the inverse of the Gram matrix of the basis, namely G k,k = E k , E k . For instance, when E is reduced to a set of linear functions, this projector is also known as the Mori projector 33 . By contrast, when E is chosen as an Hilbert basis of L 2 (R d ) (i.e. a sequence of functions whose linear combinations can approximate arbitrarily well any function in L 2 (R d )) , then this projector is known as the Zwanzig projector 12,24 . Lastly for E a nite family of function, P E is a nite-rank projector 8,31 . We refer to App. A for details on projection operators.

B. The general Mori-Zwanzig derivation

For X ∈ R 2D , we denote by X(t) the ow associated to (3) with initial condition X. It holds

∂ t O (X(t)) = LO (X(t)) = e tL LO (X) = e tL P E LO (X) + e tL (1 -P E )LO (X) .
Using the following Duhamel-Dyson formula:

e tL = e t(1-P E )L + t 0 e (t-s)L P E Le s(1-P E )L ds and introducing the notation

ξ t (X) = e t(1-P E )L (1 -P E )LO(X) ,
this rst equation can be rewritten as

∂ t O (X(t)) = e tL P E LO (X) + t 0 e (t-s)L P E Lξ s (X) ds + ξ t (X) = P E LO (X(t)) + t 0 P E Lξ s (X(t -s)) ds + ξ t (X) . (6) 
From Eq. ( 5), we introduce the coecients f k and for s 0 the time-dependent coecients g k (s) such that

P E LO = k∈I f k E k , P E Lξ s = k∈I g k (s)E k . (7) 
The projected evolution equation is then, writing O(t) = O(X(t)),

∂O(t) ∂t = k f k e k (O(t)) + t 0 k g k (s)e k (O(t -s))ds + ξ t (X) := f (O(t)) + t 0 g (s, O(t -s)) ds + ξ t (X) , (8) 
with f = k f k e k and g(s, •) = k g k (s)e k for s 0. This is the generic form of a GLE where on the right hand side, the rst term is known as the mean force term, the second term is related to the memory and the last term ξ t (X), which is interpreted as a noise, follows the orthogonal dynamics 31

∂ t ξ t (X) = (1 -P E )Lξ t (X) with ξ 0 (X) = (1 -P E )LO(X). (9) 
Notice that ( 8) is an exact equality. The approximation comes afterward when, in order to withdraw the orthogonal degrees of freedom and close the equation without solving the orthogonal dynamics, ξ t (X) is replaced by a random noise ζ t independent from O(0).

The key property of ξ t (X), under which relies this approximation, is that it is by design uncorrelated to e k (O(0)) for all k ∈ I. Indeed, assuming that X is a random variable distributed according to ρ, we have for all k ∈ I [START_REF] Chung | Generalized Langevin Equation: An Introductory Review for Biophysicists[END_REF] and if for instance all constant functions are in the span of {e k , k ∈ I}, we obtain that the average of ξ t (X) with respect to ρ is zero.

E (e k (O(0)) • ξ t (X)) = E k , ξ t = 0,
The validity in some asymptotic regimes of the approximation obtained by replacing ξ t (X) by an independent noise can be shown in some cases, see e.g. 3436 . Gaussian processes are then naturally motivated by the central limit theorem, although real applications don't always have particular reasons to fall in this regime 3739 . We won't discuss further this point from a theoretical point of view.

Taking the scalar product of ( 8) with E for ∈ I, the orthogonality condition [START_REF] Chung | Generalized Langevin Equation: An Introductory Review for Biophysicists[END_REF] yields 40

E (0), ∂O(t) ∂t = k f k E (0), E k (t) + t 0 k g k (s) E (0), E k (t -s) ds, (11) 
where E k (t) = e tL E k . Therefore, we obtain a set of Volterra integral equations of the rst kind. When the set I is nite, they can be numerically inverted using a time discretization of the integral as illustrated in sec. III. A set of Volterra equations of the second kind can also be derived as explained in the appendix E.

C. Hamiltonian systems

Let us now focus on Hamiltonian systems as it is the main case of interest. We consider a system of particles with position q and momentum p in R D . The Hamiltonian is p • M -1 • p/2 + V (q), with V the potential energy and M the mass matrix. The evolution operator (3) is then given for any function φ(q, p) of position and momentums by Lφ(q, p) = p • M -1 • ∇ q φ(q, p) -∇ q V (q) • ∇ p φ(q, p)

and the reference measure is given by the equilibrium Gibbs measure ρ eq (q, p) = e -βV (q)-βp•M -1 •p/2 /Z with Z a normalisation factor and β = 1/k B T the inverse temperature of the system.

Integrating by parts, it is well-known that L is skew-symmetric in L 2 (ρ eq ), namely

Lφ, ψ =φ, Lψ

for all functions φ, ψ. In particular, applying this with ψ = 1 so that Lψ = 0, we get that ρ eq is left invariant by the Hamiltonian dynamics.

In view of the general framework described in the previous section, let us now present the specic choices made in the present work, motivated by the specic form of GLE we want to derive. First, we work with a particular choice of observable. Decomposing the microscopic state in its position and momentum coordinates, namely X = (q, p), we consider a rst observable O x (X) = ϕ(q) for some collective variable ϕ : R D → R n , and a second observable

O v (X) = LO x (X) = p • M -1 • ∇ϕ(q). Then our observable is O(X) = (O x (X), O v (X))
of dimension d = 2n. We call O x the position observable and O v the velocity observable.

Notice that, by design,

∂ t O x (X(t)) = O v (X(t)) = p(t) • M -1 • ∇ϕ(q(t)). ( 13 
)
From this choice of observable, the GLE ( 8) is now written as

∂ t O x (t) O v (t) = f x (O x (t), O v (t)) f v (O x (t), O v (t)) + t 0 g x (s, O x (t -s), O v (t -s)) g v (s, O x (t -s), O v (t -s)) ds+ ξ x t (X) ξ v t (X) , (14) 
where f x and f v are the mean force terms for position and velocity respectively, g x and g v the memory parts and ξ x and ξ v the noise on position and velocity respectively. It remains to choose a set of functions to perform the projection. Given {h k , k ∈ J } a family of functions from R n to R n , we consider the family of basis functions from R 2n to R 2n given by

E = a : o 1 o 2 → o 2 0 ∪ b k : o 1 o 2 → 0 h k (o 1 ) k∈J ∪ c k : o 1 o 2 → 0 ∇h k (o 1 )o 2 k∈J ,
where ∇h k stands for the Jacobian matrix of h k .

Let us now comment this particular choice. Our family is divided into three sets of

functions E = {a} ∪ {b k , k ∈ J } ∪ {c k , k ∈ J }. The singleton {a} is related to the fact ∂ t O x (t) = O v (t).
The second set {b k , k ∈ J } is introduced to model the position dependency of the mean force term for the velocity. The last set {c k , k ∈ J } is required to obtain the desired form of the memory part (i.e. linear in velocity). Notice that the functions

c k are related to the functions b k by the fact that ∂ t h k (O x (t)) = ∇h k (O x (t))O v (t) hence ∂ t b k (O x (t), O v (t)) = c k (O x (t), O v (t)).
As in the general framework, we write

A = a • O, B k = b k • O and C k = c k • O.
The three parts of E correspond to subspaces of L 2 (ρ) which are orthogonal one with each other. Indeed the scalar products A, B k and A, C k are both zero, and

B k , C k = R D h k (ϕ(q)) • ∇h k (ϕ(q)) R D
pρ eq (q, p)dp • ∇ϕ(q)dq = 0 , where we used [START_REF] Hijón | MoriZwanzig formalism as a practical computational tool[END_REF] and that the average of the momentum under ρ eq is zero. As a consequence, in the representation (5) of the orthogonal projection, the Gram matrix and its inverse have three diagonal blocks, corresponding to the three parts of E. We introduce G b (resp. G c ) the Gram matrix of the family {b k , k ∈ J } (resp. {c k , k ∈ J }).

Finally, we also dene for any function f and g of the observable, the scalar product

f, g ϕ = f • O x , g • O x = R n f (z) T • g(z)ρ ϕ (z)dz
where ρ ϕ : R n → R + is the marginal density of ρ eq (q, p), namely is such that

R 2D g (ϕ(q, p)) ρ eq (q, p)dqdp = R n g(z)ρ ϕ (z)dz
for all function g of the observable, see also appendix B for a denition using the coarea formula. When f and g are matrix-valued function, the scalar product is dened as

f, g ϕ = i,j R n f (z) i,j g(z) i,j ρ ϕ (z)dz.

D. Continuing the derivation

Equipped with our choice of observables and basis, we can now make explicit the form of the mean force and the memory kernel in [START_REF] Chorin | Optimal prediction with memory[END_REF], namely the coecients f k and g k (s, •) in [START_REF] Chorin | Optimal prediction and the MoriZwanzig representation of irreversible processes[END_REF]. The projection of the position evolution equation follows trivially from Eq.( 13) and the presence of the singleton {a} in our choice of basis. Using the notations of ( 14), we get

f x (o 1 , o 2 ) = o 2 and g x (s, •) = ξ x s = 0 for all s 0.
In the following we focus on the second line of ( 14), namely the projection of the velocity evolution equation. From [START_REF] Chorin | Optimal prediction and the MoriZwanzig representation of irreversible processes[END_REF] and the explicit expression of the projector ( 5), the question is thus to compute the scalar products of LO v and of Lξ v s = Le s(1-P E )L LO v with B k and C k (here and in the following, with a slight abuse of notations, we denote by B k and

C k the second n-dimensional component of B k and C k ). For all k ∈ J , C k , LO v = R 2D [∇h k (ϕ(q)) (p • M -1 • ∇ϕ(q))] • [-∇V (q) • ∇ϕ(q) + p • M -1 • ∇ 2 ϕ(q)p]ρ eq (q, p)dqdp = 0, ( 15 
)
where we used that the integrand is odd in p and ρ eq is invariant by reection of the momentum. The mean force term f v in ( 14) is then

f v (o 1 , o 2 ) = k∈J k ∈J (G b -1 ) k,k B k , LO v h k (o 1 ) =: f b (o 1 ). (16) 
In general, this mean force f b is non-linear (if {h k , k ∈ J } contains non-linear functions on R n ). It can be build from the potential of mean force W pmf and an eective mass matrix M ϕ . The potential of mean force is the function W pmf = -1 β ln ρ ϕ . The eective mass matrix is dened as the conditional expectation

M ϕ (z) -1 = β E O v (q, p)O v (q, p) T | ϕ(q) = z (17) = E ∇ϕ(q) • M -1 • ∇ϕ(q) T | ϕ(q) = z ,
where the second equality follows from R D pp T ρ eq (q, p)dp = ρ eq (q)M /β. Here, M ϕ is interpreted as an eective mass in view of the equipartition theorem. It is then detailed in the appendix C that

B k , LO v = B k , Ψ • O x = h k , Ψ ϕ (18) 
with Ψ :

R n → R n Ψ(z) = 1 β ∇ • M ϕ (z) -1 + M ϕ (z) -1 • ∇ ln ρ ϕ (z) . ( 19 
)
If Ψ is in the space spanned by {h k , k ∈ J }, then [START_REF] Mori | Transport, Collective Motion, and Brownian Motion*[END_REF] implies that f b = Ψ. Otherwise, f b is a projection of Ψ on this space (this is typically the case in practice since a nite set of basis functions is used).

When the eective mass matrix is independent of the position, we get

Ψ(z) = 1 β M -1 ϕ • ∇ ln ρ ϕ (z) = - 1 β M -1 ϕ • ∇W pmf (z). (20) 
For instance, this holds if n = 1 and the reaction coordinate is a distance between two atoms, or for linear reaction coordinates (taking ϕ i (q) = e i • q with e 1 , . . . , e n an orthonormal basis of the range of the reaction coordinate).

We now turn to the projection of Lξ v s . Using the skew-symmetry of L, for all k ∈ J ,

B k , Lξ v s = -LB k , ξ v s = -C k , ξ v s = 0
since the noise is orthogonal to any function in E. Therefore the memory part of the equation is (using again the skew-symmetry of L)

g v s (o 1 , o 2 ) = - k∈I k ∈I (G c -1 ) k,k LC k , ξ v s ∇h k (o 1 )o 2 =: -K b (s, o 1 )o 2 . ( 21 
)
The value of the scalar product LC k , ξ v s is discussed in sec. II E. To follow the usual convention, we refer to K b (s, o 1 ) as the memory kernel.

Combining together all these elements, we get

∂ t O x (t) = O v (t) ∂ t O v (t) = f b (O x (t)) - t 0 K b (s, O x (t -s))O v (t -s)ds + ξ v t (X) . (22) 
Closing this equation by approximating ξ v t (X) by a random noise ζ t we get, as announced, a GLE for the position x t = O x (t) of the form:

ẍt = f b (x t ) - t 0 K b (s, x t-s ) ẋt-s ds + ζ t .
Up to now, we have left unspecied the set {h k , k ∈ J }. Several possibilities are available. First, for instance, we can choose {h k , k ∈ J } as a basis of the linear and constant functions (i.e. the Mori projection), in which case we retrieve the linear form of the GLE ẍt = -ω(x ty 0 ) -

t 0 K M (s) ẋt-s ds + ζ t , (23) 
with ω and y 0 some constants characterizing the force.

Second, an alternative is to take a basis of L 2 (ρ, R d ) (i.e. the Zwanzig projection).

Assuming position-independent eective mass matrix, the GLE then reads

ẍt = -M -1 ϕ • ∇W pmf (x t ) - t 0 K Z (s, x t-s ) ẋt-s ds + ζ t , (24) 
where the mean force term is now the derivative of the potential of mean force. More generally, the mean force is the conditional expectation Ψ.

Third, if the mean force term is known a priori (e.g. when the potential of mean force is computed apart), then we can choose the set {h k , k ∈ J } to be reduced to the singleton {∇W pmf }, which yields for position-independent mass matrix

ẍt = -M -1 ϕ • ∇W pmf (x t ) - t 0 K e (s)∇ 2 W pmf (x t-s ) ẋt-s ds + ζ t . ( 25 
)
This choice is somehow the minimal set-up to get a mean force which derives from ρ ϕ .

In that case, the dependency in position of the memory kernel is completely xed via the Hessian of the potential of mean force. We recover the initial form (1) when this Hessian is approximately constant over the studied range of position (i.e. close to an harmonic case), and only in this case.

Notice, that if a gradient form of the mean force is wanted, we can take h k = ∇ k where { k , k ∈ J } is an Hilbert basis of the Sobolev space H 1 (R n ). In that case f b is an Helmholtz projection of the mean force obtained with the Zwanzig projection.

In both cases [START_REF] Glatzel | The interplay between memory and potentials of mean force: A discussion on the structure of equations of motion for coarse grained observables[END_REF] and ( 25), as required in Ref. [START_REF] Glatzel | The interplay between memory and potentials of mean force: A discussion on the structure of equations of motion for coarse grained observables[END_REF], the mean force derives from ρ ϕ and the memory kernel is linear in the velocity (although with a non-linear dependency in the position). Indeed, linear reaction coordinates are considered in Ref. [START_REF] Glatzel | The interplay between memory and potentials of mean force: A discussion on the structure of equations of motion for coarse grained observables[END_REF], which means a position independent eective mass matrix, possibly up to a linear change of variable.

To conclude this section, let us highlight a slight subtlety: in the general derivation of sec. II B, we assumed the functions e k to be linearly independent. In fact from a theoretical point of view this is not important since the only thing that matters in the denition of the projection is the space spanned by {E k , k ∈ I}. However, from a practical point of view, this is used when considering the inverse of the Gram matrix in the explicit formula [START_REF] Schilling | Coarse-Grained Modelling Out of Equilibrium[END_REF].

Then, with the specic choice of basis functions described in sec. II C, it can be convenient to take {h k , k ∈ J } which contains some constant functions (in particular to have a mean-zero noise, see next section), in which case the corresponding c k is zero (since ∇h k = 0), which means the functions E k , k ∈ I, are not linearly independent. Again, this is not important for the theoretical derivation, but it means that, in practice, one should be careful when applying [START_REF] Schilling | Coarse-Grained Modelling Out of Equilibrium[END_REF] and possibly use the pseudo-inverse of the Gram matrix or reduce the set of functions.

E. Characteristics of the noise

Once the mean force and memory kernel coecients have been estimated, the standard way to close the equation ( 8) is to replace ξ t (X) by a Gaussian process ζ t with the same mean and variance. However, this approximation may in fact not be suitable in general 3739 .

In any cases, let us compute these characteristics. In the following, we consider the specic case introduced in sec. II C and such we are only interested to the properties of the noise ξ v t in the second line of of ( 22).

Mean value

Since ξ t (X) is replaced in practice by a random process which is independent from O(0), a minima, it should be enforced that ξ t (X) is not correlated to e k (O(0)) for k ∈ I. As we saw, this is true if the average of ξ t (X) is 0 under ρ.

The simplest way to enforce this is to assume that all constant functions are in the span of {e k , k ∈ I}, in which case the orthogonality condition [START_REF] Chung | Generalized Langevin Equation: An Introductory Review for Biophysicists[END_REF] concludes. Since we only consider ξ v t , the previous condition is satised as soon as all constant functions from R n to R n are in the space spanned by {h k , k ∈ J }. In which case we obtain ξ v t = 0.

Variance and 2-FDT

For GLEs, a Fluctuation-Dissipation Theorem of second type (2-FDT) is a relation which expresses the covariance function of the noise ξ t (X) in terms of the memory kernel K. It has been established in very general frameworks for linear cases 6,30,39 . In fact, although [START_REF] Chorin | Optimal prediction with memory[END_REF] may be non-linear in general, it is always based on a linear projection, and we can always write a linear GLE for the vector (e k (O(t))) k∈I . Hence, a 2-FDT holds for this (possibly innite-dimensional) equation, which implies that a 2-FDT holds for (8) if for instance the identity function is in the span of E = {e k , k ∈ I}. This is true if the identity function on R n is in the span of {h k , k ∈ J }. In fact, without loss of generality (up to a change of basis), in that case we simply assume that h 0 (o 1 ) = o 1 , in which case the corresponding c 0 is exactly the required function. Then, using the skewsymmetry of L and the orthogonality (10) of the noise,

C 0 , Lξ v s = -LC 0 , ξ v s = -LO v , ξ v s = -(1 -P E )LO v , ξ v s = -ξ v 0 , ξ v s .
The left-hand side is a coecient involved in the decomposition (21) of K. More precisely, if the basis function has been orthonormalized, this is exactly the time-dependent coecient of C 0 If the ambient space dimension n is larger than 1, then we need the full covariance matrix of the noise, i.e. (ξ v 0 ) i , (ξ v s ) j for 1 i, j n. The previous computation is still correct if we assume now that all the linear functions on R n are in the span of {h k , k ∈ J }. In that case, denoting by M i,j the matrix with all coecients 0 except the coecient (i, j) equal to 1, h i,j : o 1 → M i,j o 1 and the corresponding C i,j : X → M i,j O v (X), we get again

C i,j , Lξ s = -(ξ v 0 ) i , (ξ v s ) j .
As a conclusion, in this case, we can say that a 2-FDT holds in the sense that the covariance matrix of the noise in ( 22) is determined by some particular coecients of the kernel K in [START_REF] Doerries | Correlation functions of non-Markovian systems out of equilibrium: Analytical expressions beyond single-exponential memory[END_REF]. In practice, this means that the covariance of the noise can be computed through the Volterra equations (11).

Position-dependent average and 2-FDT

The fact that ξ t (X) is uncorrelated to e k (O(0)) for all t 0 and k ∈ I gives little information on a possible dependency of the law of ξ t (X) with respect to O(t). In particular, if we use the covariance function computed in the previous section to approximate ξ t (X) by a Gaussian noise ζ t with the same characteristics, then the law of ζ t does not depend on O(t). This approximation may not be relevant, having in mind some alternative ways to derive an eective dynamics 3,41 . We discuss in the following some results about the position dependence average and variance of the noise.

Let us introduce the conditional average of the noises ξt and ξ ż t given by ξt (z) = E (ξ v t (q, p) | ϕ(q) = z) ,

and

ξ ż t (z) = E ξ v t (q, p)O v (q, p) T | ϕ(q) = z . (27) 
Eq. ( 10) induces on ξt and ξ ż t the set of constraints: ∀k ∈ J , h k , ξt ϕ = 0 and ∇h k , ξ ż t ϕ = 0.

Similarly consider σ ϕ (t, z) the conditional variance of the noise given by

σ ϕ (t, z) = E ξ v 0 (q, p)ξ v t (q, p) T | ϕ(q) = z . ( 29 
)
As detailed in the appendix C, we can decompose the memory kernel K b as

K b (t, o 1 ) = K σ (t, o 1 ) + Kξ(t, o 1 ), (30) 
where K σ (t, o 1 ) and Kξ(t, o 1 ) are dened by

K σ (t, o 1 ) = k∈I k ∈I (G c -1 ) k,k ∇h k , σ ϕ (t, •) ϕ ∇h k (o 1 ) (31) 
and

Kξ(t, o 1 ) = k∈I k ∈I (G c -1 ) k,k ∇h k , f b ξt -∇ • ξ ż t ρ ϕ /ρ ϕ ϕ ∇h k (o 1 ), (32) 
with f b is the mean force of Eq.( 16). To obtain a position-dependent 2-FDT, namely a pointwise relation between K b and σ, Kξ should cancel. This is not the case in general.

Indeed in [START_REF] Meyer | On the non-stationary generalized Langevin equation[END_REF], the terms multiplying the conditional average of the noise do not necessary belong to the space spanned by our function set and, as a consequence, the conditions [START_REF] Klippenstein | Introducing Memory in Coarse-Grained Molecular Simulations[END_REF] cannot be used to prove that this term is zero. This fact is illustrated in sec. III B.

However, Kξ(t, o 1 ) is indeed zero when the set {h k , k ∈ J } is a basis of L 2 (ρ, R d ) (i.e. in the case of the Zwanzig projection K b = K Z ). From the conditions (28), we get ∀z ∈ R d , ξt (z) = 0 and ξ ż t (z) = 0, from which Kξ(t, o 1 ) = 0. We then get a position-dependent 2-FDT from the eective mass matrix and conditionnal variance of the noise,

K Z (t, o 1 ) = βM ϕ (o 1 ) • σ ϕ (t, o 1 )
where K Z is the memory kernel of Eq. [START_REF] Glatzel | The interplay between memory and potentials of mean force: A discussion on the structure of equations of motion for coarse grained observables[END_REF].

Finally, when the Mori projection is used, we emphasize that Kξ(t, o 1 ) is also zero and we recover the result of sec. II E 2.

F. Other forms of GLE

The particular choices of observable and of function set made in sec. II C lead to the GLE ( 22), but other choices are possible. In fact, a priori, although it may be appealing from a physical point of view, there is no reason for the best model of approximation of an eective dynamics to be a position/velocity GLE with a mean force term deriving from the potential of mean force and a friction kernel which is linear in the velocity (which was the motivation of these choices). Here are some other possibilites.

Position-dependent memory kernel in generalized Langevin equations

The form of the observable in Ref. [START_REF] Glatzel | The interplay between memory and potentials of mean force: A discussion on the structure of equations of motion for coarse grained observables[END_REF] is similar to the one in sec. II C, but the function set is chosen as

E GS = a : o 1 o 2 → o 2 0 ∪ f k : o 1 o 2 → 0 f k (o 1 , o 2 ) k∈J (33)
where (f k ) k∈J is a basis of L 2 (R 2d ). This results in a GLE of the form ẍt = F e (x t ) -

t 0 K GS (s, x t-s , ẋt-s )ds + ζ t , ( 34 
)
where the memory is no longer linear in the velocity.

In contrast, we could have chosen a smaller function set containing only the two rst families of sec. II C, namely

E N V = {a} ∪ {b k , k ∈ J }.
In that case, we obtain a GLE of the form ẍt = F e (x t ) -

t 0 K N V (s, x t-s )ds + ζ t , ( 35 
)
where there is no dependence in velocity in the memory term.

A slightly larger function set is obtained by adding a function linear in velocity

E H = {a} ∪ {b k , k ∈ J } ∪ o 1 o 2 → 0 o 2 .
This leads to the hybrid projector of Ref. [START_REF] Ayaz | Generalized Langevin Equation with a Non-Linear Potential of Mean Force and Non-Linear Memory Friction From a Hybrid Projection Scheme[END_REF]. In which case the GLE is of the form ẍt = F e (x t ) -

t 0 K x H (s, x t-s )ds - t 0 K p H (s) ẋt-s ds + ζ t . (36) 
Next, if we only consider the position observable, namely O(X) = O x (X) = ϕ(q), and the function set

E ov = {h k : o 1 → h k (o 1 )} ,
this leads to an overdamped form of the GLE

ẋt = F ov (x t ) - t 0 K ov (s, x t-s )ds + ζ t . (37) 
Similarly, one can consider only the velocity.

After that, let us emphasize that, although kinetic or overdamped equations may, again, be appealing from a physical point of view since many physical laws are associated to these familiar structures, there is a priori no reason to be restricted to equations of order 1 or 2.

For instance, considering an observable O

= (O x , O v , O a ) with O x (X) = ϕ(q), O v = LO x
and O a = LO v naturally yields a third order eective equation for O x , with a structure depending again on the choice of the basis functions.

Finally, in this work we considered basis functions which depend a priori of the whole observable, since we are looking for closed eective dynamics. However, when working on a pair of observables, nothing forbids the choice of a projection on a set of functions which depend only of one of the observables, or even which depend on a dierent observable that the one we are interested to.

III. VOLTERRA BASED ESTIMATION OF THE MEMORY KERNEL

A.

Numerical inversion of the Volterra Integral Equation

Given an all-atom simulation (X(t)) t∈[0,T ] (or more generally a set of independent simulations), a practical issue is to parametrize the GLE (2), namely to estimate the coecients f k and g k (s) in ( 8). This can be done using the Volterra equations [START_REF] Darve | Computing generalized Langevin equations and generalized FokkerPlanck equations[END_REF], when the set E is nite. Indeed, the averages involved in [START_REF] Darve | Computing generalized Langevin equations and generalized FokkerPlanck equations[END_REF] can be estimated along the trajectory, and then the equations can be numerically inverted using a discretization of the time integral 43 . In the following, we use the trapezoidal method of Ref. 43, we also point out that this trapezoidal rule suers from oscillatory error 44 and requires a smoothing that we implement.

The numerical implementation of the inversion of the Volterra equation used in the following is available at https://github.com/HadrienNU/VolterraBasis and its documention is available at https://volterrabasis.readthedocs.io.

The inversion of Volterra equation of the rst kind is an ill-conditioned problem [START_REF] Lange | Collective Langevin dynamics of conformational motions in proteins[END_REF][START_REF] Lamm | A Survey of Regularization Methods for First-Kind Volterra Equations[END_REF] .

Regularization methods can be used to improve the quality of the algorithm but this falls out of scope of this work and we refer to the rich literature on the subject 4548 .

Notice that, apart from Volterra-based algorithms, other methods exist to estimate friction kernels [START_REF] Carof | Two algorithms to compute projected correlation functions in molecular dynamics simulations[END_REF],4951 and could be modied to tackle the position-dependent case. However, here we only consider the former for simplicity and since they are naturally related to the theoretical derivation of the previous section.

B. Lennard-Jones Dimer

In this section, we present some numerical experiments to illustrate this approach (a thorough numerical analysis, including a discussion on the statistical properties of the noise and how it can be generated, on the ability of the eective dynamics to reproduce the dynamics of the initial system, or on other inference methods as in Ref. [START_REF] Vroylandt | Likelihoodbased non-Markovian models from molecular dynamics[END_REF], is out of the scope of this work). The present analysis is based on the molecular dynamics simulation of a Lennard-Jones dimer similar to the one used in our earlier work

. Position dependence

for the memory kernel in this system has been emphasized in Ref. [START_REF] Straub | Spatial dependence of time-dependent friction for pair diusion in a simple uid[END_REF]. This is a 3D system composed of 2 Lennard-Jones (LJ) particles forming a dimer and 510 LJ particles constituting the solvent at reduced temperature T = k B T / = 1 and reduced density ρ = ρσ 3 = 1. The two dimer particles interact via a LJ potential with parameters d = 2 and σ d = 1 (in LJ units) and their distance r is constrained for distance above r = 3.0 using a parabolic wall of strength κ = 200. LJ parameters for dimer-solvent and solvent-solvent interaction are taken as = 1 and σ = 1 (in LJ units). The size of the cubic simulation box is 8σ, with periodic boundary conditions in all directions. The dynamics is integrated with a time step of ∆t M D = 10 -3 (in LJ units) in the NVE ensemble using the LAMMPS simulation package 54 . We run 500 trajectories with length of 2 • 10 5 timesteps and CV values are extracted every steps. The observable O x (q) is the distance r between the two particles forming the dimer.

We use as set of functions {h k , k ∈ J } a set of 14 spline functions of degree 3 with knots non uniformly distributed between [0.889, 3.297] as represented in Fig. 1, the two bounds corresponding to the minimum and maximum value of the distance in the data. More splines function are put on the part of the potential of mean force prole with the most important variation. We refer in the following to this choice of function set as the splines GLE. ´ µ

´ µ We also study the linear GLE of (23) using as function set a linear function and the minimal GLE where we use as function set the the PMF as in Eq. [START_REF] Berne | On the Calculation of Time Correlation Functions[END_REF].

We represent on Fig. 1 Comparing cross-sections of the splines GLE with cross-sections of other GLEs emphasizes the importance of the basis choice. For the minimal GLE most of the memory is concentrated at the boundary (where the potential of mean force is singular) and even if the mean force term is the same than the splines GLE, the memory kernel is strongly dierent from the previous case. Interestingly, using the simple linear GLE reconstruct a memory kernel very similar to the one of the splines GLE.

Finally, we also study the noise. Indeed, once the mean force and memory kernel have been estimated, the noise can be computed from the molecular dynamics trajectory data by inversion of Eq. [START_REF] Lange | Collective Langevin dynamics of conformational motions in proteins[END_REF]. Estimation of correlation function between the noise and any function can also be carried out as detailed in the appendix E. In the objective of generating new trajectories using the GLE coarse-grained dynamics, the noise should be modeled, usually as a stationary Gaussian correlated noise 5557 . Validity of such models could be then interpreted in the light of noise computed from the trajectory data. ´ µ

´ µ all GLE but with non-gaussian tails, a feature that has been noticed on several systems [START_REF] Shin | Brownian motion from molecular dynamics[END_REF][START_REF] Carof | Two algorithms to compute projected correlation functions in molecular dynamics simulations[END_REF] .

Notice that with the splines GLE, the noise is more Gaussian than with the linear GLE or the minimal GLE, which illustrates in these two cases the fact that more non-linear features of the dynamics have to be included in the noise.

On Fig. 3(b) we investigate the validity of the FDT by comparing the noise autocorrelation to the constant part of the kernel. The splines and linear GLE show a good agreement between noise autocorrelation and corresponding coecient of the memory kernel. The memory kernel of the minimal GLE does not have a coecient corresponding to the noise auto-correlation and is therefore not represented.

Following the discussion of sec. II E 3, the position dependence of the conditional expectation of the variance of the noise as a function of the position at t = 0 is plotted on Fig. 4(a).

For each trajectories, we bin the value of the noise depending of the position using 50 bins.

As expected, the variance of the noise shows a strong dependency in position.

Finally, we study the validity of the position-dependent 2-FDT for the splines GLE.

We represent on Fig. 4(b) the comparison the memory at three dierent cross-section with the corresponding 2-FDT curve K σ of Eq. [START_REF] Givon | Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism[END_REF]. The disagreement between the curves is explained by the non-zero value of K ξ in Eq. ( 30) as illustrated in Fig. 4(c). Indeed, in this case the splines does not form a complete basis of L 2 (ρ, R d ). ´ µ

´ µ log Pr(ξ v ) 

ξ v ξ v 0 ξ v t ¸ C 0 , Lξ v t FIG.

CONCLUSION

We have shown how GLE with a non-linear mean force, a friction kernel linear in the velocity and a Fluctuation-Dissipation Theorem can be rigorously derived within the Mori-Zwanzig formalism, in the Hamiltonian equilibrium settings. However, in contrast to the standard assumption, this requires in general the friction kernel to depend on the position (as conrmed by the numerical experiments). Moreover, we have also emphasized that, even with the position-dependency, this particular form remains arbitrary to some extent, since various other forms may be similarly derived with a suitable choice of observable and of function basis for the projection. The complexity of the model can then be monitored by these choices, a better approximation requiring a larger set of functions, hence of parameters to estimate, leading to a higher sensitivity to the sampling variations. In any cases, the question of obtaining a good approximation cannot be reduced to the choice of the form of the GLE and the estimation of the eective force and the memory kernel: a correct representation of the noise is also necessary, which may require to go beyond space-homogeneous Gaussian processes. In this case, then, this representation cannot be extracted only from the Volterra equations and the 2-FDT, but should rely on a suitable statistical analysis. ´ µ

´ µ ´µ ´ µ

´ µ ´µ In the case of the projection on a singleton set E = {E 0 }, the projection becomes

σ ϕ (0, r) r K σ (t,
f φ (z) = E 0 , φ E 0 , E 0 e 0 (z)
Moreover, when the function e 0 (z) = z is simply the identity, this is the usual linear Mori projection.

In the multidimensional case, we can project onto the set of linear functions e j : z → z j returning the j coordinate of z, the projection then reads

f φ (z) = d j,j =1
G -1 j,j E j , φ z j , in particular f φ is a linear function.

We can also consider the projection upon all functions of z ∈ R d . The orthogonal projection is then given by the conditional expectation

f φ (z) = E (φ(X) | O(X) = z) .
Informally, this projector can be obtain from Eq. ( 5) using for E the set of Dirac function {δ(O(X)z), z ∈ R d }, but choosing {e k , k ∈ I} as any Hilbert basis of L 2 (R d ) will

give the same result. This is the Zwanzig projection, or "non-linear" projection. Note that "non-linear" refers here to f φ being a nonl-linear function of z and not to the linearity of the projection operator.

Finally when we consider an observable that could be separated into a position observable and a velocity observable, as in the main text sec. II D or sec. II F, we could consider a projection on functions of only the position observable ϕ(q). For instance, the projection upon all function of the position would become for x ∈ R n f φ (x) = E (φ(q, p) | ϕ(q) = x) .

Position-dependent memory kernel in generalized Langevin equations This mean that scalar product between a function g of the observable and a function F can be written as integral over a d-dimensional space R 2D g(O(X)) T • F (X)ρ eq (X)dX = 

F ϕ (z) = E (F (X) | ϕ(q) = z) = 1 ρ ϕ (z) Σz
F (X)ω O (X)ρ eq (X)σ z (dX).

Then a partial integration on the last term of the r.h.s. conclude the derivation of [START_REF] Zhu | Generalized second uctuation-dissipation theorem in the nonequilibrium steady state: Theory and applications[END_REF].

Appendix E: Projected correlation functions

Correlation function of the noise with an observable F (X) diers from the usual time correlation in that the noise is evolved with the orthogonal dynamics [START_REF] Ma | The derivation and approximation of coarse-grained dynamics from Langevin dynamics[END_REF]. Such projected correlations functions 38 are dened as F, ξ t = F, e t(1-P E )L ξ 0 .

The noise follows from Eq. ( 8) From a numerical point of view, we usually compute correlation function using a sum along trajectories sampled every ∆t, i.e.

ξ
F, ξ t = m F (X(m∆t)) T ξ t (X(m∆t)).

However, as the noise is evolved with the orthogonal dynamics, we need a relation between ξ t (X(m∆t)) and ξ t+m∆t (X). Writing t = m∆t, we write the noise at time t + t 0 ξ t+t 0 (X) = e tL ∂O(t 0 ) ∂t e tL f (O(t 0 )) -t+t 0 0 g (s, O(t + t 0s)) ds.

Splitting the integral at t and changing the variable s of integration to u = st leads to the required relation ξ t+t 0 (X) = ξ t (X(t 0 )) -t 0 0 g (u + t, O(X(t 0u))) du.

We emphasize that discretizing the integral gives a generalization of the algorithm for the computation of projected correlation function that was discussed in Refs. 38,42,49. 
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 1 FIG. 1. (a) Potential of mean force computed from an histogram compared to the integral of the mean force term. We also represent all the function in the splines basis (thin colored line) with position of the knots marked with black dots. (b) Memory kernel as a function of the distance and time. Horizontal and vertical lines are the position of the cross-section with the same color represented in Fig. 2.

  (a) the potential of mean force obtained via an histogram of the distance or via the integration of the mean force computed via the projection of the acceleration on the spline basis, showing a good agreement between both. The position dependent memory kernel is represented as a 2D plot in Fig. 1(b) and some cross-sections are represented in Fig. 2 along time (a) and space (b).

FIG. 2 .

 2 FIG. 2. Cross section of the 2D plot of 1(b) along (a) time and (b) position. Solid line are the cross-section of the splines GLE and dashed lines the minimal memory kernel computed along the same cross-section. Color matches the lines on Fig. 1. The dot-dashed violet curve on panel(a) is the memory kernel for the linear GLE.

  FIG. 3. (a)Log of the noise histogram for the splines GLE (blue line), the minimal GLE (magenta dashed line) and the linear GLE (cyan dot dashed line). For comparison, a quadratic curve is tted to the top of the histogram (dot-dashed yellow thin line). (b) Auto correlation of the noise for the splines GLE (blue line), the minimal GLE (magenta dashed line) and the linear GLE (cyan dot dashed line) compared to the coecient C 0 , Lξ s of the memory kernel for the spline GLE (blue squares) and the linear GLE (cyan circles).

FIG. 4 .

 4 FIG. 4. (a) Variance of the noise as a function of the position for the splines GLE (blue line), the minimal GLE (magenta dashed line) and the linear GLE (cyan dot dashed line). (b) Cross section of the memory kernel and K σ (t, r) along time. Solid line are the cross-section of the splines memory kernel and cross are the values of K σ (t, r) computed along the same cross-section. (c) Cross section of Kξ(t, r) along time for the splines GLE. For (b) and (c) color matches the lines on Fig. 1.

F

  (X)ω O (X)ρ eq (X)σ z (dX)dz = R d g(z) T • F ϕ (z)ρ ϕ (z)dz = g, F ϕ ϕhaving introduced the conditional expectation

  Notice that in particular a set of Volterra integral equations of the second kind for the memory kernel can be obtained. Indeed the coecient of the memory kernel are projected correlation function, since for∈ I k G ,k g k (t) = E , Lξ t = -LE , ξ t using the skew-symmetry of L. This lead to 31 k G ,k g k (t) = -LE (0), ∂O(t) ∂t + k f k LE (0), E k (t) + t 0 kg k (s) LE (0), E k (t-s) ds.
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Appendix A: Projection operators By denition, the orthogonal projection operator on the closure of the space spanned by the set E = {E k , k ∈ I} is the linear operator characterized by the two following properties: rst, for all k ∈ I, P E E k = E k . Second, P E φ = 0 for all functions φ which are orthogonal to E k for all k ∈ I. The idempotency of the projector, namely P E P E φ = P E φ, follows from those properties.

Let us check that these properties are indeed satised by the operator given by Eq.( 5).

The second one is clear, and for all k, j ∈ I,

from which P E E j = E j for all j ∈ I. 

Appendix B: Coarea formula

The projection can be expressed using the coarea formula: for an observable φ:

Using the notations of sec. II D, we see that the marginal density ρ ϕ is given by

where Σ z corresponds to ϕ(q) = z.

Appendix C: Derivation for the mean force term

Using the skew-symmetry ( 12) of L, we have for the mean force term

q, p)ρ eq (q, p)dqdp.

From the coarea formula and the denition (17) of the eective mass matrix, we obtain

which concludes the proof of [START_REF] Ciccotti | On the derivation of the generalized Langevin equation for interacting Brownian particles[END_REF].

Appendix D: Details of the position-dependent 2-FDT

The memory kernel is obtained through the Gram matrix G c of the function set and the scalar product C k , Lξ t . The Gram matrix of the set {c k , k ∈ J } is related to the eective mass matrix,

Using the anti-hermitianity of L, we have for k ∈ J

q, p)O v,j (q, p)ξ v t,i (q, p)ρ eq (q, p)dqdp.

We can then introduce the identity in the form of 1

q, p)O v,j (q, p)ξ v t,i (q, p)ρ eq (q, p)dqdp

where we have used that