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Introduction

Music is essential in video games. It provides an embedding context for the players and complements the scenario [START_REF] Sanders | Time perception, immersion and music in videogames[END_REF]. Music can also offer some ways of controlling the player [START_REF] Hufschmitt | Dynamic manipulation of player performance with music tempo in Tetris[END_REF]. Meanwhile, a recent observation is that many players replace a game's music by listening to some musical piece of their choice. We postulate that this is because of the absence of enough personalization of the music the game offers. Therefore, we started investigating the possibility of generating personalized music based on player preferences (music style, as defined by a corpus of music samples). Deep learning techniques are effective in learning a music style from a corpus. Remain issues on how to customize, control and orchestrate the generation of music in the function of the situation (game and player). In the following, we will introduce the design, implementation and preliminary experiments with a prototype architecture for generating personalized and adaptive music for games.

However, at a time of so few works in the game music generation and so many open questions, we believe in the importance of searching for simple models that explore more fundamental aspects of adaptive music generation. More specifically, it becomes essential to look for models that, more straightforwardly, represent the modes of emotion and levels of emotional intensity involved in video game music generation. Also, we must look for deep learning techniques that are especially adequate to the musical narrative. And, perhaps even more importantly, we should seek a model to support instrumental layers used in video game composition (such as the practice of "striping", which is to record orchestral sections separately for future mixing according to the whims of the composer) 1 . In this context, instead of looking for alternatives or improvements in the existing complete models for adaptive music composition (such as the excellent work by Hutchings and McCormack [15], to be analyzed in Section 2.2), we decided to explore more straightforward and flexible models to support layering music. Also, we believe that our model can facilitate the control and orchestration of music for video games in a collaborative environment.

With the above mentioned principles in mind, after several experiments, we opted for the Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF], because it better captures the long-term structure of music [START_REF] Huang | Music Transformer: Generating music with long-term structure[END_REF]. Our following insight proposed a two-dimensional space of emotions to simplify the metric space and help the practice of layering music. For that, we adopt the arousal/valence model [START_REF] James | A circumplex model of affect[END_REF]. In this model, we associate arousal (i.e., intensity) with the number of active layers (e.g., the system can add a layer with woodwinds or brass to increase the intensity level if a battle starts in the game's world). And the valence corresponds to the emotional modes of the generated music. We also discuss, in this article, future extensions that this simplified approach makes easier to implement. In particular, we want to move towards collaborative and interactive control of the music components generated by the Transformer-based architecture.

The following sections introduce the design, implementation and preliminary experiments with a prototype architecture for generating personalized and adaptive music for games aligned with the above mentioned principles.

2 Background and Related Work

Adaptive versus Generative

In [START_REF] Plut | Generative music in video games: State of the art, challenges, and prospects[END_REF], Plut and Pasquier present a survey about various approaches and challenges for the generation of music for video games. They consider two primary techniques:

• adaptive music (also named interactive music), where music is organized in order to be able to react to a game's state [START_REF] Collins | From Pac-Man to Pop Music Interactive Audio in Games and New Media[END_REF]. Some musical features (e.g., adding or removing instrumental layers (such as for striping), changing the tempo, adding or removing processing, changing the pitch content. . . ) are linked to game play variables.

An example of adaptive music is the "Luftrausers" game [START_REF] Vlambeer | [END_REF], where the composed music has been split into 3 groupings of instruments, each of which has 5 different arrangements, which a player may select for his avatar (see more details in [31, Section 1.2]).

• generative music, where music is not preexisting and dynamically adapted, as for adaptive music, but is generated on the fly. It is created in some systemic way by the computer and is sometimes called procedural music or algorithmic music [START_REF] Nierhaus | Algorithmic Composition: Paradigms of Automated Music Generation[END_REF]. The musical content is generated from some model.

The model can be specified by hand 2 . The limits are that specifying the model is difficult and error prone. The progress of machine learning techniques made it possible to learn models from examples (in other words, specify a model by extension rather than by intention). All but one of the generative music systems surveyed in [START_REF] Plut | Generative music in video games: State of the art, challenges, and prospects[END_REF] are using Markov chains models. One example is presented in [START_REF] Engels | Automatic real-time music generation for games[END_REF]. Markov models are indeed simpler than deep learning/neural networks models, but they face the risk of plagiarism [START_REF] Hutchings | Adaptive music composition for games[END_REF] and it will be summarized in next section (Section 2.2).

Generative music is more general and adaptive than pre-composed composed adaptive music, but is also more difficult to control and more computing demanding. As, noted by [START_REF] Plut | Generative music in video games: State of the art, challenges, and prospects[END_REF]: "Another reason that generative music may not have received widespread attention in the games industry is that it is often unpredictable and can be difficult to control. The audio director of "No Man's Sky" game, Paul Weir, notes that generative music was used in the game with an acknowledgment that it could produce "worse" music than composed music." [START_REF] Weir | The sound of 'no man's sky[END_REF]. Actually, that distinction between adaptive and generative music is not that clear, as often systems classified as generative are not completely generative and include adaptation components. This is for instance the case of the Adaptive Music System4 . We will now summarize it in next section (Section 2.2) in order to illustrate some issues and also for its own merits.

Architecture of the Adaptive Music System

The architecture of (AMS) [START_REF] Hutchings | Adaptive music composition for games[END_REF] is multi-agent and multi-technique:

• the harmony role agent, which generates a chord progression, using an RNN (trained on a corpus of symbolic chord sequences, actually an extension of the harmony system from the same authors [START_REF] Hutchings | Using autonomous agents to improvise music compositions in realtime[END_REF]);

• the melody role agents (one for each instrument), which instantiate characteristics (length, pitch, proportion of diatonic notes. . . ) of pre-existing melodies, using an evolutionary rule system (XCS, for eXtended learning Classifier System [START_REF] Wilson | Classifier fitness based on accuracy[END_REF]) and adapting them to the harmony;

• the rhythm role agent, which uses another RNN model.

AMS considers a model of 6 emotions: sadness, happiness, threat, anger, tenderness and excitement 5 , whose selection is triggered by current game state (every 30ms, the list of messages received by the Open Sound Control (OSC) is used to update the activation values). Emotions in turn will modulate the selection among pre-melodies (choosing the melodic theme assigned to currently highest activated concept or affect), with the instantiation of their characteristics being managed by a spreading activation model 6 .

As we can see, AMS actually proposes a sophisticated (and clever) generation model which includes both adaptive and generative aspects (for instance, harmony is generated and melodies are adapted). AMS has been tested in two games: Zelda Mystery of Solarus (MoS) (actually an open-source clone version) [START_REF] Team | The Legend of Zelda: Mystery of Solarus[END_REF] and StarCraft II [START_REF] Team | StarCraft II: Wings of Liberty[END_REF].

The comparison of our model with the much more complete and robust AMS architecture is twofold. Firstly, we more straightforwardly represent the emotional intensity in music generation, and secondly, we better support layering music. The simplicity of our approach aims to facilitate future prospecting in collaborative and interactive environments. Furthermore, we use a deep learning architecture (Transformer) better suited to capture long-term coherence in music.

Adaptability versus Continuity and other Design Issues

A pure generative approach is some kind of ideal, as it could in principle combine personalization (learnt styles) with real-time adaptation (to the game and players situation) 7 . Using symbolic-level music models as opposed to signal-level music models brings the advantages of higher level manipulation (at the composition level) and less computer resources 8 . An important and actually difficult issue remains the capacity to generate on the fly music content 9 and be able to adapt it, while maintaining some continuity (as for a musician improvising in some jazz context, balancing between constructing and following some musical discourse and fitting into the dynamic context, in the first place, harmonic modulations). Recent progress for control strategies for Markov chains and as well for deep learning show promising results. Markov constraints have been proposed as an unifying framework for Markov-based generation while satisfying constraints [START_REF] Pachet | Markov constraints: Steerable generation of Markov sequences[END_REF], and has been applied to realtime improvisation [START_REF] Pachet | Musical virtuosity and creativity[END_REF] and to interactive composition [START_REF] Papadopoulos | Assisted lead sheet composition using FlowComposer[END_REF]. Challenges for introducing control are somehow harder for deep learning (as explained in [4, Section 10]), but progresses are made, using control strategies such as conditioning (adding some additional input to the neural network in order to parameterize training and generation), e.g., as in [START_REF] Hadjeres | Interactive music generation with positional constraints using Anticipation-RNN[END_REF].

Current Proposal

Although simpler, our current prototype shares some similarity with AMS (see Section 2.2 and [START_REF] Hutchings | Adaptive music composition for games[END_REF]), in that it uses both neural network-based generation and an emotion reference model.

Design Principles

After having at first experimented with a recurrent neural network architecture of type LSTM (part of Google's Magenta project library) [START_REF] Magenta | Make music and art using machine learning[END_REF], we selected the Transformer architecture 10 [38], for its ability to enforce consis- 5 The 5 first ones are the most consistently used labels in describing music across multiple music listener studies [START_REF] Juslin | What does music express? basic emotions and beyond[END_REF]. Excitement has been added as an important aspect of emotion for scoring video games. 6 It is a graph of concept nodes, connected by weighted edges representing the strength of the association between the concepts (and is inspired from a semantic content organisation in cognitive science [START_REF] Collins | A spreading-activation theory of semantic processing[END_REF]). Activation spreads as a function of the number of mediating edges and their weights. As explained in [START_REF] Hutchings | Adaptive music composition for games[END_REF]: "Spreading activation models don't require logical structuring of concepts into classes or defining features, making it possible to add content based on context rather than structure. For example, if a player builds a house out of blocks in Minecraft, it does not need to be identified as a house. Instead, its position in the graph could be inferred by time characters spend near it, activities carried out around it, or known objects stored inside it." 7 The issue of how to combine various context information, plot, evolution, player(s) situation, etc., including statistics, e.g., average reactivity of a player, into some decision about what is the objective (adapt to current game context, or the opposite, trigger a player to engage more) and how to accordingly adapt the music is still an open issue. It is likely that it should use some aggregation/interpretation rules, as well as multi-criteria decision strategy, within some front end module in charge of mapping events and models from the game up to the control parameters for music generation or/and adaptation. 8 Although, recent waveform-level models such as WaveNet [START_REF] Van Den Oord | WaveNet: A generative model for raw audio[END_REF] demonstrated the feasibility of real-time conditioned generation, used for instance for intelligent assistants such as Google Echo or Amazon Alexa. 9 Hard real-time may be unnecessary, as the music does not have to adapt immediately to events, as opposed to sound effects. 10 Transformer is an important evolution of a Sequence-to-Sequence architecture (based on RNN Encoder-Decoder), where a variable length sequence is encoded into a fixed-length vector representation which serves as a pivot representation to be iteratively tency and structure, by better handling long-term correlations. It recently became popular for such applications as: translation, text generation (e.g., the Generative Pre-trained Transformer 3 aka GPT-3 model), biological sequence analysis and music generation [START_REF] Huang | Music Transformer: Generating music with long-term structure[END_REF].

Figure 1: Transformer architecture, reproduced from [START_REF] Vaswani | Attention is all you need[END_REF] The proposal by Jeffries for ambient music generation based on the Transformer [START_REF] Jeffries | The musician in the machine[END_REF] has also been a source of inspiration.

Training Examples

We selected ambient music as the musical style for our first experiments, bearing in mind the generality of the model, where the user could arbitrarily select a corpus of music of its preference (e.g., classical, jazz, techno. . . ). The corpus of music for training musical examples is a Spotify playlist named "Ambient songs for creativity and calm", curated by Jeffries, and containing approximately 20 hours and 165 titles [START_REF] Jeffries | Ambient songs for creativity and calm[END_REF].

The compressed audio files (mp3) corresponding to the musical examples were uncompressed into waveform (wav) files and then, by using a pitch detector, to symbolic (midi) files. For the polyphonic transcription to midi files, we used the Onsets and Frames transcription system11 [START_REF] Hawthorne | Onsets and frames: Dual-objective piano transcription[END_REF], developed by the Magenta project.

Layering

We consider layers of music, analogous to the production of orchestral music for games [START_REF] Stuart | Mozart would have made video game music': composer Eímear Noone on a winning art form[END_REF], with currently 3 layers:

• 1st layer, the most conservative and neutral;

• 2nd layer, to add more excitement, e.g., though some additional instrument;

• 3rd layer, to intensify the immersion and the tension.

These layers are generated from the same learning corpus, but from different seeds (starting sequences) and with different generation parameters 12 , depending on the controlling model (as will be presented in Section 4.5).

decoded to generate a corresponding sequence (see more details, e.g., in [START_REF] Briot | Deep Learning Techniques for Music Generation[END_REF]Section 5.13.3]). Its main novelty is a self-attention mechanism (as a full alternative to more classical mechanisms such as recurrence or convolution), to focus on contributing elements of an input sequence. For more details on the architecture, illustrated in Figure 1, please see the original article [START_REF] Vaswani | Attention is all you need[END_REF] or some pedagogical introduction [START_REF] Phi | Illustrated guide to Transformers -step by step explanation[END_REF].

In addition to this static parameterization of their generation according to the controlling model, each musical layer will be dynamically activated and played (or not) 13 , depending on the strategies of the controlling model.

Mapping Emotions

In order to have some high-level and human understandable control of the generation by the game play context (game and player(s)), we chose an emotion model, more precisely the arousal/valence model [START_REF] James | A circumplex model of affect[END_REF], in which an emotion can be mapped using two parameters:

• the arousal, which represents the intensity of the emotion;

• and the valence, which represents its quality (e.g., if it is positive, negative, neutral. . . ).

In order to simplify our current prototype, we now consider only 9 (discrete) emotions, as illustrated in Figure 2. The emotion model is designed as a server receiving control information from the game, in order to be able to work with various games and game values models. The game play information (events) emitted by the game may be about the game situation, player(s) situation, but also from various other sources such as quests, terrains, etc. How to aggregate these various informations is still an open issue for future work (see Section 5.1).

Strategy and Control Model

While planning for the future some more advanced state machine for mapping the emotions into generation control strategies (as will be detailed in Section 5.1), in current prototype we have implemented 9 pre-defined strategies (corresponding to the 9 emotions shown in Figure 2), with for each one different values corresponding to the parameters for the generation: which layers are activated, which instruments (sampled or synthetic sounds 14 ) are used and which effects are used. More strategies/types may be added by adding strategy classes to the implementation (as shown in Figure 3).

The complete model (Strategy/Layer/Emotion) for controlling music generation is shown in Figure 4. Current mapping is as follows: the strength (arousal) corresponds to the number of active layers, while the quality (valence) corresponds to the choice of emotional modes of the generated musical components.

Architecture

The architecture of current system is illustrated in Figure 5, and the flow logic is as follows:

1. User's client requests a music; 2. The server maps the user feeling through the arousal valence parameters; 3. It fetches, from memory, a song correspondent to the mapped emotion 15 ; 4. If no associated music has already being generated, it starts the generation; 5. After the music is fetched, it attaches metadata such as instruments; 13 Currently within the Ableton Live platform, a real-time sequencer for live music creation and production [START_REF] Santos | Ableton Live. Ableton[END_REF]. 14 Currently selected from some instruments library for ambient music within Ableton Live. 15 This optimization will be detailed in Section 4.7. 

Implementation

To optimize the music generation process, at least one music corresponding to each strategy is saved in memory. The architecture is designed as a server responsible for music generation, for various possible game clients, based on game engines like Unity or Unreal, or specific ones. In order to automate and scale-up the machine learning life cycle, we have used the Pachyderm platform (pipeline) [START_REF]Pachyderm. Github[END_REF]. For the implementation, we have used Nvidia CUDA development environment for high performance GPU-accelerated applications.

Evaluation

Current architecture has been tested with an emulated game model and with music generated from a corpus of ambient music. Arousal valence values have been estimated according to possible moments of the hero's journey and the behavior of the system. We are planning the integration with a real game using Unity.

Prospects

Game/Music Mapping Model

At present time, input from the game play is limited, but it could benefit from many more parameters and events (e.g., plot situation, player situation, including statistics, e.g., average player reactivity. . . ) and how to aggregate them. And, as opposed to mapping music to player state, we may want to oppose it instead, e.g., if the player is perceived to be showing to signs of abandon, you may want him to try to boost him with some positive music. Last, note that [START_REF] Plut | Music matters: An empirical study on the effects of adaptive music on experienced and perceived player affect[END_REF] proposes an additional dimension: tension, that you could compute and use to improve the system's emotion mapping.

In addition, as mentioned in Section 4.5, we are planning to substitute current strategy scheme with some more abstract and general state machine model, analog to the AMS spreading activation model (see Section 2.2 and [START_REF] Hutchings | Adaptive music composition for games[END_REF]), in order to track the transitions of the player's emotions. Better transitions between music could also be planned ahead, through interpolation.

Interactive Coordination

A more radical approach is to substitute the sequencer-like platform (currently, Ableton Live) by a more general platform for interactive and collaborative control of musical components (being generated by our current Transformer-based architecture). We are thinking of the Skini platform of our colleague Bertrand Petit [START_REF] Petit | Skini: Reactive programming for interactive structured music[END_REF]. This platform allows defining some kind of "orchestral blueprint? (actually, some cartography of possible paths) for activating various musical components of a piece of music 16 . Paths may be fixed or open with various choices, to be decided according to the interaction with the public (various active listeners). Figure 6 shows an example of visual orchestral blueprint (musical flow) in Skini. The control expression in the Skini platform is based on the integration of the synchronous reactive programming language Esterel [START_REF] Berry | The Esterel synchronous programming language: Design, semantics, implementation[END_REF] in JavaScript (on the Web). The advantage over a sequencer (which has a semi-rigid temporal structure) is the expressive power (Turing complete) of a language like Esterel (which, for example, is used to control Airbus planes), to program any type of coordination of real-time musical events, depending on various in-game events. Additionally, Esterel has formal semantics and property verification tools, thus offering possibilities of formally verifying properties, such as the termination or non-simultaneous activation of two arbitrary musical components. The Skini platform's capability for collaborative interactive orchestration (e.g., for simultaneous control interactions by several actors) offers us the right level of management of various interactions and controls coming from the game engine and from the different players. The Skini platform (whose architecture is shown in Figure 7) has already been tested recently, in a first scenario with a game platform (Unreal Engine 4), to control the scheduling and musical orchestration depending on the situation of the player within the game [START_REF] Petit | Skini et jeu vidéo[END_REF].

Conclusion

In this paper, we have presented some architecture, based on deep learning, for generating music for video games. Our current architecture is a proof of concept, but we believe that it shows the way for future developments that we have sketched. We are currently working on the design of next version architecture and its coupling with the coordination level based on Skini.
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 2 Figure 2: Arousal/valence emotion model and the 9 pre-defined emotions
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 34 Figure 3: Adding a new strategy named angry. It specifies: the instruments used for each layer (method get); and the range of arousal/valence values for triggering the strategy (method isInRange)
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 6 Figure 6: Example of orchestral flow in Skini (Opus1 Piece by Bertrand Petit). Plain arrows represent fixed paths and bold arrows represent paths which may be decided by the public. Each music/sound component (in blue) may be activated an unlimited number of times, except for "reservoirs" (in red) which are set to have some maximum number of activations

  

As film and game music composer Eímear Noone explains: "we might record the strings separately, for example, but we'll compose in a way that the strings on their own provide a functioning piece of music. Then, if our character triggers something in the world, perhaps a battle, we can land the wood winds or brass on top of that to increase the intensity. Each part must be self-contained yet work with others -you need to be able to kick in the brass, kick in the percussion, whenever it's triggered by gameplay."[START_REF] Stuart | Mozart would have made video game music': composer Eímear Noone on a winning art form[END_REF]. See also, e.g.,[START_REF] Hyperbits | Layering music: 20 ways to layer sounds. Hyperbits[END_REF] for a general introduction to layering.

This was for instance the case for the first piece of music composed in 1957 by a computer (the "ILLIAC I" computer at the University of Illinois at Urbana-Champaign (UIUC) in the United States), and therefore named "the Illiac Suite"[START_REF] Hiller | Experimental Music: Composition with an Electronic Computer[END_REF]. The human "meta-composers" were Hiller and Isaacson, both musicians and scientists. It was an early example of algorithmic composition, making use of stochastic models (Markov chains) for generation as well as rules to filter generated material according to desired properties.

By recopying too long sequences from the corpus. Some interesting solution is to consider a variable order Markov model and to constrain the generation (through min order and max order constraints)[START_REF] Papadopoulos | Generating non-plagiaristic Markov sequences with max order sampling[END_REF].

Note that it is classified as generative in[START_REF] Plut | Generative music in video games: State of the art, challenges, and prospects[END_REF], although its very name claims it as adaptive!

It uses both convolutional and recurrent (LSTM) neural networks in order to: 1) predict pitch onset events; and 2) to use predictions to condition framewise pitch predictions.

Currently, we vary a temperature parameter that controls the determinism of the generation, for some more likely or more unpredictable result.

It separates the macro-level coordination from the actual micro-level components, as for architectural/coordination languages in software architectures[START_REF] Shaw | Software architecture -Perspectives on an emerging discipline[END_REF] or distributed systems.
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