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Which Discriminator for Cooperative Text Generation?
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à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

Transformer [START_REF] Vaswani | Attention is All you Need[END_REF] architectures, coupled with an increase in computing capabilities, allows current Language Models (LM) to generate very plausible texts. Given an initial sequence of tokens (the prompt), the LM computes a probability distribution for the next token. A token is then sampled from this distribution and added to the initial sequence to generate the following token auto-regressively.

Choosing the next token given the distribution (decoding) is commonly done using greedy search, beam search [START_REF]Speech understanding systems: summary of results of the five-year research effort at Carnegie-Mellon University[END_REF] or top-k/p sampling [START_REF] Fan | Hierarchical Neural Story Generation[END_REF][START_REF] Holtzman | The Curious Case of Neural Text Degeneration[END_REF]; they select the next token only based on the likelihood (according to the LM) of the resulting sequence, which offers only limited control over the text finally generated.

Yet, large LMs trained with non curated data are known to produce toxic and inappropriate content [START_REF] Bender | On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?[END_REF][START_REF] Samuel Gehman | RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models[END_REF]. This is particularly problematic for Information Retrieval tasks that imply text generation, such as question-answering from the Web [START_REF] Lewis | Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks[END_REF][START_REF] Nakano | WebGPT: Browserassisted question-answering with human feedback[END_REF], queryfocused multi-documents summarization [START_REF] Pasunuru | Data augmentation for abstractive query-focused multi-document summarization[END_REF], query expansion [START_REF] Claveau | Neural text generation for query expansion in information retrieval[END_REF], query suggestion [START_REF] Mustar | On the Study of Transformers for Query Suggestion[END_REF], or chatbots for interactive search [START_REF] Pallagani | A Generic Dialog Agent for Information Retrieval Based on Automated Planning Within a Reinforcement Learning Platform[END_REF], which leverage contents from various -and sometimes untrustedinformation sources.

Classifiers can be trained to identify a specific property of a text and thus provide useful information to guide the LM towards the desired property. For instance, following Generative Adversarial Networks [START_REF] Goodfellow | Generative adversarial networks[END_REF], many studies train binary discriminators to distinguish real from generated contents, to approximate distributions of observed documents [START_REF] Yu | Seqgan: Sequence generative adversarial nets with policy gradient[END_REF]. Other studies train classifiers on semantic properties such as polarity to learn the generation process towards positive or negative texts [START_REF] Chaffin | PPL-MCTS: Constrained Textual Generation Through Discriminator-Guided MCTS Decoding[END_REF][START_REF] Dathathri | Plug and Play Language Models: A Simple Approach to Controlled Text Generation[END_REF][START_REF] Krause | GeDi: Generative Discriminator Guided Sequence Generation[END_REF]. In the context of Information Retrieval, this might also be used for instance to increase relevance of synthetic answers w.r.t. to the user's query. For all these purposes, there is an increasing interest for discriminatorgenerator cooperative decoding, where discriminators are used to guide generation [START_REF] Bakhtin | Residual Energy-Based Models for Text[END_REF][START_REF] Gabriel | Discourse Understanding and Factual Consistency in Abstractive Summarization[END_REF][START_REF] Holtzman | Learning to Write with Cooperative Discriminators[END_REF][START_REF] Scialom | Discriminative Adversarial Search for Abstractive Summarization[END_REF].

Currently, top performing discriminators are transformers using bidirectional attention [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF], but this does not fit the iterative nature of the generation process. Indeed, it requires to recompute every hidden state of the whole sequence for any additional token, preventing the use of cached hidden states and resulting in a quadratic cost w.r.t. the sequence length at each timestep. On the other hand, unidirectional transformers, which employ left-to-right masks to only depend on past tokens for text encoding/decoding [START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF], induce hidden states that can be reused for subsequent steps, hence involving linear computing complexity. However, these two types of discriminators only score one sequence at a time, given as input of the model. This limits the number of possible tokens to be considered at each decoding step, to avoid a computationally prohibitive cost. Solving this issue, recently introduced Generative Discriminators (GeDi) [START_REF] Krause | GeDi: Generative Discriminator Guided Sequence Generation[END_REF] give scores for all tokens from the vocabulary at once, hence dramatically reducing the cost of width exploration. In this paper, we explore the pros and cons of these three types of discriminators (bidirectional, unidirectional, generative) when used in cooperative language decoding.

In parallel, approaches relying on Monte Carlo Tree Search algorithm (MCTS) [START_REF] Coulom | Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search[END_REF] have been used for cooperative generation with more sophisticated exploration strategies than beam search. This non-myopic discriminator-guided decoding lead to state-of-the-art results in different applications [START_REF] Chaffin | PPL-MCTS: Constrained Textual Generation Through Discriminator-Guided MCTS Decoding[END_REF][START_REF] Lamprier | Generative Cooperative Networks for Natural Language Generation[END_REF][START_REF] Leblond | Machine Translation Decoding beyond Beam Search[END_REF][START_REF] Scialom | To Beam Or Not To Beam: That is a Question of Cooperation for Language GANs[END_REF]. We therefore use this promising cooperative decoding approach for our experiments and provide an implementation of the MCTS that allows to generate texts in batch for each type of discriminator 1 based on the HuggingFace's transformers library [START_REF] Wolf | Transformers: State-of-the-Art Natural Language Processing[END_REF].

Before exposing our experimental study, we further define the task of cooperative decoding and justify our study in the next section.

BACKGROUND AND MOTIVATIONS 2.1 Cooperative Decoding with MCTS

In cooperative text generation, information from the discriminator is combined to the generator distribution to skew the generation towards the desired property defined by one class of the discriminator [START_REF] Bakhtin | Residual Energy-Based Models for Text[END_REF][START_REF] Chen | Adding A Filter Based on The Discriminator to Improve Unconditional Text Generation[END_REF][START_REF] Holtzman | Learning to Write with Cooperative Discriminators[END_REF][START_REF] Scialom | Discriminative Adversarial Search for Abstractive Summarization[END_REF][START_REF] Yuan | Event Graph based Sentence Fusion[END_REF]. For instance, inspired from Value-guided beam search [START_REF] He | Decoding with value networks for neural machine translation[END_REF][START_REF] Zhou Ren | Deep Reinforcement Learning-Based Image Captioning With Embedding Reward[END_REF], but using class discriminators rather than value networks, Discriminative Adversarial Search (DAS) [START_REF] Scialom | Discriminative Adversarial Search for Abstractive Summarization[END_REF] proposed to rerank beam-generated sequences according to their discrimination scores. Among these approaches, MCTS-based ones [START_REF] Chaffin | PPL-MCTS: Constrained Textual Generation Through Discriminator-Guided MCTS Decoding[END_REF][START_REF] Lamprier | Generative Cooperative Networks for Natural Language Generation[END_REF][START_REF] Leblond | Machine Translation Decoding beyond Beam Search[END_REF][START_REF] Scialom | To Beam Or Not To Beam: That is a Question of Cooperation for Language GANs[END_REF] allowed to obtain state-of-the-art results in various NLG tasks, by overcoming the limitations of myopic left-to-right decoding (and difficult value-network learning [START_REF] Leblond | Machine Translation Decoding beyond Beam Search[END_REF]).

MCTS [START_REF] Silver | Mastering the game of go without human knowledge[END_REF] is an algorithm that iteratively builds a (generation) tree at each decision step, to take short-term decisions that might be promising in the long run. Each iteration is composed of three steps. First, during selection, a search toward an unexplored node is driven by a compromise between exploiting good partially generated sequences and exploring promising ones. This trade-off is controlled by the parameter 𝑐 𝑝𝑢𝑐𝑡 ∈ R (higher values mean more exploration). Then, expansion is performed by creating children of the selected node. Finally, the corresponding sequence is scored by the discriminator and the score of every parent up to the tree root are updated accordingly during a backpropagation phase. In MCTS, this back-propagated score is usually computed from the selected node by rolling out until a terminal node and by evaluating the resulting full sequence. As done in other approaches for cooperative decoding, we replace these costly roll-outs in our experiments by scores provided by discriminators trained on unfinished text sequences. In this work, we experiment on which kinds of discriminators are the best cooperative partners for generating with MCTS.

1 https://github.com/NohTow/PPL-MCTS/tree/main/teammates

Choosing the Right Teammate

By default, attention layers as defined in [START_REF] Vaswani | Attention is All you Need[END_REF] are bidirectional: every token can attend to tokens at every position. When it comes to discrimination, models based on such bidirectional attention are commonly used since "intuitively, it is reasonable to believe that a deep bidirectional model is strictly more powerful than [...] a left-to-right model" [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF]. However, while it brings some capacity to the model, it also makes it non auto-regressive: when a token is added at the end of a sequence, every hidden states need to be re-computed.

One way to train a transformer based LM for text generation is to use unidirectional attention masks [START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF]. In this unidirectional setting, any extra token added at the end of a sequence does not change the already calculated hidden states, since previous tokens do not attend to it. Thus, starting from an already classified sequence 𝑥 1:𝑡 -1 , classifying 𝑥 1:𝑡 only requires to compute 𝑡 attention scores, rather than the whole set of 𝑡 2 scores per self-attention layer, as it would be required in the bidirectional setting. In common discriminative tasks, this does not matter since only entire sequences are discriminated. Hence, none of the hidden states needs to be reused for another next sample. However, for a use in autoregressive cooperative decoding, where input sequences are often the continuation of already discriminated ones unidirectional attention allows to reuse contextual encoding of previous tokens, hence greatly speeding up the process.

However, even with unidirectional discriminators, evaluating every possible continuation of a given sequence is intractable since, for a vocabulary of size |V |, it requires |V | forward passes at each decoding step. |V | being in the order of ten thousand, discriminating every possible continuation of decoding sequences is too costly. Thus, cooperative approaches have to circumvent this issue by limiting the number of sequences actually evaluated by the discriminator. For example, DAS pre-filters potential continuations on the nucleus of the LM distribution [START_REF] Holtzman | The Curious Case of Neural Text Degeneration[END_REF]. This choice necessarily biases the resulting generated distribution.

Recently, [START_REF] Krause | GeDi: Generative Discriminator Guided Sequence Generation[END_REF] introduced Generative Discriminators (GeDi) that exploit Class-Conditionnal Language Models (CC-LMs) [START_REF] Shirish Keskar | CTRL: A Conditional Transformer Language Model for Controllable Generation[END_REF] to discriminate every token at once. CC-LMs condition distributions of sequence 𝑥 on a desired class of interest 𝑐: 𝑝 (𝑥 | 𝑐) = 𝑡 𝑝 (𝑥 𝑡 | 𝑥 1:𝑡 -1 , 𝑐). Assuming a uniform prior distribution of classes 𝑐 ∈ C, Bayes' rule enables to use this for discrimination: 𝑝 (𝑐 | 𝑥 1:𝑇 ) ∝ 𝑝 (𝑥 1:𝑇 | 𝑐). Thus, it only requires |C| forward passes to get the discrimination scores of all possible sequence continuations. |C| being usually much lower than |V |, this makes the consideration of every token tractable for sequential discriminative decoding. To improve discriminatory capacity of such models, training of CC-LMs used in GeDi leverages a discriminative loss L 𝑑 in addition to the traditional language modeling loss L 𝑔 . This discriminative loss corresponds to a cross-entropy loss using the model as a discriminator and a hyper-parameter 𝜆 is used to define the balance between the two objectives:

L 𝑡𝑜𝑡𝑎𝑙 = 𝜆L 𝑔 + (1 -𝜆)L 𝑑 .
These three types of discriminators offer different capacity / complexity trade-off, which are studied in this paper for cooperative decoding with MCTS. More precisely, three questions are explored: 1) How these models differ in pure discrimination accuracy? 2) To which extend are these differences noticeable in generated texts? 3) © Authors 2022. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in SIGIR 2022, https://doi.org/10.1145/3477495.3531858 How do these methods compare in terms of computation complexity for cooperative decoding?

EMPIRICAL STUDY

According to previous studies, unidirectional models should yield worse accuracy than bidirectional ones [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF][START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF] and better than discriminative generators [START_REF] Ng | On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes[END_REF][START_REF] Yogatama | Generative and Discriminative Text Classification with Recurrent Neural Networks[END_REF]. To thoroughly assess the pros and cons of these models using state-of-the-art transformer architectures, it is crucial that the only difference is the studied property (uni-vs bi-directionality, and discriminative vs generative). Thus, we propose to use the same backbone for all settings to prevent any external confounding factors, with a single fully connected output layer on top of the contextual embedding of the last token to produce discrimination scores. Starting from BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] as bidirectional discriminator, a triangular self-attention mask is applied for adapting it from the bidirectional to the unidirectional setting in our experiments, following [START_REF] Dong | Unified Language Model Pretraining for Natural Language Understanding and Generation[END_REF]. Then, the generative discriminator is the same as the left-to-right one, the only difference being the size of the output layer that changes from (ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒, 𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠) to (ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒, 𝑣𝑜𝑐𝑎𝑏_𝑠𝑖𝑧𝑒).

Experiments are made on two datasets from [START_REF] Zhang | Character-level Convolutional Networks for Text Classification[END_REF]: ama-zon_polarity which is a binary (positive or negative) online reviews classification task and AG_news which is a topic classification task with 4 labels (world, sport, business and science). These datasets allows to study results of cooperative generation on two rather different constraints and domains: applying polarity on online reviews and writing news about a specific topic. Also, AG_news allows to study the generalization to non-binary classification and texts with more diverse content. Each model is trained for 20 epochs using AdamW [START_REF] Loshchilov | Decoupled Weight Decay Regularization[END_REF] with HuggingFace's trainer default parameters (𝛽 1 = 0.9, 𝛽 2 = 0.999, 𝑒𝑝𝑠 = 1𝑒 -8) and a linear scheduler with no warmup. Batch size is set to the maximum that can fit in the memory of a Quadro RTX 6000 during GeDi training (4 for AG_news and 8 for amazon_polarity). Gradient accumulation is set to emulate a batch size of 128. For training GeDi, we set 𝜆 = 0.6 according to the authors (and did not observe significant difference when setting 𝜆 = 0 to strengthen the classification capacity).

Discrimination Strength

For discriminators, accuracy has an utmost importance: it defines how well it solves the intended task. In the context of cooperative generation, having a good accuracy on complete sequences is not sufficient: an informative output with uncomplete sequences is needed so that the discriminator can be used throughout the generation process. Thus, plotting the accuracy w.r.t. the number of input tokens gives information about the capacity of the model to guide the generation at different timesteps, the main property expected for discriminators in cooperative generation. Note that, following common practice in cooperative generation, the discriminator is trained on sequences of variable lengths to avoid a mismatch between training and test tasks.

Results reported in Fig. 1 show that every discriminator exhibits the same behavior: starting from random predictions, accuracy quickly increases with the input length until reaching a plateau. The expected ordering is observed: bidirectional models perform better than unidirectional models, which themselves perform better than generative ones. However, it should be noted that the gap is rather small and only appears when approaching the plateau. Favoring bidirectional models in accuracy-critical tasks is justified, but it is not necessarily clear that these small differences will reflect in the quality of cooperatively generated texts.

Please note that this corresponds to the accuracy on in domain data, and that complementary -non reported -experiments, on random sequences to be discriminated, showed however that GeDi is more robust to out of domain sequences: its discrimination scores are greatly closer to maximal uncertainty (i.e., 𝑝 (𝑐 |𝑥) = 0.5), than those of discriminative models which tend to greatly favor one class over the other ones in such cases. However, this may not impact results in generation, since such random samples are not likely to be observed during MCTS decoding, because of the language model prior guiding search towards in distribution sequences.

Generation Quality

To assess whether the -relatively small -differences in classification accuracies impact the results on cooperative generation with MCTS, we follow the PPL-MCTS [START_REF] Chaffin | PPL-MCTS: Constrained Textual Generation Through Discriminator-Guided MCTS Decoding[END_REF] setup by constraining the generation process towards a desired class 𝑐 using 𝑝 (𝑐 |𝑥) given by the considered discriminator. Automatic metrics are used to study the quality of the guiding signal brought by the discriminator: 1) Accuracy corresponds to the average rate of generated sequences for any class 𝑐 to be correctly classified as 𝑐 by an oracle discriminator trained on disjoint data, 2) Self-BLEU [START_REF] Zhu | Texygen: A Benchmarking Platform for Text Generation Models[END_REF] focuses on diversity across samples, by measuring BLEU scores between generated sequences, and 3) Oracle perplexity stands for the perplexity of an oracle LM trained on disjoint data, allowing to control the writing quality of generated texts. We used a bidirectional BERT model as oracle discriminator to get the most accurate evaluation possible. Language models are also BERT models with an LM head in order to use the same tokenizer. Average results over 500 sampled test texts using each type of discriminator on the two datasets are reported in Tab. 1. We also report results obtained using the vanilla LM likelihood 𝑝 (𝑥) as back-propagated score in MCTS evaluation, to provide baseline results achievable without discriminators. Results are obtained using best performing hyper-parameters in the literature (𝑐 𝑝𝑢𝑐𝑡 = 3, temperature 𝜏 = 1) and 50 iterations of MCTS per token, unless specified otherwise. We report statistical significance between each type of discriminator using t-test with p-value=0.01.

The difference of generation accuracy when using bidirectional and unidirectional discriminator shows that the difference in raw accuracy reflects in resulting samples when used for cooperative generation. The higher difference on amazon_polarity also results in a higher difference in generation accuracy. However, this difference is relatively limited and the generation does not seem to deviate too much using unidirectional discriminators. Results using generative discriminators are different, with a significantly greater drop of accuracy than between uni-and bi-directional models on AG_news, although the gap in raw accuracy is similar. More surprising is the result on amazon_polarity where, despite similar raw accuracies, we observe a 10-point drop of generation accuracy. We hypothesize that this is because the signal is not as informative: while raw accuracies are pretty similar, the average score attributed to the ground truth class in evaluation is significantly lower in the case © Authors 2022. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in SIGIR 2022, https://doi.org/10.1145/3477495.3531858 of GeDi. This means that its signal promotes less good solutions than standard discriminators when guiding the generation. The type of discriminator has no significant impact on the other metrics. Please note that the general difference of Self-BLEU and oracle perplexity between the two datasets is due to the difference in their content: AG_news is more diverse, which results in lower Self-BLEU and higher perplexity. Finally, we notice that doubling the number of MCTS iterations allows to increase the accuracy results of the unidirectional model, bridging the gap between both model for a still lower computational cost (see next section).

Computational Gain

Beyond generation accuracy, we are interested in computation complexity of the various models to be used in cooperative generation. Fig. 2 reports MCTS execution times w.r.t. each generation step 𝑡 (i.e., time required to decode token at step 𝑡 of any sequence), using a bidirectional model compared to a unidirectional one. Unsurprisingly, since the complexity is quadratic in the bidirectional case and only linear in the unidirectional one, the difference in generation time is significant, and increases linearly w.r.t. the sequence length. Note also that this difference increases with the number of MCTS iterations. At last, we note that the number of MTCS iterations with unidirectional discriminator can be much more than doubled compared to the case of bidirectional one, while keeping the computational cost significantly lower, even for small text sequences.

In the case of the generative discriminator, a great potential computational gain may arise from the fact that discrimination scores can be computed for every child of an expanded node at once. More specifically, while computing scores for each of the |V | children nodes would cost |V | forward passes in the case of discriminative classifiers, it only requires |C| forward passes for generative classifiers (i.e., one pass per class for getting all scores, rather than one pass per child node). Since usually |C| << |V |, the use of generative discriminator could be way advantageous and allow to increase the number of MCTS iterations to expect to, at least, fill the gap with accuracy results of discriminative approaches.

However, this potential gain heavily depends on the exploration of the tree and therefore the parameter 𝑐 𝑝𝑢𝑐𝑡 . If less than |C| children are considered at each level of the tree, then the generative approach is at least as costly as the discriminative one and can even be more costly. Indeed, we empirically observed that for usual value 𝑐 𝑝𝑢𝑐𝑡 = 3, generative discriminators needs in average 1 685 more forward passes on amazon_polarity (where |C| is only 2), meaning there is more depth than width explorations. Increasing 𝑐 𝑝𝑢𝑐𝑡 decreases this difference but also the resulting generation accuracy. At 𝑐 𝑝𝑢𝑐𝑡 = 15, the accuracy already drops for 10 points and the difference is still to the disadvantage of GeDi for more than 600 forward pass. These results show that generative discriminators are only beneficial if exploration is wider than deeper, which is not the case for MCTS operating points. This is consistent with GeDi results [START_REF] Krause | GeDi: Generative Discriminator Guided Sequence Generation[END_REF], which observed an important gain in a beam search decoding approach where the width is crucial. These new results suggest to seek at ways for better leveraging this GeDi potential with more efficient exploration in width of the MCTS or to use methods that do it by construction as beam search.

CONCLUSION

Cooperative generation has proven to be an effective way to augment traditional text generation with external information from a discriminator. While transformers with bidirectional attention are usually preferred for discriminative tasks, they are not autoregressive and are therefore much more expensive when used to guide generation. Although a little less precise, unidirectional transformers allow to achieve very similar results for a much more reasonable and consistent cost. As a consequence, our study shows that unidirectional discriminators should be preferred for cooperative generation, for which slight accuracy drops can be balanced by reinvesting part of the computational gain. Given the size of © Authors 2022. This is the author's version of the work. It is posted here for your personal use. Not usual vocabularies, generative discriminators seem very interesting at first glance to allow wider search. However, while achieving similar results in terms of classification accuracy, scoring the whole vocabulary comes at the price of a less informative signal. Moreover, although counter-intuitive, this width is not necessarily useful as shown by the search performed by the state-of-the-art Monte Carlo Tree Search, which usually explores more in depth than in width. Thus, such models will prove useful when used with methods that make particular use of this width information. We leave such explorations for future work.

To allow reproduction and further experiments on this subject, the code used for our experiments is made available for the community at https://github.com/NohTow/PPL-MCTS/tree/main/teammates.
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Table 1 :

 1 for redistribution. The definitive version was published in SIGIR 2022, https://doi.org/10.1145/3477495.3531858 amazon_polarity AG_news Value Accuracy ↑ 5 -Self-BLEU ↓ Oracle perplexity ↓ Accuracy ↑ 5 -Self-BLEU ↓ Oracle perplexity ↓ 𝑝 (𝑥) Performance of MCTS w.r.t. the metric to optimize on amazon_polarity (left) and AG_news (right) datasets. * indicates statistically significant improvement against Generative Discriminator. Note that no model demonstrated significant improvement over unidirectional discriminator.

		70.8	0.652	10.49	86.6	0.306	29.08
	Bidirectional	96.0 *	0.531 *	12.25	94.8 *	0.319	29.13
	Unidirectional	93.0 *	0.528 *	11.98	93.4	0.313	29.99
	Unidirectional (100 its)	93.6 *	0.522 *	10.73	94.6 *	0.323	30.92
	Generative discriminator 84.4	0.576	11.92	91.8	0.321	29.43
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