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Abstract

The ground and lowest three adiabatic excited states of methylene are computed using the variational

Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods using progressively larger Jastrow-Slater

multideterminant complete-active-space (CAS) wave functions. The highest of these states has the same

symmetry, 1A1, as the first excited state. The DMC excitation energies obtained using any of the CAS wave

functions are in excellent agreement with experiment, but single-determinant wave functions do not yield

accurate DMC energies of the states of 1A1 symmetry, indicating that it is important to include in the wave

function Slater determinants that describe static (strong) correlation. Excitation energies obtained using

recently proposed pseudopotentials (Burkatzki et al, JCP 126, 234105) differ from the all-electron excitation

energies by at most 0.04 eV.
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I. INTRODUCTION

There is a considerable need for excited-state electronic-structure calculations for research on

solar energy, photoelectrochemistry and catalysis, and other light-driven phenomenon. Quantum

Monte Carlo (QMC) is an accurate and highly parallelizable approach for calculating the electronic

structure of atoms, molecules and solids [1–3]. Although QMC has mostly been used for computing

the lowest energy states of a given symmetry, methods have been developed [4–11] for computing

true excited states as well.

The two most commonly used variants, variational Monte Carlo (VMC) and diffusion Monte

Carlo (DMC), use a flexible trial wave function, generally consisting for atoms and molecules of a

Jastrow factor multiplied by a short expansion in configuration state functions (CSFs), each con-

sisting of a linear combination of Slater determinants of orbitals expanded in a Slater or Gaussian

basis. The trial wave functions employed determine the accuracy of VMC calculations, and also

of DMC calculations performed with the fixed-node approximation in which the nodes of the trial

wave function are used to enforce the fermionic antisymmetry constraint. Recently, the linear opti-

mization method has been extended, from optimizing linear parameters [5] to efficiently optimizing

all the parameters [12–14] of ground-state wave functions by minimizing the VMC energy.

VMC and DMC calculations of excitation energies in molecules have been most often performed

without reoptimizing the determinantal part of the wave function in QMC in the presence of the

Jastrow factor (see, e.g., Refs. 15–19). Filippi and coworkers have optimized Jastrow and deter-

minantal parameters for excited states of various molecules using the energy fluctuation potential

method [6, 7, 20] and the linear optimization method [8–10], including excited states that are not

the lowest ones in their irreducible representations using a general state-average strategy.

In this work, we investigate QMC calculations of excited states of methylene (CH2). This sys-

tem has served as an important benchmark for electronic-structure methods due to its small size

and because some of its excited states are difficult to describe accurately [21–28]. While the ground

state (1 3B2) and second excited state (1 1B2) [29] can be described well with a single CSF with

a dominant configuration (1a1)2(2a1)2(1b1)2(3a1)(1b2), the first excited state (1 1A1) and third

excited state (2 1A1) are multiconfiguration states with considerable admixture of the configura-

tions (1a1)2(2a1)2(1b1)2(3a1)2 and (1a1)2(2a1)2(1b1)2(1b2)2 and are therefore more challenging to

calculate. To achieve accurate excitation energies, both static and dynamic correlation must be

treated accurately. In general, methods such as full configuration interaction (FCI) [26], multiref-

erence configuration interaction [25], and spin-flip or multireference coupled cluster [27, 30] are all
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capable of describing these states, but suffer from poor scaling and the need for large basis sets

and even extrapolation to the complete-basis set limit. These methods become computationally

infeasible for large systems. Time-dependent density functional theory can be applied to larger

systems, but chemical accuracy is not reached [31].

We apply the linear optimization method to optimize Jastrow-Slater multideterminant complete

active space (CAS) wave functions for CH2. For the ground state 1 3B2 and for the excited states

1 1A1 and 1 1B2, which are the lowest states in their irreducible representations, we minimize

the energy using the standard linear optimization method. For the second excited state of 1A1

symmetry, we perform a state-specific (as opposed to a state-averaged) optimization by simply

targeting the second eigenvector of the Hamiltonian matrix of the linear optimization method. We

study the effect of the CAS size, the effect of optimizing different types of parameters and the use

of a pseudopotential on the results, and demonstrate that excitation energies can be calculated

with chemical accuracy in DMC.

II. METHODOLOGY

We use Jastrow-Slater wave functions parametrized as [12, 14]

|Ψ(p)〉 = Ĵ(α)eκ̂(κ)
NCSF∑

I=1

cI |CI〉, (1)

where Ĵ(α) is a Jastrow factor operator, eκ̂(κ) is the orbital rotation operator and |CI〉 are CSFs.

Each CSF is a symmetry-adapted linear combination of Slater determinants of single particle

orbitals which are expanded in basis functions. The parameters p = (α, c, κ) to optimize are

the Jastrow parameters α, the CSF coefficients c and the orbital rotation parameters κ. The

exponents of the basis functions are kept fixed in this work, although it is possible to optimize

them [14, 32]. The Jastrow factor includes explicit electron-electron, electron-nucleus and electron-

electron-nucleus correlation terms, accounting for dynamic correlation. The (short) CSF expansion

accounts for static correlation.

All calculations are performed in C2v symmetry using, for each state, the geometries from

Sherrill et al. [26] which were generated using FCI with a triple-zeta, double polarization (TZ2P)

basis. The initial CSF and orbital coefficients are taken from restricted Hartree-Fock (RHF) or

multiconfiguration self-consistent field (MCSCF) CAS calculations using the GAMESS software

package [33]. The orbital symmetries included in the CAS space are from the RHF orbital ordering

in the all-electron ground state, which is a1(core), a1, b1, a1, b2, a1 and b1. Since QMC calculations
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do not require a very large basis, we choose the polarized triple-zeta VB1 Slater basis of Ref. 34

for all-electron (AE) computations, and the pseudopotentials and the triple-zeta Gaussian basis of

Ref. 35 for pseudopotential (PSP) computations. Each Slater function of the VB1 basis is actually

expanded in GAMESS as a sum over 14 Gaussian basis functions. The QMC calculations are then

done with the program CHAMP [36] (using the true VB1 Slater basis set rather than its Gaussian

expansion).

The parameters are optimized with the linear energy minimization method [12–14], using an

efficient Metropolis algorithm [37]. In this method, at each optimization step, the normalized wave

function is expanded around the current parameters p0 to linear order in the parameter variations

∆p = p−p0, and the energy is minimized by solving the following generalized eigenvalue equation,

with the matrix elements computed using a finite VMC sample [14]

 E0 gT

R/2

gL/2 H





 1

∆p


 = E


 1 0T

0 S





 1

∆p


 , (2)

where E0 is the estimate of the current energy, gL and gR are two estimates of the energy gradient,

H and S are estimates of the Hamiltonian and overlap matrices in the basis of the first-order deriva-

tives of the wave function. One eigenvector ∆p is then selected and used to update the parameters

in the current wave function, p0 → p0 + ∆p. The procedure is iterated until convergence.

For the ground state 1 3B2 and for the excited states 1 1A1 and 1 1B2, which are the lowest

ones in their irreducible representations, we select the eigenvector ∆p corresponding to the lowest

eigenvalue. For the excited state 2 1A1 which is not the lowest one in its irreducible representation,

we take the eigenvector corresponding to the second lowest eigenvalue. This corresponds to a saddle

point rather than a minimum in the parameter space. The optimization of the 2 1A1 state is less

stable than for the other states. The optimization can fail in two ways: the parameters may never

converge to a good approximation of an eigenstate, or root flipping can occur, i.e. the eigenvalue of

the optimized 2 1A1 state becomes lower than the eigenvalue of the unoptimized 1 1A1 state. In this

latter case, the relative sign of CSF coefficients of the two dominant configurations indicated in the

Introduction can change from one optimization iteration to another. (For the 1 1A1 state they have

opposite sign, whereas for the 2 1A1 state they have the same sign.) However, if we first optimize

the nonlinear Jastrow and orbital parameters for the 1 1A1 state (but at the geometry of the 2 1A1

state), and use these optimized parameters as a starting point for optimizing the 2 1A1 state, then

these problems are rarely observed. Thus, one can fully optimize wave functions for each state

separately. We note, however, that for systems where the orbitals obtained from optimizing the
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ground state are very different from those obtained from optimizing the excited state, this simple

approach may fail and one may need to use a more general state-averaged approach [8–10].

Once the trial wave functions have been optimized, we perform DMC calculations, within the

short-time and fixed-node (FN) approximations using an efficient DMC algorithm featuring small

time-step errors [38]. For the PSP calculations, we additionally use the localization approxima-

tion [39]. The time step used for all the DMC computations is 0.01 Hartree−1 and the DMC

energies are converged to within a statistical uncertainty of 0.1 mHartree (≈ 0.003 eV) or less.

In this study we compare QMC results using RHF, CAS(2,2), CAS(4,4) and CAS(6,6) initial

wave functions and optimization of the Jastrow parameters only (“Jastrow-optimized”), simultane-

ous optimization of the Jastrow and CSF parameters (“Jastrow-CSF-optimized”) and simultaneous

optimization of the Jastrow, CSF and orbital parameters (“Fully-optimized”).

III. ALL-ELECTRON RESULTS

A. Convergence of total energies

Table I and Figures 1, 2, 3 and 4 show the convergence of VMC and DMC total energies for

the ground state (1 3B2) and the first three excited states (1 1A1, 1 1B2, 2 1A1) of methylene using

progressively larger CAS wave functions. In each figure, the upper three curves are the VMC

energies and the lower three are DMC energies. Within each triplet of energies, the upper curve

was obtained by optimizing the Jastrow parameters only, the middle curve was obtained optimizing

the Jastrow and the CSF parameters and the bottom curve was obtained optimizing the Jastrow,

CSF and orbital parameters. The energies in the table were obtained optimizing the Jastrow, CSF

and orbital parameters. When the CSF and orbitals parameters are optimized, the energies go

down monotonically with increasing CAS size, as they must. On the other hand, when only the

Jastrow parameters are optimized, keeping the CSF and orbital coefficients fixed at their MCSCF

values, the energies can go up with increasing CAS size, as has been previously been noted by two

of the authors [13].

When Jastrow, CSF and orbital parameters are optimized, the energy goes down only slightly

as the CAS size is increased. The CAS(2,2) for the 1 3B2 and 1 1B2 states corresponds to a single

CSF and these states have single-reference character. The CAS(2,2) for the 1 1A1 and 2 1A1 states

have two CSFs and these states have multireference character. Hence the 1 1A1 shows a significant

decrease in energy going from the RHF to the CAS(2,2) initial wave function, and the 2 1A1 state

5



cannot be described by Hartree Fock.

From Table I we note that despite the fact that the QMC calculations employ a smaller basis

than the FCI/TZ2P calculations, not only the DMC energies but even the VMC energies are

significantly lower than the FCI/TZ2P energies. This is a manifestation of the well-known fact that

QMC energies are less sensitive to the basis and the number of determinants in the wave function.

Since the VMC and DMC energies are upper bounds to the true energy, they are more accurate than

the FCI/TZ2P energies. Also shown in Table I are energies for the lower two states from restricted

coupled cluster singles doubles with perturbative triples (RCCSD(T)), contracted multireference

configuration interaction (CMRCI), and CMRCI with the Davidson correction (CMRCI+Q) from

Ref. 40. Each of these energies has been extrapolated to the infinite basis set limit, using energies

from double to quintuple-zeta basis sets.

B. Convergence of excitation energies

Table I and Figures 5, 6 and 7 show the convergence of the first three adiabatic excitation

energies of methylene as a function of the CAS size. The lower two excitation energies, 1 1A1-

1 3B2 and 1 1B2-1 3B2, obtained from DMC using the Jastrow, CSF and orbital optimized wave

functions are independent of CAS size within statistical uncertainty and in excellent agreement

with the experimental (non-relativistic, Born-Oppenheimer, and corrected to remove zero-point

energy) values of 0.406 eV [23] and 1.415 eV [24, 41]. In contrast the excitation energies obtained

from FCI are too high by 0.076 and 0.127 eV respectively. Also shown in Table I are the MCSCF

energies. The excitation energies from MCSCF change by 0.3 eV upon varying the CAS size,

whereas the DMC energies vary by only 0.01 eV for the first two excitation energies and by 0.08

eV for the third excitation energy, demonstrating the robustness of the DMC method.

Although the multiconfigurational excited state 2 1A1 has been theoretically hypothesized as

important in reactions involving methylene, no experimental results are available and it is difficult

to describe theoretically. The excitation energy obtained from DMC with the Jastrow, CSF and

orbital optimized wave functions (see Table I) shows a small but statistically significant decrease

with increasing CAS size. Our best estimate of this excitation energy, 2.524(4) eV, obtained with

the CAS(6,6) wave function, is 0.15 eV lower that the value from FCI.
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C. Test of CAS orbital choice

The symmetries of the orbitals in the CAS wave functions are chosen by picking the appropriate

number of lowest energy orbitals from a Hartree-Fock calculation of the ground state. This is a

simple choice that requires no chemical insight but it need not be the choice that yields the best

energies. For the 1 1A1 state we tested the effect of changing the CAS(6,6) space by swapping

the highest virtual orbital with an inactive orbital. (The core 1s orbitals are sufficiently low in

energy that including them in the CAS space is unlikely to significantly improve the energy.) The

virtual orbitals are of symmetries b2 a1 b1. We exchanged the highest lying b1 orbital with an a1

orbital, making the virtual orbitals: b2 a1 a1. The MCSCF energy using this new CAS is 0.388 eV

higher than the energy from the original CAS space. However, the DMC energies, obtained using

Jastrow and CSF optimized wave functions is higher by only 0.031(4) eV and that obtained using

the Jastrow, CSF and orbital optimized wave function is higher by only 0.019(4) eV.

D. Test of CSF cutoff

For large systems it becomes computationally expensive to include all the determinants from

CAS wave functions in the QMC calculations. Hence it is common practice to include only those

CSFs that have coefficients in the MCSCF calculation larger than some threshold. In Table II we

show the energies for the CAS(4,4) and CAS(6,6) wave functions using cutoffs of 0.01 and 0.05

respectively. The DMC excitation energies are still within chemical accuracy (0.04 eV) of the

experimental values.

IV. TEST OF PSEUDOPOTENTIALS

For large systems, in order to keep the computational cost manageable, it becomes necessary

to eliminate the core electrons using nonlocal pseudopotentials. Here we employ the excitation

energies of methylene as a test of the accuracy of a recently proposed set of pseudopotentials [35]

that were constructed for use in QMC calculations. Table III shows the total energies and excitation

energies obtained using these pseudopotentials for carbon and hydrogen. The excitation energies

obtained using these pseudopotentials show small deviations from the all-electron values (averaged

over the three CAS sizes) of -0.03(1), +0.04(1) and +0.02(1) eV for the first three excited states.
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V. CONCLUSIONS

We have employed VMC and DMC methods to compute the four lowest energy states of

methylene using progressively larger Jastrow-Slater multideterminant CAS wave functions, the

fourth state having the same symmetry as the second state. Provided that the Jastrow, CSF and

orbital parameters are optimized simultaneously, the excitation energies obtained from DMC are

almost independent of the CAS size. Excitation energies for the lower two excited states, obtained

from even the smallest CAS wave functions, are in excellent agreement with experiment, indicat-

ing that it is sufficient to include in the wave function just those determinants that describe static

correlation to obtain an accurate wave function nodal surface for the fixed-node DMC calculations.

For the highest state, we make a prediction for the excitation energy since an accurate experimen-

tal value is lacking. We find that excitation energies from recently proposed pseudopotentials for

carbon and hydrogen differ from the all-electron excitation energies by at most 0.04 eV.
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Comput. Chem. 24, 859 (2003).

[35] M. Burkatzki, C. Filippi, and M. Dolg, J. Chem. Phys. 126, 234105 (2007).

[36] CHAMP, a quantum Monte Carlo program written by C. J. Umrigar, C. Filippi and J. Toulouse, URL

http://pages.physics.cornell.edu/~cyrus/champ.html.

[37] C. J. Umrigar, Phys. Rev. Lett. 71, 408 (1993).

[38] C. J. Umrigar, M. P. Nightingale, and K. J. Runge, J. Chem. Phys. 99, 2865 (1993).

[39] M. M. Hurley and P. A. Christiansen, J. Chem. Phys. 86, 1069 (1987); B. L. Hammond, P. J. Reynolds,

and W. A. Lester, Jr., ibid. 87, 1130 (1987); L. Mitas, E. L. Shirley, and D. M. Ceperley, J. Chem.

Phys. 95, 3467 (1991).

[40] D. Woon and T. Dunning, J. Chem. Phys. 103, 4572 (1995).

[41] The experimental results of Alijah and Duxbury (1.411 eV) are corrected to remove zero-point energy

by the FCI/TZ2P results of Sherrill et al (0.004 eV).

Figures

FIG. 1: (Color online) Convergence of all-electron VMC and DMC total energies for the 1 3B2 ground state

of methylene with increasing CAS size.

FIG. 2: (Color online) Convergence of all-electron VMC and DMC total energies for the 1 1A1 excited state

of methylene with increasing CAS size.

FIG. 3: (Color online) Convergence of all-electron VMC and DMC total energies for the 1 1B2 excited state

of methylene with increasing CAS size.

FIG. 4: (Color online) Convergence of all-electron VMC and DMC total energies for the 2 1A1 excited state

of methylene with increasing CAS size.
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FIG. 5: (Color online) Convergence of all-electron adiabatic excitation energies from the ground state

(1 3B2) to the first excited state (1 1A1) with increasing CAS size. The fully-optimized DMC energies show

little dependence on the CAS size. Single-determinant results from an RHF initial wave function are not

shown, but produce excitation energies of 0.674(8) eV and 0.616(8) eV for fully-optimized VMC and DMC,

respectively.

FIG. 6: (Color online) Convergence of all-electron adiabatic excitation energies from the ground state (1 3B2)

to the second excited state (1 1B2) compared to CAS size. The fully-optimized DMC energies show little

dependence on the CAS size.

FIG. 7: (Color online) Convergence of all-electron adiabatic excitation energies from the ground state (1 3B2)

to the third excited state (2 1A1) with increasing CAS size.

Tables

TABLE I: Comparison of the total energies (in Hartree) and adiabatic excitation energies (in eV) of the four

lowest states of methylene obtained from VMC and DMC with various Jastrow-Slater CAS wave functions

(this work). The statistical uncertainty is shown in parentheses. The Jastrow, CSF and orbital parameters

were simultaneously optimized. The DMC excitation energies are almost independent of the CAS size. These

energies are compared to those from RCCSD(T), CMRCI and CMRCI+Q, extrapolated to the infinite basis

limit (from Ref. 40), and, from FCI with triple-zeta plus two polarization function basis (from Ref. 26). The

excitation energies are compared also to the experimentally derived [23, 24, 41] values reported in [26].

CAS(2,2) CAS(4,4) CAS(6,6)

1 3B2

MCSCF -38.93357 -38.93402 -38.97235

VMC -39.1273(2) -39.1279(2) -39.1327(2)

DMC -39.1406(1) -39.1408(1) -39.1428(1)

RCCSD(T) [40] -39.1480

CMRCI [40] -39.1419

CMRCI+Q [40] -39.1483

FCI [26] -39.0667

1 1A1

MCSCF -38.91628 -38.92145 -38.95490
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VMC -39.1124(2) -39.1126(2) -39.1169(2)

DMC -39.1255(1) -39.1257(1) -39.1279(1)

RCCSD(T) [40] -39.1329

CMRCI [40] -39.1273

CMRCI+Q [40] -39.1340

FCI [26] -39.0490

1 1B2

MCSCF -38.86919 -38.876136 -38.90403

VMC -39.0755(2) -39.0758(2) -39.0790(2)

DMC -39.0890(1) -39.0891(1) -39.0908(1)

FCI [26] -39.0101

2 1A1

MCSCF -38.81211 -38.82494 -38.85686

VMC -39.0311(2) -39.0334(2) -39.0389(2)

DMC -39.0451(1) -39.0465(1) -39.0501(1)

FCI [26] -38.9685

1 1A1 − 1 3B2

MCSCF 0.470 0.342 0.474

VMC 0.407(8) 0.416(8) 0.430(8)

DMC 0.412(4) 0.412(4) 0.406(4)

RCCSD(T) [40] 0.411

CMRCI [40] 0.398

CMRCI+Q [40] 0.389

FCI [26] 0.482

Exper. [23] 0.406

1 1B2 − 1 3B2

MCSCF 1.751 1.575 1.858

VMC 1.411(8) 1.417(8) 1.460(8)

DMC 1.405(4) 1.408(4) 1.416(4)

FCI [26] 1.542

Exper. [24, 41] 1.415

2 1A1 − 1 3B2

MCSCF 3.304 2.967 3.141

VMC 2.620(8) 2.573(8) 2.550(8)

DMC 2.600(4) 2.566(4) 2.524(4)

FCI [26] 2.674
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TABLE II: VMC and DMC total energies (in Hartree) and adiabatic excitation energies (in eV) of the lowest

four states of methylene using truncated CAS expansions. The Jastrow, CSF and orbital parameters were

simultaneously optimized. The total energies are only slightly higher than those obtained from the full CAS

expansion.

CAS(4,4) CAS(6,6)

(0.01 CSF cutoff) (0.05 CSF cutoff)

1 3B2

complete CSFs/Dets 4/4 51/65

truncated CSFs/Dets 4/4 6/11

VMC -39.1279(2) -39.1302(2)

DMC -39.1408(1) -39.1418(1)

1 1A1

complete CSFs/Dets 8/10 56/104

truncated CSFs/Dets 6/7 6/13

VMC -39.1126(2) -39.1131(2)

DMC -39.1256(1) -39.1254(1)

1 1B2

complete CSFs/Dets 4/8 39/104

truncated CSFs/Dets 3/6 4/18

VMC -39.0762(2) -39.0778(2)

DMC -39.0892(1) -39.0900(1)

2 1A1

complete CSFs/Dets 8/10 56/104

truncated CSFs/Dets 7/8 4/7

VMC -39.0333(2) -39.0348(2)

DMC -39.0466(1) -39.0482(1)

1 1A1−31B2

VMC 0.417(8) 0.466(8)

DMC 0.413(4) 0.444(4)

1 1B2−31B2

VMC 1.408(8) 1.425(8)

DMC 1.403(4) 1.407(4)

2 1A1−31B2

VMC 2.574(8) 2.596(8)

DMC 2.562(4) 2.545(4)
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TABLE III: Comparison of the total energies (in Hartree) and adiabatic excitation energies (in eV), using

BFD pseudopotentials [35], of the four lowest states of methylene obtained from VMC and DMC with

various Jastrow-Slater CAS wave functions. The Jastrow, CSF and orbital parameters were simultaneously

optimized. The VMC and DMC excitation energies are in good agreement with the all-electron and the

experimental excitation energies in Table I.

CAS(2,2) CAS(4,4) CAS(6,6)

1 3B2

MCSCF -6.5760 -6.5823 -6.6157

VMC -6.7212(2) -6.7217(2) -6.7251(2)

DMC -6.7289(1) -6.7289(1) -6.7308(1)

1 1A1

MCSCF -6.5591 -6.5643 -6.5985

VMC -6.7070(2) -6.7085(2) -6.7105(2)

DMC -6.7147(1) -6.7156(1) -6.7165(1)

1 1B2

MCSCF -6.5122 -6.5192 -6.5480

VMC -6.6688(2) -6.6689(2) -6.6708(2)

DMC -6.6763(1) -6.6763(1) -6.6773(1)

2 1A1

MCSCF -6.4539 -6.4667 -6.5000

VMC -6.6235(2) -6.6262(2) -6.6301(2)

DMC -6.6325(1) -6.6341(1) -6.6369(1)

1 1A1 − 1 3B2

MCSCF 0.461 0.489 0.469

VMC 0.386(8) 0.361(8) 0.396(8)

DMC 0.385(4) 0.362(4) 0.388(4)

1 1B2 − 1 3B2

MCSCF 1.905 1.715 1.842

VMC 1.425(8) 1.437(8) 1.478(8)

DMC 1.430(4) 1.430(4) 1.455(4)

2 1A1 − 1 3B2

MCSCF 3.322 3.142 3.147

VMC 2.656(8) 2.600(8) 2.585(8)

DMC 2.623(4) 2.580(4) 2.552(4)
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