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Abstract

Previous calculations on model systems for the cooperative binding of two NO2

molecules to carbon nanotubes using density functional theory and second order

Moller-Plesset perturbation theory gave results differing by 30 kcal/mol. Quantum

Monte Carlo calculations are performed to study the role of electronic correlations in

these systems and resolve the discrepancy between these previous calculations. Com-

pared to QMC binding energies, MP2 and LDA are shown to overbind, while B3LYP

and BPW91 underbind. PW91 gives the best agreement with QMC with a binding

energy differing by only 3 kcal/mol. Basis set effects are also shown to be important.

∗Electronic address: John.W.Lawson@nasa.gov
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I. INTRODUCTION

Understanding the interaction of molecular adsorbates with carbon nanotubes

(CNT) is important for many applications. Recent experimental work [1] for example

showed a two orders of magnitude increase in the conductivity of a semiconducting

CNT after exposure to small amounts of gaseous NO2. These results suggest that

CNTs might be utilized as very sensitive molecular sensors. The mechanism for this

phenomenon remains unclear with explanations ranging from charge transfer between

the adsorbate and the nanotube to modifications of interface barriers at the contacts.

The viability of a charge transfer mechanism depends on the nature of the bonding

between an adsorbate and a nanotube. In particular, formation of a chemical bond

may be necessary to enable significant charge transfer to occur.

Ab initio calculations by Ricca and Bauschlicher (RB) [2] based on density func-

tional theory (DFT), second order Moller-Plesset perturbation theory (MP2), and

coupled cluster singles and doubles calculations including the effect of connected

triples determined using perturbation theory [CCSD(T)] examined the interactions

of NO2 molecules with (9,0) and (10,0) carbon nanotubes. Based on MP2 calculations

of NO2 on coronene, they estimated the binding energy of a single NO2 molecule to a

carbon nanotube to be roughly 5 kcal/mol, where binding energies are defined as the

energy of the free constituents minus the energy of the composite system. The weak

nature of this binding argues against a charge transfer mechanism.

Another interesting possibility is that two NO2 molecules might attach to neigh-

boring carbons on the tube. In this scenario, the breaking of the π bond between two

carbons could make the formation of two C-NO2 bonds energetically favorable [3].

To consider this possibility, RB [2] performed DFT calculations using the B3LYP

functional and a small 6-31G* basis on nanotubes with periodic boundary conditions

(PBC). They found a binding energy of two NO2 molecules to be -2 kcal/mol for the

(9,0) metallic nanotube and -10 kcal/mol for the semiconducting (10,0) tube. Similar

periodic calculations performed using a plane wave basis and the PW91 functional [4]

obtained binding energies of 4 kcal/mol and -6 kcal/mol for two NO2 on (9,0) and

(10,0) nanotubes, respectively.
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However, DFT is known to perform poorly in situations involving weak binding.

To assess the error in their DFT numbers, RB [2] examined smaller model systems

extracted from large tube geometries. These systems were sufficiently small to permit

calculations using larger basis sets and more accurate correlated quantum chemistry

methods. The use of DFT, MP2, and CCSD(T) gave very different answers for the

binding energy, with results differing over a range of 30 kcal/mol. We note that

the accuracy of DFT for CNT-adsorbate problems was also investigated in Ref. [5]

where the binding of a single O2 molecule to a CNT was also studied with quantum

Monte Carlo (QMC) techniques. For this weakly bound complex, the local density

approximation (LDA) was found to give better agreement with QMC than the PBE

generalized gradient approximation.

In this paper, we use quantum Monte Carlo (QMC) to calculate the binding en-

ergies and the bonding geometries for the reduced models developed in Ref. [2] to

describe the binding of two NO2 molecules to a carbon nanotube. These models ex-

hibit complex interactions (electrostatic, van der Waals, π-π interactions, etc.) that

are representative of a broad class of CNT-adsorbate problems. While DFT (often

with small basis sets) is the method of choice for calculations involving full nan-

otubes due to their large size, the significant spread of binding energies found by

RB [2] when using different ab initio approaches for the reduced models indicate that

correlation effects play an important role. We choose QMC to investigate these corre-

lation effects and assess the performance of other theoretical approaches in describing

these systems. QMC enjoys a more favorable scaling with system size compared to

conventional highly correlated quantum chemistry methods, and therefore it has a

considerable advantage as the models we consider contain up to 108 electrons and the

computations are therefore quite demanding.

II. METHOD

We employ two quantum Monte Carlo (QMC) methods [6, 7]. First the variational

Monte Carlo (VMC) method is used to compute the energy expectation value of an

optimized trial wave function. Second, starting from this optimized wave function, the

4



fixed-node diffusion Monte Carlo (DMC) method is used to project onto the ground

state subject to the constraint that the nodes of the projected wave function are the

same as those of the trial wave function.

The N -electron trial wavefunction ΨT (R) has the form

ΨT (p,R) = J(α,R)
NCSF∑
i=1

ciCi(λ,R) (1)

where R = (r1, ..., rN) represents the 3N electron coordinates, α are the Jastrow

parameters and J(α,R) = ef(α,R) is a Jastrow factor with f(α,R) a sum of two

body (electron-electron, electron-nucleus) and three body (electron-electron-nucleus)

correlation terms. The electron-nucleus and the electron-electron-nucleus Jastrow pa-

rameters are different for each atom type. The configuration state functions (CSF’s),

Ci(λ,R), are symmetry adapted linear combinations of Slater determinants built

from single-particle orbitals ψµ(r) =
∑NB

ν=1 λµ,νχν(r) which in turn are expanded on

a set of basis functions {χν(r)}. The total set of possible variational parameters p

consist of those for the Jastrow parameters, α, the CSF coefficients c, the orbital

coefficients λ, and the exponents of the basis functions [8]. The wave function pa-

rameters p = (α, c) were optimized using recently developed energy minimization

methods [9–11], that have been shown to perform significantly better than the stan-

dard variance minimization algorithm [12]. The orbital coefficients λ and the basis

exponents were kept fixed.

Monte Carlo integration is used to estimate the variational energy

EVMC =
< ΨT |Ĥ|ΨT >

< ΨT |ΨT >
=

1

M

∑
m

EL(Rm) +O(1/
√
M) (2)

where EL(R) = HΨT (R)/ΨT (R) is the local energy and the Monte Carlo points,

Rm, are sampled from a probability distribution |ΨT (R)|2/ ∫
dR |ΨT (R)|2 using an

accelerated version [13] of the Metropolis-Hastings algorithm [14, 15]. The variational

theorem guarantees that EVMC is an upper bound for the ground state energy.

The second step in a QMC computation is diffusion Monte Carlo (DMC). In DMC,

the optimized trial wavefunction ΨT (R) is evolved according to the integral represen-

tation of the Schrodinger equation in imaginary time

ΨT (R)Ψ(R, t+ τ) =
∫
G(R,R′, τ) ΨT (R′)Ψ(R′, t) dR′ (3)
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where G(R,R′, τ) is an approximation to the importance-sampled Green function

ΨT (R)Ψ−1
T (R′) < R|e−τĤ|R′ >. In the limit τ → ∞, Ψ(R, t+ τ) will approach the

true ground state. In practice the projection is subjected to the fixed-node constraint

which gives the best wave function that has the same nodes as the trial wave function.

The resulting fixed-node DMC energy is an upper bound to ground state energy if the

potential is local. The “fixed node-error” is the principal error in a DMC computation.

It can be greatly reduced by optimizing the determinantal parameters c,λ and the

basis exponents in the presence of the Jastrow factor. Although the Jastrow factor

does not by itself affect the location of the nodal surface, it has an indirect effect

on the nodal surface because the optimal determinantal parameters depend on the

Jastrow parameters α. Optimizing the variational parameters also reduces other

less important systematic errors in DMC, as well as, the statistical error for a given

number of Monte Carlo steps. The DMC algorithm has a time-step error due to the

use of an approximate G(R,R′, τ). We employ a DMC algorithm [16] that takes into

account the singularities in G(R,R′, τ) and has a small time-step error.

We employed both single determinant and multideterminant trial wave functions.

The single determinant wave functions were constructed from B3LYP orbitals using

GAMESS [17]. Simultaneous optimization of the orbital coefficients and basis ex-

ponents together with the Jastrow and CSF coefficients can be done using energy

minimization methods [10, 18], but in this work we kept the orbital coefficients fixed

at their B3LYP values. The large size of the systems makes such calculations pro-

hibitive.

We use norm-conserving sp-non-local effective core potentials (ECP) for carbon,

nitrogen and oxygen, generated in all-electron Hartree-Fock calculations for the

atoms [19]. These ECPs are finite at the nucleus and are therefore more suitable

for QMC calculations with a Gaussian basis than are other ECPs used by chemists

that have singularities at the nucleus. The potential of the hydrogen atom is also soft-

ened by removing the Coulombic divergence [20], however the hydrogen ECP does not

reduce the number of electrons. The orbitals in the determinantal component of the

wave functions are expanded in contracted Gaussian basis sets (11s11p2d)/[4s4p2d]

for carbon and nitrogen, (12s12p2d)/[5s5p2d] for oxygen, and (11s2p)/[3s2p] for hy-
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drogen. The approximate treatment of the nonlocal ECPs in DMC [21] results in an

ECP ”locality error” that is reduced by using well optimized trial wave functions.

QMC calculations have smaller basis-size errors than do most other quantum chem-

istry methods. The basis set, used in our QMC calculations, has better than valence

triple zeta (VTZ) quality. The B3LYP and MP2 binding energies using this basis are

in good agreement with the binding energies obtained from all-electron calculations

using the (cc-pVTZ) basis set of Dunning and coworkers [22], the largest difference

being 1.5 kcal/mole (see Table I).

III. MODEL

The geometries for our calculations were taken from the work of Ricca and

Bauschlicher [2], who constructed (9,0) and (10,0) carbon nanotubes in periodic cells

and studied them using various DFT functionals and basis sets, and different bond-

ing configurations depending on the orientation of the two NO2 molecules. The (9,0)

CNT was further studied using short capped tubes (C150 and C186) optimized at the

BPW91/4-31G level of theory. From the C150 tube, reduced models were extracted

that included the adsorbates and a curved piece of the tube consisting of 16 carbon

atoms. Dangling bonds were passivated with hydrogen atoms. We consider here

three of their reduced models. We call “Ndown” (see Fig. 1) the bonding configura-

tion where both NO2 molecules have their nitrogen atoms bonded to the tube. The

other configuration called “Odown” (see Fig. 2) has one oxygen per molecule bonded

to the tube. The puckering of the carbon atoms near the adsorption sites shows the

local effect of the adsorbates on the tube. The third system is a curved piece of

nanotube without the adsorbates that we loosely call “pyrene”. After removing the

core electrons through the use of ECPs, NO2 has 17 electrons, pyrene has 74 electrons

and Ndown and Odown each have 108 electrons.

It is important to note several aspects of our reduced models. Firstly, the geome-

tries have not been reoptimized for the reduced models, and therefore, they are not

equilibrium geometries. Reoptimization would flatten the curved carbon part of the

configurations. We want to maintain the curvature of the carbon part since curved
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geometries are expected to be more reactive and we expect that will be important for

the binding of adsorbates. Secondly, the physics of our finite, curved configurations

is different than that of a full carbon nanotube. In particular, the electrostatic mo-

ments will be different for a open, curved piece of carbon compared to a closed tube.

Finally, the π-bonding interactions relative to a full tube can be different since the

π bonding network has been truncated. Because of all these differences, the binding

energies we obtain directly from the QMC energies of the models do not represent

the true binding of two NO2 molecules to complete carbon nanotubes. Our principal

objective is not to determine that true binding from these calculations, but rather to

compare methods typically used for these types of systems and to determine their rel-

ative accuracy on a simplified model. We will however use results from these models

to make estimates of the binding energies to complete carbon nanotubes. To do that,

we will assume that most of the effects that are missing from the reduced models

can be estimated from the difference of the DFT energies obtained from the reduced

models and the complete CNT, i.e.,

EDMC,CNT = EDMC,model + EDFT,CNT − EDFT,model , (4)

where the DFT energies are computed using the same exchange-correlation functional

and the same quality basis set. This type of extrapolation formula has been previously

used in various contexts (see, e.g.,[23]).

IV. RESULTS

We performed all-electron DFT calculations using the LDA [24], PW91 [25],

BPW91 [25, 26], and B3LYP [26–30] functionals and MP2 calculations. We employed

both the 6-31G* basis set as well as the larger correlation consistent cc-pVTZ basis

set, and used the GAMESS [17] and Gaussian03 packages [31]. For all DFT func-

tionals, we repeated the calculations with the cc-pVQZ basis, which yielded binding

energies compatible with the cc-pVTZ results to better than 1 kcal/mol. Therefore,

the DFT/cc-pVTZ calculations are already well converged with respect to the basis

set. The DFT and MP2 results are collected in Table I, where we use the convention

that bound systems have positive binding energies.
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We first analyze the results obtained with the small 6-31G* basis set and note that

our B3LYP and MP2 results with this basis set reproduce those reported in Ref. [2].

While both MP2 and B3LYP do not bind the adsorbates, MP2 gives considerably

more binding than B3LYP (20 kcal/mol more for Ndown and 11 kcal/mol for Odown).

The BPW91 and B3LYP binding energies are similar, while PW91 (which was used

in the periodic calculations of Ref. [4]) is found to bind more strongly than B3LYP by

15 kcal/mol for Ndown and 10 kcal/mol for Odown. In contrast to other functionals

and MP2, LDA yields a positive binding energy for both Ndown and Odown, and

a binding for Ndown which differs from the B3LYP value by almost 50 kcal/mol.

Finally, we note that the Ndown/Odown energy difference (denoted by ∆ in Table I)

changes sign depending on the method. The sign of ∆ indicates the preferred bonding

geometry, with B3LYP, BPW91, and PW91 favoring Odown whereas MP2 and LDA

favor Ndown.

We find that some of these differences become even more pronounced when using

the larger cc-pVTZ basis set. In particular, the B3LYP, BPW91, PW91, and LDA

binding energies decrease by 7-8 kcal/mol for both bonding configurations while the

MP2 numbers change by only about 1 kcal/mol. The significant difference between

the B3LYP and LDA energies persists with the larger basis set, and is therefore due to

the approximate treatment of electron correlation. The cc-pVTZ results also suggest

that DFT calculations with the small 6-31G* basis set on full nanotube geometries [2]

may have a similarly strong basis set dependence.

In Table I, we include Hartree-Fock (HF), B3LYP, and MP2 calculations performed

using the same ECP and basis sets as for the QMC computations. The HF binding

energies of -69 kcal/mol for Ndown and -48 kcal/mol are considerably less than the

values obtained with B3LYP and MP2 indicating that correlation effects are impor-

tant. From the ∆ values, we note that HF favors Odown by 21 kcal/mol, B3LYP

favors Odown by 6 kcal/mol, while MP2 favors Ndown by 5 kcal/mol. The B3LYP

and MP2 binding energies using the ECP agree with the all-electron numbers using

the cc-pVTZ basis set. The corresponding total energies are included for comparison

with the QMC total energies in Table II.

In addition to B3LYP and MP2 calculations, RB [2] performed CCSD(T) calcu-
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lations using the 6-31G* basis set. Due to the large system sizes, the Ndown and

pyrene geometries were symmetrized, and B3LYP, MP2, and CCSD(T) calculations

were performed with these new structures. Since the symmetrized geometries are

different from the ones used in this work, our results are not strictly comparable to

the CCSD(T) calculations. On the other hand, the effect of symmetrization does

not appear to be large since the B3LYP binding energy changes by only -3 kcal/mol

to a value of -32 kcal/mol while the MP2 value remains essentially unchanged at -9

kcal/mol [2]. The CCSD(T) calculation for Ndown gives -18.9 kcal/mol which lies

between the PW91/cc-pVTZ and MP2/cc-pVTZ values. The CCSD(T) numbers are

also included in Table I for comparison.

A. Single Determinant QMC

Single determinant trial wavefunctions were constructed from Slater determinants

of B3LYP orbitals multiplied by a Jastrow factor optimized by energy minimization.

The Jastrow factor had 81 free parameters for Ndown and Odown and 43 parameters

for pyrene and NO2. The resulting binding energies and the total VMC and DMC

energies are reported in Tables I and II, respectively. Statistical errors are less than

1 mHartree for the total energies and less than 1 kcal/mol for the binding energies.

From the total energies in Table II, we observe that QMC has gained considerable

correlation energy relative to HF both at the VMC and the DMC level. However,

we also note from Table I that VMC and DMC yield significantly different binding

energies as well as Ndown/Odown energy differences. In particular, while VMC favors

Ndown by 13 kcal/mol, DMC stabilizes the binding energies to -19.4 kcal/mol for

Ndown and -18.2 kcal/mol for Odown. The DMC energy difference between the

Ndown and Odown configurations is compatible with zero within statistical error

and, therefore, one bonding configuration is not preferred over the other.

If we compare the DMC binding energies with the DFT/cc-pVTZ and the MP2/cc-

pVTZ results, we note that PW91 gives the best agreement with DMC, yielding

roughly 3 kcal/mol less binding than DMC. Larger differences are seen with BPW91,

B3LYP, MP2, and especially LDA which binds Ndown and Odown more strongly
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than DMC by 30 and 22 kcal/mol, respectively. It is also interesting to note that the

DMC number for the binding of Ndown agrees very well with the CCSD(T) value

of -18.9 kcal/mol obtained by RB using the symmetrized geometries and the smaller

6-31G* basis set.

In the DMC calculations we used a time step of ∆τ = 0.1 Hartree−1. To assess

the time step error we did additional calculations for ∆τ = 0.05. The binding energy

changes were on the order of 1 kcal/mol, comparable to the statistical uncertainty on

the energies.

B. Multi-CSF QMC

Calculations using multi-CSF trial wavefunctions were performed in order to re-

duce the DMC fixed-node error. The multi-CSF wave functions are needed for a

good description of static (near-degeneracy) correlation, whereas the Jastrow factor

and the DMC projection take care of the dynamic correlation. For small systems, it

is feasible to perform multiconfiguration self-consistent field (MCSCF) calculations

with a complete active space (CAS), i.e., to include all the CSFs that can be obtained

from excitations from a certain number of active orbitals. Such wave functions, with

CSF coefficients reoptimized in the presence of the Jastrow factor, yield good DMC

binding energies [8], but they are not feasible for systems as large as those in this

paper.

For the composite systems, Ndown and Odown, we first did a restricted CAS(24,24)

(24 electrons distributed among 24 orbitals) calculation where we considered only

singles and doubles excitations. To reduce the computational burden, we retained

only the 7 CSFs (17 determinants) with coefficients larger than 0.0545. The MCSCF

orbitals optimized for full expansions are not always better than the B3LYP orbitals

when used in the truncated expansion and in the presence of a Jastrow factor. So, we

used B3LYP orbitals for constructing the QMC wave functions; the CAS calculation

was employed only to select the important CSFs. The CSF and Jastrow coefficients

were optimized simultaneously. We do not expect these truncated wavefunctions to

give reliable binding energies, but they can be used to compare the Ndown and Odown
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total energies.

As can be seen from Table II including additional CSFs improved the VMC en-

ergies by 9 and 15 mHartrees, and the DMC energies by 8 and 10 mHartrees for

Ndown and Odown, respectively. As shown in Table I, the difference between the

Odown and Ndown multi-CSF DMC energies is 2.5 kcal/mol while the difference

between the single-determinant DMC energies is 1.3 kcal/mol. The statistical er-

ror on both Ndown/Odown differences is 1 kcal/mol, so the single-determinant and

multi-CSF DMC differences are both compatible with zero within less than a three-

standard-deviation statistical error. Thus, the multi-CSF calculations confirm the

single-determinant result for ∆.

C. Full Tube Binding Energy Estimates

Ricca and Bauschlicher [2] estimated the binding of two Ndown NO2 molecules

to a nanotube to be 16 kcal/mol for a (9,0) tube and 8 kcal/mol for a (10,0) tube.

These values were computed starting from the B3LYP/6-31G∗ binding energies of -2

kcal/mol for the (9,0) and -10 kcal/mol for the (10,0) tube obtained in their small-

cell PBC calculations. These DFT values were then corrected for the correlation

error (13.7 kcal/mol estimated as the difference between the CCSD(T)/6-31G∗ and

B3LYP/6-31G∗ calculations on the small symmetrized model) and the basis set error

(3.8 kcal/mol estimated from MP2 calculations with 6-311G(2d,p) and 6-31G* basis

sets).

In the same spirit, we can estimate a “correlation correction” for the periodic

B3LYP/6-31G* and BPW91/6-31G* calculations of the full nanotube reported in

Ref. [2] and for the plane-wave PW91 calculation of Ref. [4]. We define this correction

to be the difference between the DMC cluster binding energy and the cluster binding

energies computed with the same DFT functional and the same quality basis set as

in the full tube calculations (Eq. 4). For example, for the periodic B3LYP/6-31G∗

calculation of Ref. [2], we obtain a correction of 9.7 kcal/mol, which yields an estimate

for the binding of two Ndown NO2’s to a nanotube of 8.1 kcal/mol for a (9,0) tube

and -4.6 kcal/mol for a (10,0) tube. Note that RB used results from small cell (80

12



carbons) calculations to form their estimates. We on the other hand use their large

cell (120 carbons) numbers which we expect to be slightly better for our updated

estimates. Similarly, we can compute estimates for the BPW91/6-31G∗ [2] and the

plane-wave PW91 [4] calculations. These results are collected in Table III.

We note that the full tube calculation with PW91 and a plane-wave basis binds

more strongly for both the (9,0) and the (10,0) tube by 8 kcal/mol compared to

B3LYP/6-31G∗ and BPW91/6-31G∗. While different geometries and basis sets may

explain some of the differences between these results, the fact that PW91 binds more

strongly for the full tube is consistent with the trends we observe for the clusters.

Compared to the earlier calculations of Ref. [2], the correlation estimates derived

from the present DMC calculations have the advantages of much smaller basis-set

errors and of not employing the symmetrized model. Moreover, when using the

plane-wave PW91 binding energies for the full nanotube [4] in combination with our

PW91/cc-pVTZ results for the cluster, we have also largely eliminated the basis set

error coming from the DFT calculations, which is instead present in the 6-31G∗ esti-

mates. Unfortunately, we still use the extrapolation formula (Eq. 4) to estimate the

binding energy to the CNT, which certainly limits the accuracy of our final estimate

as the correlation correction has been computed on relatively small cluster models.

In fact, we expect the extrapolation scheme to work if the correlation correction is

not too large and if the DFT binding energies computed on the fragments are not

far from the infinite limit. The limitations of the extrapolation scheme in our case

are apparent from Table III as the estimated binding energies have a non negligible

spread. More accurate estimates would require QMC calculations on larger clusters

or on the fully periodic system. Nevertheless, we see that the three estimates we de-

rive from the different methods are roughly consistent, and it is therefore reasonable

to conclude that the binding of two NO2’s to a nanotube is very weak with a (9,0)

tube binding more strongly than a (10,0) tube.
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V. CONCLUSION

In this work, we used QMC to study the role of electronic correlations in a model

system representing the adsorption of two NO2 molecules to a carbon nanotube.

Interest in this system is motivated by the observed two orders of magnitude change

in the conductivity of the tubes after exposure to trace amounts of gaseous NO2. We

performed calculations using both single determinant and multi-CSF wavefunctions.

Our calculated DMC binding energies for the model systems are −19.4±1.2 kcal/mol

for the Ndown configuration and −18.2 ± 1.2 kcal/mol for the Odown configuration

which indicates that there is not a clearly preferred bonding configuration in these

models. We find that basis set and correlations effects are important for these systems.

In particular, compared with the QMC results, we find that MP2 and LDA overbind

while B3LYP and BPW91 underbind. The PW91 functional gives the best agreement

with the DMC results. Using these binding energies, we update previous estimates by

RB [2] for the binding to the full tube. The weakness of the binding for the two NO2

adsorbates puts the charge transfer mechanism in CNT molecular sensors in further

doubt, and suggests that the conductivity change observed in these systems results

from another mechanism.
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FIG. 1: Bonding configuration for NO2 called “Ndown” where the N atoms are bonded to

the nanotube model fragment.

17



FIG. 2: Bonding configuration for NO2 called “Odown” where the O atoms are bonded to

the nanotube model fragment.
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TABLE I: Binding energies (BE) (kcal/mol) for Ndown and Odown calculated by DFT,

MP2, and QMC using 6-31G*, cc-pVTZ, and ECP basis sets as indicated. The

Ndown/Odown energy difference is ∆ = EOdown − ENdown (kcal/mol). Binding energies

are positive for bound systems. QMC statistical error on binding energies is 1 kcal/mol.

BE(Ndown) BE(Odown) ∆

All-electron calculations

B3LYP/6-31G* -29.2 -22.6 -6.6

BPW91/6-31G* -26.0 -23.3 -2.7

PW91/6-31G* -14.2 -12.7 -1.5

LDA/6-31G* 18.6 10.9 7.7

MP2/6-31G* -9.3 -11.6 2.3

B3LYP/cc-pVTZ -36.5 -30.2 -6.3

BPW91/cc-pVTZ -33.6 -31.2 -2.4

PW91/cc-pVTZ -22.5 -21.1 -1.4

LDA/cc-pVTZ 12.3 4.3 8.0

MP2/cc-pVTZ -7.9 -12.9 5.0

All-electron symmetrized models [2]

CCSD(T)/6-31G* -18.9

ECP calculations

HF -69.0 -48.3 -20.8

B3LYP -37.5 -30.9 -6.6

MP2 -9.4 -13.8 4.4

Single determinant/ECP QMC

VMC -25.3 -38.5 13.2

DMC -19.4 -18.2 -1.3

Multi-CSF/ECP QMC

VMC 9.4

DMC -2.5

19



TABLE II: Total energies (Hartrees) for the Ndown and Odown composites and the pyrene

and NO2 fragments. The statistical error on the QMC total energies is 1 mHartree.

Ndown Odown Pyrene NO2

ECP calculations

HF -175.951 -175.984 -93.918 -41.072

B3LYP -180.033 -180.044 -96.454 -41.819

MP2 -179.612 -179.605 -96.240 -41.693

Single determinant/ECP QMC

VMC -180.002 -179.981 -96.522 -41.760

DMC -180.306 -180.308 -96.705 -41.816

Multi-CSF/ECP QMC

VMC -180.011 -179.996

DMC -180.314 -180.318
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TABLE III: Estimated binding energies (BE) (kcal/mol) of the Ndown configuration on

a full CNT. We list the DFT binding energies from periodic-cell calculations, the QMC

correlation corrections (see text for details), and estimates for the full tube binding energies.

DFT BE QMC Correction Estimated BE

(9,0) Carbon Nanotube

B3LYP/6-31G* -1.6 [2] 9.8 8.2

BPW91/6-31G* -4.1 [2] 6.6 2.5

PW91/plane-wave 4.0 [4] 3.1 7.1

(10,0) Carbon Nanotube

B3LYP/6-31G* -14.3 [2] 9.8 -4.5

BPW91/6-31G* -14.2 [2] 6.6 -7.6

PW91/plane-wave -6.3 [4] 3.1 -3.2
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