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Particles with ligand-receptor contacts bind and unbind fluctuating “legs” to surfaces, whose
fluctuations cause the particle to diffuse. Quantifying the diffusion of such “nanoscale caterpillars”
is a challenge, since binding events often occur on very short time and length scales. Here we derive
an analytical formula, validated by simulations, for the long time translational diffusion coefficient
of an overdamped nanocaterpillar, under a range of modeling assumptions. We demonstrate that
the effective diffusion coefficient, which depends on the microscopic parameters governing the legs,
can be orders of magnitude smaller than the background diffusion coefficient. Furthermore it varies
rapidly with temperature, and reproduces the striking variations seen in existing data and our own
measurements of the diffusion of DNA-coated colloids. Our model gives insight into the mechanism
of motion, and allows us to ask: when does a nanocaterpillar prefer to move by sliding, where one leg
is always linked to the surface, and when does it prefer to move by hopping, which requires all legs
to unbind simultaneously? We compare a range of systems (viruses, molecular motors, white blood
cells, protein cargos in the nuclear pore complex, bacteria such as Escherichia coli, and DNA-coated
colloids) and present guidelines to control the mode of motion for materials design.

Particles with ligand-receptor contacts – or nanocater-
pillars – harvest binding and unbinding dynamics of their
fluctuating legs at the nanoscale to move, target, stick,
or assemble into large structures [1–4]. Nanocaterpillars
are found across multiple scales, spanning a great variety
of systems in biology and biomimetic assays – see Fig. 1-
A. To name but a few, microscale white blood cells with
protein linkers stick and roll on blood vessel walls un-
til they reach a healing target [5–7]. Microscale droplets
with protein linkers are used to study cellular-like adhe-
sion [8–10]. Microscale to nanoscale colloids coated with
complementary deoxyribonucleic acid (DNA) strands
self-assemble into macroscopic crystals [4, 11, 12] with
novel optical or selectivity properties [13–16]. Nanoscale
viruses transiently adhere with spike proteins to the res-
piratory mucus to find vulnerable host cells [1, 17–19].
At even smaller scales, protein cargos bind to receptors
in the nuclear pore complex for selective transport to a
cell’s nucleus [20, 21].

For all these systems to function, a nanocaterpillar
must move relative to the surface to which its legs are
attracted. An important question therefore is to char-
acterize how it moves, over scales much larger than in-
dividual legs. Since legs constantly bind and unbind
to the surface, imparting force each time they do so,
the particle’s macroscopic mobility depends on the mi-
croscopic details of its legs. For example, leg flexibil-
ity and bond lifetimes control the average mobility of
the particle [19, 23, 24], and differences in both param-
eters can be harvested to detect infected cells [25–27] or
prevent viral infections [28]. As another example, leg
density affects how DNA-coated colloids nucleate and
grow into crystals [29, 30] and governs the long-range
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FIG. 1. Overview of nanocaterpillars. (A) Multiva-
lent ligand-receptor systems span the micro to nanoscales.
White blood cells stick to vessel walls through selectin me-
diated bonds (inspired from Ref. 7); DNA-coated colloids
self-assemble through hybridization of complementary DNA
strands; Protein cargos translocate through the polymer mesh
of the nuclear pore complex (inspired from Ref. 22). (B)
Ligand-receptor systems are modeled here with an arbitrary
number of legs N (ligands) and/or arms (receptors). The
stochastic model includes binding and unbinding rates qon and
qoff , spring constant k, and leg friction γ (all fast, in blue);
and the bare friction coefficient Γ of the nanocaterpillar (slow,
in black). We seek the long-time effective longitudinal diffu-
sion coefficient Deff .

alignment of crystals [31–33]. Overall, microscopic de-
tails underlie a variety of large-scale modes of motion,
such as hopping [3, 17, 34, 35], cohesive motion including
rolling and crawling [17, 36], and also transient or firm
arrest [3, 5, 37], resulting in large differences in macro-
scopic mobility.

Investigating how microscopic binding details lead to
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macroscopic mobility is challenging, as it requires prob-
ing time and length scales that can often be quite dif-
ferent [19, 38] – legs can be much smaller than the
nanocaterpillar they are attached to, while leg dynamics
can be orders of magnitude faster than the timescales of
macroscopic motion. Furthermore, many systems have
a valency of thousands of leg contacts [31, 38, 39], too
many degrees of freedom to resolve experimentally or
computationally [22, 40]. To make progress, numeri-
cal and analytical models often rely on simplified as-
sumptions, e.g. excluding stochastic relaxation of the
legs [41, 42], limiting the analysis to a small number of
legs [41, 43, 44], or assuming small perturbations [22].
Such models have given insight into a variety of phenom-
ena, such as how specific parameters could favor rolling
over sliding [7, 41, 43, 45, 46] or how specific mechanisms
could increase overall mobility (with coupling effects such
as binding dynamics depending on bond number [47–49]
or when numerous adhesive sites are available for a single
ligand [22, 50, 51]). Nevertheless, such modeling assump-
tions are not always justified; for example stochasticity
plays a critical role for mobility, facilitating rolling [37],
targeted arrest [40], or other walking modes [52]. Fur-
thermore, such models can also not reproduce the order
of magnitude decrease of diffusion of DNA-coated colloids
[31, 39]. Hence, a systematic derivation of macroscopic
mobility from microscopic details that is valid under a
broad range of parameters is needed.

In this paper we derive an analytical expression for the
effective mobility of a nanocaterpillar in an overdamped
system, by systematically coarse-graining over the micro-
scopic details of its legs. Starting from a model that in-
cludes the detailed spatial fluctuations of the legs, we use
homogenization techniques [22, 53, 54] to average over
these fluctuations. We obtain an analytical expression for
the effective long-time translational diffusion coefficient
of the particle, Deff(N,Γ, γ, k, qoff , qon), as a function of
the microscopic parameters governing the legs (Eq. (15);
see also Fig. 1-B and Sec. I.) The expression depends in a
non-trivial way on the friction coefficients of the individ-
ual components of the system (legs and particle), with
the frictions either adding up arithmetically (like springs
in parallel) or harmonically (like springs in series) accord-
ing to the mechanistic details. We validate our analytical
calculations with numerical simulations, which show the
expression is accurate over a wide range of parameter
values.

Our model gives insight into the mechanism of
nanocaterpillar motion, as it allows us to distinguish be-
tween two long term modes of motion: sliding, where
at least one bond is always attached to the surface, and
hopping, where the particle detaches completely, moves
in free space and reattaches. These regimes are controlled
by physical properties of the legs, such as stiffness and ad-
hesive strength, allowing us to investigate existing biolog-
ical and biomimetic systems in a so-called Ashby chart for
nanocaterpillars (Sec. II). We identify how critical design
parameters (such as the coating density for DNA-coated

colloids) controls the preferential mode of motion and
reconcile disparate experimental observations on similar
systems [31, 39].

Importantly, the effective diffusion can sometimes be
orders of magnitude smaller than the background diffu-
sion coefficient, showing the critical effect of the legs on
the particle’s mobility. This analytical prediction of a
dramatically decreased diffusivity is borne out with ex-
perimental measurements of the diffusion of DNA-coated
colloids, both from existing data [31, 39] and addition-
ally measured in this study. Our model agrees with the
data within experimental accuracy over a range of tem-
peratures and for different DNA coating densities on the
colloids (Sec. II).

Finally, we derive the effective diffusion coefficient for
several variations of the model with varying assumptions,
and show that our model incorporates these assumptions
as special limits [22, 54], but is accurate over a broader
range of parameters and system designs (Sec. III). In
particular, previous approaches can not describe the ob-
served orders of magnitude decrease in diffusion [22].
Overall, our results lay the ground to tune mobility fea-
tures in artificial designs, and provide methodological
tools to study more complex motion mediated through
ligand-receptors, including rolling or self-avoiding walks
due to active cutting of bonds.

I. DERIVING AN ANALYTICAL FORMULA
FOR THE EFFECTIVE DIFFUSION

COEFFICIENT

In Sections I A-I C we illustrate our homogenization
technique pedagogically by considering a 1-legged cater-
pillar. Our main result for the effective diffusion coeffi-
cient of an N -legged caterpillar, Eq. (15), is presented in
Section I D.

A. 1-legged caterpillar: constitutive equations

We begin with the simplest possible model: a
nanocaterpillar with a single leg (Fig. 2). The leg is per-
manently fixed to the caterpillar while its other end is
mobile, and can attach anywhere on the binding surface.
We consider for now a one-dimensional model, where leg
fluctuations and particle motion occur on a line, longitu-
dinal to the surface.

The dynamics of the particle position x(t) and leg
length l(t) occur over nano to microscales, mostly in
dense fluids such as water. In this context, dynamics are
well captured by overdamped Langevin equations [55],
where inertia plays a negligible role. This is in contrast to
previous modeling efforts which used the Langevin equa-
tion (with inertia) [54], a point we return to in Sec. III,
where we show that the two approaches can give pre-
dictions that are orders of magnitude different in certain
parameter regimes.
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FIG. 2. 1-legged nanocaterpillar model. (A) The longi-
tudinal extension of the single leg (l) is monitored and feeds
back into the longitudinal position (x) of the particle. (B)
Simulation trace of the position of a 1-legged particle with
time. (inset) The effective long time diffusion Deff is half the
slope of the mean squared displacement over long times.

When the legs are unbound they evolve as

dl

dt
= −k

γ
(l(t) − l0) +

√
2kBT

γ
ηl(t) . (1)

Here k is a spring constant describing the recoil force of
the leg material, γ is its friction coefficient, l0 its rest
length, kB is Boltzmann’s constant, T is temperature
and ηl is a Gaussian white noise satisfying ηl(t) = 0 and

ηl(t)ηl(t′) = δ(t− t′) where · is the average over realiza-
tions of the noise. In most systems we consider, legs are
made of polymers or proteins, where small leg deforma-
tions around equilibrium are well captured by a constant
spring constant k [56–58].

The particle’s position x when the leg is unbound obeys

dx

dt
=

√
2kBT

Γ
ηx(t) (2)

where Γ is the friction coefficient of the particle and ηx(t)
is a Gaussian white noise uncorrelated with ηl(t). The
diffusion coefficient for the unbound particle is D0 =
kBT
Γ .
We consider for now that the surface is uniformly

coated with receptors. The leg can thus bind at any loca-
tion on the surface with a constant binding rate qon and
constant unbinding rate qoff . Detailed balance requires
qon
qoff

= πb

πu
where πb/u is the equilibrium probability of the

system to be bound or unbound. Typically πb

πu
= e−β∆G,

where β−1 = kBT and ∆G < 0 is the free energy change
when the leg binds to the surface [38, 59].

We now seek to describe motion of the system when
the leg is bound. In this case, variables are constrained
as x(t) + l(t) − xr = 0 where xr is the location of the
receptor where the leg tip is attached, which is constant
until the leg detaches and reattaches to another loca-
tion. The stochastic dynamics Eqns. (1) and (2) must
be projected [32, 60] onto the constraint surface, see Ap-
pendix A. We obtain

dx

dt
= −dl

dt
=

k

Γ + γ
(l(t) − l0) +

√
2kBT

Γ + γ
η(t) (3)

where η(t) is a Gaussian white noise. Here we see that
the projected dynamics have a natural expression where
the effective friction in the bound state is the arithmetic
sum of the friction coefficients in the unbound states,
Γ + γ. Note that this projection is a crucial step that is
often ignored in such derivations [22, 32, 54], and modifies
the dynamics in non trivial ways especially with a large
number of legs.

The dynamics are now specified through the set of
Eqns. (1)-(3), together with the binding and unbinding
dynamics. To see what happens over long times, we sim-
ulate trajectories for 1 leg – see Fig. 2-B (and simulation
details in Appendix B). Over long times, the particle’s
mean-squared displacement grows linearly with time, and
we may extract an effective long time diffusion coefficient
Deff – see inset of Fig. 2-B.

B. Homogenization to coarse-grain the fast
dynamics

The computational cost of simulating Eqns. (1)-(3)
is high, since small time steps are required to resolve
the fast relaxation and binding events. We therefore
seek an analytical method to coarse-grain over these fast
timescales. To apply this method we identify a non-
dimensional separation of scales, which is novel compared
to other approaches [22, 51, 54] and will allow us to find a
result valid over a broad range of parameters. We use ho-
mogenization theory to average over the fast scales, even-
tually obtaining an effective diffusion equation, Eq. (10),
with effective diffusivity (Eq. (11)) and related effective
friction (Eq. (12)), which is one of the main results of
this paper for the special case of a 1-legged caterpillar.
A reader interested in the results and physical implica-
tions may skip to Section I C.

1. Set up: partial differential equations to be coarse-grained

The set of stochastic Eqns. (1)-(3) defines a
Markov process that is conveniently studied via the
Fokker-Planck equation and its adjoint, the Kol-
mogorov backward equation [53, 61]. Let p(x, l, t) =

(pu(x, l, t), pb(x, l, t))
T

be the probability density func-
tion of finding the system at time t and positions x, l in
the unbound or bound states. We obtain from Eqns. (1)-
(3) the Fokker-Plank equation

∂tp = L⋆p , (4)
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with L⋆ = V⋆ + Q⋆ where

V⋆ = diag

 ∂l

(
k
γ (l − l0) + kBT

γ ∂l

)
+ kBT

Γ ∂xx

(∂l − ∂x)
(

k
Γ+γ (l − l0) + kBT

Γ+γ (∂l − ∂x)
)
 ,

Q⋆ =

−qon qoff

qon −qoff

 ,

with an appropriate initial condition. Additionally we re-
quire the flux in either state to vanish at infinity, to con-
serve total probability. The stationary solution of Eq. (4)

is π = e−βk(l−l0)2/2

Z (qoff , qon)
T

where Z is a normalization
constant. This is therefore the equilibrium probability
density of the system; it satisfies detailed balance.

While probability densities have an intuitive physi-
cal meaning, in the following it will be easier – and
mathematically better posed – to consider the ad-
joint of the Fokker-Planck equation and the correspond-
ing dual functions. These are functions f(x, l, t) =∫
p(x′, l′, t|x, l)g(x′, l′)dl′dx′ that give the expectation of

any scalar function g(x(t), l(t)), given an initial condition
x(0) = x, l(0) = l. Once we know how such functions f
evolve, we may calculate any statistic g of our stochas-

tic process. Writing f(x, l, t) = (fu(x, l, t), fb(x, l, t))
T

,
we have that f satisfies the Kolmogorov backward equa-
tion [61]

∂tf = Lf , f(x, l, 0) = g(x, l) . (5)

Here L is the adjoint operator of L⋆, defined by the op-
erator that satisfies ⟨f,L⋆p⟩ = ⟨Lf, p⟩ for any probabil-
ity density p and statistic f , where ⟨f, p⟩ =

∫∫
(fupu +

fbpb)dldx is the inner product.

2. Non-dimensionalization and assumptions on scales.

We now seek to coarse-grain the fast dynamics, by ap-
plying homogenization techniques to the backward equa-
tion, Eq. (5). To start, we non-dimensionalize the equa-
tion using

x → Lxx̃, l − l0 → Ll̃, t → τ t̃,

where L =
√
kBT/k is the reference length of the leg

fluctuations, Lx is the scale for the long-time average
motion of x, and τ is the timescale associated with this
average motion. The latter two scales are not deter-
mined a priori by any intrinsic scales in the system, but
rather are chosen large enough that averaging will be ap-
propriate over such scales; hence we choose Lx = L/ϵ
where ϵ ≪ 1 is a small non-dimensional number. We
are interested in long time scales corresponding to the
diffusion of the particle, hence we expect τ = L2

x/D0,
which corresponds to τ = 1

ϵ2
Γ
k . Importantly, and in con-

trast with other works [22, 51], here ϵ does not measure

the value of physical parameters, but rather, it measures
the large observation time scale over which the coarse-
grained model is valid. Such long observation times are
quite likely in experiments, as typical binding rates and
leg dynamics occur at most over 1 ms − 1 s while obser-
vation (or other biophysical processes such as internali-
sation for viruses [17]) happens over the course of 10 min
at least [38]. This non-dimensionalization step is crucial
as it will allow us to find order of magnitude changes
in the diffusion coefficient according to the physical pa-
rameters, something that was not captured by previous
perturbative approaches [22, 51].

We now assume that the observation time scale is long
enough, such that binding and unbinding events, as well
as relaxation dynamics, will both occur on comparably
short time scales. We can therefore write q̃i = qiΓ/k =
Oϵ(1) and γ/Γ = Oϵ(1). In Sec. III we will see that tak-
ing different limits for these physical parameters (such as
γ/Γ ≪ 1) yields the same result as applying these limits
to the final result. Our choices of scalings are therefore
quite general and can be easily adapted to more detailed
systems.

Using non-dimensional variables (and dropping the .̃
for simplicity) we obtain from the backward equation
Eq. (5) a separation in orders of ϵ as

∂tf = Lf =

(
1

ϵ2
L0 +

1

ϵ
L1 + L2

)
f (6)

where

L0 =

−qon + Γ
γ (−l∂l + ∂ll) qon

qoff −qoff + Γ
Γ+γ (−l∂l + ∂ll)

 ,

L1 = diag

(
0,

Γ

Γ + γ
(l∂x − 2∂lx)

)
,

L2 = diag

(
∂xx,

Γ

Γ + γ
∂xx

)
.

3. Homogenization method.

We seek a solution to Eq. (6) of the form f = f0 +
ϵf1 + ϵ2f2 + .... We obtain a hierarchy of equations at
different orders in ϵ:

Oϵ

(
1
ϵ2

)
: L0f0 = 0, (7)

Oϵ

(
1
ϵ

)
: L0f1 = −L1f0, (8)

Oϵ (1) : L0f2 = ∂tf0 − L1f1 − L2f0, (9)

...
...

and we solve these iteratively for f at each order in ϵ. At
lowest order we obtain from Eq. (7) and the vanishing

flux at boundaries, f0 = a(x, t)

1

1

, where a(x, t) is an
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unknown function of the slow variable x, whose dynamics
we seek to determine. The associated equilibrium distri-
bution at lowest order, L⋆

0π0 = 0 is simply the full one
π0 = π.

At the next order, one can check that

f1 =

 γqon

Γ + γqon

 l∂xa

Γ(1 + qoff) + γ(qon + qoff)

is a particular integral of Eq. (8), and is the unique so-
lution since we impose that f1 does not contain terms in
the nullspace of L0.

Finally Eq. (9) possesses a solution if and only if it
satisfies the Fredholm alternative [53]

⟨(∂tf0 − L1f1 − L2f0), π0⟩ = 0.

Standard algebra yields an effective long time diffusion
equation for a (in dimensional variables)

∂ta = Deff∂xxa, (10)

where

Deff =
kBT

Γeff
, (11)

with

1

Γeff
=

p0
Γ0

+
p1
Γ1

, with Γ0 = Γ, Γ1 = Γ + γeff

and γeff = γ + k

(
1

qoff
+

γ

k

qon
qoff

)
.

(12)

In the above expressions, p0 = qoff
qoff+qon

is the equilibrium

probability to have no bond, and p1 = 1−p0 the equilib-
rium probability to have one bond. Γ0 = Γ is the friction
in the unbound state and Γ1 is the effective friction con-
tributing to the bound state.

Eq. (10), which is the backward equation for the par-
ticle+leg over long times, is one of the main results of
this paper, in the case of a 1-legged caterpillar. It is the
backward equation for a particle that evolves as

dx

dt
=

√
2Deffηx(t). (13)

That is, the particle diffuses, with effective diffusion co-
efficient Deff and effective friction Γeff . The effective dif-
fusivity and friction have the usual interpretation. In
particular, if a potential U(x) were added to the particle
Eqns. (2) and (3), one would recover in Eq. (13), following
the same coarse-graining procedure, a term − 1

Γeff
∂xU .

In Fig. 3 we compare the analytical result obtained in
Eq. (12) (gray line) to numerical simulations of the full
stochastic Eqns. (1)-(3) (gray dots). We show the re-
sults for a number of system parameters and find perfect
agreement over several orders of magnitude of physical
parameters. We also predict order of magnitude changes
in the diffusion coefficient as the microscopic parameters
change.

C. Microscopic parameters determine long term
diffusion

How shall we interpret the expressions for the effective
diffusivity Eq. (11) and the effective friction Eq. (12)?
The effective diffusivity is a weighted sum of the diffusiv-
ity in each state, Deff = p0D0 + p1D1 where the weights
correspond to the probability to be in either state, and
Di = kBT/Γi. The effective friction, on the other hand,
is a harmonic weighted sum of the friction coefficients.
That the diffusivity averages arithmetically is to be ex-
pected, since the mean squared displacement is an ex-
tensive quantity in a system with multiple states. Over
a time t we can write

x2(t) = 2Defft = 2D0p0t + 2D1p1t

= 2D0t0 + 2D1t1 = x2(t)|0 + x2(t)|1,

where t0 and t1 refer to the time spent in either state.
The novelty here is that the diffusivity in the bound state,

D1 = kBT (Γ + γeff)−1 ̸= kBT (Γ + γ)−1,

is obtained not just from the friction in the bound state,
see Eq. (12), but is modified by spring resistance during
binding events by an additional term γeff − γ.

We can interpret this additional term by writing it as

γeff − γ = kτeff , where τeff = τb + τ relaxu

is the typical time over which the leg’s spring resistance
acts, with τb = 1/qoff representing the average bound
time, and τ relaxu = γ

k
qon
qoff

= γ
k
τb
τu

representing the bare re-

laxation time γ/k increased by the ratio of average bound
time to average unbound time. This is coherent as the leg
fluctuations may only relax in the unbound state. The
interpretation of τeff is comparable to that in Ref. 54
although the results of Ref. 54 were obtained from un-
derdamped dynamics.

longer legs stronger bondBA

FIG. 3. Effective diffusion Deff of a 1-legged particle.
Simulation and analytical result Eq. (12) for a 1D system
with 1 leg, with respect to (A) friction ratio γ/Γ and (B)
unbinding rate qoff . (A) and (B) share the same y-axis. The
other numerical parameters are qonΓ/k = 1.0, and for (A)
qoffΓ/k = 0.8 while for (B) γ/Γ = 0.1. Error bars represent
one standard deviation for 100 independent runs.

Fig. 3 shows how the effective diffusion coefficient de-
pends on microscopic parameters such as the leg friction
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and binding rates. As the leg friction γ increases, the
effective diffusion of the particle decreases (Fig. 3-A).
When the leg friction γ is large compared to all other
contributions to friction, diffusion in the bound state is
frozen D1 = 0, and the effective diffusion corresponds
only to mobility in the unbound state Deff = p0D0

(p0 = 0.8/1.8 ≃ 0.44 in Fig. 3-A). As leg friction is
typically proportional to the size of the legs, it is thus
expected that the bigger the legs, the slower the particle.
As the unbinding rate qoff decreases, Deff decreases to
arbitrarily small values (Fig. 3-B). This slow down is due
to spring recoil forces acting over longer times, eventually
freezing the particle in a given location. Note that sim-
ilar qualitative dependencies of the diffusion coefficient
on the unbinding rate (Deff ∼ kBTqoff/k) were noted in
a numerical model of multivalent transport on discrete
sites [44], in a scaling law investigation of sticky repta-
tion in polymers [62], and experimentally in Influenza A
viruses [19].

As a test of modeling choice, the analytical expres-
sion may also be plotted against numerical simulations
of the non-dimensional equations with any value of ϵ.
We find perfect agreement up to ϵ ≲ 10 (Supplemen-
tary Fig. S1), regardless of the choice of physical param-
eters. This highlights that the natural choice ϵ = L/Lx

for coarse-graining purposes, corresponding to bound leg
length scales versus unbound particle long range motion,
is especially well suited for these types of problems. In
the following ϵ is not incorporated in numerical simula-
tions.

D. Diffusion of N-legged caterpillar spans orders of
magnitude

We extend our framework to probe nanocaterpillar dy-
namics with an arbitrary number of legs N (see Fig. 4-A).
Eq. (1) is repeated for each unbound leg, and each leg
binds to the surface with rates qon, qoff independently.
Eq. (2) gives the particle dynamics when no legs are
bound. When n legs are bound, indexed by i = 1, . . . , n,
the dynamics of the particle and bound legs are con-
strained as (Supplementary 1.2)

dx

dt
= −dli

dt
=

k

Γ + nγ

n∑
i=1

(li − l0) +

√
2kBT

Γ + nγ
η. (14)

Note here that the projection step yields a friction co-
efficient scaling linearly with the number of bonds n,
and hence is not a perturbative effect [22]. The set of
stochastic equations is now fully determined and can be
simulated for any N , see Fig. 4-B.

Similarly as in Sec. I B, coarse-graining predicts a
long time effective diffusion with N legs as (Supplemen-
tary 1.2)

DN legs
eff =

kBT

ΓN legs
eff

= kBT

N∑
n=0

pn
Γn

(15)

x
N = 5

n(t) = Nbn = 2

A

B

FIG. 4. N-legged nanocaterpillar model. (A) The longi-
tudinal extension of N legs are monitored (here N = 5) with
binding and unbinding. The number of bonds n(t) changes in

time, here n(t) = 2. The average number of bonds n(t) = Nb

depends on the binding and unbinding rates. (B) Simulations
and analytical results of the effective diffusion coefficient for
N -legs according to the binding rate qonΓ/k. “Nb average”
corresponds to Eq. (16) and “full solution” to Eq. (15). The
other numerical parameters are γ/Γ = 0.1 and qoff = 0.8qon.

where pn =
(
N
n

) qN−n
off qnon

(qoff+qon)N
is the equilibrium probability

to have n bonds and Γn is the friction coefficient in a
state with n bonds. The frictions {Γn} solve a linear sys-
tem of equations that does not have a simple analytical
solution (see Eqns. (S1.20-22)), but can be solved using
numerical linear algebra for given parameters as reported
in Supplementary 1.2.

Eq. (15) is one of the main results of this paper. It pre-
dicts the long-term diffusion coefficient of a nanocaterpil-
lar, as a non-trivial function of the microscopic param-
eters of the legs. We compare the numerically solved
Eq. (15) (full lines) to numerical stochastic simulations
with N legs (dots) in Fig. 4-B and find excellent agree-
ment.

The coefficients Γn contributing to each bound state
can be further investigated to yield an analytical approx-

imation for ΓN legs
eff . When a large number of legs N is

involved in the process, the dominant term in the sum
of Eq. (15) corresponds to the average number of bonds

Nb =
∑N

n=0 npn = qon
qoff+qon

N . Furthermore, one expects

that the coefficients vary weakly around n = Nb, simpli-
fying the linear system for the {Γn}, yielding

1

ΓN legs
eff

≃
N≫1

1

ΓNb

=
1

Γ + Nbγeff
. (16)

The right hand side of Eq. (16) is valid regardless of pa-
rameter values (Fig. S3) and provides a good approxi-

mation for ΓN legs
eff for large values of N (Fig. S2). For

example, close agreement with Eq. (15) is obtained as
early as N = 20, while good qualitative agreement is ob-
tained for N = 5 (see Fig. 4-B, dotted line). Eq. (16)
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shows that the effective friction with N legs decays lin-
early with the average number of bonds Nb. For systems
with a large number of legs (and hence potentially a large
average number of bonds) [31, 38, 39], we therefore ex-
pect a strong diffusion decrease, covering potentially sev-
eral orders of magnitude, due to enhanced friction with
the surface.

II. DO NANOCATERPILLARS HOP OR SLIDE?

Our model and analytical formula Eq. (15) are use-
ful not only for quantitatively predicting the diffusion
coefficients of existing nanocaterpillar systems, but also
to obtain insight into the mechanism by which particles
diffuse. Different experiments with DNA-coated colloids
made puzzling and seemingly contradictory observations,
whereby similar systems appear to diffuse in different
ways. For example, some DNA-coated colloids appear to
diffuse through a succession of uncohesive moves, namely
hops above the surface [39], while others move cohesively
along the surface [31]. The difference between cohesive
and uncohesive modes of motion has been noted in a va-
riety of other systems, ranging from virus mobility on
surfaces [17, 19] to sticky polymer reptation [62]. Yet
the parameters that characterize and quantify these dif-
ferent modes of motion remain to be elucidated. Our
model gives insight into this question – do nanocaterpil-
lars prefer to diffuse by “sliding” along the surface, or by
“hopping” along it (see Fig. 5-A)?

A. What are hopping and sliding?

We start by quantifying the diffusion associated with
either hopping or sliding. The mean squared displace-
ment of a particle whose diffusion coefficient is deter-
mined from Eq. (15) can be split into two contributions,
as

⟨x2⟩ = 2Defft = 2p0
kBT

Γ0
t + 2

N∑
n=1

pn
kBT

Γn
t

≡ 2Dhopt + 2Dslidet.

We identify (a) a hopping mode (in accordance with
Refs. 34 and 39) where the particle detaches all bonds
with the surface and moves in free space (see Fig. 5-A),
until it forms another bond. In this hopping mode

Dhop = p0
kBT

Γ
=

(
qoff

qoff + qon

)N
kBT

Γ
. (17)

We also isolate (b) a sliding mode (see Fig. 5-A) where
the particle keeps at least one bond with the surface, a
form of walking with no preferred direction,

Dslide =

N∑
n=1

pn
Γn

≃ kBT

ΓNb

=
kBT

Γ + N qon
qoff+qon

γeff
. (18)

The total mean-squared displacement can be broken up
into the sum of the mean-squared displacement when
hopping, and the mean-squared displacement when slid-
ing, as ⟨x2⟩ = 2Dhopt + 2Dslidet = ⟨x2⟩hop + ⟨x2⟩slide.

B

Potentially Hopping

Sliding Only

A

Hopping

Sliding

Nc = 1

Nc � 10

FIG. 5. Nanocaterpillar diffusion modes with N legs.
(A) Typical modes of motion with N bonds: the nanocater-
pillar may either slide (at least one bond remains attached
to the surface) or hop (all bonds detach for the particle to
move). (B) Critical number of legs Nc required for sliding
to be more effective than hopping as a function of stickiness
qon/qoff and unbinding rate.

An important observation is that Dslide decays with the
number of legs roughly as 1/N , while Dhop decays expo-
nentially with N , i.e. much faster. As soon as a few legs
are involved, we may therefore expect that sliding domi-
nates hopping. This interpretation is natural, since when
a system has just a few legs (N ≃ 1−2), the odds that the
legs all detach at once are quite high, therefore favoring
hopping. In contrast, in a system with a large number
of legs, the odds that all legs simultaneously detach are
simply too small, and the system walks randomly, re-
maining close to the surface. In a sense, nanocaterpillars
truly are caterpillars walking with nanoscale legs. The
scaling quantifying both modes of motion is another es-
sential analytical result of our work.

In general, the critical number of legs
Nc(qon, qoff , k, γ,Γ) required to favor sliding (N ≥ Nc)
over hopping (N ≤ Nc) satisfies

⟨x2⟩hop
⟨x2⟩slide

=
Dhop

Dslide
=

(
qoff

qoff + qon

)Nc
(

1 + Nc
qon

qoff + qon

γeff
Γ

)
= 1.

(19)
The critical number of legs is controlled by the ratio
qon/qoff , termed henceforth stickiness, and by the magni-
tude of the effective friction in the bound states γeff , itself
dominated in most systems by the unbinding rate qoff .
We can therefore investigate Nc as a function of sticki-
ness qon/qoff and unbinding rate qoff (Fig. 5-B). Overall,
a system with say N = 10 legs is typically dominated by
sliding motion. Yet hopping may still occur e.g. with
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large unbinding rate qoff . In fact qoff increases the fric-
tion γeff in the bound states and reduces Dslide. The
number of legs is thus a critical parameter for nanocater-
pillar diffusion: controlling both the magnitude of the
diffusion decrease and the mode of motion.

B. Distinguishing the diversity of biophysical
nanocaterpillars

Whether a nanocaterpillar slides or hops, as predicted
by Eq. (19), depends on numerous system parameters.
Existing biological and biomimetic systems cover a broad
range of parameters that we now explore, to ask which
systems prefer to move by sliding and which by hopping,
within the framework of our model.

Our model relies on 6 physical parameters
k, γ, qoff , qon,Γ, N that can be estimated from the
literature for many systems : viruses, molecular motors,
white blood cells, protein cargos in the nuclear pore com-
plex, bacteria such as Escherichia coli, and DNA-coated
colloids (Supplementary 3). Typically, stickiness values
are similar across systems with qon/qoff ∼ 0.05 − 0.8 ≥ 1
– when the system is not thermally manipulated as
will be explored in Sec. II C. Therefore we consider
qon/qoff ≃ 0.1. Additionally, as legs are generally small
compared to particles, γ/Γ ≃ 10−3 − 10−1 and therefore
the dominant factor in γeff/Γ is usually controlled by
spring recoil force and unbinding times, as k/Γqoff . We
find k/Γqoff ≃ 10−2−108 in the range of systems studied,
confirming that this is a critical factor to discriminate
nanocaterpillars. Additionally, as systems have a varied
number of legs N , we define an effective relaxation rate

k(N)

Γ
=

k

Γ
N

qon
qoff + qon

[(
qoff + qon

qoff

)N

− 1

]−1

that will allow us to predict either sliding or hopping.
We sort systems in a so-to-speak Ashby chart, accord-

ing to the effective relaxation rate k(N)/Γ and unbind-
ing rate qoff (Fig. 6). This chart summarizes parameter
ranges for different systems, and predicts which systems
move by sliding and which move by hopping, within the
assumptions of our model. If k(N)/Γqoff ≤ 1, according
to Eq. (19), sliding (orange region) is favored over hop-
ping (blue region). While other modes of motion could
occur for such complex systems, our aim here is to ob-
serve these systems in the “projected” sub-space where
only sliding and hopping is considered. Interestingly, we
find that different groups of systems emerge according to
this classification, that we review below.

1. Sticky hoppers

We predict that viruses, white blood cells, and molec-
ular motors cannot slide. These systems show very long
bond lifetimes, with τoff = q−1

off ≃ 1 − 100 s. This is

Viruses
Molecular motor
White blood cells
Nuclear pore complex
DNA coated colloids
Escherichia Coli

Sars CoV 1
Sars CoV 2

Influenza A

P selectin L selectin

high 
coverage

low 
coverage

Hopping

Sliding

Stronger bond

Longer 
legs

nanoparticles

Viruses
Molecular motor
White blood cells

Nuclear pore complex
DNA coated colloids
Escherichia Coli

FIG. 6. Sorting biophysical systems. Expected regimes
of sliding or hopping according to the effective relaxation rate
k(N)/Γ and unbinding rate qoff . The gray line corresponds

to k(N)/Γ = qoff and separates the sliding and the hopping
regions. Circles represent the range of values found in the
literature for parameters of each system. Systems are color
coded according to their category in the legend. When multi-
ple systems belong to a category, details are indicated next to
the circles. Low and high coverage DNA-coated colloids refer
to 1 µm size colloids and nanoparticles to 15 nm size.

characteristic of strong bonds, for which the interaction
energy |∆G| ≫ kBT . Since for the protein ligands in
these systems, k ≃ 10−4 N/m and Γ ≃ 10−9 N.s/m for
1µm particles, we expect k/Γ ≃ 105 ≫ qoff and γeff ≫ Γ.
Therefore such systems simply can not slide. Sliding is
even more disfavored for coronaviruses (Sars CoV 1 and
2), since the legs are made of very rigid proteins, with
k ≃ 0.5 N/m [63, 64]. Hopping is therefore a probable
mode of motion for these systems.

These predictions are qualitatively consistent with ex-
perimental measurements. The diffusion coefficient of an
influenza A virus on protein-coated surfaces was mea-
sured as D0/Deff ≃ 4 − 190 [17, 19]. Estimating the
typical number of available legs N ≃ 10 [65, 66] and
the bound probability qon/(qon + qoff) = 20% [66] yields

D0/Dhop = [qoff/(qon + qoff)]
N ≃ 10, in the range of mea-

sured values. Our model predicts that hopping is there-
fore more probable than sliding for influenza A, at least
when considering its translational motion under passive
binding and unbinding. This is consistent with Ref. 17,
which observed infrequent yet very long spatial steps,
termed gliding moves. We note that the influenza A
virus has also been observed to move via cohesive short
spatial steps, that have been attributed to rolling mo-
tion [5, 17, 19, 41], which may be due in this context to
active bond cleaving [17, 19, 41] that is beyond the scope
of passive binding as presented here.

Turning to DNA-coated colloids, while the binding ki-
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netics are roughly independent of colloid size, the ef-
fective relaxation rate can vary strongly. Nanometre-
sized DNA-coated colloids (yellow nanoparticles) have
fast relaxation rates as they are small (and therefore Γ
is smaller), and are thus sticky hoppers. In contrast, mi-
cronscale colloids have slower relaxation rates k(N)/Γ, all
the more as usually a great number of bonds N ≃ 100
are involved in the binding process, and thus are prone to
slide. We will turn in more detail to DNA-coated colloids
in Sec. II C.

2. Slippery sliders

Reciprocally, we predict that systems with weak ad-
hesion (equivalent to short bond lifetimes, i.e. large
qoff) may move by sliding. Such systems include proteins
translocating through the nuclear pore complex, or white
blood cells adhering through L-selectin linkers, which are
notably weaker than P-selectin [23]. Sliding may also be
accessible to systems with short effective relaxation rate,
for which the sticky friction mediated by k/Γ is low. This
corresponds to large particles with long legs, as is the case
for Escherichia Coli [57] (dark green). DNA-coated col-
loids with high DNA coverage are prone to slide due to
their large number of legs.

C. DNA-coated colloids hop and slide, with order
of magnitude decrease in their diffusion coefficient

We now turn to probe in more detail the predicted
modes of motion and strong decrease in diffusion of DNA-
coated colloids by comparing our model’s predictions
with experimental measurements of DNA-coated colloids.
DNA-coated colloids provide a well-controlled model sys-
tem for testing our analytical results, especially their de-
pendence on N , since the number of DNA legs involved
in the sticking process may be easily tuned by changing
the temperature [38]. Our aim here is not to build a de-
tailed model to describe all the possible modes of motion
of DNA-coated colloids. Rather, we seek potential key
parameters that control the magnitude of the diffusion
and the mode of motion. To do so, we test whether the
predicted strong decrease is coherent with experimental
observations over a range of temperatures and for three
different experimental designs.

1. Model parameters can be directly established from
experimental data.

We predict the diffusion coefficients Deff (and Dslide

and Dhop) for three different experimental systems, by
determining the parameters involved in Eq. (15) from
the literature or from independent measurements, with
no fitting parameters (apart from calibrating to the melt-
ing temperature, as discussed below). The diffusion coef-

ficients for DNA-coated colloids on flat DNA-coated sur-
faces have been measured in two different experimental
systems reported in the literature [31, 39]. These studies
report only very few data points around the melting tem-
perature where motion is diffusive, since in these experi-
mental systems diffusive motion is only observed in a nar-
row range of temperatures, so the studies focused mainly
on the low temperature regime where motion is subdiffu-
sive. We complemented the scarce existing data by per-
forming our own experiments, using recently-developed
fabrication [38] and acquisition techniques [31, 39], and
we observe diffusive motion over a wider range of tem-
peratures (Supplementary 2). For each of the three ex-
perimental datasets, we map reported experimental pa-
rameters to the parameters of the model, and detail our
process below.

Some parameters are easily estimated using standard
results, see Table A2. The friction coefficient Γ is taken
as the hindered lateral hydrodynamic friction near a
wall [67]; γ and k correspond to hydrodynamic friction
and spring resistance of the polymer linker (that links
the surface and the complementary DNA strand) and
are directly established from polymer dynamics [56]. The
binding rate qon depends on the exact – known – DNA
sequence used for the complementary stickers and the
density of coated DNA strands on surfaces [70].

Other parameters, such as N and Nb (or equivalently
N and the ratio qon/qoff) require more extensive model-
ing of the detailed leg-arm interactions to be evaluated.
Recently Refs. 38 and 59 have shown how to establish N
and Nb with no fitting parameters, taking as input pa-
rameters the DNA sequence used, the coating densities,
and the properties of the DNA linker (see Fig. S5), and
we employ the method we have developed in Ref. 38.

Finally, since measurements include colloid vertical
motion beyond the binding range[71], we further include
vertical motion and hence particle buoyancy through a
2×1D model. Such vertical motion is generally slow and
only affects the effective probabilities pn, not the friction
coefficients Γn. Motion in two lateral dimensions can be
straightforwardly extended from our 1D model (see Sup-
plementary 2 for more details).

All parameters are thus readily expressed from detailed
experimental system design. The diffusion coefficient
Deff is decreased by orders of magnitude at low tem-
peratures. It progressively increases to its “bare” value –
corresponding to non-sticky DNA – at high temperatures,
with a sharp transition. This sharp transition from the
bound to unbound state occurs at a melting temperature
Tm specific to each experimental design. The predicted
Tm is always close to the experimentally measured Tm

(less than 1◦C difference) with no fitting parameters.

Nonetheless, intrinsic variations remain in experimen-
tal parameters. In particular, different e.g. humidity
conditions can affect the coating process and exact coat-
ing density obtained, and hence the experimental Tm,
over about 2◦C. To investigate data over the relevant
short temperature range where diffusion can be mea-
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TABLE A1. Method used to calculate model parameters for the DNA-coated colloids studied experimentally in this work.
Parameter values are reported only at the melting temperature Tm. Their dependence on temperature is indicated in the
“Comments and References” column.

Parameter Formula used Value at Tm Comments and References

Γ Γ = 2× 6πη(T )R 1.6× 10−8 N.s/m hydrodynamic friction near a surface [67]; colloid radius R = 500 nm;
η(T ) water viscosity with temperature.

γ γ = 6πη(T )h 1.8×10−10 N.s/m with brush height h ≃ 22 nm, calculated with Milner-Witten-Cates
theory [68], and accounting for increased brush density due to Pluronic
F127 (see Ref. 38).

k k = 3kBT/2Lℓ 0.16 mN/m spring constant for polymers [56]; extended brush length L ≃ 84 nm
(6500 g/mol PEO + 20 single stranded DNA (ssDNA) bases); persis-
tence length ℓ = 0.5 nm (average of PEO + ssDNA at 140 mM salt
concentration [69])

qon qon = konσ̄/hNA 4 kHz where kon = 1.6×106 M−1.s−1 from Ref. 70, using the exact sequence as
in our experiments; σ̄ =

√
σσg where σ = 1/(3.27 nm)2 is the particle

coating density and σg = 1/(10.8 nm)2 is the glass substrate coating
density; Avogadro’s number NA; Independent of T .

qoff qoff = qon
N(T )−Nb(T )

Nb(T )
18 kHz Nb average number of bound legs and N total number of legs available

for binding in the interaction region; Dependent on T .

sured, one option could be to fit e.g. the value of the
coating density on colloids, to obtain the exact experi-
mental Tm – effectively fitting the location of the sharp
transition. Instead, we choose to align all data (theo-
retical or experimental) with respect to its own melting
point Tm (predicted or measured). This has the advan-
tage of avoiding fitting and allowing us to easily compare
similar experimental systems with slightly different Tm

(Supplementary 2).

2. The coating density controls the mode of motion and the
magnitude of the diffusion coefficient decrease.

The number of legs implied in the sticking process N
changes significantly with temperature. At low temper-
atures N ≳ 100; the colloids are strongly bound. With
increasing temperatures N decreases until the particles
are completely unbound and N = 0 (see Fig. S5), with a
sharp transition at the melting temperature Tm. Impor-
tantly, the number of legs is the parameter that changes
the most with temperature and controls therefore the
magnitude of the long time diffusion Deff .

The three experimental systems differ mainly in the
DNA coating density, which implicitly controls the num-
ber of legs N involved in the binding process. For densely
coated colloids (Fig. 7, A and B), we find excellent agree-
ment between our model calculation for Deff and exper-
imental data, predicting a fast diffusion decrease over 2
orders of magnitude in barely a few temperature degrees.
Further, we predict that sliding, or some form of cohe-
sive motion with the surface, is the dominant mode of
motion below the melting temperature Tm. In fact the

high number of available legs, N ≃ 100, due to high cov-
erage, prevents hopping below the melting temperature
and colloids primarily slide, consistent with the observed
cohesive motion [31]. Hopping emerges as a favorable
mode above the melting point, where the average num-
ber of available and bound legs significantly decreases
due to particle lift-off from the surface. This prediction
is consistent with our qualitative observations above the
melting point: particles perform long moves over short
time intervals, accompanied by more frequent and longer
excursions far from the surface. The transition between
motion modes occurs for about N = 40 legs in contact
(Fig. S5).

For DNA-coated colloids with low coverage densities,
as in Ref. 39 (Fig. 7 C), our model predicts a diffusion co-
efficient that is far too large. Yet, Dhop is in remarkable
agreement with experimental data. In fact, Deff contains
sliding motion yet the spacing between legs in Ref. 39 is
too large and geometrically prevents sliding. Hence only
hopping, or uncohesive motion with the surface, is pos-
sible. In fact, for such systems only hopping is observed,
resulting in a much stronger slow down of diffusion with
decreasing temperature [39]. The DNA coating density
therefore appears to be a significant factor in determin-
ing how DNA-coated colloids move, allowing it to vary
from sliding to hopping.

3. Other possible modes of motion.

There are other ways that DNA-coated colloids could
move in specific experimental regimes, that could be
probed with the analytical tools set forth here, yet
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A

B

C

very high coating density

high coating density

low coating density

no fitting

no fitting

no fitting

FIG. 7. Diffusion coefficients of DNA-coated col-
loids. Comparison between experimentally measured diffu-
sion coefficients of DNA-coated colloids on DNA-coated sur-
faces and analytical predictions of Deff , Dslide, and Dhop

(Eqns. (15), (18) and (17)). The DNA-coated colloids have
(A) highly dense coatings (1 DNA per 10 nm2, Supplemen-
tary 2) (B) dense coatings (1 DNA per 27 nm2) from Ref. 31
and (C) sparse coatings (1 DNA per 144 nm2) from Ref. 39.
In (A) the gray region corresponds to uncertainties on the
coating density of the substrate, and the different symbols
correspond to repeated experiments repeated. The hydro-
dynamic diffusion D0 = kBT/12πηR corresponds to lateral
diffusion near a flat rigid wall, where R is the radius of the
colloid and η the solution viscosity. Horizontal error bars cor-
respond to uncertainties on imposed temperature and vertical
error bars correspond to uncertainties in determining the dif-
fusion coefficient from data (Supplementary 2).

that we have not yet explored. At lower temperatures,
particles don’t diffuse, they rather subdiffuse [31, 39],
potentially due to inhomogeneities in the coated sur-
faces [31, 39, 42]. Such spatial dependencies are not ac-
counted for in our model but could be studied through
spatially dependent attachment rates qon(x) or leg num-
ber N(x).

Particles may also move by rolling instead of by slid-
ing [31], a motion that could also be investigated with
homogenization techniques. Rolling may have a higher
mobility at some temperatures [33, 54], since the strands
closest to the contact point on the surface do not resist
rolling, for geometrical reasons. Yet when a large num-
ber of bonds are implied in the binding process, numerous
bonds are actually far from the contact point and hence

resist rolling. It is possible that rolling is thus favorable
only over a small range of temperatures.

Although our model lacks these more complex ingredi-
ents and geometries, it is in surprisingly good agreement
with our experimental measurements. This suggests we
have identified some critical parameters controlling the
observed effective diffusion, precisely the coating density
and working temperature as they set the number of legs
N . Even in a more complex model, containing e.g. inho-
mogeneous coating density, or rotational degrees of free-
dom, we therefore expect these parameters to play an
important role in mobility.

D. Design rules for sliding versus hopping

Herewith we can draw simple design rules for sliding
or hopping. Numerous, long wobbly legs with weak ad-
hesive bonds are well adapted for sliding. Short and stiff
legs with strong adhesive bonds facilitate hopping. DNA-
coated colloids offer various design features to control
their mobility: for example, larger particle size, higher
DNA coverage, and lower temperature all favor sliding.
Further control can be achieved by tuning the micro-
scopic features of the legs, such as their spring con-
stants k, for example by choosing the length of the lig-
and leg [38]. However, such control is especially hard
to achieve experimentally without changing other exper-
imental features at the same time. For example, current
coating processes generally result in less dense coatings
for longer legs [38].

Overall, these design rules allow one to tune artificial
systems to control their mobility. This could have con-
sequences in particular in the field of self-assembly of
artificial structures, where facilitated cohesive motion is
believed to be essential for long-range alignment [31–33].

III. COARSE-GRAINING UNDER DIFFERENT
MODELS AND ASSUMPTIONS

In the physical and biological systems we explored, the
range of physical parameters was quite broad, suggesting
that other scaling ansätze might be appropriate to study
long term dynamics. We review alternative approxima-
tions and modeling assumptions and compare them to
the predictions of the model presented in Section I. We
find that our model is the most general, encapsulating
perturbative results obtained with other approximations,
and that it is naturally modified to account for additional
features (such as arms as well as legs). To make the ar-
gument simpler, we mainly focus on a 1-legged caterpil-
lar; the comparisons should be similar for a multi-legged
caterpillar. Detailed coarse-graining steps are reported in
Supplementary 4. All results are summarized in Table A2
(displayed in the Appendix) and compared in Fig. 8.
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A. Dynamics with inertia

One may include particle inertia with a small yet finite
mass m ̸= 0, by starting with the underdamped Langevin
equations for the particle (rather than the overdamped
as we have done) – see Ref. 54. To understand the scales
associated with mass, one can compare the correlation
time of the particle’s velocity when spring recoil forces

are at play, τv ≃ m(Lx/τ)
Lk , to the time scale of observation

τ [54]. Coarse-grained dynamics require τv
τ = mLx

Lkτ2 =
O(ϵ), which is apparently coherent with a small mass.

Coarse-graining steps (Supplementary 4.1) lead to an
effective friction

Γm
eff = p0Γ0 + p1Γ1. (20)

Notice that the effective friction is the arithmetic sum of
the frictions in each state – not the harmonic sum ob-
tained in Eq. (12) [72]. Eq. (20) is equivalent to Eq. (12)
in the limit where the friction correction is small, γeff ≪ Γ
– see Fig. 8-B (yellow).

However, differences arise beyond this regime. For stiff
legs (γ/Γ ≫ 1, k/qoffΓ ≫ 1) one finds Γm

eff ∼ 0 while
Γeff ∼ Γ. This stark difference has an intuitive explana-
tion: the particle may not move when it is attached with
the stiff leg, but it can still move when it is unbound,
and therefore the effective friction should remain finite.
This is true unless the particle has significant inertia and
therefore does not have the time to accelerate within the
unbound periods. In fact, in the non-dimensionalization
we implicitely assumed that m/Γ = ϵLkτ2/ΓLx = Γ/kϵ2,
such that the inertial relaxation time was in fact assumed
to be large compared to the time scale of velocity fluctu-
ations.

This drives the general question of how to account for
inertia in such systems, and whether inertia plays a role
in the macroscopic diffusion of nanocaterpillars. We will
address this question thoroughly in another paper [73],
in which we reconcile Eq. (20) and Eq. (12).

B. Choice of time-scale hierarchy

There are other choices for the ordering of time scales.
We review these below: we describe their experimental
relevance, then briefly examine the effective friction un-
der these different approximations and compare it to our
main result Eq. (12).

1. Fast leg dynamics compared to particle dynamics

One common approximation is to assume rapid leg dy-
namics compared to particle dynamics, with ϵ = γ/Γ [51].
Such an approximation is consistent with numerous ex-
periments, as legs are typically short, hence fast because
of Stokes relation, compared to the large particles in-
vestigated (such as white blood cells [7] or DNA-coated
colloids [74]).

CB

qon qoff
Leg Arm

lbond

A

FIG. 8. Comparing with other coarse-grained mod-
els and assumptions. (A) Schematic for arm and leg
dynamics considered in this work. (B) Effective diffusion
with respect to friction ratio γ/Γ: calculated with Eq. (12)
(“This work”), Eq. (20) (“underdamped”), Eq. (21) (“scaling
ϵ = γ/Γ”) and Eq. (22) (“k/γ ≫ qon, qoff”). (C) Effective dif-
fusion with respect to binding and unbinding rates (keeping
qon/qoff constant), for a particle with 1 leg facing M = 1− 50
arms: calculated with Eq. (25) (“This work”) and Eq. (22)
(“k/γ ≫ qon, qoff”), taking p0 = 0 and p1 = 1 to match the
limits in M → ∞. Ref. 51 corresponds both to k/γ ≫ qon, qoff
and γ/Γ = ϵ and was plotted for consistency. For (A) and (B),
shared numerical parameters are qonΓ/k = 1.0, qoffΓ/k = 0.8
and γ/Γ = 0.1.

With this assumption one typically relaxes the restric-
tion on lengthscales, as L ∼ Lx. The observation time-
scale is τ = L2/D0 = Γ/k and binding and unbind-
ing are taken to be fast compared to this time scale,
qon ∼ qoff ∼ 1/τϵ. One obtains (Supplementary 4.2.1)

1

Γ
ϵ=γ/Γ
eff

=
p0
Γ

+
p1
Γ

(
1 − γeff

Γ

)
. (21)

Eq. (21) results in a small correction to the effective fric-
tion, of order ϵ. It is equivalent to Eq. (12) in the limit
where γeff ≪ Γ is small. The assumption ϵ = γ/Γ ap-
pears thus quite restrictive as it implicitly also requires
to observe the system at long time scales compared to the
other time scales in the system. Furthermore, contrary
to Eq. (12) where the small parameter ϵ disappears, here

1/Γ
ϵ=γ/Γ
eff is a first order expansion in ϵ ∼ γeff/Γ. We

present Eq. (21) against Eq. (12) in Fig. 8-B (purple vs
black) and find that Eq. (21) is indeed only valid for small
values of γ/Γ. Our choice of scaling ϵ = L/Lx can thus
account for a broad range of bare friction values. Ad-
ditionally, such an approach can only account for small
perturbations to the background mobility, while we find
perturbations over several orders of magnitude.

2. Fast leg dynamics compared to binding dynamics

Another approximation assumes fast leg relaxation dy-
namics compared to binding dynamics, k/γ ≫ qon, qoff
(and both are fast compared to particle dynamics). In
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this case leg lengths are sampled from their equilibrium
distribution when they bind, corresponding to a “pre-
averaging” approximation. Leg lengths are not tracked
when they are unbound, allowing to speed up simula-
tions [22, 33, 51, 75]. This limit is relevant to describe
stiff legs, e.g. rigid polymers such as double stranded
DNA – see Table S1.

Coarse-graining gives (Supplementary 4.2.2)

1

Γ
k/γ≫q
eff

=
p0
Γ

+
p1

Γ + γ + k
qoff

. (22)

The pre-averaged result Eq. (22) is comparable to
Eq. (12), yet misses the relaxation term involving τ relaxu

in γeff . This confirms that τ relaxu originates from unbound
relaxation dynamics. This difference results in some dif-
ferences in Deff , depending on the microscopic parame-
ters (Fig. 8-B). Additionally, the pre-averaged limit may
be viewed as the limit regime for a nanocaterpillar with
a large number of legs, say N ≫ 1, where on average 1
or 0 leg is bound to the surface, Nb ≲ 1. This typically
requires qon ≪ qoff ≪ k/γ, and indeed Eq. (15) converges
to the pre-averaged result in that limit (Supplementary
Fig S4).

The validity of pre-averaging is limited to the domain
qon, qoff ≪ k/γ. In systems such as DNA-coated col-
loids, binding rates qon and qoff may be manipulated
over orders of magnitude [76], by choosing the DNA
sequence or by adjusting temperature, potentially ac-
cessing qon ≫ qoff ≫ k/γ at low temperatures. In
this regime, Eq. (12) predicts that the nanocaterpillar
is frozen in the bound state, while pre-averaged dynam-
ics still predict a non zero mobility. In these situations
pre-averaged dynamics are therefore not suitable. We
show later however that introducing numerous arms –
more generally a lot of binding partners – can extend the
validity range of pre-averaging.

3. Fast binding dynamics compared to leg dynamics

Finally, one can consider fast binding dynamics com-
pared to leg dynamics, qon, qoff ≫ k/γ. Although this
limit is not often considered in simulations, it is relevant
for dense arrangements of receptor sites [74]. In fact as
the binding rate qon scales linearly with the concentra-
tion of receptors, it can increase by orders of magnitude
for a leg potentially in contact with a dense array of arms
– see Table S1.

Coarse-graining yields (Supplementary 4.2.3)

1

Γq fast
eff

=
p0
Γ

+
p1

Γ + γ + k
(

γ
k

qon
qoff

) (23)

which is exactly what is expected in the limit qon, qoff ≫
k/γ in Eq. (12). Again, this highlights the physical mech-
anisms yielding the different contributions in γeff . Here
the average bound time of the leg is small, τb ≪ γ/k,
and therefore does not contribute to γeff .

C. Arms and/or legs

The diversity of nanocaterpillars resides also in their
geometry: some particles have legs that attach to a sur-
face [77], some have no legs (or infinitesimally small legs),
with binding sites directly on the particle that attach
to outstretched receptors on the surface that we refer
to as arms [22, 51] (1 arm case in Table A2) and some
have both outstretched legs connecting to outstretched
arms [33] (arms and legs in Table A2).

1. Arms or legs

A particle with a leg or a bare particle attaching to an
arm (1-legged and 1-armed respectively, see Table A2)
have nearly equivalent effective dynamics. The only dif-
ference resides in the interpretation of Γ in the unbound
leg dynamics Eq. (2) – see Supplementary 4.3.1. For the
1-legged case, if the leg’s center of mass corresponds to
the point grafted to the particle, the unbound friction
coefficient is simply increased by the leg as Γ → Γ + γ,
where Γ is the bare particle friction coefficient and γ the
leg’s. If the leg’s center of mass is offset from the graft-
ing point on the surface, minor modifications have to be
made to Eq. (2) yet lead to very similar dynamics overall.
For the 1-armed case, we simply have the unbound fric-
tion coefficient Γ to be the bare friction coefficient of the
particle. This justifies our approach in Sec. I, where we
ignore the details of the leg or arm location and simply
treat them as mathematically equivalent.

2. Arm and leg

A 1-legged particle attaching to 1 arm has slightly more
interesting dynamics. To investigate this case, we sim-
plify the problem and consider that the leg can bind
to the arm regardless of their relative location, with a
rigid rod of length lbond that bridges the gap between
the sticky points (see Fig. 8-A). In the bound state the
constraint is thus x + lleg − larm = lbond. The relative
distance lbond is unimportant and can be assumed to be
zero, and therefore this model effectively creates an arm
with the correct length each time the leg binds.

Although the model is simplistic, it is realistic in the
presence of a dense periodic array of arms and allows us
to compare the mechanical properties of this geometry
compared to a single leg or arm. We find using similar
coarse-graining techniques (Supplementary 4.3.2)

1

Γleg+arm
eff

=
p0
Γ

+
p1

Γ + γeff,1(1, 1)
where γeff,1(1, 1) =

γeff
2

.

(24)
The added friction in the bound state is only half that
with a single leg or a single arm: friction is distributed
harmonically, like the effective spring constant of two
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springs in series [78]. Slightly improved mobility is there-
fore achieved with both an arm and a leg, while the qual-
itative behavior of the original model is preserved.

3. Leg facing numerous arms

We now consider a leg that can bind to multiple arms
at the same time. As in the previous section, the M
arms do not have particular locations but rather appear
with the correct lengths when needed. In that case, the
binding rate depends on the number of bound legs. For a
given leg, the effective binding rate is (M −n)qon, where
n is the current number of bound legs, such that M − n
corresponds to the number of available binding sites. The
effective unbinding rate of each leg remains qoff . Follow-
ing the formalism of arm and leg dynamics detailed above
(Supplementary 4.3.3) one finds that with M arms,

1

Γleg+M arms
eff

=
pM,0

Γ
+

pM,1

Γ + γeff,1(M, 1)
(25)

where pM,0 = qoff/(qoff +Mqon) and pM,1 = 1− pM,0 are
the probabilities to have 0 or 1 bond. The added friction
γeff,1 is a harmonic average when M is large

1

γeff,1(M, 1)
≃

M≫1

1

γeff,M,1
+

1

γeff,1,1
, (26)

with γeff,M,1 = k
(

1
qoff

+ γ
k
(M−1)qon+qoff

qoff

)
the effective

friction due to the leg γeff,1,1 = k
(

1
qoff

+ γ
k

)
due to arms.

We see that the factors implying the unbound relaxation
time τ relaxu are modified in each case. We give the follow-
ing interpretation: the average unbound time for the leg
is τu = 1/(M − 1)qon, due to M − 1 other available arms
to bind to. For the arms, τu = ∞ as there are no other
legs to bind to once the only leg is bound. The harmonic
average in Eq. (26) highlights again that the leg-arm con-
figuration is mathematically similar to the effective force
of springs in series.

In the limit of a large number of arms M , the leg is
always bound to the surface (p1 = 1) and the correction
to the bound state friction converges to

γeff,1(M, 1) −−−−→
M→∞

γeff,1(1, 1) = γ +
k

qoff
, (27)

which is the correction to the effective friction for the
pre-averaged result, Eq (22).

This limit is surprising. Sec I, Eq. (12) showed that for
a leg binding to a uniformly sticky surface, in the limit
where the leg is always bound (p1 = 1), the nanocater-
pillar is frozen and Deff = 0. When the leg is bound to a
great many arms this is no longer the case: we recover the
diffusion coefficient associated with pre-averaging. We
interpret this discrepancy as follows. With many arms
binding to a leg, the particle may still move, even in a
parameter regime where the leg is always bound. In fact,

the leg rapidly swaps between different arms, which have
different random lengths and hence apply different ran-
dom forces, causing the particle’s position to fluctuate.
Indeed, in Eq. (27) it is apparent that the remaining fric-
tion is due to arms and not to the leg. Swapping the
particle upside down, this is equivalent to a particle with
a large number M of legs binding to a uniformly sticky
surface, but where on average only 0 or 1 leg is bound
to the surface at a time. Therefore, this limit is equiva-
lent to the pre-averaged result: each time a new arm is
bound it is sampled from its equilibrium distribution –
as so many arms are within reach.

Simulations with M arms are presented in Fig. 8-C with
analytical solutions Eq. (25) (green colors). They indeed
converge to the pre-averaged result (pink). For consis-
tency, we also record the result of Ref. 51 (Eq. (2.48))
that corresponds to pre-averaging and assumes ϵ = γ/Γ.
It is plotted in Fig. 8-C (red) and agrees with our result
only over a limited range of parameters, corresponding
to the validity range of Ref. 51.

4. Numerous legs facing numerous arms

N legs binding to M arms induce a long time effec-
tive friction that encapsulates the previous result for
M arms and that for N legs in Sec. I D (Supplemen-
tary 4.3.4). Eq. (15) still holds with adapted bond prob-
abilities pn, and γeff in Eq. (16) is the harmonic average
between arm and leg contributions, (γeff,n(M,N))−1 =

γ−1
eff,M,n + γ−1

eff,N,n.

Overall, spanning different limits shows that our
methodology to investigate long time dynamics is ro-
bust, as it accounts for a broad range of physical param-
eters and a variety of geometries. It also justifies the use
of “pre-averaging” approximations (sampling leg lengths
from equilibrium distributions upon binding) to acceler-
ate simulations in specific situations. It also highlights
that taking limits of various parameters is subtle, and
care must be taken when doing so as the limits do not
commute in general.

CONCLUSION

When a particle is coated with ligands that bind and
unbind stochastically to receptors on a surface, the lig-
ands impart a random force to the particle each time
they bind, causing the particle to undergo a random
walk on long timescales. We constructed a model for
the coupled dynamics of such a nanocaterpillar and its
leg-like ligands, and derived an analytical expression for
the nanocaterpillar’s long-term effective diffusion coeffi-
cient as a function of the microscopic leg parameters. Our
simulations showed this expression is valid over a broad
range of parameters. Our expression predicts a dramatic
decrease in the diffusion coefficient, by several orders of
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magnitude, as temperature decreases by a few degrees,
a prediction that is borne out in our experimental mea-
surements.

Our model allows us to distinguish between two modes
of motion, sliding and hopping, and to identify parame-
ters that govern which mode of motion is preferred, across
a wide range of biophysical systems. Typically, systems
with a large number of legs will slide, since the mean-
squared displacement due to hopping decreases exponen-
tially with the number of bound legs. Hopping is favored
for systems with short, stiff legs, and/or strong bonds.
Regardless of the mode of motion, the fast binding and
relaxation dynamics at the microscale result in an over-
all slow diffusion of the nanocaterpillar, sometimes many
times smaller than the background hydrodynamic diffu-
sion.

We derived the effective diffusivity for a range of other
models and scaling assumptions, which allowed us to
tease out e.g. the effect of having arms (flexible recep-
tors) as well as legs, having significantly more arms than
legs or vice versa, having significant inertia, etc. In par-
ticular, we explored the validity range of specific approxi-
mations used to accelerate simulations, such as that upon
binding, leg lengths are sampled from their equilibrium
distributions [22, 33, 51]. We showed this approxima-
tion is valid for fast leg dynamics γ/k ≪ qon, qoff in 1D,
or when binding to a great number of binding partners,
such as many arms, M ≫ 1, yet its validity should be
reassessed in more complex geometries.

There are numerous ways to build upon our model to
address additional complexities within the same coarse-
graining framework. An important step would be to in-
corporate particle rotational degrees of freedom, and to
ask how rolling compares to hopping and sliding. Rolling
has been predicted to lead to a low effective friction in
systems with stiff legs, because it doesn’t require stretch-
ing legs at the contact point [33, 54]. While rolling has
been modeled in special situations, none of these account
for the full stochastic nature of the motion, nor do they
systematically derive a coarse-grained equation from mi-
croscopic parameters [41]. A systematic derivation of a
rolling diffusion coefficient would involve a few additional
mathematical subtleties beyond those that occur here,
such as including binding rates with spatial dependen-
cies to account for the variable separation between sur-
faces [79, 80], but we may nevertheless expect similar pa-
rameters (such as spring relaxation times and unbinding
rates) to discriminate between rolling and other modes
of motion.

Going further, other effects that could be studied in-
clude the details of binding kinetics, e.g. non-exponential
kinetics in DNA hybridization [81–83], which could also
impact the long time response [42]; mobility of the leg
roots, corresponding to fluidity of the bilayer [10, 84];
and out-of-equilibrium effects, such as white blood cells
streaming in blood flow [5, 80], active stepping of molec-
ular motors [49, 85, 86], or proteins that actively cleave
bonds on influenza A [17, 36]. Accounting for such ef-

fects would require adapting bond dynamics to include
increased bond rigidity or bond lifetime in flow [3, 87–91];
binding kinetics coupled to the number of bonds [47, 49];
or memory effects associated with dead zones created by
cleaved bonds [26, 36, 52]. Importantly, such improve-
ments require carefully adapting binding rates to preserve
detailed balance and physical constraints [32, 79].

Furthermore, detailed hydrodynamic effects may be
important to describe certain kinds of nanocaterpillar
dynamics. We have accounted for hydrodynamics via
the bare friction coefficients (Γ, γ), but these coefficients
themselves are coarse-grained, and in reality depend on
the distance of a nanocaterpillar to a surface [67] and
are coupled to the details of the polymer leg mesh. In-
deed, elasticity of the polymer mesh could modify the
particle’s mobility near the interface, as was predicted for
elastic membranes [92, 93]. A more detailed description
of the hydrodynamic flow near a nanocaterpillar could
help shed light on other systems where mobility through
fluid is mediated by slender legs, such as for the Vampire
amoeba [94].

Beyond its biophysical details, nanocaterpillar motion
resonates with other fields where mobility is determined
through adhesive contacts. For example, solid state
sliding friction is created by bonds breaking between
atoms. Close neighbor interactions between bonds, orig-
inating from mechanical interactions, can result in dra-
matic avalanches of bond breaking that change the slid-
ing motion [95, 96]. Similar correlations between nearby
bonds could be at play in some nanocaterpillars. For ex-
ample, in white blood cells, membrane tension mediates
bond-bond interactions [47, 48]. It is therefore interest-
ing to speculate whether avalanches of bond unbinding
could also occur for nanocaterpillar systems. Overall, the
mathematical framework of coarse-graining is well suited
to explore how microscopic features determine macro-
scopic modes of motion for nanocaterpillars and could
facilitate predictive capacity for materials design and bio-
physical systems.
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APPENDIX

Appendix A: Projection of the dynamics in the
bound state

To project the stochastic dynamics Eqns. (1) and (2)
in the bound case we use a formalism (and notations)
similar to Ref. 32; see also [60, 97]. This projection con-
sists in using stiff springs to impose each constraint, and
considering the limit where the spring constants go to in-
finity. The resulting projected equations can be obtained
by directly pursuing the steps below (without redoing the
reasoning with stiff springs).

We start from stochastic equations in the (x, l) space
and seek to project them on the constraint manifold, de-
fined by the constraint q(x, l) = x + l − xr = 0. The
constraint matrix is therefore

C = (∇q)T =

(
1 1

)
. (28)

We obtain the projector

P = I − CT (CCT )−1C =
1

2

 1 −1

−1 1

 . (29)

Initially the dynamics of X = (x, l)T may be written as

dX

dt
= −Γ̃−1∇U(X) +

√
2kBT Γ̃−1ηxl(t) (30)

where the potential U(X) = kl2/2, the noise ηxl =
(ηx, ηl)

T and the friction matrix is

Γ̃ =

Γ 0

0 γ

 . (31)

The projected friction and its Moore-Penrose pseudo-
inverse are

ΓP = P Γ̃P = Γ+γ
4

 1 −1

−1 1

 , (32)

Γ†
P = 1

Γ+γ

 1 −1

−1 1

 (33)

with a square root

σP =

√
Γ†
P =

1√
Γ + γ

 1 0

−1 0

 . (34)

We obtain the projected dynamics

dX

dt
= −Γ†

P∇U(X) +
√

2kBTΓ†
P ηxl(t) (35)

where additional terms are needed if C is not constant
over the constraint manifold [60, 97]. One can check that
this exactly yields the bound dynamics Eq. (3), with η =
ηx (this decomposition of the noise is not unique but this
does not impact the dynamics in a weak sense).

Appendix B: Numerical simulations

Stochastic simulations of particle and leg dynamics are
conducted using a custom made Fortran 90 routine. Fast
random number generation is performed according to a
Mersenne twister algorithm. Normally distributed ran-
dom numbers are used for particle displacement while
uniformly distributed random numbers are used to de-
termine binding events. Equations are simulated in their
non-dimensional form. The step dt was chosen to be
much small than all other time scales of the system. Typ-

ically dt = 1
100 min

(
qonΓ
k , qonΓ

k , γ
Γ

)
. The system is sim-

ulated for NT = 108 time steps, and the simulation is
repeated over Nruns = 100 independent runs (with re-
newed random number seed).

To simulate binding and unbinding events, for each
leg, at each time step, we choose a random number R
uniformly distributed between 0 and 1 and then:

• if the leg is bound, and if R > qoffdt then the leg
becomes unbound. Otherwise it remains bound.

• if the leg is unbound, and if R > qondt then the leg
becomes bound. Otherwise it remains unbound.

This simulation routine approximates well the expo-
nential binding dynamics expected from the continuous
equations since dt ≪ q−1

off , q
−1
on . To simulate all other
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TABLE A2. Summary of different models and their effective long time friction. The 1-leg case corresponds to a system where
the leg’s center of mass is fixed on the particle. Apart from the 1-leg case, we ignore differences between Γ and Γ̃ to simplify
notations.

Model Sketch Result

Main geometries

1-arm

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1

Γeff
=

p0
Γ0

+
p1
Γ1

, Γ0 = Γ, Γ1 = Γ + γeff , γeff = k
(

1
qoff

+ γ
k

qon
qoff

)

1-leg

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1

Γeff
=

p0
Γ0

+
p1
Γ1

, Γ0 = Γ̃, Γ1 = Γ̃ + γeff , Γ̃ = Γ + γ

N-legs

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1

Γeff
=

N∑
n=0

pn
Γn

, pn =
(
N
n

) qN−n
off

qnon
(qoff+qon)N

, Γn ≃
N≫1

Γ + nγeff

Inertial dynamics

1-leg, inertia
m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

Γeff = p0Γ0 + p1Γ1 , Γ0 = Γ, Γ1 = Γ + γeff

Limit regimes

Small legs

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1

Γeff
=

p0
Γ

+
p1
Γ

(
1− γeff

Γ

)

Fast legs

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q
1

Γeff
=

p0
Γ0

+
p1
Γ1

, Γ0 = Γ, Γ1 = γ + k
qoff

Fast binding

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1

Γeff
=

p0
Γ0

+
p1
Γ1

, Γ0 = Γ, Γ1 = γ + k
(

γ
k

qon
qoff

)

Extended geometries

1-arm, 1-leg

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q

1

Γeff
=

p0
Γ0

+
p1
Γ1

, Γ0 = Γ, Γ1 = Γ + 1
2
γeff

M-arms, N-legs

m

γ/Γ ≪ 1

k/γ ≪ q

k/γ ≫ q


1

Γeff
=

N∑
n=0

pn
Γn

,Γn = Γ + nγeff,n(M,N),

(γeff,n(M,N))−1 ≃ (γeff,M,n)
−1 + (γeff,N,n)

−1, γeff,P,n = γ + k
(

1
qoff

+ γ
k

(P−n)qon
qoff

)
stochastic equations we use a standard Euler-Maruyama
discretization.

The particle position x is saved every 104 time steps,
and the mean squared displacement < (x(t + t0) −
x(t0))2 >t0 (averaged over initial times t0) is computed
up to NT /100 = 106 time steps. The effective diffusion

coefficient for each run Deff,i is obtained from the analyt-
ical least square regression of < (x(t + t0) − x(t0))2 >t0

with time. The average value over the runs Deff =
1

Nruns

∑
i Deff,i is retained as the effective long time diffu-

sion coefficient. The standard deviation of Deff,i allows
to draw error bars in all simulation plots.
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